JPH10326022A - Electrophotographic photoreceptor for negative electrification and image forming method - Google Patents

Electrophotographic photoreceptor for negative electrification and image forming method

Info

Publication number
JPH10326022A
JPH10326022A JP13492597A JP13492597A JPH10326022A JP H10326022 A JPH10326022 A JP H10326022A JP 13492597 A JP13492597 A JP 13492597A JP 13492597 A JP13492597 A JP 13492597A JP H10326022 A JPH10326022 A JP H10326022A
Authority
JP
Japan
Prior art keywords
mobility
layer
charge
electron
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13492597A
Other languages
Japanese (ja)
Inventor
Saburo Yokota
三郎 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP13492597A priority Critical patent/JPH10326022A/en
Publication of JPH10326022A publication Critical patent/JPH10326022A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoreceptor low in cost, high in productivity and capable of obtaining interchangeability with a conventional laminated type electrophotographic photoreceptor in terms of characteristic by making the mobility of an electron in a photoreceptive layer larger than that of a positive hole. SOLUTION: Charge generating substance 2, charge transporting substance and binding resin are contained in the same photoreceptive layer 4, and the mobility of the electron in the layer 4 is made larger than that of the positive hole. In order to realize the above matter, much electron transporting material having the excellent mobility must be contained in the layer 4. It is desirable that the mobility of the electron in the layer 4 is within 1×10<-6> to 5×10<-5> cm<2> /V.sec on the condition that electric field intensity is 4×10<5> V/cm, and the mobility of the electron is within 5 to 100 times as large as that of the positive hole. In the case of singly using the electron transporting material as the charge transporting material, residual potential easily occurs because the positive hole generated in bulk is easily accumulated. It is effective to add positive hole transporting material in order to prevent the occurrence of the residual potential.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負帯電用電子写真
感光体及びこれを用いた画像形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negatively charged electrophotographic photosensitive member and an image forming method using the same.

【0002】[0002]

【従来の技術】一般に、電子写真感光体は、導電性の基
体の上に、光導電性の材料からなる感光層を形成するこ
とにより構成されているが、感光層としては、電荷発生
層と電荷輸送層からなる機能分離型の光導電層を有する
積層型電子写真感光体が用いられることが多い。
2. Description of the Related Art In general, an electrophotographic photosensitive member is formed by forming a photosensitive layer made of a photoconductive material on a conductive substrate. In many cases, a laminated electrophotographic photosensitive member having a function-separated type photoconductive layer composed of a charge transport layer is used.

【0003】しかしながら、従来の一般的な積層型電子
写真感光体は、通常1μm以下の薄層の電荷発生層上
に、比較的厚い層からなる電荷輸送層を積層したもので
あり、電荷発生層の薄膜形成の難しさが収率を落とす要
因となっている。また、電荷輸送層に用いる電荷輸送材
料は、化合物群の豊富さ、電気的な安定性、材料として
の安全性等の理由から、正孔輸送性の材料を用いること
が一般的であるので、このような積層型電子写真感光体
は、必然的に負帯電でしか感度を発現できないものであ
った。
[0003] However, a conventional general laminated electrophotographic photoreceptor generally has a charge transport layer composed of a relatively thick layer laminated on a thin charge-generating layer having a thickness of 1 μm or less. The difficulty of forming a thin film causes a decrease in yield. Further, the charge transporting material used for the charge transporting layer is generally a hole transporting material for reasons of abundance of compounds, electrical stability, safety as a material, etc. Such a laminated electrophotographic photosensitive member inevitably can exhibit sensitivity only by negative charging.

【0004】近年、電子写真感光体に対する要求として
は、長寿命、高感度等の高機能化の傾向がある一方、低
コスト化、高生産性化という他の汎用製品同様の要求も
極めて根強い。
In recent years, demands for electrophotographic photoreceptors tend to be higher in functions such as longer life and higher sensitivity, while demands for lower cost and higher productivity, like other general-purpose products, are extremely persistent.

【0005】このような電子写真感光体に対する要求に
対して、特にその単純な層構成等の利点から低コスト
化、高生産性化を図れる旧来の単層型電子写真感光体が
再評価されるようになってきている。そこで、再度実用
的な単層型電子写真感光体を実現しようとする試みが活
発に行われるようになっているが、従来の積層型電子写
真感光体と互換性のある単層型電子写真感光体は得られ
ていないのが現状である。
In response to such demands for the electrophotographic photoreceptor, a conventional single-layer type electrophotographic photoreceptor which can achieve low cost and high productivity due to its advantages such as a simple layer structure is re-evaluated. It is becoming. Therefore, attempts to realize a practical single-layer electrophotographic photosensitive member have been actively made again, but a single-layer electrophotographic photosensitive member that is compatible with a conventional multilayer electrophotographic photosensitive member has been actively developed. At present, no body has been obtained.

【0006】例えば、有機化合物として最初に実用化さ
れた、米国特許第3484237号明細書に開示された
ポリ−N−ビニルカルバゾール(PVK)/トリニトロ
フルオレノン(TNF)錯体による単層型電子写真感光
体は、主成分であるPVKの機械的強度の不足と低電荷
移動度による感度不良、及びTNFの強い毒性等が問題
となり、現在では全く実用性がない。
[0006] For example, a single-layer electrophotographic method using a poly-N-vinylcarbazole (PVK) / trinitrofluorenone (TNF) complex disclosed in US Pat. No. 3,484,237, which was first practically used as an organic compound. The body has problems such as insufficient mechanical strength of PVK, which is a main component, poor sensitivity due to low charge mobility, and strong toxicity of TNF.

【0007】また、「ジャーナル・オブ・アプライド・
フィジックス」(Journal of Applied Physics)第49
巻第11号第5543〜5564頁(1978年)等に
開示された、チアピリリウム塩とポリカーボネート樹脂
との共晶体に正孔輸送材料を併用した単層型電子写真感
光体は、使用可能な材料が限定されているため特性の改
善が困難であり、また感度波長域が狭く、長波長域に感
度を持たないため、現在主流である半導体レーザーを露
光光源とする電子写真装置には適用できないものであっ
た。
[0007] Also, "Journal of Applied
Physics ”(Journal of Applied Physics) No. 49
Vol. 11, No. 5543-5564 (1978) and the like, a single-layer type electrophotographic photosensitive member in which a hole transport material is used in combination with a eutectic of a thiapyrylium salt and a polycarbonate resin is usable. Because it is limited, it is difficult to improve the characteristics, and the sensitivity wavelength range is narrow, and there is no sensitivity in the long wavelength range, so it is not applicable to electrophotographic devices that use semiconductor lasers that are currently the mainstream as exposure light sources. there were.

【0008】更に米国特許第3397086号明細書に
開示されたフタロシアニン/樹脂分散型電子写真感光体
のように、電気絶縁性の結着剤中に光導電性顔料を分散
した構成の単層型電子写真感光体は、顔料表面に必然的
に形成される電荷トラップが感光層中に高密度に存在す
るため、光照射から電位減衰までに遅れが生ずるいわゆ
るインダクション効果によって、光応答特性が大幅に悪
く、また光減衰曲線が通常の積層型感光体と全く異な
り、階調性の互換が得られない欠点があった。また、繰
り返して使用すると、トラップに電荷が蓄積するためイ
ンダクション効果自体に変化が生じて、安定した特性が
得られない問題点もあった。このため、この種の単層型
電子写真感光体は、現在では使い捨ての製版用感光体と
しての用途にしか用いられていない。
Further, as in the phthalocyanine / resin dispersion type electrophotographic photoreceptor disclosed in US Pat. No. 3,397,086, a single-layer type electron having a structure in which a photoconductive pigment is dispersed in an electrically insulating binder. Since the photoreceptor has a high density of charge traps inevitably formed on the pigment surface in the photosensitive layer, the photoresponse characteristics are significantly deteriorated due to a so-called induction effect in which a delay occurs from light irradiation to potential decay. Further, there is a disadvantage that the light attenuation curve is completely different from that of the ordinary laminated type photoreceptor, and compatibility of gradation cannot be obtained. In addition, when used repeatedly, there is also a problem that the charge is accumulated in the trap and the induction effect itself changes, so that stable characteristics cannot be obtained. For this reason, this type of single-layer type electrophotographic photosensitive member is currently used only as a disposable plate-making photosensitive member.

