JPH104160A - Heat radiating material for semiconductor substrate and manufacturing method therefor - Google Patents

Heat radiating material for semiconductor substrate and manufacturing method therefor

Info

Publication number
JPH104160A
JPH104160A JP17746396A JP17746396A JPH104160A JP H104160 A JPH104160 A JP H104160A JP 17746396 A JP17746396 A JP 17746396A JP 17746396 A JP17746396 A JP 17746396A JP H104160 A JPH104160 A JP H104160A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
rolling
heat radiating
particles
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17746396A
Other languages
Japanese (ja)
Other versions
JP3611402B2 (en
Inventor
Tomohiko Ayada
倫彦 綾田
Junichi Miyahara
淳一 宮原
Noriko Hirokawa
典子 廣川
Takashi Kayamoto
隆司 茅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP17746396A priority Critical patent/JP3611402B2/en
Publication of JPH104160A publication Critical patent/JPH104160A/en
Application granted granted Critical
Publication of JP3611402B2 publication Critical patent/JP3611402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide heat radiating material for a semiconductor substrate and its manufacturing method which can reduce a manufacturing cost and can attempt a high performance of a material quality. SOLUTION: A two element mixture of metal particles and ceramic particles is sealed into sheath material by vacuum seal without adding such a third element as Ag and so on, by cold working the mixture and by heat working after a sudden heating. Compounds caused by isolating Si can be suppressed, sinter density is improved and thermal conductivity is improved. Additionally, the metal particles can largely be deformed by a high pressure during heating condition, and can tightly be contacted with a phase boundary with the ceramic particles, and the sinter density and the thermal conductivity are further improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LSIパッケージ
や光半導体パッケージ等に用いられる放熱材の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heat radiating material used for an LSI package, an optical semiconductor package or the like.

【0002】[0002]

【従来の技術】従来、放熱材としては、Cu−W系のも
のが一般的であったが、タングステン(W)は高価であ
り、かつその比重が大きく製品全体が重量化する問題が
あった。また、その製造方法としてはW粉末をホットプ
レス法により焼結してからCuを含浸させ、所定の形状
に研削しており、その工程が多くなることや材料歩留り
が低下することにより、生産性が低下し、製造コストが
高騰化するという問題もあった。
2. Description of the Related Art Conventionally, Cu-W based heat radiating materials have been generally used. However, tungsten (W) is expensive, has a large specific gravity, and has a problem that the whole product becomes heavy. . In addition, as a method of manufacturing, the W powder is sintered by a hot press method, then impregnated with Cu, and ground to a predetermined shape. This increases the number of steps and lowers the material yield, thereby increasing productivity. And the production cost rises.

【0003】そこで、原料コストが高く、比重が大きい
Wに代えてCu−SiC系の複合材やCu−C系の複合
材が注目されているが、これらの材料にあってもCu−
W系のものと同様に放熱材を形成するには主としてホッ
トプレス法が用いられており、この方法はバッチ処理と
なるため、生産性が劣る(製造コストが高くなる)と云
う問題は残る。加えて、ある系ではホットプレスによる
加熱時間が長くなると焼結体の特性が低下すると云う問
題もある。
[0003] Therefore, Cu-SiC-based composite materials and Cu-C-based composite materials have attracted attention in place of W, which has a high raw material cost and a large specific gravity.
The hot press method is mainly used to form the heat radiating material as in the case of the W-based material, and since this method is a batch process, there remains a problem that productivity is poor (production cost is high). In addition, in a certain system, there is a problem that the characteristics of the sintered body are deteriorated when the heating time by the hot press is prolonged.

【0004】図4(a)〜図4(c)にCu−SiC系
のホットプレス焼結体の特性を示す。本材料系では高
温、長時間の加熱により熱伝導率が低下する。これは、
SiC中の遊離SiがCuと反応し、界面で抵抗となる
化合物を作るためである。また、ホットプレス法の場
合、Cu−SiCの2元素では焼結密度を向上すると共
に熱伝導率を向上させるために、Ag、Sn、Si等の
共晶による融点降下元素を添加する必要があり、特にA
gを含む系では高温、長時間の加熱によりAgが析出し
て膨張し、これによっても熱伝導率が低下する。ここ
で、図4(c)に示すように圧力を増すほど特性は良く
なるものの通常はカーボンを使用する焼結治具の強度の
制約によりあまり高圧化することは困難である。
FIGS. 4 (a) to 4 (c) show characteristics of a Cu--SiC hot press sintered body. In this material system, the thermal conductivity is reduced by heating at a high temperature for a long time. this is,
This is because free Si in SiC reacts with Cu to produce a compound that becomes a resistance at the interface. In the case of the hot pressing method, it is necessary to add a eutectic melting point element such as Ag, Sn, or Si in order to improve the sintering density and the thermal conductivity of the two elements of Cu-SiC. , Especially A
In a system containing g, Ag is precipitated and expanded by heating at a high temperature for a long period of time, which also reduces the thermal conductivity. Here, as shown in FIG. 4C, as the pressure increases, the characteristics become better, but it is usually difficult to increase the pressure too much due to the limitation of the strength of the sintering jig using carbon.

