JPH1034807A - Biodegradable plastic with barrier property - Google Patents

Biodegradable plastic with barrier property

Info

Publication number
JPH1034807A
JPH1034807A JP8198599A JP19859996A JPH1034807A JP H1034807 A JPH1034807 A JP H1034807A JP 8198599 A JP8198599 A JP 8198599A JP 19859996 A JP19859996 A JP 19859996A JP H1034807 A JPH1034807 A JP H1034807A
Authority
JP
Japan
Prior art keywords
fluoride
biodegradable plastic
thin film
mol
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8198599A
Other languages
Japanese (ja)
Inventor
Masaki Yaginuma
昌希 柳沼
Toshinori Machida
敏則 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP8198599A priority Critical patent/JPH1034807A/en
Publication of JPH1034807A publication Critical patent/JPH1034807A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a plastic which is degradable with microorganisms and bacteria and has high barrier properties and excellent colorless transparency by forming a thin film layer consisting of silicon oxide and metal fluoride on a polysccharide-contg. biodegradable plastic. SOLUTION: A thin film layer consisting of silicon oxide and metal fluoride is formed on one face or both faces of a polysaccharide-contg. biodegradable plastic to obtain a biodegradable plastic with barrier properties being suitably used as a packaging material for foods and an industrial material. In this case, a protein is incorporated in the biodegradable plastic and as the metal fluoride of the thin film layer, one or two or more compd. selected from magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, sodium fluoride and aluminum fluoride are used. In addition, the ratio of compsn. of silicon oxide/metal fluoride constituting the thin film layer is 99.5-80mol%/0.5-20mol%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微生物,菌などに
よって生分解することができ、高度なバリヤー性と無色
透明性を有するプラスチックに関する。本発明のバリヤ
ー性を有する生分解性プラスチックは、食品,医薬品,
タバコ,電子材料,化粧品等の包装材や,産業,農業等
の資材として好適に用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic which can be biodegraded by microorganisms, fungi, etc., has high barrier properties and is colorless and transparent. The biodegradable plastic having a barrier property of the present invention can be used for foods, pharmaceuticals,
It is suitably used as a packaging material for cigarettes, electronic materials, cosmetics, etc., and a material for industry, agriculture and the like.

【0002】[0002]

【従来の技術】プラスチックは、軽量性、安全性、耐食
性、電気絶縁性、成形性などの優れた性質を持ち、各種
産業全般で大量に生産、消費されている。しかし、一度
利用された後にリサイクルされることは少なく、リサイ
クルされる場合であっても、最終的には廃棄物となり、
何らかの処分を必要とする。プラスチックを最終処分す
る場合は、焼却または埋立が主流であるが、それに伴う
公害問題が取り上げられ、世界的に関心が高まってい
る。そこで、自然環境で分解するプラスチックの研究が
進んでいる。
2. Description of the Related Art Plastics have excellent properties such as light weight, safety, corrosion resistance, electrical insulation and moldability, and are produced and consumed in large quantities in various industries. However, once used, they are rarely recycled, and even if they are recycled, they eventually become waste,
Requires some disposal. In the case of final disposal of plastics, incineration or landfill is the mainstream, but the associated pollution issues have been taken up and worldwide interest is growing. Therefore, research on plastics that decompose in the natural environment is progressing.

【0003】例えば、特開平5−170888号公報に
は、水溶性高分子化合物からなる膜状基材に金属蒸着層
が存在していることを特徴とするガスバリヤ性水溶性フ
ィルムが開示されている。このフィルムは、金属蒸着層
が存在しているため、ガスバリヤ性及び耐候性を有し、
さらに微生物により基材フィルムが生分解し金属蒸着層
が回収可能であるという特徴を持つ。しかし、金属蒸着
層は不透明であり、商品を包装する場合には中身が見え
ないといった欠点があった。
For example, Japanese Patent Application Laid-Open No. 5-170888 discloses a gas-barrier water-soluble film characterized in that a metal-deposited layer is present on a film-like base made of a water-soluble polymer compound. . This film has gas barrier properties and weather resistance because of the presence of the metal deposition layer,
Further, there is a feature that the base film is biodegraded by the microorganism and the metal deposition layer can be collected. However, the metal vapor-deposited layer is opaque, and has the drawback that the contents cannot be seen when packaging the product.

【0004】一方、珪素酸化物の蒸着フィルムは、アル
ミ泊やアルミ蒸着フィルムのように不透明ではなく可視
光線を透すため、中身を見せる包装材に実用化されてい
る。具体的には、食品を中心とした包装分野では、特開
昭49−41469号公報、特開昭59−51051号
公報、特開昭61−33936号公報、特開昭61−2
79134号公報、特開昭62−103139号公報、
特開平1−297237号公報、特開平5−23962
2号公報等に記載されるように、珪素酸化物の蒸着フィ
ルムが「ハイガスバリヤーフィルム」として開発されて
いる。しかし、これらの基材フィルムは生分解性はな
く、処分方法は焼却または埋立のいずれかであるため、
環境破壊につながっている。
On the other hand, a silicon oxide vapor-deposited film is practically used as a packaging material for showing the contents because it transmits visible light instead of being opaque like aluminum film and aluminum vapor-deposited film. Specifically, in the field of packaging mainly for foods, JP-A-49-41469, JP-A-59-51051, JP-A-61-33936, and JP-A-61-2
No. 79134, JP-A-62-103139,
JP-A-1-297237, JP-A-5-23962
As described in Japanese Unexamined Patent Publication No. 2 (1994) -210, etc., a vapor deposited film of silicon oxide has been developed as a “high gas barrier film”. However, since these base films are not biodegradable and the disposal method is either incineration or landfill,
It has led to environmental destruction.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、微生
物,菌などによって分解し、高度なバリヤー性と無色透
明性に優れるプラスチックの提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plastic which is decomposed by microorganisms, fungi, etc., and has high barrier properties and excellent colorless transparency.

