JPH1055933A - Trimming capacitor - Google Patents

Trimming capacitor

Info

Publication number
JPH1055933A
JPH1055933A JP8227658A JP22765896A JPH1055933A JP H1055933 A JPH1055933 A JP H1055933A JP 8227658 A JP8227658 A JP 8227658A JP 22765896 A JP22765896 A JP 22765896A JP H1055933 A JPH1055933 A JP H1055933A
Authority
JP
Japan
Prior art keywords
trimming
capacitor
fine particles
dielectric layer
trimming capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8227658A
Other languages
Japanese (ja)
Other versions
JP3494422B2 (en
Inventor
Koichiro Tsujiku
浩一郎 都竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP22765896A priority Critical patent/JP3494422B2/en
Publication of JPH1055933A publication Critical patent/JPH1055933A/en
Application granted granted Critical
Publication of JP3494422B2 publication Critical patent/JP3494422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To easily trim, without causing the obtd. capacitance of a trimming capacitor to be dispersed by forming a particle-dispersed dielectric layer and opposed inner electrodes through this layer on the capacitor. SOLUTION: A capacitor 12 is laminarly formed in one surface of a multi- layer substrate 10 made of a (Ba, Sr, Ca)O-Al2 O3 -SiO2 glass and comprises a pair of opposed inner electrodes 14 with a dielectric layer 16 therebetween. The particles for efficiently absorbing the heat caused by the irradiated beam uses C particles which are dispersed in the dielectric layer 16. The capacitor 12 is irradiated with a laser beam 18 to trim the capacitance. Thus a region near the electrode cross point of the capacitor 12 on the board 10 is irradiated with the laser beam 18 to trim it, without dispersing the obtd. capacitance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばハイブリ
ッドICの基板上や基板内部に形成されたトリミングコ
ンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a trimming capacitor formed on, for example, a substrate of a hybrid IC or inside the substrate.

【0002】[0002]

【従来の技術】ハイブリッドICの基板上や基板内部に
形成されたトリミングコンデンサの取得容量の調整(ト
リミング)は、トリミングコンデンサの内部電極の一部
を機械的又は物理的に除去し、内部電極の有効面積を変
化させることによって行なわれている。ここで、トリミ
ングコンデンサの内部電極の一部を機械的又は物理的に
除去する手段としては、サンドブラスト、レーザーなど
が用いられている。
2. Description of the Related Art To adjust (trim) the acquisition capacity of a trimming capacitor formed on or inside a substrate of a hybrid IC, a part of the internal electrode of the trimming capacitor is mechanically or physically removed, and the internal electrode is removed. This is done by changing the effective area. Here, as means for mechanically or physically removing a part of the internal electrode of the trimming capacitor, sand blast, laser, or the like is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、このような従
来のトリミング方法では、トリミングコンデンサを形成
する内部電極の一部を機械的又は物理的に除去するた
め、除去された内部電極の一部が基板の表面に形成され
た配線や電極に付着してその部分の絶縁性を低下させた
り、マイグレーションを生じさせたりするなどの不都合
があった。
However, in such a conventional trimming method, a part of the internal electrode forming the trimming capacitor is mechanically or physically removed. There are inconveniences such as adhesion to wirings and electrodes formed on the surface of the substrate to lower the insulating properties of the portions and causing migration.

【0004】また、従来のトリミング方法では、トリミ
ングコンデンサを形成する内部電極の一部を機械的又は
物理的に除去するため、取得容量を減少させるトリミン
グはできるものの、取得容量を増加させるトリミングは
不可能であり、トリミングできる範囲が限定されてい
た。
Further, in the conventional trimming method, since a part of the internal electrode forming the trimming capacitor is mechanically or physically removed, the trimming to reduce the acquisition capacity can be performed, but the trimming to increase the acquisition capacity is not possible. It is possible and the range that can be trimmed is limited.