【0005】尚、冷間プレスと連続焼結とを組み合わせ
ることも考えられるが、その場合も例えばCu−SiC
系の場合、SiCの延性が極めて低いために高密度は得
られない。例えばCu−SiC−Ag系で冷間プレスに
より784MPaの高圧をかけたものでも熱処理前の相
対密度が74%、熱処理後が73%と低密度のものしか
得られない。
[0005] It is also conceivable to combine cold pressing and continuous sintering.
In the case of a system, high density cannot be obtained because the ductility of SiC is extremely low. For example, even when a Cu—SiC—Ag system is applied with a high pressure of 784 MPa by cold pressing, only a low density of 74% relative density before heat treatment and 73% after heat treatment can be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記したよう
な従来技術の問題点に鑑みなされたものであり、その主
な目的は、製造コストを低廉化すると共に材質の高性能
化を図ることが可能な半導体基板用放熱材及びその製造
方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and its main purpose is to reduce the manufacturing cost and improve the performance of the material. It is an object of the present invention to provide a heat radiating material for a semiconductor substrate and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】そのためには、Agなど
の第3元素を添加しないCu−SiCの2元素系材料を
用い、加熱速度を速くし、加熱保持時間を短くして遊離
Siによる化合物を抑制することが必要である。また、
加熱状態で少なくとも100MPa以上の高圧に加圧す
ることによりCuを大きく変形させてSiC粒との界面
に密着させることが必要である。
For this purpose, a Cu-SiC two-element material to which no third element such as Ag is added is used, the heating rate is increased, the heating holding time is shortened, and the compound of free Si is used. Must be suppressed. Also,
It is necessary to significantly deform Cu by applying a pressure of at least 100 MPa or more in a heated state and to make the Cu adhere to the interface with the SiC particles.

【0008】上記した目的は本発明によれば、Cu−S
iCの2元素系半導体基板用放熱材であって、シース材
中に封入した金属(Cu)粒子とセラミック(SiC)
粒子との混合体を冷間加工し、急速加熱後に熱間加工す
ることにより、その焼結密度を94%以上とし、かつ熱
伝導率を120W/mK以上とし、更に金属粒子が伸展
(縦横比で2:3以上)していることを特徴とする半導
体基板用放熱材を提供すること及びシース材中に金属粒
子とセラミック粒子との混合体を封入し、これを冷間加
工し、急速加熱後に熱間加工する課程を有することを特
徴とする半導体基板用放熱材の製造方法を提供すること
により達成される。
[0008] The above object is achieved according to the present invention by providing a Cu—S
A heat dissipating material for a two-element semiconductor substrate of iC, comprising metal (Cu) particles and ceramic (SiC) encapsulated in a sheath material
The mixture with the particles is cold-worked, hot-worked after rapid heating, the sintering density is at least 94%, the thermal conductivity is at least 120 W / mK, and the metal particles are stretched (aspect ratio). (2: 3 or more), a heat dissipating material for a semiconductor substrate, and a mixture of metal particles and ceramic particles encapsulated in a sheath material, which is cold-worked and rapidly heated. This is achieved by providing a method of manufacturing a heat radiating material for a semiconductor substrate, which has a step of performing hot working later.

【0009】[0009]

【発明の実施の形態】以下に、本発明の好適な実施形態
について添付の図面を参照して詳しく説明する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0010】図1は、本発明が適用された半導体基板用
放熱材の製造工程の要部を示す。
FIG. 1 shows a main part of a manufacturing process of a heat radiating material for a semiconductor substrate to which the present invention is applied.