【0006】[0006]

【課題を解決するための手段】本発明者らは、多糖類を
含有する生分解性プラスチックに、珪素酸化物及び金属
フッ化物からなる薄膜層を形成することにより、微生
物,菌などによって分解し、高度なバリヤー性と無色透
明性に優れるプラスチックが得られることを見出し、本
発明に至った。
Means for Solving the Problems The present inventors formed a thin film layer composed of silicon oxide and metal fluoride on a biodegradable plastic containing a polysaccharide, so that the biodegradable plastic was decomposed by microorganisms and bacteria. The present inventors have found that a plastic having excellent barrier properties and excellent colorless transparency can be obtained, and the present invention has been accomplished.

【0007】すなわち、本発明は、多糖類を含有する生
分解性プラスチック(A)の片面または両面に、珪素酸
化物及び金属フッ化物からなる薄膜層(B)を形成して
なるバリヤー性を有する生分解性プラスチックに関す
る。また、本発明は、生分解性プラスチック(A)が、
さらにタンパク質を含有することを特徴とする上記バリ
ヤー性を有する生分解性プラスチックに関する。さら
に、本発明は、薄膜層(B)の金属フッ化物が、フッ化
マグネシウム,フッ化カルシウム,フッ化ストロンチウ
ム,フッ化バリウム,フッ化ナトリウムおよびフッ化ア
ルミニウムから選ばれる一種または二種以上である上記
バリヤー性を有する生分解性プラスチックに関する。さ
らに、本発明は、薄膜層(B)を構成するけい素酸化物
/金属フッ化物の組成比が、99.5〜80モル%/
0.5〜20モル%である上記バリヤー性を有する生分
解性プラスチックに関する。
That is, the present invention has a barrier property in which a thin film layer (B) composed of silicon oxide and metal fluoride is formed on one or both sides of a biodegradable plastic (A) containing a polysaccharide. Related to biodegradable plastics. Further, the present invention provides a biodegradable plastic (A)
The present invention also relates to a biodegradable plastic having the above-mentioned barrier property, which further contains a protein. Furthermore, in the present invention, the metal fluoride of the thin film layer (B) is one or more selected from magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, sodium fluoride and aluminum fluoride. The present invention relates to a biodegradable plastic having the above barrier properties. Further, in the present invention, the composition ratio of silicon oxide / metal fluoride constituting the thin film layer (B) is 99.5 to 80 mol% /
The present invention relates to a biodegradable plastic having the above barrier property of 0.5 to 20 mol%.

【0008】生分解性プラスチック(A)は、多糖類お
よび必要に応じてタンパク質を含有し、土壌中の菌や微
生物による酵素で分解または粉々に崩壊するプラスチッ
クである。多糖類としては、澱粉,セルロース,グリコ
ーゲン等が挙げられる。さらに詳しくは、澱粉としては
米,小麦,大豆,トウモロコシ,ジャガイモ等から得ら
れる澱粉、セルロースとしてはパルプ,綿リンター等か
ら得られるセルロースが挙げられる。タンパク質として
は、ツェイン,グルテリン,カゼイン,コラーゲン,ゼ
ラチン等が挙げられる。
[0008] The biodegradable plastic (A) is a plastic containing a polysaccharide and, if necessary, a protein, and is decomposed or broken down by enzymes by bacteria or microorganisms in the soil. Examples of the polysaccharide include starch, cellulose, glycogen, and the like. More specifically, starch includes starch obtained from rice, wheat, soybean, corn, potato, and the like, and cellulose includes cellulose obtained from pulp, cotton linter, and the like. Examples of proteins include zein, glutelin, casein, collagen, gelatin and the like.

【0009】生分解性プラスチック(A)は、生分解性
を有するポリビニルアルコール,ポリエステル,ポリウ
レタン,ポリカプロラクトン等の合成高分子や、ガラク
トース、グルコース、フラクトース等の単糖類を含有し
ても良い。また、微生物が生産する生分解性ポリエステ
ルを含有しても良い。さらに、生分解性プラスチック
(A)は、可塑剤としてグリセリン等、充填剤としてお
がくず,木皮,新聞紙等の廃物や、クレー,カーボンブ
ラック,フライアッシュ等の無機物、植物油等も天然物
で有れば含有しても良い。
The biodegradable plastic (A) may contain biodegradable synthetic polymers such as polyvinyl alcohol, polyester, polyurethane and polycaprolactone, and monosaccharides such as galactose, glucose and fructose. Further, a biodegradable polyester produced by a microorganism may be contained. Furthermore, the biodegradable plastic (A) may be glycerin or the like as a plasticizer, waste such as sawdust, bark, newsprint or the like as a filler, inorganic substances such as clay, carbon black, fly ash, or vegetable oils as natural substances. May be contained.