【0005】また、従来のトリミング方法では、トリミ
ングを施すために、又はトリミングを施すことによりそ
の部分の電極がむき出しになっているので、トリミング
後にこの部分にカバーコートを施して信頼性を確保する
ようにしているが、このカバーコートを施すために工程
が複雑になっていた。
Further, in the conventional trimming method, since the electrode is exposed at the portion for trimming or trimming, a cover coat is applied to this portion after trimming to ensure reliability. However, the application of the cover coat complicates the process.

【0006】しかも、従来のトリミング方法では、内部
電極の上にカバーコートを施すことによって発生する浮
遊容量のために取得容量が変動してしまうので、この変
動分を考慮してトリミングしなければならず、正確なト
リミングが困難であった。
Moreover, in the conventional trimming method, the obtained capacitance fluctuates due to the stray capacitance generated by applying a cover coat on the internal electrodes. Therefore, the trimming must be performed in consideration of the fluctuation. And accurate trimming was difficult.

【0007】また、トリミングコンデンサを形成する内
部電極の一部をその近傍の組織とともに機械的又は物理
的に除去するため、この除去された部分の周囲に大きな
ストレスが発生し、そのストレスが原因となってマイク
ロクラックが発生し、内部電極のマイグレーションなど
が起こり易くなり、信頼性が低下していた。しかも、マ
イクロクラックの発生は初期的に非破壊的に検知するこ
とが困難で、潜在的な劣化要因となっていた。
In addition, since a part of the internal electrode forming the trimming capacitor is mechanically or physically removed together with the tissue in the vicinity thereof, a large stress is generated around the removed part, and the stress causes a problem. As a result, microcracks occurred, migration of the internal electrodes and the like were likely to occur, and the reliability was reduced. Moreover, it is difficult to detect the occurrence of microcracks non-destructively at an early stage, which has been a potential deterioration factor.

【0008】更に、従来のトリミング方法では、内部電
極の一部をその近傍の組織とともに機械的又は物理的に
除去するため、トリミング部分を基板の表層近傍にしか
形成できず、回路設計の自由度が低かった。
Further, in the conventional trimming method, a part of the internal electrode is mechanically or physically removed together with the tissue in the vicinity thereof, so that the trimmed portion can be formed only near the surface layer of the substrate, and the degree of freedom in circuit design is increased. Was low.

【0009】そこで、本件特許出願人はこれらの問題を
解決するものとして、基板上又は基板内部に形成したト
リミングコンデンサにレーザー光等の電磁波を照射して
誘電体層を加熱し、この熱によって結晶質と非晶質の間
でその結晶構造を変化させ、これによってその取得容量
をトリミングする方法を発明した。
In order to solve these problems, the present applicant irradiates a trimming capacitor formed on or in the substrate with an electromagnetic wave such as a laser beam to heat the dielectric layer, and the heat is applied to the crystal. We have invented a method of changing its crystal structure between crystalline and amorphous, thereby trimming its acquisition capacity.

【0010】この発明は、上記の発明を実施する際に、
トリミングコンデンサの取得容量にバラツキを生じさせ
ることなく容易にトリミングすることができるトリミン
グコンデンサを提供することを目的とする。
[0010] The present invention provides, when embodying the above invention,
An object of the present invention is to provide a trimming capacitor that can be easily trimmed without causing variation in the acquisition capacity of the trimming capacitor.

【0011】[0011]

【課題を解決するための手段】この発明に係るトリミン
グコンデンサは、微粒子を分散させた誘電体層と、該誘
電体層を介して対向する内部電極とを備えている。ここ
で、内部電極は、積層状態で対向していてもよいし、突
き合わせ状態で対向していてもよい。後者の内部電極は
誘電体層のレーザー光照射側、内部又は反対側のいずれ
に設けてあってもよい。
A trimming capacitor according to the present invention includes a dielectric layer in which fine particles are dispersed, and internal electrodes facing each other via the dielectric layer. Here, the internal electrodes may face each other in a laminated state, or may face each other in a butt state. The latter internal electrode may be provided on the laser beam irradiation side, inside or on the opposite side of the dielectric layer.