【0011】まず、SUSからなる円形断面の管(シー
ス材)の一方の端部(図の右側)近傍を側面からプレス
して端面をTIG溶接して閉塞する。そして、他方側
(図の左側)から銅粉(Cu)と炭化珪素粉(SiC)
との混合粉をタップ充填後、真空引きしつつ上記同様に
側面からプレスし、切断した後その端面もTIG溶接し
て閉塞し、上記銅粉(Cu)と炭化珪素粉(SiC)と
の混合粉を真空封入する。以下、粉末シース圧延法での
圧下率を次のように定義する。 圧下率=((圧延前厚さ−圧延後厚さ)/圧延前厚さ)
×100% 特に、シース材を冷間圧延する場合は、圧延前厚さはシ
ース材外径とする。
First, the vicinity of one end (the right side in the drawing) of a tube (sheath material) made of SUS having a circular cross section is pressed from the side, and the end is closed by TIG welding. Then, from the other side (left side in the figure), copper powder (Cu) and silicon carbide powder (SiC)
After tapping the mixed powder of the above, pressing from the side in the same manner as described above while evacuating, cutting, and then closing the end face by TIG welding, mixing the above copper powder (Cu) and silicon carbide powder (SiC). The powder is vacuum-sealed. Hereinafter, the rolling reduction in the powder sheath rolling method is defined as follows. Reduction rate = ((thickness before rolling-thickness after rolling) / thickness before rolling)
× 100% In particular, when the sheath material is cold-rolled, the thickness before rolling is the outer diameter of the sheath material.

【0012】次に、冷間圧延して内部の密度を高くした
後、例えば800℃〜850℃で熱間圧延して平板状と
して更に密度を高くし、少なくとも焼結密度94%以上
とする。そして、シース材を除去して所望の形状に加工
することにより半導体基板用放熱材として使用すること
となる。このように冷間圧延後、熱間圧延して焼結密度
を94%以上とすることで、熱伝導率が120W/mK
以上の放熱材が得られる。
Next, after cold rolling is performed to increase the internal density, hot rolling is performed at a temperature of, for example, 800 ° C. to 850 ° C. to further increase the density to a flat plate shape, at least a sintered density of 94% or more. Then, the sheath material is removed and processed into a desired shape to be used as a heat radiating material for a semiconductor substrate. After the cold rolling and the hot rolling to a sintering density of 94% or more after the cold rolling, the thermal conductivity is 120 W / mK.
The above heat radiating material is obtained.

【0013】尚、この例では圧延で板材を製造する手順
を示したが、用途、形状に応じて棒・線材を製造する場
合、押し出し、ロータリースウェージング或いは孔型圧
延により冷間加工後、熱間加工しても良い。また、上記
したシース圧延法に類似する方法としてHIP法が考え
られるが、加熱速度が遅く、加熱時間が長くなるためホ
ットプレス法と同様に放熱材の特性が低下する。
In this example, the procedure for producing a sheet material by rolling is shown. However, when producing rods and wires in accordance with applications and shapes, after extruding, rotary swaging or hole rolling, cold working and then hot working are performed. It may be processed during processing. As a method similar to the above-mentioned sheath rolling method, an HIP method is conceivable. However, since the heating speed is slow and the heating time is long, the characteristics of the heat dissipating material are deteriorated similarly to the hot press method.

【0014】[0014]

【実施例】図2にホットプレス法で得られた放熱材の特
性と本発明による粉末シース圧延法で得られた放熱材の
特性とを比較する。
FIG. 2 compares the characteristics of the heat radiator obtained by the hot pressing method with the characteristics of the heat radiator obtained by the powder sheath rolling method according to the present invention.