【0010】また、生分解性プラスチック(A)は、生
分解性を有さない合成高分子を含有しても良い。ただ
し、生分解性を有さない合成高分子は、菌や微生物によ
り分解しないので、自然界に飛散しても問題とならない
大きさでなければならない。生分解性プラスチック
(A)は、上記配合構成物をカレンダー法,インフレー
ション法,Tダイキャスト法,射出成形法,押出成形
法,ブロー成形法,真空プレス法等の従来の公知の方法
で所望の形状(フィルム,シート,トレー,ボトル,管
状等)に成形した物であり、形状の如何は問わない。ま
た、生分解性プラスチック(A)には、同種または異種
の生分解性プラスチックを公知の接着剤を介して積層し
ても構わない。
The biodegradable plastic (A) may contain a synthetic polymer having no biodegradability. However, a synthetic polymer that does not have biodegradability does not decompose by bacteria or microorganisms, and therefore must have a size that does not cause a problem even if it scatters in nature. The biodegradable plastic (A) can be obtained by subjecting the above composition to a desired one by a known method such as a calendering method, an inflation method, a T-die casting method, an injection molding method, an extrusion molding method, a blow molding method, or a vacuum pressing method. It is formed into a shape (film, sheet, tray, bottle, tube, etc.), and the shape is not limited. The same or different biodegradable plastics may be laminated on the biodegradable plastic (A) via a known adhesive.

【0011】生分解性プラスチック(A)は、接着性付
与のために予めコロナ処理やプラズマ処理、火炎処理さ
れているものでも構わない。また、予め界面活性剤系や
高分子電解質系等の有機系の易接着剤が塗工されている
ものでも構わない。生分解性プラスチック(A)の厚さ
は、用途により様々であるが、6〜500μmの範囲が
好ましい。
The biodegradable plastic (A) may have been previously subjected to corona treatment, plasma treatment, or flame treatment for imparting adhesiveness. Further, an organic adhesive such as a surfactant or a polymer electrolyte may be applied in advance. The thickness of the biodegradable plastic (A) varies depending on the application, but is preferably in the range of 6 to 500 μm.

【0012】薄膜層(B)を構成するけい素酸化物は、
SiOx (X=1.0以上、2.0未満)で称される範
囲内であれば特に限定されず、SiO,Si2 3 ,S
34 等が含まれる。また、物性に悪影響のない範囲
であれば、酸化マグネシウム、酸化アルミニウム、酸化
マグネシウムと酸化けい素との共酸化物を含んでも構わ
ない。けい素酸化物に、マグネシウム酸化物やけい素酸
化物とマグネシウム酸化物の共酸化物を併用する場合、
その混合比は、けい素酸化物/マグネシウム酸化物また
は共酸化物=99.5〜80モル%/0.5モル%〜2
0モル%程度である。
The silicon oxide constituting the thin film layer (B) is:
There is no particular limitation as long as it is within the range referred to as SiO x (X = 1.0 or more and less than 2.0), and SiO, Si 2 O 3 , S
i 3 O 4 and the like. Further, as long as the physical properties are not adversely affected, magnesium oxide, aluminum oxide, and a co-oxide of magnesium oxide and silicon oxide may be contained. When silicon oxide is used in combination with magnesium oxide or a co-oxide of silicon oxide and magnesium oxide,
The mixing ratio is as follows: silicon oxide / magnesium oxide or cooxide = 99.5 to 80 mol% / 0.5 mol% to 2
It is about 0 mol%.

【0013】薄膜層(B)を構成する金属フッ化物とし
ては、フッ化マグネシウム,フッ化カルシウム,フッ化
ストロンチウム,フッ化バリウム,フッ化ナトリウム,
フッ化アルミニウム等が挙げられる。中でも、フッ化マ
グネシウム,フッ化カルシウム,フッ化アルミニウムが
特に好ましい。薄膜層(B)を構成するけい素酸化物/
金属フッ化物の組成比は、99.5〜80モル%/0.
5〜20モル%の範囲が好ましく、特に95〜90モル
%/5〜10モル%の範囲が好ましい。
The metal fluoride constituting the thin film layer (B) includes magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, sodium fluoride,
Aluminum fluoride and the like can be mentioned. Among them, magnesium fluoride, calcium fluoride and aluminum fluoride are particularly preferred. Silicon oxide constituting thin film layer (B) /
The composition ratio of the metal fluoride is 99.5 to 80 mol% / 0.
The range of 5 to 20 mol% is preferable, and the range of 95 to 90 mol% / 5 to 10 mol% is particularly preferable.