【0012】前記微粒子の材料としては、焼成過程で誘
電体中に溶け込んだり、分解したりして無くならないよ
うなもの、又は、トリミング前に微粒子として存在して
いるもので、トリミング過程で分解したり、誘電体中に
溶け込んでしまうものを使用することができる。
The material of the fine particles is one that does not dissolve or decompose into the dielectric during the firing process, or that exists as fine particles before trimming, and is decomposed during the trimming process. Or a material that dissolves into the dielectric can be used.

【0013】このような微粒子の材料としては、例え
ば、炭素、銀、銅、パラジウム、白金、金、ニッケル又
はこれらの合金を用いることができるが、誘電体層の特
性に悪い影響を与えないものであれば、これら以外のも
のを用いてもよい。また、外部から添加するものではな
く、誘電体層を形成している誘電体磁器組成物から析出
して形成されている分相粒子であってもよい。
As a material for such fine particles, for example, carbon, silver, copper, palladium, platinum, gold, nickel or an alloy thereof can be used, but those which do not adversely affect the characteristics of the dielectric layer are used. If so, other than these may be used. Instead of being added from the outside, phase-separated particles formed by deposition from the dielectric ceramic composition forming the dielectric layer may be used.

【0014】前記微粒子の平均粒子径はトリミングのた
めに照射する光の波長の1/4以上が好ましい。微粒子
の平均粒子径をこの程度にすると。照射した光の散乱や
反射が大きく、誘電体層を効果的に加熱できるからであ
る。ただし、微粒子の平均粒子径は10μm以下が好ま
しい。これより大きくなると、グリーンシートを作成し
難くなるからである。
The average particle diameter of the fine particles is preferably at least 4 of the wavelength of the light irradiated for trimming. When the average particle diameter of the fine particles is set to this level. This is because the scattered and reflected light is large, and the dielectric layer can be effectively heated. However, the average particle diameter of the fine particles is preferably 10 μm or less. If it is larger than this, it becomes difficult to prepare a green sheet.

【0015】前記微粒子の含有量は0.1体積%〜40
体積%が好ましい。0.1体積%未満では明らかな効果
が認められないからであり、40体積%を越えると、ト
リミングしたときの変化率が小さくなり、実用的でない
からである。しかも、微粒子として金属粉体を使った場
合は、微粒子の含有量が多くなり過ぎると電極間が導通
してしまう恐れがあるからである。
The content of the fine particles is 0.1% by volume to 40%.
% By volume is preferred. If the content is less than 0.1% by volume, a clear effect is not recognized. If the content is more than 40% by volume, the rate of change upon trimming becomes small, which is not practical. In addition, when metal powder is used as the fine particles, if the content of the fine particles is too large, there is a possibility that conduction between the electrodes may occur.

【0016】[0016]

【実施例】【Example】

実施例1 (Ba,Sr,Ca)O−Al23 −SiO2 系ガラ
スを用いてトリミングコンデンサを多数有する多層基板
を作成した。多層基板に形成されたトリミングコンデン
サの誘電体層には照射された光を熱として効率よく吸収
させるための微粒子として1体積%の炭素微粒子を分散
させた。炭素微粒子の平均粒子径は約0.3μmであ
る。内部電極は銀(Ag)電極とした。この多層基板の
コンデンサ付近の内部構造は図1に示す通りとした。
Example 1 (Ba, Sr, Ca) was a multilayer substrate having a large number of trimming capacitors with the O-Al 2 O 3 -SiO 2 based glass. In the dielectric layer of the trimming capacitor formed on the multilayer substrate, 1% by volume of carbon fine particles were dispersed as fine particles for efficiently absorbing irradiated light as heat. The average particle size of the carbon fine particles is about 0.3 μm. The internal electrode was a silver (Ag) electrode. The internal structure near the capacitor of this multilayer substrate was as shown in FIG.