【0015】体積比率で、SiC/Cu=65/35の
Cu−SiC系ではホットプレス法では相対密度が83
%、熱伝導率が22W/mKであるが、本発明による粉
末シース圧延法では相対密度が98%、熱伝導率が75
W/mKに向上した。また、体積比率でSiC/Cu=
50/50のCu−SiC系ではホットプレス法で相対
密度が95%、熱伝導率が60W/mKであるが、本発
明による粉末シース圧延法では条件にもよるが、相対密
度が98%、熱伝導率が157W/mKに向上した。こ
こで、粉末シース圧延材の密度は、圧延温度、圧下率、
ロール径、圧延速度、シース材の強度などの影響を受
け、一般的にはこれらの値が大きいほど、密度は向上す
る。図2は外径12mm、板厚1mmのシース材を用い
てロール径125mm、圧延速度22m/min、冷延
率=熱延率=50%、総圧下率75%の結果を示したも
のである。ここでは、シース材の強度の影響が大きく現
れており、熱間強度の大きなKOVAR(商標:ウェス
ティングハウス社の開発によるFe−Ni−Co合金)
を用いた場合に優れた特性を示した。圧延加重から平均
圧延圧力を求めると、KOVARで約200MPaにな
る。また、94%と密度の低かったCuで約100MP
aであった。しかし、この値はホットプレス法に比べ
2.5倍以上の高圧力であり、これによりCu粒子を伸
展させ、SiC粒子との密着性を向上させたと考えられ
る。
In a Cu-SiC system having a volume ratio of SiC / Cu = 65/35, the relative density is 83 by hot pressing.
% And a thermal conductivity of 22 W / mK, but the powder sheath rolling method according to the present invention has a relative density of 98% and a thermal conductivity of 75%.
W / mK. In addition, the volume ratio of SiC / Cu =
In a 50/50 Cu-SiC system, the relative density is 95% and the thermal conductivity is 60 W / mK by the hot press method. However, in the powder sheath rolling method according to the present invention, the relative density is 98%, Thermal conductivity improved to 157 W / mK. Here, the density of the rolled powdered sheathed material is the rolling temperature, rolling reduction,
The density is affected by the roll diameter, the rolling speed, the strength of the sheath material, and the like. In general, the larger these values are, the higher the density is. FIG. 2 shows the results of using a sheath material having an outer diameter of 12 mm and a plate thickness of 1 mm, a roll diameter of 125 mm, a rolling speed of 22 m / min, a cold rolling rate = hot rolling rate = 50%, and a total rolling reduction rate of 75%. . Here, the influence of the strength of the sheath material appears greatly, and KOVAR (trademark: Fe-Ni-Co alloy developed by Westinghouse) having a large hot strength is used.
Excellent characteristics were shown when using. When the average rolling pressure is determined from the rolling load, the average KOVAR is about 200 MPa. In addition, about 100% of Cu having a low density of 94% is used.
a. However, this value is 2.5 times or more higher than that of the hot press method, and it is considered that the Cu particles are extended and the adhesion to the SiC particles is improved.

【0016】図3に、本発明の粉末シース圧延法による
放熱材(図3(a))と従来のホットプレス法による放
熱材(図3(b))との組織を比較して示す。共に体積
比率でSiC/Cu=50/50のCu−SiC系を用
い、本発明の粉末シース圧延法ではSUSパイプをシー
ス材に用いて圧下率50%の冷間圧延後に850℃で1
0分間加熱後、直ちに圧下率44%の熱間圧延を行った
(総圧下率72%、シース材外径12mmから圧延後厚
さ3.36mmへ圧延)。一方、ホットプレス法では8
60℃で2時間加圧(39.2MPa)した。
FIG. 3 shows a comparison of the structures of the heat dissipating material (FIG. 3 (a)) produced by the powder sheath rolling method of the present invention and the heat dissipating material (FIG. 3 (b)) produced by the conventional hot pressing method. In both cases, a Cu-SiC system having a volume ratio of SiC / Cu = 50/50 is used. In the powder sheath rolling method of the present invention, a SUS pipe is used as a sheath material, and after cold rolling at a rolling reduction of 50%, 1% at 850 ° C.
Immediately after heating for 0 minutes, hot rolling was performed at a rolling reduction of 44% (total rolling reduction of 72%, the outer diameter of the sheath material was reduced from 12 mm to a thickness of 3.36 mm after rolling). On the other hand, in the hot press method, 8
It was pressurized (39.2 MPa) at 60 ° C. for 2 hours.

【0017】図3(b)の従来のホットプレス法による
放熱材に比較して図3(a)の本発明の粉末シース圧延
法による放熱材の方がCu粒子が伸展し大きく変形して
いる(縦横比で2:3以上)ことがわかる。
Compared with the heat dissipating material obtained by the conventional hot pressing method shown in FIG. 3B, the heat dissipating material obtained by the powder sheath rolling method of the present invention shown in FIG. (2: 3 or more in aspect ratio).

【0018】尚、表1に示すように、粉末シース圧延法
を用いた場合でも、熱延を2段行うのは、1段目で充分
全体の密度が向上しないまま部分的に固化する、あるい
は加熱時間が長くなるため、所望の特性が得られず、冷
間圧延後、単なる熱処理(850℃、10分)のみ行っ
たものは膨張し明らかに密度不良であった。従って、冷
間圧延によって或る程度高密度化を図った後、熱間圧延
により更に高密度化する方法が最も優れていることがわ
かる。
As shown in Table 1, even when the powder sheath rolling method is used, the hot rolling is performed in two steps because the first step involves partial solidification without sufficiently increasing the overall density, or Since the heating time was prolonged, desired characteristics could not be obtained, and those subjected to only a simple heat treatment (850 ° C., 10 minutes) after cold rolling expanded and clearly had a poor density. Therefore, it is understood that a method of achieving a certain density by cold rolling and then further increasing the density by hot rolling is most excellent.