【0014】薄膜層(B)は、真空薄膜形成法により、
直接生分解性プラスチック(A)上に形成することが好
ましい。真空薄膜形成法としては、巻き取り連続方式、
枚葉方式のどちらでも良く、PVD法である真空蒸着,
イオンプレーティング,スパッタリング等やCVD法で
あるプラズマCVD等を用いることができる。さらに、
真空蒸着の加熱方法としては、その蒸着中にスプラッシ
ュと呼称される蒸着飛沫が発生しなければ、あるいは支
障なく取り除ける程度に少なければ特に制限はなく、高
周波誘導加熱,抵抗加熱,電子線加熱などの公知の加熱
方法を用いることができる。真空蒸着の蒸発源としては
一般的なルツボ方式でもかまわないが、特開平1−25
2768号公報に開示される蒸発原料を連続的に供給排
出する方式も適用できる。
The thin film layer (B) is formed by a vacuum thin film forming method.
It is preferably formed directly on the biodegradable plastic (A). As a vacuum thin film forming method, a continuous winding method,
Vacuum deposition which is a PVD method,
For example, ion plating, sputtering, or plasma CVD, which is a CVD method, can be used. further,
The heating method of vacuum deposition is not particularly limited as long as vapor deposition called "splash" does not occur during the deposition or is small enough to be removed without hindrance. Examples of the heating method include high-frequency induction heating, resistance heating, and electron beam heating. A known heating method can be used. A general crucible method may be used as an evaporation source for vacuum deposition.
The method of continuously supplying and discharging the evaporation raw material disclosed in Japanese Patent No. 2768 can also be applied.

【0015】生分解性プラスチック(A)上に形成され
る薄膜層(B)は、薄膜の状態になったときに、けい素
酸化物と金属フッ化物がほとんど化合していれば良く、
形成される膜の原料はけい素酸化物,金属フッ化物,シ
リコン,有機けい素化合物等の無機化合物や有機化合物
の単独または混合物の何れでも構わない。つまり、真空
蒸着等の方法により、けい素酸化物と金属フッ化物の混
合物を原料とし直接生分解性プラスチック(A)上に薄
膜層(B)を形成させても、また金属または有機金属化
合物のような金属を含む化合物を酸化またはフッ化させ
ながら真空蒸着し薄膜層(B)としても、また金属フッ
化物とけい素を生分解性プラスチック(A)上に真空蒸
着により形成させ、後工程でその蒸着層を酸化処理して
薄膜層(B)としても構わない。酸化処理の方法として
は生分解性プラスチック(A)の使用可能温度範囲内で
処理を行う方法なら特に限定されず、蒸着中の酸素ガス
導入法、放電処理法、酸素プラズマ法、熱酸化法等があ
げられる。
The thin film layer (B) formed on the biodegradable plastic (A) only needs to be almost completely combined with silicon oxide and metal fluoride when it becomes a thin film.
The raw material of the film to be formed may be any of inorganic compounds and organic compounds such as silicon oxide, metal fluoride, silicon, and organic silicon compounds, or any mixture thereof. That is, a thin film layer (B) can be directly formed on a biodegradable plastic (A) by using a mixture of silicon oxide and metal fluoride as a raw material by a method such as vacuum deposition, or a metal or organometallic compound can be formed. Such a compound containing a metal is oxidized or fluorinated and vacuum-deposited to form a thin film layer (B), or a metal fluoride and silicon are formed on the biodegradable plastic (A) by vacuum deposition, and the metal fluoride and silicon are formed in a later step. The vapor deposition layer may be oxidized to form the thin film layer (B). The method of the oxidation treatment is not particularly limited as long as the treatment is performed within the usable temperature range of the biodegradable plastic (A). Is raised.

【0016】薄膜層(B)の厚さは、使用する生分解性
プラスチック(A)に合わせて選定されるが、50〜2
000オングストロームが好ましい。さらに好ましくは
100〜1500オングストロームであり、300〜1
200オングストロームが特に好ましい。形成される薄
膜層(B)は、最終的に薄膜層の必要機能が得られてい
れば、2重積層や多重積層でもよく、異種類のけい素酸
化物や金属フッ化物を積層しても構わない。
The thickness of the thin film layer (B) is selected according to the biodegradable plastic (A) to be used.
000 angstroms is preferred. More preferably, it is 100 to 1500 angstroms, and 300 to 1
200 Å is particularly preferred. The thin film layer (B) to be formed may be a double-layered or multi-layered layer as long as the required function of the thin-film layer is finally obtained, or may be formed by stacking different kinds of silicon oxides or metal fluorides. I do not care.

【0017】[0017]

【実施例】以下、実施例に基づいて本発明をさらに詳細
に説明するが、本発明は以下の実施例に限定されない。
なお、実施例における試験方法は以下のとおりである。 光線透過率:日本分光社の分光光度計「U−best3
0」を使用し、400nm及び600nmの波長におけ
る透過率を測定した。なお、リファレンスは、蒸着に用
いたプラスチックフィルム(未蒸着)である。 酸素ガス透過率:ASTM D 3985に準拠し、米
国モダンコントロール社のOXTRAN−TWINを用
いて、25℃、100%RHの条件下で測定した。 水蒸気透過率:JIS Z 0208に準拠し、塩化カ
ルシウム(無水)を用いて、40℃、9O%RHの条件
下で測定した。 生分解速度:ASTM D 5338(管理されたコン
ポスト中での好気的生分解)に準拠し、20日後および
40日後にCO2 発生量を測定し、CO2 の理論発生量
に対する実際に発生したCO2 量の割合(%)を求め
た。
EXAMPLES Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.
In addition, the test method in an Example is as follows. Light transmittance: Spectrophotometer “U-best3” manufactured by JASCO Corporation
Using "0", the transmittance at wavelengths of 400 nm and 600 nm was measured. The reference is a plastic film (non-deposited) used for vapor deposition. Oxygen gas permeability: Measured under the conditions of 25 ° C. and 100% RH using OXTRAN-TWIN manufactured by US Modern Control Co. in accordance with ASTM D3985. Water vapor transmission rate: Measured at 40 ° C. and 90% RH using calcium chloride (anhydrous) in accordance with JIS Z 0208. Biodegradation rate: In accordance with ASTM D 5338 (aerobic biodegradation in controlled compost), after 20 days and 40 days, the amount of CO 2 generated was measured and actually generated relative to the theoretical amount of CO 2 generated. The ratio (%) of the amount of CO 2 was determined.