【0017】同図において、10は多層基板であり、多
層基板10の一方の面側(同図では上側)にはコンデン
サ12が内部に積層形成されている。コンデンサ12は
対向する一対の内部電極14,14と、内部電極14,
14に挟まれた誘電体層16とからなる。18はコンデ
ンサ12に向けて照射されているレーザー光である。
In FIG. 1, reference numeral 10 denotes a multilayer substrate, and a capacitor 12 is formed on one side (upper side in FIG. 1) of the multilayer substrate 10 therein. The capacitor 12 includes a pair of opposed internal electrodes 14, 14, and internal electrodes 14, 14.
And a dielectric layer 16 sandwiched between them. Reference numeral 18 denotes a laser beam emitted toward the condenser 12.

【0018】次に、コンデンサを備えた多層基板につい
て、コンデンサの電極交差部分に近い領域にレーザー光
を照射して取得容量のトリミングを行った。試料の数は
100個とした。レーザーはNd−YAGレーザー(発
振波長1.06μm)を用いた。照射面の温度は900
℃、照射時間は30秒とした。
Next, with respect to the multilayer substrate provided with the capacitor, an area near the electrode intersection of the capacitor was irradiated with laser light to trim the obtained capacitance. The number of samples was 100. The laser used was an Nd-YAG laser (oscillation wavelength: 1.06 μm). Irradiation surface temperature is 900
C. and the irradiation time was 30 seconds.

【0019】トリミング前後のコンデンサの取得容量の
バラツキを調べたところ、表1に示す通りとなった。試
料1から5は交差電極面積を変えて取得容量を変えた。
電極間隔はほゞ一定とした。レーザーは交差電極面積に
合わせて集光面積を変え、レーザーの出力を面積に比例
させて変化させ、単位面積当たりの照射エネルギーがほ
ゞ一定となるように調整した。
When the variation in the obtained capacitance of the capacitor before and after the trimming was examined, it was as shown in Table 1. In Samples 1 to 5, the acquisition capacity was changed by changing the cross electrode area.
The electrode spacing was almost constant. The laser changed the focusing area in accordance with the cross-electrode area, and changed the laser output in proportion to the area so that the irradiation energy per unit area was almost constant.

【0020】比較例1 誘電体磁器組成物中に微粒子を分散させなかった他は、
実施例1と同様の条件でトリミングコンデンサを作成
し、実施例1と同様の条件てレーザー光を照射し、トリ
ミングされたコンデンサの取得容量のバラツキを調べた
ところ、表1に示す通りとなった。
COMPARATIVE EXAMPLE 1 Except that fine particles were not dispersed in the dielectric ceramic composition,
A trimming capacitor was prepared under the same conditions as in Example 1, and a laser beam was irradiated under the same conditions as in Example 1 to examine the variation in the obtained capacitance of the trimmed capacitor. The results were as shown in Table 1. .

【0021】[0021]

【表1】 [Table 1]

【0022】表1の結果から解るように、微粒子を分散
させた誘電体磁器組成物を用いたコンデンサは、微粒子
を分散させなかった誘電体磁器組成物を用いたコンデン
サと比べて取得容量のバラツキが減少していることが解
る。
As can be seen from the results in Table 1, the capacitor using the dielectric ceramic composition in which the fine particles are dispersed has a larger variation in the obtained capacity than the capacitor using the dielectric ceramic composition in which the fine particles are not dispersed. It can be seen that has decreased.

【0023】なお、実施例1では、図1の構造から解る
ように、レーザー光はトリミングすべき誘電体層を直接
加熱するのではなく、一度、内部電極を加熱し、加熱さ
れた内部電極の熱が誘電体層に伝わると考えられ、そこ
での炭素微粒子の働きは、内部電極から伝わった熱を逃
がさないように効率よく吸収する働きをしているものと
考えられる。
In the first embodiment, as can be understood from the structure shown in FIG. 1, the laser beam does not directly heat the dielectric layer to be trimmed, but once heats the internal electrode, and heats the heated internal electrode. It is considered that heat is transmitted to the dielectric layer, and the function of the carbon fine particles there is considered to be a function of efficiently absorbing the heat transmitted from the internal electrodes so as not to escape.