【0009】そこで、例えば特開昭54−1633号公
報には、フタロシアニンの如き電荷発生材料0.005
〜0.15モル部を、オキサジアゾールの如き正孔輸送
材料1モル部とジニトロフルオレノンの如き電子輸送材
料0.05〜0.3モル部と一緒に結着樹脂中に分散し
てなる感光層を導電性支持体の上に設けた単層型電子写
真感光体が開示されている。この種の単層型電子写真感
光体は、従来のフタロシアニン/樹脂分散系の単層型電
子写真感光体のように電荷発生と電荷輸送を同一の材料
が行なう構成とは異なり、電荷輸送と電荷発生をそれぞ
れ異なる材料に受け負わせるものであるから、電荷発生
材料の濃度を従来に比べ、大幅に低減することが可能と
なり、上記単層型感光体において問題となったインダク
ション効果が見られず、かつ正負両帯電性の感光体が実
現できる利点があった。
Thus, for example, Japanese Patent Application Laid-Open No. 54-1633 discloses a charge generation material such as phthalocyanine of 0.005.
A photosensitive material obtained by dispersing about 0.15 mol part in a binder resin together with 1 mol part of a hole transport material such as oxadiazole and 0.05-0.3 mol part of an electron transport material such as dinitrofluorenone. A single-layer electrophotographic photosensitive member having a layer provided on a conductive support is disclosed. This type of single-layer type electrophotographic photoreceptor is different from a conventional phthalocyanine / resin dispersion type single-layer type electrophotographic photoreceptor in that charge generation and charge transport are performed by the same material. Since the generation is performed by different materials, the concentration of the charge generation material can be significantly reduced as compared with the conventional case, and the induction effect, which is a problem in the single-layer type photoreceptor, is not observed. In addition, there is an advantage that a photosensitive member having both positive and negative charges can be realized.

【0010】しかしながら、上記開示された技術におい
ては、感光体は正負両帯電性ではあるものの、正帯電で
の使用を主眼として開発されたものであって、実際は負
帯電時の感度は正帯電時の半分程度しかなく、従来から
負帯電で用いられてきた積層型感光体とは、感度的に全
く整合しないものであった。また、このような構成の単
層型電子写真感光体では電荷発生が感光層内部で生ずる
ため、移動度の小さい電子がトラップされ易く、光減衰
特性は独特の裾引き傾向を示すため、単に感度のみを増
感させることができたとしても互換性ある特性が得られ
ないものであった。
However, in the technology disclosed above, although the photoreceptor has both positive and negative charging properties, it has been developed mainly for use in positive charging. This is only about half of that of the conventional photoconductor, and does not match the sensitivity at all with the laminated photoconductor conventionally used with negative charging. In addition, in the single-layer type electrophotographic photoreceptor having such a configuration, since charge generation occurs in the photosensitive layer, electrons having low mobility are easily trapped, and the light attenuation characteristic shows a unique tailing tendency. However, even if only sensitization could be sensitized, compatible characteristics could not be obtained.

【0011】[0011]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、低コスト化、高生産性化の図れる電子写真
感光体を提供することであって、従来の積層型電子写真
感光体との特性上の互換性に優れた好ましい性能を有す
る負帯電用電子写真感光体、及びそれを用いた画像形成
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrophotographic photosensitive member that can be manufactured at low cost and with high productivity. An object of the present invention is to provide an electrophotographic photoreceptor for negative charging having preferable performance excellent in compatibility with the above characteristics, and an image forming method using the same.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するために、同一の感光層内に電荷発生物質、電荷輸送
物質及び結着樹脂を含有する電子写真感光体であって、
該感光層中における電子の移動度が正孔の移動度よりも
大きいことを特徴とする負帯電用電子写真感光体、及び
この負帯電用電子写真感光体の感光層を負帯電で潜像形
成を行った後、負帯電トナーを用いて現像することを特
徴とする画像形成方法を提供する。本発明の目的を実現
するためには、特に、感光層中の電子の移動度が、電界
強度4×105V/cm の条件において、1×10-6
5×10-5cm2/V・秒 の範囲内であることが望まし
く、さらには電界強度4×105V/cm の条件におい
て、感光層中の正孔の移動度の5〜100倍であること
が望ましく、電荷輸送物質として、電子輸送物質と正孔
輸送物質を含有することも望ましい。また、本発明によ
れば、画像特性上、地汚れ等の欠陥が出現しない高画質
も得られる。
According to the present invention, there is provided an electrophotographic photoreceptor comprising a charge-generating substance, a charge-transporting substance and a binder resin in the same photosensitive layer.
A negative charge electrophotographic photosensitive member, wherein the mobility of electrons in the photosensitive layer is larger than the mobility of holes; and forming a latent image by negatively charging the photosensitive layer of the negative charge electrophotographic photosensitive member. And then developing using negatively charged toner. In order to realize the object of the present invention, in particular, the mobility of electrons in the photosensitive layer is 1 × 10 −6 to 1 × 10 −6 when the electric field intensity is 4 × 10 5 V / cm 2.
It is desirable to be within the range of 5 × 10 −5 cm 2 / V · sec. Further, under the condition of the electric field intensity of 4 × 10 5 V / cm, it is 5 to 100 times the mobility of the holes in the photosensitive layer. Preferably, the charge transport material contains an electron transport material and a hole transport material. Further, according to the present invention, high image quality in which defects such as background stains do not appear due to image characteristics can be obtained.

【0013】[0013]

【発明の実施の形態】本発明の負帯電用電子写真感光体
の感光層の構造の一例を図1に示した。ここで感光層の
膜厚は、5〜50μmの範囲が好ましい。感光層の膜厚
は、浸漬塗工により形成する場合、塗工速度、塗料の粘
度、専断力等の諸物性を調節することにより容易に所望
の膜厚とすることができる。なお、この単層構成の感光
層に付加して、中間層或いは表面保護層等の機能層を適
宜合わせて用いることも可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of the structure of a photosensitive layer of an electrophotographic photosensitive member for negative charging according to the present invention. Here, the thickness of the photosensitive layer is preferably in the range of 5 to 50 μm. When the photosensitive layer is formed by dip coating, the desired thickness can be easily obtained by adjusting various physical properties such as a coating speed, a viscosity of a paint, and a cutting power. In addition to the single-layer photosensitive layer, a functional layer such as an intermediate layer or a surface protective layer may be appropriately used.