【0018】〔実施例1〕ガラクトース,ジャガイモ澱
粉およびグリセリンを10重量%,85重量%,5重量
%の割合で配合し沸騰水に固形分が3重量%となるよう
に攪拌溶解した。溶解後、110℃で減圧単蒸留により
固形分が8重量%になるまで濃縮した。これを130℃
の熱カレンダーローラー上にドクターナイフで均一に塗
布乾燥し未延伸フィルムを得た。さらに長さ方向に70
℃の熱ローラーで延伸して厚さ45μmのフィルムを得
た。得られたフィルムの片面に、特開平1−25276
8号公報に記載された蒸発原料を連続的に供給排出する
方式の連続巻取り式抵抗加熱方式の真空蒸着装置を使
い、けい素と二酸化けい素とフッ化マグネシウムの混合
物(混合比44モル%:44モル%:12モル%)を1
350℃で加熱真空蒸着した(厚みは約1200オング
ストローム)。その時の真空度は、3×10-4torr
であった。
Example 1 Galactose, potato starch and glycerin were blended at a ratio of 10% by weight, 85% by weight, and 5% by weight, and stirred and dissolved in boiling water so that the solid content was 3% by weight. After dissolution, the mixture was concentrated at 110 ° C. by simple distillation under reduced pressure until the solid content became 8% by weight. 130 ℃
Was uniformly coated with a doctor knife and dried on a hot calender roller to obtain an unstretched film. 70 in the length direction
The film was stretched with a hot roller at a temperature of 45 ° C. to obtain a film having a thickness of 45 μm. On one side of the obtained film, JP-A-1-25276
No. 8 discloses a mixture of silicon, silicon dioxide and magnesium fluoride (mixing ratio: 44 mol%) using a continuous winding type resistance heating type vacuum evaporation apparatus for continuously supplying and discharging the evaporation raw material. : 44 mol%: 12 mol%)
Vacuum evaporation was performed at 350 ° C. (thickness: about 1200 Å). The degree of vacuum at that time is 3 × 10 -4 torr
Met.

【0019】〔実施例2〕ガラクトース,ジャガイモ澱
粉,ツェインおよびグリセリンを10重量%,84重量
%,3重量%,3重量%の割合で配合し、実施例1と同
様の方法で得られた厚さ40μmのフィルムの両面に、
実施例1と同様の真空蒸着装置を用い、けい素と二酸化
けい素とフッ化マグネシウムの混合物(混合比44モル
%:44モル%:12モル%)を1350℃で加熱真空
蒸着した(各層の厚みは約1200オングストロー
ム)。その時の真空度は、3×10-4torrであっ
た。
Example 2 Galactose, potato starch, zein and glycerin were blended in the proportions of 10% by weight, 84% by weight, 3% by weight, and 3% by weight. On both sides of a 40 μm film,
Using the same vacuum deposition apparatus as in Example 1, a mixture of silicon, silicon dioxide, and magnesium fluoride (mixing ratio: 44 mol%: 44 mol%: 12 mol%) was heated and vacuum-deposited at 1350 ° C. (for each layer). The thickness is about 1200 angstroms). The degree of vacuum at that time was 3 × 10 −4 torr.

【0020】〔実施例3〕澱粉を主成分とし微生物に完
全分解性の変性ポリビニルアルコールを副成分とする厚
さ35μmの生分解性フィルム(日本合成化学社製「マ
タービーフィルム」)の片面に、実施例1と同様の真空
蒸着装置を用い、けい素と二酸化けい素とフッ化マグネ
シウムの混合物(混合比44モル%:44モル%:12
モル%)を1350℃で加熱真空蒸着した(厚みは約1
000オングストローム)。その時の真空度は、3×1
-4torrであった。
Example 3 A 35 μm-thick biodegradable film (“Matterby Film” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) containing starch as a main component and modified polyvinyl alcohol completely decomposable to microorganisms as a secondary component was applied to one surface. Using the same vacuum evaporation apparatus as in Example 1, a mixture of silicon, silicon dioxide and magnesium fluoride (mixing ratio: 44 mol%: 44 mol%: 12
Mol%) was heated and vacuum-deposited at 1350 ° C. (thickness was about 1%).
000 angstroms). The degree of vacuum at that time is 3 × 1
It was 0 -4 torr.

【0021】〔実施例4〕実施例3と同様の厚さ35μ
mの生分解性フィルム「マタービーフィルム」の両面
に、実施例1と同様の真空蒸着装置を用い、一酸化けい
素とフッ化マグネシウムの混合物(混合比98モル%:
2モル%)を1300℃で加熱真空蒸着した(各層の厚
みは約1000オングストローム)。その時の真空度
は、4×10-4torrであった。
[Embodiment 4] The same thickness of 35 μm as in Embodiment 3
m, a mixture of silicon monoxide and magnesium fluoride (mixing ratio: 98 mol%) was formed on both sides of the biodegradable film “Matterby film” using the same vacuum evaporation apparatus as in Example 1.
2 mol%) was heated and vacuum-deposited at 1300 ° C. (the thickness of each layer was about 1000 Å). The degree of vacuum at that time was 4 × 10 −4 torr.