【0024】実施例2 実施例1と同じ基板を作成し、レーザー光の代わりに集
光させた赤外線でコンデンサを加熱した。その結果、レ
ーザー光の場合と比べ、加熱された領域がやや広がり、
目的とする領域の周辺部まで物性が変化してしまってい
るようだが、得られた特性変化はレーザー光の場合とほ
とんど同じであった。結果を表2に示す。
Example 2 The same substrate as that of Example 1 was prepared, and the condenser was heated by focused infrared rays instead of laser light. As a result, the heated area is slightly wider than in the case of laser light,
Although the physical properties seem to have changed up to the periphery of the target area, the obtained property changes were almost the same as in the case of the laser beam. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】実施例3 内部電極が図2に示すような突き合わせ状態になったト
リミングコンデンサにレーザー光を照射して、トリミン
グすべき誘電体層にレーザー光を直接照射した。レーザ
ー光の照射の条件は実施例1と同様とした。結果を表3
に示す。
Example 3 A laser beam was applied to a trimming capacitor whose internal electrodes were brought into abutting condition as shown in FIG. 2, and a laser beam was directly applied to a dielectric layer to be trimmed. Laser irradiation conditions were the same as in Example 1. Table 3 shows the results
Shown in

【0027】[0027]

【表3】 [Table 3]

【0028】内部電極の突き合わせ構造のため、実施例
1の場合より取得容量値が低いが、その他は実施例1と
ほゞ同様の結果が得られている。このことから、微粒子
にレーザー光を直接照射しても、トリミング時のバラツ
キを低減させる効果があることが解る。
Although the obtained capacitance value is lower than that of the first embodiment because of the butted structure of the internal electrodes, the other results are almost the same as those of the first embodiment. From this, it is understood that even if the fine particles are directly irradiated with the laser light, there is an effect of reducing the variation at the time of trimming.

【0029】実施例4 実施例3における誘電体中に分散した炭素微粒子の代わ
りに、金属銀微粒子を分散させた。銀微粒子の直径は
0.3μmで、誘電体材料に対して5wt%添加した。
結果を表4に示す。炭素微粒子の代わりに金属微粒子を
分散させても同じような効果が得られることが解る。
Example 4 Metal silver fine particles were dispersed in place of the carbon fine particles dispersed in the dielectric in Example 3. The diameter of the silver fine particles was 0.3 μm, and 5 wt% was added to the dielectric material.
Table 4 shows the results. It can be seen that the same effect can be obtained by dispersing metal fine particles instead of carbon fine particles.

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】この発明によれば、誘電体層中に分散し
ている微粒子が供給されたエネルギーを効率的に受け取
って熱くなり、周囲の誘電体層を速やかに加熱するの
で、誘電体磁器組成物自体の熱吸収条件の変化に左右さ
れず、安定なトリミングを行うことができ、従って、ト
リミング後のコンデンサの取得容量のバラツキが少なく
なるという効果がある。
According to the present invention, the fine particles dispersed in the dielectric layer efficiently receive the supplied energy, become hot, and rapidly heat the surrounding dielectric layer. Stable trimming can be performed irrespective of changes in the heat absorption conditions of the composition itself, and therefore, there is an effect that the variation in the acquired capacity of the capacitor after trimming is reduced.

【0032】また、この発明によれば、微粒子の分散量
を変化させることによって光等の吸収量を制御できるた
め、加熱不足や加熱過剰による不良の発生を防ぐことが
できるという効果がある。
Further, according to the present invention, the amount of absorption of light or the like can be controlled by changing the amount of dispersion of the fine particles, so that there is an effect that occurrence of defects due to insufficient heating or excessive heating can be prevented.