【0014】本発明で規定する電荷移動度は、単位電界
強度当たりの電荷の移動速度と定義される一般的な特性
値を意味する。このような特性値を測定するためには、
通常は飛程時間(タイム・オブ・フライト:TOF)法
と呼ばれる手法が用いられる。この測定方法は、例え
ば、「ジャーナル・オブ・アプライド・フィジックス」
(Journal of Applied Phisics )、第43巻、第12号
(1972年)、第5033〜5040頁の論文等に詳
述されているように、有機光導電性物質の電荷輸送能を
評価する手段としては、ごく一般的なものである。その
測定の詳細は同文献等に譲るが、概要としては、感光層
の両面を電極で挟んだ構造のサンドイッチセルと呼ばれ
る試料を用い、電極間に電圧を印加することで電界を形
成し、次いで電極を透過してパルス光を試料に照射し
て、発生した電荷が試料の片面から対抗面まで移動する
過程で、電極間に流れる過渡的電流の波形を観測するも
のである。電荷移動度は、この過渡的電流波形を解析す
ることによって、容易に導くことができる。また、この
手法によれば、光照射面と電界の向きから、電子と正孔
の移動度を分離して評価することが容易に可能である。
なお、注意すべき点は、有機光導電性物質の電荷移動度
は、電界強度等の設定条件に大きな依存性があることで
ある。したがって本発明の規定する電荷移動度として
は、電界強度4×105V/cm の条件における測定で
得られる値を基準として用いることとする。
The charge mobility defined in the present invention means a general characteristic value defined as a charge moving speed per unit electric field intensity. To measure such a characteristic value,
Usually, a technique called a time-of-flight (TOF) method is used. This measurement method is described in, for example, “Journal of Applied Physics”
(Journal of Applied Phisics), Vol. 43, No. 12 (1972), pages 5033-5040, etc., as a means for evaluating the charge transport ability of an organic photoconductive substance. Is very common. The details of the measurement are given to the same document, etc., but as an overview, an electric field is formed by applying a voltage between the electrodes using a sample called a sandwich cell having a structure in which both surfaces of the photosensitive layer are sandwiched between electrodes, and then The pulse light is applied to the sample through the electrodes, and a waveform of a transient current flowing between the electrodes is observed in a process in which generated charges move from one surface of the sample to the opposite surface. The charge mobility can be easily derived by analyzing the transient current waveform. Further, according to this method, it is possible to easily evaluate the mobility of electrons and holes separately from the direction of the light irradiation surface and the direction of the electric field.
It should be noted that the charge mobility of the organic photoconductive substance greatly depends on setting conditions such as electric field strength. Therefore, the value obtained by the measurement under the condition of the electric field strength of 4 × 10 5 V / cm is used as the charge mobility defined by the present invention as a reference.

【0015】本発明の負帯電用電子写真感光体において
は、感光層中の電子の移動度が正孔の移動度よりも大き
いことが必要とされるが、これを実現するためには、移
動度の良好な電子輸送材料を感光層中に多く含有させる
必要がある。感光層中の電子の移動度は1×10-6〜5
×10-5cm2/V・秒 の範囲内であることが望まし
く、また電子の移動度が正孔の移動度の5〜100倍の
範囲内であることが特に好ましい。なお、電荷輸送材料
として電子輸送材料を単独で用いた形でも、使用は可能
であるが、この場合バルク中で発生した正孔が蓄積し易
くなるので残留電位の増加を招き易い。これを防止する
ためには正孔輸送材料を添加することが有効である。
In the electrophotographic photoreceptor for negative charging of the present invention, it is necessary that the mobility of the electrons in the photosensitive layer is higher than the mobility of the holes. It is necessary to make the photosensitive layer contain a large number of electron transporting materials having a good degree. The mobility of electrons in the photosensitive layer is 1 × 10 −6 to 5
It is desirable to be within the range of × 10 −5 cm 2 / V · sec, and it is particularly preferable that the electron mobility is within the range of 5 to 100 times the hole mobility. In addition, it is possible to use the electron transport material alone as the charge transport material. However, in this case, the holes generated in the bulk are easily accumulated, so that the residual potential is likely to increase. To prevent this, it is effective to add a hole transport material.

【0016】電子輸送材料としては、例えば、ベンゾキ
ノン系、テトラシアノエチレン系、テトラシアノキノジ
メタン系、フルオレノン系、キサントン系、フェナント
ラキノン系、無水フタール酸系、ジフェノキノン系等の
有機化合物や、アモルファスシリコン、アモルファスセ
レン、テルル、セレンーテルル合金、硫化カドミウム、
硫化アンチモン、酸化亜鉛、硫化亜鉛等の無機材料が挙
げられる。
Examples of the electron transporting material include organic compounds such as benzoquinone, tetracyanoethylene, tetracyanoquinodimethane, fluorenone, xanthone, phenanthraquinone, phthalic anhydride, and diphenoquinone. , Amorphous silicon, amorphous selenium, tellurium, selenium-tellurium alloy, cadmium sulfide,
Examples include inorganic materials such as antimony sulfide, zinc oxide, and zinc sulfide.

【0017】正孔輸送材料としては、低分子化合物で
は、例えば、ピレン系、カルバゾール系、ヒドラゾン
系、オキサゾール系、オキサジアゾール系、ピラゾリン
系、アリールアミン系、アリールメタン系、ベンジジン
系、チアゾール系、スチルベン系、ブタジエン系等の化
合物が挙げられる。また、高分子化合物としては、例え
ば、ポリ−N−ビニルカルバゾール、ハロゲン化ポリ−
N−ビニルカルバゾール、ポリビニルピレン、ポリビニ
ルアンスラセン、ポリビニルアクリジン、ピレン−ホル
ムアルデヒド樹脂、エチルカルバゾール−ホルムアルデ
ヒド樹脂、エチルカルバゾール−ホルムアルデヒド樹
脂、トリフェニルメタンポリマー、ポリシラン等が挙げ
られる。
Examples of the hole transport material include low molecular weight compounds such as pyrene, carbazole, hydrazone, oxazole, oxadiazole, pyrazoline, arylamine, arylmethane, benzidine, and thiazole compounds. , Stilbene compounds, butadiene compounds and the like. Further, as the polymer compound, for example, poly-N-vinylcarbazole, halogenated poly-
Examples include N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, polyvinylacridine, pyrene-formaldehyde resin, ethylcarbazole-formaldehyde resin, ethylcarbazole-formaldehyde resin, triphenylmethane polymer, and polysilane.

【0018】本発明で使用する電荷輸送材料は、ここに
挙げたものに限定されるものではなく、その使用に際し
ては単独、あるいは2種類以上混合して用いることがで
き、電子輸送材料と正孔輸送材料を混合して用いること
もできる。
The charge transporting material used in the present invention is not limited to those listed here, and can be used alone or in combination of two or more. A mixture of transport materials can be used.

【0019】本発明で使用する電荷発生材料としては、
例えば、アゾ系顔料、キノン系顔料、ペリレン系顔料、
インジゴ系顔料、チオインジゴ系顔料、ビスベンゾイミ
ダゾール系顔料、フタロシアニン系顔料、キナクリドン
系顔料、キノリン系顔料、レーキ系顔料、アゾレーキ系
顔料、アントラキノン系顔料、オキサジン系顔料、ジオ
キサジン系顔料、トリフェニルメタン系顔料、アズレニ
ウム系染料、スクウェアリウム系染料、ピリリウム系染
料、トリアリルメタン系染料、キサンテン系染料、チア
ジン系染料、シアニン系染料等の種々の有機顔料、染料
や、更にアモルファスシリコン、アモルファスセレン、
テルル、セレン−テルル合金、硫化カドミウム、硫化ア
ンチモン、酸化亜鉛、硫化亜鉛等の無機材料を挙げるこ
とができる。
The charge generating material used in the present invention includes:
For example, azo pigments, quinone pigments, perylene pigments,
Indigo pigment, thioindigo pigment, bisbenzimidazole pigment, phthalocyanine pigment, quinacridone pigment, quinoline pigment, lake pigment, azo lake pigment, anthraquinone pigment, oxazine pigment, dioxazine pigment, triphenylmethane pigment Pigments, azulenium dyes, squarium dyes, pyrylium dyes, triallylmethane dyes, xanthene dyes, thiazine dyes, various organic pigments such as cyanine dyes, dyes, and further amorphous silicon, amorphous selenium,
Examples include inorganic materials such as tellurium, selenium-tellurium alloy, cadmium sulfide, antimony sulfide, zinc oxide, and zinc sulfide.

【0020】電荷発生材料は、その使用に際しては、こ
こに挙げたものを単独で用いることもできるが、2種類
以上の電荷発生材料を混合して用いることもできる。
When using the charge generating material, the materials mentioned here can be used alone, but two or more kinds of charge generating materials can be mixed and used.

【0021】本発明の感光層の作成方法としては、電子
輸送材料、正孔輸送材料、電荷発生材料、結着樹脂、溶
剤をボールミル、ホモミキサー等により分散させて塗料
液を得、得られた塗料液を塗布する。この塗布方法とし
ては、浸漬塗布法、ロールコート法、スプレー法、スピ
ンコート法等の通常の公知手段を適宜選択することがで
きる。塗料中の固形分に占める電荷発生材料の割合は、
電子写真感光体の感度が良好であり、電荷保持能、電荷
輸送性が良好となる0.2〜5重量%の範囲が好まし
い。
The photosensitive layer of the present invention was prepared by dispersing an electron transporting material, a hole transporting material, a charge generating material, a binder resin, and a solvent using a ball mill, a homomixer or the like to obtain a coating liquid. Apply the coating liquid. As the coating method, a known method such as a dip coating method, a roll coating method, a spray method, or a spin coating method can be appropriately selected. The ratio of the charge generation material to the solid content in the paint,
The range of 0.2 to 5% by weight at which the sensitivity of the electrophotographic photoreceptor is good and the charge retention ability and the charge transportability are good is preferable.

【0022】結着樹脂は、電気絶縁性のフィルム形成可
能な高分子重合体が好ましい。そのような高分子重合体
としては、例えば、ポリカーボネート、ポリエステル、
メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル、ポリ
塩化ビニリデン、ポリスチレン、ポリビニルアセテー
ト、スチレン−ブタジエン共重合体、塩化ビニリデン−
アクリロニトリル重合体、塩化ビニル−酢酸ビニル共重
合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合
体、シリコン樹脂、シリコン−アルキッド樹脂、フェノ
ール−ホルムアルデヒド樹脂、スチレン−アルキッド樹
脂、ポリ−N−ビニルカルバゾール、ポリビニルブチラ
ール、ポリビニルフォルマール、ポリスルホン、カゼイ
ン、ゼラチン、ポリビニルアルコール、エチルセルロー
ス、フェノール樹脂、ポリアミド、カルボキシ−メチル
セルロース、塩化ビニリデン系ポリマーラテックス、ポ
リウレタン等が挙げられるが、これらに限定されるもの
ではない。これらの結着樹脂は、単独又は2種類以上混
合して用いられる。
The binder resin is preferably a high molecular polymer capable of forming an electrically insulating film. Such high-molecular polymers, for example, polycarbonate, polyester,
Methacrylic resin, acrylic resin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, styrene-butadiene copolymer, vinylidene chloride
Acrylonitrile polymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, silicone resin, silicon-alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin, poly-N-vinylcarbazole , Polyvinyl butyral, polyvinyl formal, polysulfone, casein, gelatin, polyvinyl alcohol, ethyl cellulose, phenolic resin, polyamide, carboxy-methyl cellulose, vinylidene chloride-based polymer latex, polyurethane, and the like, but are not limited thereto. These binder resins are used alone or in combination of two or more.

【0023】また、これらの結着樹脂と共に、分散安定
剤、可塑剤、表面改質剤、酸化防止剤、光劣化防止剤等
の添加剤を使用することもできる。
In addition to these binder resins, additives such as a dispersion stabilizer, a plasticizer, a surface modifier, an antioxidant and a light deterioration inhibitor can be used.

【0024】可塑剤としては、例えば、ビフェニル、塩
化ビフェニル、ターフェニル、ジブチルフタレート、ジ
エチレングリコールフタレート、ジオクチルフタレー
ト、トリフェニル燐酸、メチルナフタレン、ベンゾフェ
ノン、塩素化パラフィン、ポリプロピレン、ポリスチレ
ン、各種フルオロ炭化水素等が挙げられる。
Examples of the plasticizer include biphenyl, biphenyl chloride, terphenyl, dibutyl phthalate, diethylene glycol phthalate, dioctyl phthalate, triphenylphosphoric acid, methylnaphthalene, benzophenone, chlorinated paraffin, polypropylene, polystyrene and various fluorohydrocarbons. No.

【0025】表面改質剤としては、例えば、シリコンオ
イル、フッ素樹脂等が挙げられる。
Examples of the surface modifier include silicone oil, fluororesin and the like.

【0026】酸化防止剤としては、例えば、フェノール
系、硫黄系、リン系、アミン系化合物等の酸化防止剤が
挙げられる。
Examples of the antioxidant include phenol-based, sulfur-based, phosphorus-based, and amine-based compounds.

【0027】光劣化防止剤としては、例えば、ベンゾト
リアゾール系化合物、ベンゾフェノン系化合物、ヒンダ
ードアミン系化合物等が挙げられる。
Examples of the photo-deterioration inhibitor include benzotriazole compounds, benzophenone compounds, hindered amine compounds and the like.

【0028】本発明の塗料調製方法に用いる溶剤として
は、例えば、メタノール、エタノール、n−プロパノー
ル等のアルコール類;アセトン、メチルエチルケトン、
シクロヘキサノン等のケトン類;N,N−ジメチルホル
ムアミド、N,N−ジメチルアセトアミド等のアミド
類;テトラヒドロフラン、ジオキサン、メチルセロソル
ブ等のエーテル類;酢酸メチル、酢酸エチル等のエステ
ル類;ジメチルスルホキシド、スルホラン等のスルホキ
シド及びスルホン類;塩化メチレン、クロロホルム、四
塩化炭素、トリクロロエタン等の脂肪族ハロゲン化炭化
水素;ベンゼン、トルエン、キシレン、モノクロルベン
ゼン、ジクロルベンゼン等の芳香族類などが挙げられ
る。
Examples of the solvent used in the coating preparation method of the present invention include alcohols such as methanol, ethanol and n-propanol; acetone, methyl ethyl ketone,
Ketones such as cyclohexanone; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; ethers such as tetrahydrofuran, dioxane and methyl cellosolve; esters such as methyl acetate and ethyl acetate; dimethyl sulfoxide, sulfolane and the like Sulfoxides and sulfones; aliphatic halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, and trichloroethane; and aromatics such as benzene, toluene, xylene, monochlorobenzene, and dichlorobenzene.

【0029】本発明の電子写真感光体は負帯電時の電子
写真特性に優れるという特徴を有するが、特に負帯電ト
ナーを用いた、いわゆる反転現像方式による画像形成方
法で使用したときに、高解像度で印字欠陥が少ないとい
うその真価を発揮することができる。このような画像形
成方法は、従来電荷発生層の上に正孔輸送性の電荷輸送
層を積層した積層型負帯電用電子写真感光体を用いる、
レーザープリンタ等の電子写真装置において一般的に採
用されてきた手法であり、光照射部にトナーを付着させ
るという現像上の特徴を有している。この方式によれば
文字原稿のような白地部分の多い印字において、光照射
面積を少なくすることが可能で、装置や感光体への負担
を低減できる長所がある。
The electrophotographic photoreceptor of the present invention has a feature that it has excellent electrophotographic characteristics at the time of negative charging. Particularly, when the electrophotographic photoreceptor is used in an image forming method by a so-called reversal developing method using a negatively charged toner, a high resolution is obtained. Thus, the true value that there are few printing defects can be exhibited. Such an image forming method uses a laminated negative charging electrophotographic photoconductor in which a hole transporting charge transport layer is laminated on a conventional charge generation layer,
This is a method generally used in an electrophotographic apparatus such as a laser printer, and has a developing feature of attaching toner to a light irradiation unit. According to this method, there is an advantage that the light irradiation area can be reduced in printing with a large number of white backgrounds such as a text document, and the load on the apparatus and the photoconductor can be reduced.

【0030】[0030]

【作用】本発明の負帯電用電子写真感光体は、その単純
な層構成から低コスト化、高生産性化が図れ、さらには
従来の一般的な単層型電子写真感光体とは逆に、感光層
中の電子の移動度が正孔の移動度よりも大きいという、
著しい特徴があり、これによって、従来の積層型電子写
真感光体と電気特性上の互換性が良好で、かつ優れた画
像品質を有する、実用上好ましい特性を実現している。
以下にその理由を説明する。
The electrophotographic photoreceptor for negative charging of the present invention can achieve low cost and high productivity because of its simple layer structure, and further, contrary to the conventional general single-layer type electrophotographic photoreceptor. That the mobility of the electrons in the photosensitive layer is greater than the mobility of the holes,
It has remarkable characteristics, thereby realizing practically preferable characteristics having good compatibility in electrical characteristics with the conventional laminated electrophotographic photosensitive member and excellent image quality.
The reason will be described below.

【0031】従来の単層型電子写真感光体、例えば前述
の特開昭54−1633号公報の実施例に記載された感
光体は、正孔輸送物質が電子輸送物質に対して10倍程
度も多く含有されているため、電子が感光層を縦断して
輸送されるだけの充分な電子輸送能力を有さないから、
負帯電時の電荷発生は必然的に感光層の導電性支持体と
の界面近傍で行われなければならない。このため入射光
は感光層を透過して支持体近傍まで到達したものが電荷
発生に寄与することになるが、感光層中には電荷発生物
質が分散されているため、光はその到達までにかなりの
部分が吸収され、結果として正帯電の場合と比較して大
幅な感度低下を生ずることになる。また、感光体中の電
子濃度が元々低濃度であるから、光減衰に伴う電界強度
の低下によって、さらに電子の移動度が大幅に低下して
しまい、電子がバルク中に留まり易くなり、光減衰の裾
引きが大きくなる。このため従来の積層型電子写真感光
体とは電気特性上の互換性が全く得られなかった。
In a conventional single-layer type electrophotographic photoreceptor, for example, the photoreceptor described in the above-mentioned embodiment of JP-A-54-1633, the hole transport material is about 10 times as large as the electron transport material. Because of the high content, the electrons do not have sufficient electron transport capability to be transported across the photosensitive layer,
The charge generation at the time of negative charging must necessarily be performed in the vicinity of the interface between the photosensitive layer and the conductive support. For this reason, incident light that has passed through the photosensitive layer and reached the vicinity of the support contributes to charge generation, but since the charge generating substance is dispersed in the photosensitive layer, light is A considerable portion is absorbed, resulting in a significant decrease in sensitivity as compared to the case of positive charging. Also, since the electron concentration in the photoreceptor is originally low, the mobility of the electrons is further reduced by the reduction of the electric field intensity accompanying the light attenuation, and the electrons are easily retained in the bulk, and the light attenuation is reduced. The hemming becomes larger. For this reason, compatibility with the conventional laminated electrophotographic photosensitive member in terms of electrical characteristics was not obtained at all.

【0032】本発明の負帯電用電子写真感光体は、電子
の移動度が正孔の移動度よりも大きいため、負帯電時の
電荷発生が感光層の表面近傍でなされるという著しい効
果を生ずる。このため、入射光は感光層中を基板付近ま
で透過させる必要がないから、ロスが少なく、高感度を
実現することができる。また、帯電電荷に最も近い部分
で、電荷発生の大部分がなされるためバルク中に電荷が
蓄積することが少なく、従来の負帯電用の積層型電子写
真感光体に近い光減衰特性が得られ、電気特性上の互換
性が得られるという特徴がある。
In the electrophotographic photosensitive member for negative charging of the present invention, since the mobility of electrons is larger than the mobility of holes, a remarkable effect that charge generation at the time of negative charging is performed near the surface of the photosensitive layer is produced. . Therefore, the incident light does not need to be transmitted to the vicinity of the substrate in the photosensitive layer, so that the loss is small and high sensitivity can be realized. In addition, since most of the charge generation occurs in the portion closest to the charged charge, the charge is less likely to accumulate in the bulk, and light attenuation characteristics close to those of the conventional negative-type stacked electrophotographic photoreceptor can be obtained. In addition, there is a feature that compatibility in electrical characteristics can be obtained.

【0033】また、本発明の負帯電用電子写真感光体は
画像形成上からも極めて有利である。即ち、負帯電時の
電荷発生が感光層の表面近傍で行われるから、従来の単
層型電子写真感光体や積層型電子写真感光体の場合のよ
うに、入射光を基板近傍まで透過させる場合に、感光層
中での吸収や散乱がなく、また電荷が基板側から表面ま
で移動するまでに拡散されることもないため、極めて高
解像の潜像を得ることができる。
Further, the electrophotographic photosensitive member for negative charging of the present invention is extremely advantageous from the viewpoint of image formation. That is, since the charge generation at the time of negative charging is performed in the vicinity of the surface of the photosensitive layer, the incident light is transmitted to the vicinity of the substrate as in the case of a conventional single-layer type electrophotographic photosensitive member or a laminated type electrophotographic photosensitive member. In addition, since there is no absorption or scattering in the photosensitive layer and no charge is diffused from the substrate side to the surface, an extremely high-resolution latent image can be obtained.

【0034】更に、従来の単層型電子写真感光体のよう
に正孔輸送性が中心の感光層では、負帯電の場合、基板
側から注入された正孔が容易に表面まで到達して電荷を
中和してしまうため、電位保持能が十分に得られないこ
とが多い。また、基板に汚れや欠陥があると、そこが電
荷注入の核となり、局所的な電位の抜けが生じ、これが
反転現像方式では致命的な黒点や地汚れ欠陥の原因とな
ることが知られている。これに対し本発明の単層型電子
写真感光体では、電子輸送性が中心であるため、このよ
うな基板側からの正孔注入は殆ど生じることがないか
ら、特に反転現像方式において、画像欠陥のない、鮮明
な画像が得られる効果がある。
Further, in the case of a photosensitive layer mainly having a hole transporting property, such as a conventional single-layer type electrophotographic photosensitive member, in the case of negative charge, holes injected from the substrate side easily reach the surface and charge. In many cases, the potential holding ability cannot be sufficiently obtained. In addition, if the substrate has dirt or defects, it becomes a nucleus for charge injection, causing a local potential drop, which is known to cause fatal black spots and background dirt defects in the reversal development method. I have. On the other hand, in the single-layer type electrophotographic photoreceptor of the present invention, since the hole transport from the substrate side hardly occurs because the electron transporting property is the center, the image defect especially in the reversal development method is obtained. There is an effect that a clear image without any blur can be obtained.

【0035】[0035]

【実施例】以下、実施例及び比較例を用いて本発明を更
に詳細に説明するが、これにより本発明が実施例に限定
されるものではない。なお、以下の実施例及び比較例中
における「部」は「重量部」を示す。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the examples. In the following examples and comparative examples, “parts” indicates “parts by weight”.

【0036】(実施例1)α型チタニルフタロシアニン
0.3部、式(1)
Example 1 0.3 part of α-type titanyl phthalocyanine, formula (1)

【0037】[0037]

【化1】 Embedded image

【0038】で表わされる電子輸送物質8部、式(2)8 parts of an electron transport material represented by the following formula (2)

【0039】[0039]

【化2】 Embedded image

【0040】で表される正孔輸送物質5部、及びポリカ
ーボネート樹脂(三菱ガス化学社製の「ユーピロンZ−
200」)14部をクロロホルム76部に溶解し、振動
ミルを用いて分散させて、感光体用の塗料を作成した。
5 parts of a hole transporting material represented by the following formula: and a polycarbonate resin ("Iupilon Z-" manufactured by Mitsubishi Gas Chemical Company, Inc.).
200 ") was dissolved in 76 parts of chloroform and dispersed using a vibration mill to prepare a coating for a photoreceptor.

【0041】この塗料を用いて、直径30mmのアルミ
ニウム素管表面に、乾燥後の膜厚が15μmと成るよう
に浸積塗布した後、乾燥させて感光層を形成し、ドラム
状の電子写真感光体を得た。また、同一の塗料を用い
て、厚さ0.3mmのアルミ板上に、同様の感光層を形
成した板状の電子写真感光体も作製した。
Using this coating material, dip coating is applied to the surface of a 30 mm-diameter aluminum tube so that the film thickness after drying becomes 15 μm, and then dried to form a photosensitive layer. I got a body. Further, a plate-shaped electrophotographic photosensitive member having a similar photosensitive layer formed on an aluminum plate having a thickness of 0.3 mm using the same coating material was also manufactured.

【0042】(実施例2)実施例1において、電子輸送
物質を9部、正孔輸送物質4部とした以外は、実施例1
と同様にして電子写真感光体を得た。
Example 2 Example 1 was repeated except that the electron transporting material was changed to 9 parts and the hole transporting material was changed to 4 parts.
An electrophotographic photoreceptor was obtained in the same manner as described above.

【0043】(実施例3)実施例1において、電子輸送
物質として、式(3)
Example 3 In Example 1, an electron transporting material represented by the formula (3)

【0044】[0044]

【化3】 Embedded image

【0045】で表される化合物を8部、正孔輸送物質と
して、式(4)
8 parts of a compound represented by the formula (4)

【0046】[0046]

【化4】 Embedded image

【0047】で表される化合物5部を用いた以外は、実
施例1と同様にして電子写真感光体を得た。
An electrophotographic photoreceptor was obtained in the same manner as in Example 1 except that 5 parts of the compound represented by the following formula was used.

【0048】(実施例4)実施例3において、電子輸送
物質を10部、正孔輸送物質3部を用いた以外は、実施
例3と同様にして電子写真感光体を得た。
Example 4 An electrophotographic photosensitive member was obtained in the same manner as in Example 3, except that 10 parts of the electron transporting substance and 3 parts of the hole transporting substance were used.

【0049】(比較例1)実施例1において、電子輸送
物質を1.5部、正孔輸送物質を8部とした以外は、実
施例1と同様にして電子写真感光体を得た。この感光体
の各素材の分子量はそれぞれ、α型チタニルフタロシア
ニンが576.44、式(1)の電子輸送物質が32
4.46、式(2)の正孔輸送物質が425.57であ
ることから、モル比では0.028:0.24:1とな
り、公知技術として挙げた特開昭54−1633号公報
の開示する感光体に相当する。
Comparative Example 1 An electrophotographic photosensitive member was obtained in the same manner as in Example 1, except that 1.5 parts of the electron transport material and 8 parts of the hole transport material were used. The molecular weight of each material of the photoreceptor was 576.44 for α-type titanyl phthalocyanine, and 32 for the electron transport material of the formula (1).
4.46, since the hole transport material of the formula (2) is 425.57, the molar ratio is 0.028: 0.24: 1, which is disclosed in Japanese Patent Application Laid-Open No. 54-1633. This corresponds to the disclosed photoconductor.

【0050】(比較例2)実施例3において、電子輸送
物質を5部、正孔輸送物質を8部とした以外は、実施例
3と同様にして電子写真感光体を得た。
Comparative Example 2 An electrophotographic photosensitive member was obtained in the same manner as in Example 3, except that 5 parts of the electron transporting material and 8 parts of the hole transporting material were used.

【0051】(比較例3)実施例3において、電子輸送
物質を7部、正孔輸送物質を6部とした以外は、実施例
3と同様にして電子写真感光体を得た。
Comparative Example 3 An electrophotographic photosensitive member was obtained in the same manner as in Example 3, except that the electron transporting material was changed to 7 parts and the hole transporting material was changed to 6 parts.

【0052】(比較例4)α型チタニルフタロシアニン
2部、ポリビニルブチラール樹脂(積水化学社製の商品
名「エスレックBM−1」1部を塩化メチレン100部
と共に、振動ミルで2時間分散して、電荷発生層用塗料
を作製した。
(Comparative Example 4) 2 parts of α-type titanyl phthalocyanine and 1 part of a polyvinyl butyral resin (trade name “Eslec BM-1” manufactured by Sekisui Chemical Co., Ltd.) were dispersed together with 100 parts of methylene chloride in a vibration mill for 2 hours. A paint for a charge generation layer was prepared.

【0053】次に、この塗料を用いて、アルミニウム素
管及びアルミ板の上に塗布して、乾燥後膜厚0.4μm
の電荷発生層を形成した。
Next, using this paint, it is applied on an aluminum pipe and an aluminum plate, and after drying, a film thickness of 0.4 μm
Was formed.

【0054】この電荷発生層の上に、式(2)の正孔輸
送物質10部をポリカーボネート樹脂(三菱ガス化学社
製の「ユーピロンZ−200」)14部と共にクロロホ
ルム76部に溶解した塗料を塗布して、乾燥後膜厚15
μmの電荷輸送層を形成して、負帯電用積層型電子写真
感光体を得た。
On the charge generation layer, a coating solution obtained by dissolving 10 parts of the hole transport material of the formula (2) together with 14 parts of a polycarbonate resin (“Iupilon Z-200” manufactured by Mitsubishi Gas Chemical Company) in 76 parts of chloroform. After coating and drying, film thickness 15
A μm charge transport layer was formed to obtain a negatively charged laminated electrophotographic photosensitive member.

【0055】(電荷移動度測定)試作した感光体の電荷
移動度を測定するため、各実施例及び比較例で得た試料
のTOF測定を行った。測定のため各板状試料の表面に
電荷発生用のチタニルフタロシアニンを500Åの厚み
に蒸着し、その上にアルミニウムを薄く蒸着して半透明
な電極を形成して、サンドイッチセルを作製した。な
お、表面に新たな電荷発生層を形成した理由は実施例で
作製した単層型感光体では、電荷発生が表面近傍のバル
ク中で行われるため、深さ方向の誤差を生じやすいた
め、薄い電荷発生のみを目的とする層を設けてその影響
を除外するためである。
(Measurement of Charge Mobility) In order to measure the charge mobility of the prototype photoreceptor, TOF measurement was performed on the samples obtained in each of the examples and comparative examples. For the measurement, titanyl phthalocyanine for charge generation was vapor-deposited to a thickness of 500 ° on the surface of each plate-like sample, and aluminum was thinly vapor-deposited thereon to form a translucent electrode, thereby producing a sandwich cell. The reason why a new charge generation layer was formed on the surface is that, in the single-layer type photoreceptor manufactured in the example, since charge generation is performed in the bulk near the surface, errors in the depth direction are likely to occur, This is because a layer intended only for charge generation is provided and its influence is excluded.

【0056】次に、試料を23℃、湿度50%RHの条
件設定した恒温恒湿糟内に設置して、両面の電極に電圧
を印加し、感光層内部の電界強度で4×105V/cm
となるようにした状態で、蒸着アルミ面から、窒素レー
ザーで励起した波長650nmの色素レーザーによるパ
ルス光を照射した。このとき得られた過渡電流波形から
導いた各感光体の感光層内の電子及び正孔の移動度を表
1にまとめて示す。
Next, the sample was placed in a constant temperature / humidity chamber set at 23 ° C. and a humidity of 50% RH, a voltage was applied to the electrodes on both sides, and the electric field strength inside the photosensitive layer was 4 × 10 5 V. / Cm
In this state, pulsed light was emitted from a vapor-deposited aluminum surface using a dye laser having a wavelength of 650 nm excited by a nitrogen laser. Table 1 collectively shows the mobility of electrons and holes in the photosensitive layer of each photosensitive member derived from the transient current waveform obtained at this time.

【0057】[0057]

【表1】 [Table 1]

【0058】(電気特性)各実施例及び各比較例で得た
電子写真感光体の電気特性を評価するために、各ドラム
感光体をドラム感光体試験装置(ジェンテック社製の
「シンシア−30」)を用いて電子写真特性を測定し
た。測定方法は、ドラム感光体を暗所で60rpmで回
転させながら、印加電圧−6kVのコロナ放電により帯
電させ、この直後の表面電位を初期電位V0 として、帯
電能の評価に用いた。次に、暗所に10秒間放置した後
の電位V10を測定し、V10/V0 によって電位保持能を
評価した。次いで、780nmの単色光で、その表面に
おける露光強度が1μW/cm2 になるように設定し、感
光層に光照射を行い、表面電位の減衰曲線を記録した。
ここで、光照射により表面電位がV10の1/2に減少す
るまでの露光量を求め、半減露光量E1/2 として感度を
評価した。この結果を表2にまとめて示した。
(Electrical Characteristics) In order to evaluate the electrical characteristics of the electrophotographic photosensitive members obtained in each of the examples and comparative examples, each of the drum photosensitive members was tested using a drum photosensitive member test apparatus (“Cynthia-30” manufactured by Gentec). ") Was used to measure the electrophotographic properties. The measuring method was such that the drum photoreceptor was charged by corona discharge at an applied voltage of −6 kV while rotating at 60 rpm in a dark place, and the surface potential immediately after this was used as an initial potential V 0 for evaluation of charging ability. Next, the potential V 10 after being left in a dark place for 10 seconds was measured, and the potential holding ability was evaluated by V 10 / V 0 . Then, the exposure intensity on the surface was set to 1 μW / cm 2 with 780 nm monochromatic light, the photosensitive layer was irradiated with light, and the decay curve of the surface potential was recorded.
Here, the surface potential by light irradiation determined amount of exposure until reduced to 1/2 of V 10, were evaluated sensitivity as half decay exposure E 1/2. The results are summarized in Table 2.

【0059】[0059]

【表2】 [Table 2]

【0060】表2に示した結果から明らかなように、本
発明の実施例1〜4で得た電子写真感光体は、優れた帯
電能と感度を示した。また、比較例4で得た電荷発生
層、電荷輸送層の順に積層した従来の構成による負帯電
用の積層型電子写真感光体と各電子写真特性が非常に近
く、互換性に優れていることが分かる。一方、比較例1
〜3で得た正孔の移動度が電子の移動度よりも大きい単
層型電子写真感光体は、各実施例及び比較例4で得た電
子写真感光体に比較して、感度が大幅に劣っており、十
分な互換性が得られないことが明らかである。
As is clear from the results shown in Table 2, the electrophotographic photosensitive members obtained in Examples 1 to 4 of the present invention exhibited excellent charging ability and sensitivity. In addition, each electrophotographic characteristic is very close to the conventional electrophotographic photosensitive member for negative charging having a conventional configuration in which the charge generation layer and the charge transport layer obtained in Comparative Example 4 are laminated in this order, and the compatibility is excellent. I understand. On the other hand, Comparative Example 1
The single-layer type electrophotographic photoreceptors in which the hole mobilities obtained in Nos. 1 to 3 are larger than the electron mobilities have significantly higher sensitivities as compared with the electrophotographic photoreceptors obtained in Examples and Comparative Example 4. Obviously, it is inferior and does not provide sufficient compatibility.

【0061】(画像特性)画像特性の評価には、負帯電
型のドラム状電子写真感光体に対応した反転現像方式の
レーザープリンタ(ヒューレットパッカード社製の「レ
ーザー・ジェット(Laser Jet) III Si」)に、実施例
1〜4及び比較例1〜4で得られたドラム状電子写真感
光体を装着し、23℃、50%RHの環境中で通常使用
されているコピー紙に画像を形成した。その画像評価結
果を表2にまとめて示した。なお、地汚れに関する評価
は、画像を形成した白地原稿を50倍のルーペで観察し
て、2mm×2mmの正方形中におけるトナーの付着し
た面積比率を求め、下記の評価基準で◎、○、△、×の
4段階で程度の評価を行った。
(Image Characteristics) To evaluate the image characteristics, a laser printer of a reversal development type (“Laser Jet III Si” manufactured by Hewlett-Packard, Inc.) corresponding to a negatively charged drum-shaped electrophotographic photosensitive member was used. ), The drum-shaped electrophotographic photoreceptors obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were mounted, and an image was formed on copy paper which is usually used in an environment of 23 ° C. and 50% RH. . Table 2 summarizes the image evaluation results. The evaluation of background contamination was performed by observing a white background document on which an image was formed with a 50-fold loupe, calculating the area ratio of the toner adhered in a 2 mm × 2 mm square, and using the following evaluation criteria, ◎, ○, Δ , ×, the degree was evaluated in four stages.

【0062】 ◎:上記面積比率の最大値が0.1%未満。 ○:上記面積比率の最大値が0.1%以上、0.5%未
満。 △:上記面積比率の最大値が0.5%以上、1.0%未
満。 ×:上記面積比率の最大値が1.0%以上。
A: The maximum value of the area ratio is less than 0.1%. :: The maximum value of the area ratio is 0.1% or more and less than 0.5%. Δ: The maximum value of the area ratio was 0.5% or more and less than 1.0%. ×: The maximum value of the area ratio is 1.0% or more.

【0063】また、画像濃度は画像の黒地部の印字濃度
を濃度計(マクベス社製のRD918型)で測定した。
The image density was determined by measuring the print density of the black background portion of the image with a densitometer (RD918, manufactured by Macbeth).

【0064】[0064]

【表3】 [Table 3]

【0065】表3に示した結果から明らかなように、実
施例1〜4で得た各電子写真感光体は、いずれも地汚れ
がなく、十分な印字濃度の画像が得られたが、比較例1
〜3で得た電子写真感光体では、画像濃度が大幅に劣っ
ているばかりか、地汚れ評価も不十分なものであった。
また、比較例4で得た従来の積層構成の電子写真感光体
では、十分な画像濃度が得られるものの、地汚れの評価
が非常に劣るものであった。
As is clear from the results shown in Table 3, each of the electrophotographic photoreceptors obtained in Examples 1 to 4 was free from background smear, and images with sufficient print density were obtained. Example 1
In the electrophotographic photoreceptors obtained in Nos. 1 to 3, not only the image density was significantly inferior, but also the evaluation of background contamination was insufficient.
In the conventional electrophotographic photosensitive member having a laminated structure obtained in Comparative Example 4, although sufficient image density was obtained, the evaluation of background contamination was very poor.

【0066】更に、網点からなる印字画像で解像度を比
較したところ、比較例1及び2で得た電子写真感光体
は、網点がつぶれて解像度が著しく劣っていたが、実施
例の感光体は何れも優れた網点の再現性を示しており、
良好な解像度の得られることが分かった。
Further, when the resolutions of the printed images composed of the halftone dots were compared, the electrophotographic photosensitive members obtained in Comparative Examples 1 and 2 were found to have poor resolution due to the collapse of the halftone dots. Indicate excellent dot reproducibility,
It has been found that good resolution can be obtained.

【0067】[0067]

【発明の効果】本発明の負帯電用電子写真感光体は、そ
の単純な層構成から低コスト化、高生産性化が図れ、さ
らには、従来の積層型電子写真感光体と電気特性上の互
換性を有し、かつ画像上の欠陥が出現しない高画質を有
する、実用上好ましい特性を実現している。
According to the electrophotographic photoreceptor for negative charging of the present invention, the cost can be reduced and the productivity can be increased because of its simple layer structure. Practically preferable characteristics that have compatibility and have high image quality in which no defects appear on the image are realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電子写真感光体の層構成の一例を示す
模式断面図である。
FIG. 1 is a schematic cross-sectional view illustrating an example of a layer configuration of an electrophotographic photosensitive member of the present invention.

【符号の説明】[Explanation of symbols]

1 導電性支持体 2 電荷発生物質 3 電荷輸送物質+結着樹脂 4 感光層 REFERENCE SIGNS LIST 1 conductive support 2 charge generating substance 3 charge transporting substance + binder resin 4 photosensitive layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 同一の感光層内に電荷発生物質、電荷輸
送物質及び結着樹脂を含有する電子写真感光体であっ
て、該感光層中における電子の移動度が正孔の移動度よ
りも大きいことを特徴とする負帯電用電子写真感光体。
1. An electrophotographic photosensitive member containing a charge generating substance, a charge transporting substance and a binder resin in the same photosensitive layer, wherein the mobility of electrons in the photosensitive layer is higher than the mobility of holes. An electrophotographic photosensitive member for negative charging, characterized by being large.
【請求項2】 感光層中の電子の移動度が、電界強度4
×105V/cm の条件において、1×10-6〜5×1
-5cm2/V・秒 の範囲内である請求項1記載の感光
体。
2. The method according to claim 2, wherein the mobility of electrons in the photosensitive layer is 4
1 × 10 −6 to 5 × 1 under the condition of × 10 5 V / cm 2
2. The photoreceptor according to claim 1, wherein said photoreceptor is within a range of 0-5 cm2 / Vsec .
【請求項3】 感光層中の電子の移動度が、電界強度4
×105V/cm の条件において、感光層中の正孔の移
動度の5〜100倍である請求項1又は2記載の感光
体。
3. The method according to claim 1, wherein the mobility of the electrons in the photosensitive layer is 4
3. The photoconductor according to claim 1, wherein the mobility is 5 to 100 times the mobility of holes in the photosensitive layer under the condition of × 10 5 V / cm 3 .
【請求項4】 電荷輸送物質として電子輸送物質と正孔
輸送物質とを含有する請求項1、2又は3記載の感光
体。
4. The photoconductor according to claim 1, wherein the charge transport material contains an electron transport material and a hole transport material.
【請求項5】 請求項1〜4のいずれか1つに記載の負
帯電用電子写真感光体を用いる画像形成方法であって、
該感光体の感光層を負帯電で潜像形成を行った後、負帯
電トナーを用いて現像することを特徴とする画像形成方
法。
5. An image forming method using the electrophotographic photoreceptor for negative charging according to claim 1, wherein:
An image forming method, comprising: forming a latent image on the photosensitive layer of the photoreceptor by negative charging, and developing the latent image with a negatively charged toner.
JP13492597A 1997-05-26 1997-05-26 Electrophotographic photoreceptor for negative electrification and image forming method Pending JPH10326022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13492597A JPH10326022A (en) 1997-05-26 1997-05-26 Electrophotographic photoreceptor for negative electrification and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13492597A JPH10326022A (en) 1997-05-26 1997-05-26 Electrophotographic photoreceptor for negative electrification and image forming method

Publications (1)

Publication Number Publication Date
JPH10326022A true JPH10326022A (en) 1998-12-08

Family

ID=15139758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13492597A Pending JPH10326022A (en) 1997-05-26 1997-05-26 Electrophotographic photoreceptor for negative electrification and image forming method

Country Status (1)

Country Link
JP (1) JPH10326022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017579A (en) * 2003-06-25 2005-01-20 Konica Minolta Business Technologies Inc Organic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2008281800A (en) * 2007-05-11 2008-11-20 Ricoh Co Ltd Electrophotographic photoreceptor, and image forming apparatus and process cartridge using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017579A (en) * 2003-06-25 2005-01-20 Konica Minolta Business Technologies Inc Organic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2008281800A (en) * 2007-05-11 2008-11-20 Ricoh Co Ltd Electrophotographic photoreceptor, and image forming apparatus and process cartridge using the same

Similar Documents

Publication Publication Date Title
JP2006018266A (en) Image forming member
JPH0750331B2 (en) Electrophotographic photoreceptor
JP2004226637A (en) Monolayer electrophotographic photoreceptor, and image forming apparatus with the same
JP2610503B2 (en) Electrophotographic photoreceptor
JPH07120054B2 (en) Electrophotographic photoreceptor
JP6311839B2 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
US6265124B1 (en) Photoconductors and charge generation layers comprising polymeric hindered phenols
JPH09288367A (en) Electrophotographic photoreceptor
JPH10326022A (en) Electrophotographic photoreceptor for negative electrification and image forming method
JP3791227B2 (en) Electrophotographic photoreceptor and method for producing the same
JP2006276886A (en) Electrophotographic photoreceptor
JP3903552B2 (en) Electrophotographic photoreceptor
JP2610501B2 (en) Electrophotographic photoreceptor
JPH0673018B2 (en) Electrophotographic photoreceptor
JP3239244B2 (en) Single-layer electrophotographic photoreceptor
JP2000075509A (en) Electrophotographic photoreceptor for negative electrification
JPH07175233A (en) Single-layer electrophotographic photoreceptor
JP3489187B2 (en) Electrophotographic photoreceptor
JP2005062221A (en) Single layer type positive charge electrophotographic photoreceptor
JP2016053634A (en) Electrophotographic photoreceptor, manufacturing inspection method of the same and image formation device including electrophotographic photoreceptor
JPH05216250A (en) Electrophotographic sensitive body and apparatus
JPH0659467A (en) Single layer positively charged electrophotographic sensitive body
JP2002174911A (en) Electrophotographic photoreceptor
JP3761003B2 (en) Electrophotographic photoreceptor
JPH075717A (en) Electrophotographic photoreceptor