【0022】〔実施例5〕実施例3と同様の厚さ35μ
mの生分解性フィルム「マタービーフィルム」の片面
に、枚葉方式蒸着装置(ULVAC社製「EBH−
6」)を用い、けい素と二酸化けい素とフォルステライ
ト(SiO2 ・2MgO:二酸化けい素と酸化マグネシ
ウムの共酸化物)とフッ化マグネシウムの混合物(混合
比42モル%:42モル%:4モル%:12モル%)を
1350℃で加熱真空蒸着した(厚みは約800オング
ストローム)。その時の真空度は、3×10-4torr
であった。
[Embodiment 5] The same thickness as in Embodiment 3 with a thickness of 35 μm
m on a single side of a biodegradable film “Matterby Film”, a single-wafer deposition apparatus (“EBH-
6 "), a mixture of silicon, silicon dioxide, forsterite (SiO2 .2MgO: a co-oxide of silicon dioxide and magnesium oxide) and magnesium fluoride (mixing ratio 42 mol%: 42 mol%: 4 mol) %: 12 mol%) was heated and vacuum-deposited at 1350 ° C. (thickness: about 800 Å). The degree of vacuum at that time is 3 × 10 -4 torr
Met.

【0023】〔実施例6〕実施例3と同様の厚さ35μ
mの生分解性フィルム「マタービーフィルム」の片面
に、実施例1で用いた真空蒸着装置の蒸発源の加熱方式
を抵抗加熱方式から電子線加熱方式に変更した真空蒸着
装置を用い、けい素と二酸化けい素とフッ化カルシウム
の混合物(混合比48モル%:48モル%:4モル%)
を1330℃で加熱真空蒸着した(厚みは約1000オ
ングストローム)。その時の真空度は、5×10-4to
rrであった。
[Embodiment 6] The same thickness as in Embodiment 3 of 35 μm
m on one side of a biodegradable film “Matterby film”, using a vacuum deposition apparatus in which the heating method of the evaporation source of the vacuum deposition apparatus used in Example 1 was changed from the resistance heating method to the electron beam heating method, and silicon was used. And mixture of silicon dioxide and calcium fluoride (mixing ratio 48 mol%: 48 mol%: 4 mol%)
Was heated and vacuum-deposited at 1330 ° C. (thickness is about 1000 Å). The degree of vacuum at that time is 5 × 10 -4 to
rr.

【0024】〔実施例7〕実施例3と同様の厚さ35μ
mの生分解性フィルム「マタービーフィルム」の片面
に、実施例5と同様の蒸着装置を用い、一酸化けい素と
フッ化ストロンチウムの混合物(混合比60モル%:4
0モル%)を1370℃で加熱真空蒸着した(厚みは約
1000オングストローム)。その時の真空度は、4×
10-4torrであった。
[Embodiment 7] The same thickness as in Embodiment 3 with a thickness of 35 μm
m, a mixture of silicon monoxide and strontium fluoride (mixing ratio: 60 mol%: 4) was formed on one surface of the biodegradable film “Matterby film” using the same vapor deposition apparatus as in Example 5.
(0 mol%) was heated and vacuum-deposited at 1370 ° C. (thickness is about 1000 Å). The degree of vacuum at that time is 4 ×
It was 10 -4 torr.

【0025】〔実施例8〕実施例3と同様の厚さ35μ
mの生分解性フィルム「マタービーフィルム」の片面
に、実施例1と同様の蒸着装置を用い、一酸化けい素と
フッ化バリウムの混合物(混合比95モル%:5モル
%)を1350℃で加熱真空蒸着した(厚みは約100
0オングストローム)。その時の真空度は、3×10-4
torrであった。
[Embodiment 8] The same thickness as in Embodiment 3 with a thickness of 35 μm
m, a mixture of silicon monoxide and barium fluoride (mixing ratio 95 mol%: 5 mol%) was applied to one surface of one side of the biodegradable film “Matterby film” at 1350 ° C. Vacuum deposited with heating (thickness is about 100
0 angstroms). The degree of vacuum at that time is 3 × 10 -4
torr.

【0026】〔実施例9〕実施例3と同様の厚さ35μ
mの生分解性フィルム「マタービーフィルム」の片面
に、実施例1と同様の蒸着装置を用い、けい素と二酸化
けい素とフッ化ナトリウムの混合物(混合比44モル
%:44モル%:12モル%)を1350℃で加熱真空
蒸着した(厚みは約1200オングストローム)。その
時の真空度は、3×10-4torrであった。
[Embodiment 9] The same thickness as in Embodiment 3 of 35 μm
m, a mixture of silicon, silicon dioxide, and sodium fluoride (mixing ratio: 44 mol%: 44 mol%: 12) was formed on one surface of the biodegradable film “Matterby film” using the same vapor deposition apparatus as in Example 1. Mol%) at 1350 ° C. under vacuum (having a thickness of about 1200 Å). The degree of vacuum at that time was 3 × 10 −4 torr.

【0027】〔実施例10〕実施例3と同様の厚さ35
μmの生分解性フィルム「マタービーフィルム」の両面
に、実施例1と同様の蒸着装置を用い、珪素と二酸化け
い素とフッ化アルミニウムの混合物(混合比44モル
%:44モル%:12モル%)を1350℃で加熱真空
蒸着した(各層の厚みは約1200オングストロー
ム)。その時の真空度は、5×10-4torrであっ
た。
[Embodiment 10] A thickness 35 similar to that of Embodiment 3
A mixture of silicon, silicon dioxide and aluminum fluoride (mixing ratio: 44 mol%: 44 mol%: 12 mol) was formed on both sides of a biodegradable film “Mutterby film” having a thickness of μm by using the same vapor deposition apparatus as in Example 1. %) Was heated and vacuum-deposited at 1350 ° C. (the thickness of each layer was about 1200 angstroms). The degree of vacuum at that time was 5 × 10 −4 torr.

【0028】〔比較例1〕実施例1と同様の厚さ45μ
mの生分解性フィルム(薄膜層なし)。 〔比較例2〕実施例3と同様の厚さ35μmの生分解性
フィルム「マタービーフィルム」(薄膜層なし)。
[Comparative Example 1] The same thickness of 45 μm as in Example 1.
m biodegradable film (without thin film layer). [Comparative Example 2] A biodegradable film “Matterby film” having a thickness of 35 μm as in Example 3 (without a thin film layer).

【0029】〔比較例3〕実施例3と同様の厚さ35μ
mの生分解性フィルム「マタービーフィルム」の片面
に、実施例1と同様の蒸着装置を用い、けい素と二酸化
けい素の混合物(混合比50モル%:50モル%)を1
400℃で加熱真空蒸着した(厚みは約800オングス
トローム)。その時の真空度は、5×10-4torrで
あった。
[Comparative Example 3] 35 μm in thickness similar to that of Example 3.
m, a mixture of silicon and silicon dioxide (mixing ratio: 50 mol%: 50 mol%) was applied to one surface of a biodegradable film “Matterby film” using the same vapor deposition apparatus as in Example 1.
The film was heated and vacuum-deposited at 400 ° C. (the thickness was about 800 Å). The degree of vacuum at that time was 5 × 10 −4 torr.

【0030】〔比較例4〕実施例3と同様の厚さ35μ
mの生分解性フィルム「マタービーフィルム」の両面
に、実施例1と同様の蒸着装置を用い、フッ化マグネシ
ウムを1300℃で加熱真空蒸着した(各層の厚みは約
800オングストローム)。その時の真空度は2×10
-4torrであった。
[Comparative Example 4] 35 μm in thickness similar to that of Example 3.
Then, magnesium fluoride was heated and vacuum-deposited at 1300 ° C. on both sides of the biodegradable film “Matterby film” at 1300 ° C. (thickness of each layer was about 800 Å). The degree of vacuum at that time is 2 × 10
-4 torr.

【0031】〔比較例5〕実施例3と同様の厚さ35μ
mの生分解性フィルム「マタービーフィルム」の両面
に、実施例6と同様の蒸着装置を用い、アルミニウムを
1100℃で加熱真空蒸着した(各層の厚みは約100
0オングストローム)。その時の真空度は6×10-4
orrであった。
[Comparative Example 5] The same thickness as in Example 3 with a thickness of 35 μm
The aluminum was vapor-deposited at 1100 ° C. on both sides of the biodegradable film “Matterby film” using the same vapor deposition apparatus as in Example 6 (the thickness of each layer was about 100).
0 angstroms). The degree of vacuum at that time is 6 × 10 -4 t
orr.

【0032】実施例1〜10および比較例1〜5で得ら
れたフィルムについて光線透過率,酸素ガス透過率,水
蒸気透過率,生分解速度を測定した。結果を表1に示
す。
Light transmittance, oxygen gas transmittance, water vapor transmittance, and biodegradation rate of the films obtained in Examples 1 to 10 and Comparative Examples 1 to 5 were measured. Table 1 shows the results.

【0033】[0033]

【表1】 *1 cc/m2 ・ day・atm *2 g/m2 ・ day[Table 1] * 1 cc / m 2・ day ・ atm * 2 g / m 2・ day

【0034】[0034]

【発明の効果】本発明により、高度なバリヤー性と高い
可視光線透過率(蒸着を施す前のプラスチック以上の可
視光線透過率)を有する生分解性プラスチックが得られ
るようになった。なお、本発明の生分解性プラスチック
の生分解速度は、薄膜層を有さない生分解性プラスチッ
クと同等である。
According to the present invention, a biodegradable plastic having a high barrier property and a high visible light transmittance (visible light transmittance higher than that of plastic before vapor deposition) can be obtained. In addition, the biodegradable rate of the biodegradable plastic of the present invention is equivalent to that of the biodegradable plastic having no thin film layer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】多糖類を含有する生分解性プラスチック
(A)の片面または両面に、珪素酸化物及び金属フッ化
物からなる薄膜層(B)を形成してなるバリヤー性を有
する生分解性プラスチック。
1. A biodegradable plastic having a barrier property comprising a thin film layer (B) made of silicon oxide and metal fluoride formed on one or both sides of a biodegradable plastic (A) containing a polysaccharide. .
【請求項2】生分解性プラスチック(A)が、さらにタ
ンパク質を含有することを特徴とする請求項1記載のバ
リヤー性を有する生分解性プラスチック。
2. The biodegradable plastic having barrier properties according to claim 1, wherein the biodegradable plastic (A) further contains a protein.
【請求項3】薄膜層(B)の金属フッ化物が、フッ化マ
グネシウム,フッ化カルシウム,フッ化ストロンチウ
ム,フッ化バリウム,フッ化ナトリウムおよびフッ化ア
ルミニウムから選ばれる一種または二種以上である請求
項1または2記載のバリヤー性を有する生分解性プラス
チック。
3. The metal fluoride of the thin film layer (B) is one or more selected from magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, sodium fluoride and aluminum fluoride. Item 7. A biodegradable plastic having a barrier property according to Item 1 or 2.
【請求項4】薄膜層(B)を構成するけい素酸化物/金
属フッ化物の組成比が、99.5〜80モル%/0.5
〜20モル%である請求項1ないし3いずれか1項に記
載のバリヤー性を有する生分解性プラスチック。
4. The composition ratio of silicon oxide / metal fluoride constituting the thin film layer (B) is 99.5 to 80 mol% / 0.5.
The biodegradable plastic having a barrier property according to any one of claims 1 to 3, wherein the content of the biodegradable plastic is from 1 to 20 mol%.
JP8198599A 1996-07-29 1996-07-29 Biodegradable plastic with barrier property Pending JPH1034807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8198599A JPH1034807A (en) 1996-07-29 1996-07-29 Biodegradable plastic with barrier property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8198599A JPH1034807A (en) 1996-07-29 1996-07-29 Biodegradable plastic with barrier property

Publications (1)

Publication Number Publication Date
JPH1034807A true JPH1034807A (en) 1998-02-10

Family

ID=16393883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8198599A Pending JPH1034807A (en) 1996-07-29 1996-07-29 Biodegradable plastic with barrier property

Country Status (1)

Country Link
JP (1) JPH1034807A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002315A1 (en) * 2000-07-04 2002-01-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Composite system consisting of a support material and at least one layer containing a barrier material
WO2004002836A1 (en) * 2001-03-16 2004-01-08 Yoshino Kogyosho Co., Ltd. Environmentally friendly plastic container
WO2006012713A3 (en) * 2004-08-06 2006-03-09 Resilux Preform for blowing a container and process for manufacturing therof
JP2019520277A (en) * 2016-07-12 2019-07-18 アール・ジェイ・レイノルズ・タバコ・プロダクツ Package packaging material comprising PLA film with moisture barrier layer by atomic layer deposition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002315A1 (en) * 2000-07-04 2002-01-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Composite system consisting of a support material and at least one layer containing a barrier material
WO2004002836A1 (en) * 2001-03-16 2004-01-08 Yoshino Kogyosho Co., Ltd. Environmentally friendly plastic container
US7422780B2 (en) 2001-03-16 2008-09-09 Yoshino Kogyosho Co., Ltd. Environmentally friendly plastic container
WO2006012713A3 (en) * 2004-08-06 2006-03-09 Resilux Preform for blowing a container and process for manufacturing therof
US7842222B2 (en) 2004-08-06 2010-11-30 Resilux Preform for blowing a container and process for manufacturing thereof
JP2019520277A (en) * 2016-07-12 2019-07-18 アール・ジェイ・レイノルズ・タバコ・プロダクツ Package packaging material comprising PLA film with moisture barrier layer by atomic layer deposition
JP2022119929A (en) * 2016-07-12 2022-08-17 アール・ジエイ・レイノルズ・タバコ・カンパニー Packaging material containing pla film with moisture barrier by atomic layer deposition

Similar Documents

Publication Publication Date Title
US5540962A (en) Degradable package for containment of liquids
Campos et al. Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate
EP2087033B1 (en) Chemical additives to make polymeric materials biodegradable
KR950703289A (en) Improved deoxygenating composition for use at low temperatures
WO2017115736A1 (en) Laminated polyester film
AU649015B2 (en) Decomposable plastic film having lignin as an active plant filler
JPH09164626A (en) Barrier laminate
JP2006056092A (en) Strong adhesion vapor deposition film and packaging material for retort pouch using the film
JPH1034807A (en) Biodegradable plastic with barrier property
KR20020077056A (en) Biodegradable composition, method of producing the same and uses
JP3084239B2 (en) Biodegradable laminated film
JP2000177072A (en) Polylactic acid gas barrier film
JPH0664111A (en) Paper vessel
Renstad et al. Influence of processing additives on the degradation of melt-pressed films of poly (ε-caprolactone) and poly (lactic acid)
JPH08318591A (en) Barrier material having vapor deposition layer and laminated material using the same
Nazrin et al. Mechanical degradation of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly (lactic acid)(PLA) blend bionanocomposites in aqueous environments
JP2002068201A (en) Biodegradable plastic container
JP4314642B2 (en) Vacuum deposition material
JP2917576B2 (en) Packaging material with excellent disposability
JP2007230123A (en) Strong adhesive gas-barrier laminate film and its manufacturing method
JPH1142752A (en) Biodegradable laminated film having good gas barrier property
JP2002234104A (en) High-degree vapor barrier film
JPH1148436A (en) Agricultural biodegradation sheet
JP2003181973A (en) Transparent high water vapor barrier laminate
JP2001205767A (en) Aromatic polyester resin laminated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050826

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20071211

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Effective date: 20080215

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110808

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130808

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20140808