【0033】更に、この発明によれば、微粒子の大きさ
を変えることによって吸収する光等の最大波長を変える
ことができるため、同じ波長の光等を使って選択的にト
リミングすることができるという効果がある。
Further, according to the present invention, since the maximum wavelength of light to be absorbed can be changed by changing the size of the fine particles, it is possible to selectively trim using light of the same wavelength or the like. effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例1に係る多層基板のコンデンサ付
近の内部構造を示す説明図である。
FIG. 1 is an explanatory diagram illustrating an internal structure near a capacitor of a multilayer substrate according to a first embodiment;

【図2】図2は実施例3に係る多層基板のコンデンサ付
近の内部構造を示す説明図である。
FIG. 2 is an explanatory diagram illustrating an internal structure near a capacitor of a multilayer substrate according to a third embodiment.

【符号の説明】[Explanation of symbols]

10 多層基板 12 コンデンサ 14 内部電極 16 誘電体層 18 レーザー光 Reference Signs List 10 multilayer substrate 12 capacitor 14 internal electrode 16 dielectric layer 18 laser beam

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 微粒子を分散させた誘電体層と、該誘電
体層を介して対向する内部電極とを備えたことを特徴と
するトリミングコンデンサ。
1. A trimming capacitor comprising: a dielectric layer in which fine particles are dispersed; and internal electrodes facing each other via the dielectric layer.
【請求項2】 前記内部電極が積層状態で又は突き合わ
せ状態で対向していることを特徴とする請求項1に記載
のトリミングコンデンサ。
2. The trimming capacitor according to claim 1, wherein the internal electrodes face each other in a stacked state or abutted state.
【請求項3】 前記微粒子が炭素、銀、銅、パラジウ
ム、白金、金、ニッケル又はこれらの合金からなること
を特徴とする請求項1又は2に記載のトリミングコンデ
ンサ。
3. The trimming capacitor according to claim 1, wherein the fine particles are made of carbon, silver, copper, palladium, platinum, gold, nickel, or an alloy thereof.
【請求項4】 前記微粒子が誘電体層を形成している誘
電体磁器組成物から分離して形成された分相粒子である
ことを特徴とする請求項1又は2に記載のトリミングコ
ンデンサ。
4. The trimming capacitor according to claim 1, wherein the fine particles are phase-separated particles formed separately from a dielectric ceramic composition forming a dielectric layer.
【請求項5】 前記微粒子の平均粒子径がトリミングの
ために照射する光の波長の1/4以上であることを特徴
とする請求項1〜4のいずれかに記載のトリミングコン
デンサ。
5. The trimming capacitor according to claim 1, wherein an average particle diameter of the fine particles is at least 1 / of a wavelength of light irradiated for trimming.
【請求項6】 前記微粒子の含有量が0.1体積%〜4
0体積%であることを特徴とする請求項1〜5のいずれ
かに記載のトリミングコンデンサ。
6. The content of the fine particles is 0.1% by volume to 4%.
The trimming capacitor according to claim 1, wherein the volume is 0% by volume.
JP22765896A 1996-08-10 1996-08-10 Trimming capacitor Expired - Fee Related JP3494422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22765896A JP3494422B2 (en) 1996-08-10 1996-08-10 Trimming capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22765896A JP3494422B2 (en) 1996-08-10 1996-08-10 Trimming capacitor

Publications (2)

Publication Number Publication Date
JPH1055933A true JPH1055933A (en) 1998-02-24
JP3494422B2 JP3494422B2 (en) 2004-02-09

Family

ID=16864318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22765896A Expired - Fee Related JP3494422B2 (en) 1996-08-10 1996-08-10 Trimming capacitor

Country Status (1)

Country Link
JP (1) JP3494422B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054961A2 (en) 2001-12-21 2003-07-03 Marconi Communications Gmbh Capacitor element and method for trimming a capacitor element
WO2007086184A1 (en) * 2006-01-30 2007-08-02 Murata Manufacturing Co., Ltd. Method for regulating capacitance value of built-in capacitor in multilayered ceramic substrate, and multilayered ceramic substrate and process for producing the same
US8169772B2 (en) * 2007-05-01 2012-05-01 Avx Corporation Precision laser adjustable thin film capacitors