【0019】[0019]

【表1】 前提条件 1)SUSシース材使用 2)熱間圧延前、あるいは熱処理時の加熱条件は850
℃、10分 3)体積比率でSiC/Cu=50/50の混合粉を使
[Table 1] Preconditions 1) Use of SUS sheath material 2) Heating condition before hot rolling or during heat treatment is 850
℃, 10 minutes 3) Use mixed powder of SiC / Cu = 50/50 in volume ratio

【0020】[0020]

【発明の効果】上記した説明により明らかなように、本
発明による半導体基板用放熱材及びその製造方法によれ
ば、Agなどの第3元素を添加することなくシース材中
に金属粒子とセラミック粒子との2元素系混合体を真空
封入し、これを冷間加工し、急速加熱後に熱間加工する
ことにより、遊離SiによるCuとの化合物を抑制する
ことができ焼結密度が向上して熱伝導率が向上する。ま
た、加熱状態で高圧に加圧することにより金属粒子を大
きく変形させてセラミック粒子との界面に密着させ
As is apparent from the above description, according to the heat radiating material for a semiconductor substrate and the method of manufacturing the same according to the present invention, the metal particles and the ceramic particles are contained in the sheath material without adding a third element such as Ag. By vacuum-encapsulating a two-element mixture of the above and cold-working, hot-working after rapid heating, the compound with Cu due to free Si can be suppressed, and the sintering density is improved, The conductivity is improved. In addition, the metal particles are greatly deformed by applying high pressure in the heating state, and adhere to the interface with the ceramic particles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(g)は、本発明が適用された半導体
基板用放熱材の製造工程の要部を示す図。
1 (a) to 1 (g) are views showing a main part of a manufacturing process of a heat radiating material for a semiconductor substrate to which the present invention is applied.

【図2】従来のホットプレス法で得られた放熱材の特性
と本発明による粉末シース圧延法で得られた放熱材の特
性とを比較するグラフ。
FIG. 2 is a graph comparing characteristics of a heat radiator obtained by a conventional hot press method with characteristics of a heat radiator obtained by a powder sheath rolling method according to the present invention.

【図3】(a)は、本発明による半導体基板用放熱材の
組織を示す走査電子顕微鏡金属組織写真(反射電子線
像)、(b)は、従来の半導体基板用放熱材の組織を示
す走査電子顕微鏡金属組織写真(反射電子線像)。
FIG. 3 (a) is a scanning electron microscope metallographic photograph (reflection electron beam image) showing the structure of a heat dissipation material for a semiconductor substrate according to the present invention, and FIG. 3 (b) shows the structure of a conventional heat dissipation material for a semiconductor substrate. Scanning electron microscope metal structure photograph (reflection electron beam image).

【図4】(a)、(b)、(c)は、従来のホットプレ
ス法に於ける焼結温度、焼結時間及び焼結圧力と製品の
特性(熱伝導率)との関係を示すグラフ。
FIGS. 4 (a), (b) and (c) show the relationship between the sintering temperature, sintering time and sintering pressure in the conventional hot press method and the characteristics (thermal conductivity) of the product. Graph.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 茅本 隆司 神奈川県横浜市金沢区福浦3丁目10番地 日本発条株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takashi Kayamoto 3-10 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa Japan Nippon Hojo Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Cu−SiCの2元素系半導体基板用
放熱材であって、 シース材中に封入した金属(Cu)粒子とセラミック
(SiC)粒子とを冷間加工後に熱間加工することによ
り、その焼結密度を94%以上とし、かつ熱伝導率を1
20W/mK以上としたことを特徴とする半導体基板用
放熱材。
1. A heat-dissipating material for a two-element semiconductor substrate of Cu-SiC, wherein metal (Cu) particles and ceramic (SiC) particles encapsulated in a sheath material are hot-worked after cold working. The sintering density is at least 94% and the thermal conductivity is 1
A heat radiating material for a semiconductor substrate, wherein the heat radiating material is 20 W / mK or more.
【請求項2】 金属粒子とセラミック粒子とからなる
2元素系複合材からなる半導体基板用放熱材であって、 金属粒子が縦横比で2:3以上に伸展していることを特
徴とする半導体基板用放熱材。
2. A heat dissipation material for a semiconductor substrate comprising a two-element composite material composed of metal particles and ceramic particles, wherein the metal particles extend in an aspect ratio of 2: 3 or more. Heat dissipation material for substrates.
【請求項3】 シース材中に金属粒子とセラミック粒
子との混合体を封入し、これを冷間加工後に熱間加工す
る課程を有することを特徴とする半導体基板用放熱材の
製造方法。
3. A method of manufacturing a heat radiating material for a semiconductor substrate, comprising a step of encapsulating a mixture of metal particles and ceramic particles in a sheath material and subjecting the mixture to cold working and then hot working.
【請求項4】 前記冷間加工及び熱間加工が、圧延、
押し出し及びロータリースウェージングのうちの1つ若
しくは2つ以上の組み合わせからなることを特徴とする
請求項3に記載の半導体基板用放熱材の製造方法。
4. The cold working and the hot working are performed by rolling,
The method according to claim 3, wherein the method comprises one or a combination of extruding and rotary swaging.
【請求項5】 前記熱間加工時の加圧力を100MP
a以上としたことを特徴とする請求項3または請求項4
に記載の半導体基板用放熱材の製造方法。
5. The pressure during the hot working is 100MPa.
5. The method according to claim 3, wherein the distance is not less than a.
3. The method for manufacturing a heat radiating material for a semiconductor substrate according to claim 1.
JP17746396A 1996-06-17 1996-06-17 Semiconductor substrate heat dissipation material and method for manufacturing the same Expired - Fee Related JP3611402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17746396A JP3611402B2 (en) 1996-06-17 1996-06-17 Semiconductor substrate heat dissipation material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17746396A JP3611402B2 (en) 1996-06-17 1996-06-17 Semiconductor substrate heat dissipation material and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH104160A true JPH104160A (en) 1998-01-06
JP3611402B2 JP3611402B2 (en) 2005-01-19

Family

ID=16031379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17746396A Expired - Fee Related JP3611402B2 (en) 1996-06-17 1996-06-17 Semiconductor substrate heat dissipation material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3611402B2 (en)

Also Published As

Publication number Publication date
JP3611402B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
US4469757A (en) Structural metal matrix composite and method for making same
EP0662524A1 (en) Aluminum alloy and method of preparing the same
KR940007216A (en) Diffusion bonded sputtering target assembly and method for manufacturing same
JPH06244330A (en) Heat-controlling composite material used in electronic circuit device, and manufacture thereof
JPH0130898B2 (en)
JP3244167B2 (en) Tungsten or molybdenum target
JP5030633B2 (en) Cr-Cu alloy plate, semiconductor heat dissipation plate, and semiconductor heat dissipation component
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
US4123293A (en) Method of providing semiconductor pellet with heat sink
JP3548991B2 (en) Heat dissipating substrate and manufacturing method thereof
GB2074373A (en) Composite material for intermediate phates for semiconductor devices
JP2008057032A (en) Cr-Cu ALLOY, MANUFACTURING METHOD THEREFOR, RADIATION PLATE FOR SEMICONDUCTOR AND RADIATION PARTS FOR SEMICONDUCTOR
JPH104160A (en) Heat radiating material for semiconductor substrate and manufacturing method therefor
JPH11350120A (en) Diffusion joined sputtering target assembly and its production
JPS5830940B2 (en) Thermal expansion adjustment material and its manufacturing method
JP4228444B2 (en) Silicon carbide based composite material and method for producing the same
JP3302714B2 (en) Ceramic-metal joint
JPH0878578A (en) Material for heat dissipating substrate and manufacturing method thereof
JPH1017959A (en) Composite material and its production
JP3270798B2 (en) Method for producing silicon carbide sintered body
US4885029A (en) Thin section dispersion strengthened copper body and method of making same
JP2003105470A (en) Al-Si BASED POWDER ALLOY MATERIAL, AND PRODUCTION METHOD THEREFOR
JP2820566B2 (en) Method of manufacturing heat dissipation member for semiconductor package
JP2679267B2 (en) Manufacturing method of brazing material
JP2815656B2 (en) High-strength heat-radiating structural member for packaged semiconductor devices

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040712

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Effective date: 20040922

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041019

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20071029

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091029

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091029

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101029

LAPS Cancellation because of no payment of annual fees