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054961A2 (en) 2001-12-21 2003-07-03 Marconi Communications Gmbh Capacitor element and method for trimming a capacitor element
WO2003054961A3 (en) * 2001-12-21 2003-11-20 Marconi Comm Gmbh Capacitor element and method for trimming a capacitor element
US7102873B2 (en) 2001-12-21 2006-09-05 Marconi Communications Gmbh Capacitor element and method for trimming a capacitor element
CN100449760C (en) * 2001-12-21 2009-01-07 爱立信股份有限公司 Capacitor element and method for trimming a capacitor element
WO2007086184A1 (en) * 2006-01-30 2007-08-02 Murata Manufacturing Co., Ltd. Method for regulating capacitance value of built-in capacitor in multilayered ceramic substrate, and multilayered ceramic substrate and process for producing the same
JPWO2007086184A1 (en) * 2006-01-30 2009-06-18 株式会社村田製作所 Method for adjusting capacitance value of built-in capacitor of multilayer ceramic substrate, multilayer ceramic substrate and manufacturing method thereof
JP4720829B2 (en) * 2006-01-30 2011-07-13 株式会社村田製作所 Method for adjusting capacitance value of built-in capacitor of multilayer ceramic substrate, multilayer ceramic substrate and manufacturing method thereof
US7996969B2 (en) 2006-01-30 2011-08-16 Murata Manufacturing Co., Ltd. Method for adjusting capacitance value of built-in capacitor in multilayer ceramic substrate, and method for manufacturing a multilayer ceramic substrate
US8169772B2 (en) * 2007-05-01 2012-05-01 Avx Corporation Precision laser adjustable thin film capacitors
US8689417B2 (en) 2007-05-01 2014-04-08 Avx Corporation Precision laser adjustable thin film capacitors
US9437366B2 (en) 2007-05-01 2016-09-06 Avx Corporation Method for laser adjustable thin film capacitors
US10176925B2 (en) 2007-05-01 2019-01-08 Avx Corporation Precision laser adjustable thin film capacitors

Also Published As

Publication number Publication date
JP3494422B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
AU2010235991B2 (en) Method and apparatus for the selective separation of two layers of material using an ultrashort pulse source or electromagnetic radiation
EP3041804B1 (en) Method for producing a disc with an electrically conductive coating having electrically insulated defects
JPH0677264A (en) Device and method for dismounting electronic component from board
JP2014007375A (en) Circuit singulation system and method
EP2064748A2 (en) Method for metallising semiconductor elements and use thereof
JPH10505463A (en) Multilayer electronic device manufacturing method
JPH1055933A (en) Trimming capacitor
JPS59169126A (en) Method for heating semiconductor wafer
RU2755943C1 (en) Method for producing thick-film resistors
US6599780B2 (en) Film production method and film produced thereby
JP2008288403A (en) Method of manufacturing ceramic substrate
JP2003001457A (en) Laser beam machining method
JPS6267834A (en) Laser processing
JP4078137B2 (en) How to set the laser beam pulse width
JP3083120B2 (en) Method and apparatus for evaluating solder wettability
JPH11307914A (en) Pattern forming method of thick film wiring board
JPH11289149A (en) Manufacturing device for thin electronic circuit component, and the thin electronic circuit component
JP3500012B2 (en) How to trim capacity
WO2022118517A1 (en) Production method for conductive part, production method for electronic component including conductive part, production method for product made from electronic component including conductive part, conductive part, electronic component including conductive part, and product incorporating electronic component including conductive part
JP4244611B2 (en) Drilling method of ceramic green sheet
Yamane et al. Influences of a spark plasma on a sample surface in laser emission microspectral analysis
Wu et al. Monitoring laser conditioning effect by real-time thermo-reflectance measurement
CN113547135B (en) Online detection method for metal 3D printing, metal 3D printer and equipment
Pan et al. Spatiotemporal probe into the femtosecond laser processing of fused silica
WO2022009517A1 (en) Contact structure and method for manufacturing contact structure

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010424

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees