JPH10287674A - Production of epsilon-hexanitrohexaazaisowurtzitane - Google Patents

Production of epsilon-hexanitrohexaazaisowurtzitane

Info

Publication number
JPH10287674A
JPH10287674A JP11175697A JP11175697A JPH10287674A JP H10287674 A JPH10287674 A JP H10287674A JP 11175697 A JP11175697 A JP 11175697A JP 11175697 A JP11175697 A JP 11175697A JP H10287674 A JPH10287674 A JP H10287674A
Authority
JP
Japan
Prior art keywords
solvent
hniw
hexanitrohexaazaisowurtzitane
boiling point
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11175697A
Other languages
Japanese (ja)
Other versions
JP2779614B1 (en
Inventor
Hideshi Kawabe
秀史 川邊
Yasushi Miya
裕史 美矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11175697A priority Critical patent/JP2779614B1/en
Application granted granted Critical
Publication of JP2779614B1 publication Critical patent/JP2779614B1/en
Publication of JPH10287674A publication Critical patent/JPH10287674A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject compound having a high density and a high energy by crystallizing hexanitrohexaazaisowurtzitane by the use of the mixture of a low boiling point good solvent with a low boiling point poor solvent as a solvent. SOLUTION: This method for producing ε-hexanitrohexaazaisowurtzitane (hereinafter referred to as HNIW) comprises dissolving HNIW of the formula: W(NO)6 (W is a hexavalent hexaazaisowurtzitane residue of the formula) in the mixture of a low boiling point good solvent with a low boiling point poor solvent and subsequently evaporating the solvents to deposit the crystals. The HNIW preferably contains one kind of α-HNIW, β-HNIW and γ-HNIW and their mixture as main components. The good solvent includes acetone and methylethylketone, and the poor solvent includes benzene and toluene. The solvent mixture is preferably used in a volume of 5-50 ml per g of the HNIW.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、従来の火薬組成物
の高性能化をはかるために利用されるεーヘキサニトロ
ヘキサアザイソウルチタン結晶を90%以上の純度で含
有するεーヘキサニトロヘキサアザイソウルチタンの製
法に関する。
The present invention relates to an ε-hexanitro containing 90% or more of ε-hexanitrohexaazaisowurtzitane crystal used for improving the performance of a conventional explosive composition. It relates to the production method of hexaazaisoul titanium.

【0002】[0002]

【従来の技術】下記の一般式(1)で表されるヘキサニ
トロヘキサアザイソウルチタン(以下「HNIW」とい
う。)は高密度かつ高エネルギー物質であり、次世代の
高性能火薬材料として有望視されている。 W(NO2 6 (1) [式中、Wは次の式(2)に示す6価のヘキサアザイソ
ウルチタン残基を表す。]
2. Description of the Related Art Hexanitrohexaazaisosoultitanium (hereinafter referred to as "HNIW") represented by the following general formula (1) is a high-density and high-energy substance and is promising as a next-generation high-performance explosive material. Have been watched. W (NO 2 ) 6 (1) [wherein, W represents a hexavalent hexaazaisowurtzitanium residue represented by the following formula (2). ]

【0003】[0003]

【化2】 HNIWには複数の結晶形態があり、少なくともα−H
NIW、βーHNIW、γーHNIW、εーHNIWの
存在が確認されている。
Embedded image HNIW has multiple crystal forms, at least α-H
The existence of NIW, β-HNIW, γ-HNIW, and ε-HNIW has been confirmed.

【0004】その中で、εーHNIWは密度が高く、熱
力学的に安定な状態であることから、火薬材料として最
も注目されている結晶形態である。また、αーHNI
W、βーHNIWまたはγーHNIWは準安定状態の結
晶として知られている。αーHNIW、βーHNIWま
たはγーHNIWとεーHNIWの混合物はキシレン、
または10〜30%アセトフェノンを添加したキシレ
ン、ビス(2ーフルオロー2、2ージニトロエチル)ホ
ルマールなどの溶媒中でεーHNIWに変換するという
ことが報告されている。また、溶液状態のγーHNIW
とεーHNIWの混合物は64℃以下でεーHNIWに
再結晶化されるということが報告されている。
[0004] Among them, ε-HNIW is a crystal form that has received the most attention as an explosive material because it has a high density and is thermodynamically stable. Also, α-HNI
W, β-HNIW or γ-HNIW is known as a metastable crystal. α-HNIW, β-HNIW or a mixture of γ-HNIW and ε-HNIW is xylene,
Alternatively, conversion to ε-HNIW in a solvent such as xylene or bis (2-fluoro-2,2-dinitroethyl) formal to which 10 to 30% acetophenone is added has been reported. Also, γ-HNIW in a solution state
It has been reported that a mixture of ε-HNIW and ε-HNIW is recrystallized to ε-HNIW below 64 ° C.

【0005】また、γーHNIWとεーHNIWの混合
物のεーHNIWへの変換はHNIWに対し高い溶解性
を持つケトン類などの溶媒を添加すると24時間以内に
平衡するという報告がある[[Propellant
s、Explosives、Pyrotechnics
19、19ー25(1994)、Propellant
s、Explosives、Pyrotechnics
19、63ー69(1994)、Propellant
s、Explosives、Pyrotechnics
19、206ー212(1994)]。
There is a report that conversion of a mixture of γ-HNIW and ε-HNIW to ε-HNIW is equilibrated within 24 hours when a solvent such as ketones having high solubility in HNIW is added [[ Propellant
s, Explosives, Pyrotechnics
19, 19-25 (1994), Propellant
s, Explosives, Pyrotechnics
19, 63-69 (1994), Propellant
s, Explosives, Pyrotechnics
19, 206-212 (1994)].

【0006】しかし、これらはいずれも、HNIWと溶
媒との比率などの具体的な条件が記載されていない。ま
た、高い溶解性を持つ溶媒を使用した場合、収率が下が
る問題点がある。また、αーHNIW水和物は64℃以
下でεーHNIWに変換するという報告がある[Pro
pellants、Explosives、Pyrot
echnics19、19ー25(1994)]。ま
た、クロロホルムと酢酸エチルの2溶媒結晶方法により
εーHNIWを得たという報告がある[Int.Ann
u.Conf.ICT(1996)、27th(Ene
rgetic Materials)、27.1ー2
7.10]。
However, none of these documents describes specific conditions such as the ratio of HNIW to a solvent. In addition, when a solvent having high solubility is used, there is a problem that the yield decreases. It has been reported that α-HNIW hydrate converts to ε-HNIW at 64 ° C. or lower [Pro
Perlants, Explosives, Pyrot
technics 19, 19-25 (1994)]. There is also a report that ε-HNIW was obtained by a two-solvent crystallization method of chloroform and ethyl acetate [Int. Ann
u. Conf. ICT (1996), 27th (Ene
rgetic Materials), 27.1-2
7.10].

【0007】また、εーHNIWを得たという報告があ
る。[Int.Annu.Conf.ICT(199
6)、27th(Energetic Materia
ls)、39.1ー39.12、Int.Annu.C
onf.ICT(1996)、27th(Energe
tic Materials)、23.1ー23.1
3、Chin.Sci.Bull.(1996)、41
(7)、574ー576、Proc.Beijing
Int.Symp.Explos.、3rd(199
5)、520ー525、Proc.Beijing I
nt.Symp.Explos.、3rd(199
5)、312ー314)Proc.INT.Pyrot
ech.Semin.(1996),22nd,425
−432]。しかし、これらはいずれも具体的なεーH
NIW変換条件については記載されていない。
There is also a report that ε-HNIW has been obtained. [Int. Annu. Conf. ICT (199
6), 27th (Energy Material)
ls), 39.1-39.12, Int. Annu. C
onf. ICT (1996), 27th (Energy
tic Materials), 23.1-23.1.
3, Chin. Sci. Bull. (1996), 41
(7), 574-576, Proc. Beijing
Int. Symp. Explos. , 3rd (199
5) 520-525, Proc. Beijing I
nt. Symp. Explos. , 3rd (199
5), 312-314) Proc. INT. Pyrot
ech. Semin. (1996), 22nd, 425
-432]. However, these are all specific ε-H
No description is given of NIW conversion conditions.

【0008】[0008]

【発明が解決しようとする課題】HNIWは、例えば、
その前駆体となるヘキサアザイソウルチタン骨格の6個
の窒素原子に、そのうち1つ以上が炭素数1〜10のア
シル基であるヘキサアザイソウルチタン誘導体を、ニト
ロ化剤でニトロ化し製造される。その一例として、WO
96−23792号公開公報に開示された方法が挙げら
れる。しかし、これらの方法ではHNIWは準安定状態
の結晶であるαーHNIW、またはβーHNIWを90
%以上含有する結晶で得られることが多く、εーHNI
Wを得るためには、更にεーHNIWへ変換する工程が
必要である。
The HNIW is, for example,
A hexaazaisowurtzitane derivative, in which at least one of them is an acyl group having 1 to 10 carbon atoms, is nitrated with a nitrating agent at six nitrogen atoms of a hexaazaisowurtzitane skeleton serving as a precursor thereof, and is produced. You. As an example, WO
A method disclosed in JP-A-96-23792 is exemplified. However, in these methods, HNIW converts meta-stable crystal α-HNIW or β-HNIW into 90%.
% Or more, and ε-HNI
In order to obtain W, a step of further converting to ε-HNIW is required.

【0009】一般的に、溶媒を用いて結晶を析出させる
方法としては、溶液を徐徐に冷却することによって結晶
析出を行う徐冷法と、溶媒を蒸発させることによって結
晶析出を行う溶媒蒸発法がある。いずれの場合も、まず
目的物質を溶媒に溶解させる必要があり、目的物質を溶
解できる溶媒を用いる。また、必要に応じて目的物質を
溶解しにくい溶媒と混合して用いる。
Generally, as a method of depositing crystals using a solvent, there are a slow cooling method in which crystals are precipitated by gradually cooling a solution, and a solvent evaporation method in which crystals are deposited by evaporating the solvent. In either case, the target substance must first be dissolved in a solvent, and a solvent that can dissolve the target substance is used. Further, if necessary, it is used by mixing it with a solvent which does not easily dissolve the target substance.

【0010】徐冷法においては冷却後も目的物質を溶解
できる溶媒が残るため、収率良く目的物質の結晶を得る
ことは難しい。また、溶媒蒸発法では、アセトフェノン
などの高沸点の溶媒を用いると、溶媒を蒸発させるため
に高い温度で長時間保たなければならず、時間がかか
り、目的物質が分解する恐れがある。また、溶媒の蒸発
が速い場合には熱力学的準安定状態の結晶が析出するこ
ともある。良溶媒を蒸発させない場合においては、HN
IWが溶媒中に溶解してしたままであるため、収率が低
下する。本発明は、こうした実状の下に、熱力学的安定
な高密度の実質的εーHNIWを収率良く得る方法を提
供することを目的とするものである。ここでいう実質的
εーHNIWとは、90%以上のεーHNIWを含有す
る結晶のことである。
In the slow cooling method, since a solvent capable of dissolving the target substance remains even after cooling, it is difficult to obtain crystals of the target substance with high yield. Further, in the solvent evaporation method, when a solvent having a high boiling point such as acetophenone is used, it must be kept at a high temperature for a long time to evaporate the solvent, which takes time, and the target substance may be decomposed. If the solvent evaporates quickly, crystals in a thermodynamic metastable state may be precipitated. When the good solvent is not evaporated, HN
The yield is reduced because the IW remains dissolved in the solvent. An object of the present invention is to provide a method for obtaining a thermodynamically stable, high-density substantially ε-HNIW in good yield under such circumstances. The term “substantial ε-HNIW” as used herein refers to a crystal containing 90% or more of ε-HNIW.

【0011】[0011]

【課題を解決するための手段】発明者らは、溶媒として
低沸点の良溶媒またはメタノールでHNIWを溶かし、
低沸点の良溶媒においては、貧溶媒を添加して混合溶媒
とした後、溶媒をコントロールされた蒸発速度で留去し
て結晶を析出させることで実質的εーHNIWを得るこ
とに成功し、本発明を完成した。ここで言う低沸点の良
溶媒とは常圧下における沸点が150℃以下で、かつ常
温、常圧下において溶媒100gに対してHNIWを2
0g以上溶かすことができる溶媒のことである。
Means for Solving the Problems The inventors dissolve HNIW with a good solvent having a low boiling point or methanol as a solvent,
In a good solvent having a low boiling point, after adding a poor solvent to form a mixed solvent, the solvent was distilled off at a controlled evaporation rate to precipitate crystals, thereby succeeding in obtaining substantially ε-HNIW. The present invention has been completed. The term "good solvent having a low boiling point" as used herein refers to a solvent having a boiling point of 150 ° C. or less under normal pressure and HNIW of 2 g per 100 g of the solvent at normal temperature and normal pressure.
A solvent capable of dissolving 0 g or more.

【0012】また、ここで言う貧溶媒とは常温、常圧下
において溶媒100gに対してHNIWを1g以上溶か
すことができない溶媒のことである。蒸発速度とは、蒸
発開始の溶液量を100とし、溶媒の蒸発を開始してか
ら1時間ごとの溶媒の減少量を重量パーセントで表した
数値のことである。すなわち、本発明は、HNIWを低
沸点の良溶媒と貧溶媒の混合溶媒、またはメタノール溶
媒に溶解させ、HNIW溶液とし、ついで溶媒を蒸発さ
せて結晶を析出させ、実質的εーHNIWを得る方法を
提供するものである。
The term "poor solvent" as used herein means a solvent which cannot dissolve 1 g or more of HNIW per 100 g of the solvent at normal temperature and normal pressure. The evaporation rate is a numerical value in which the amount of the solvent at the start of evaporation is set to 100, and the amount of decrease in the solvent every hour after the start of the evaporation of the solvent is expressed in percent by weight. That is, the present invention provides a method for dissolving HNIW in a mixed solvent of a good solvent and a poor solvent having a low boiling point, or a methanol solvent to form an HNIW solution, and then evaporating the solvent to precipitate crystals to obtain substantially ε-HNIW. Is provided.

【0013】以下、本発明の実質的εーHNIWを得る
方法について述べる。本発明の出発原料であるHNIW
はどのような方法で製造されたものを用いてもよい。α
−HNIW、β−HNIWまたはγーHNIWの一種お
よびこれらの混合物を主成分とするHNIWを用いるこ
とができる。ここで「主成分」とは、これらのいずれか
の一種以上が60%以上含まれる場合をいう。低沸点の
良溶媒としてはアセトン、メチルエチルケトン、ペンタ
ノン、ヘキサノン、メチルイソブチルケトン等のケトン
類、テトラヒドロフラン、テトラヒドロピランのエーテ
ル類や酢酸エチルなどが使用される。これらの低沸点の
良溶媒を2種以上混合して使用してもかまわない。
Hereinafter, a method for obtaining substantial ε-HNIW of the present invention will be described. HNIW as starting material of the present invention
May be manufactured by any method. α
HNIW containing one of -HNIW, β-HNIW or γ-HNIW and a mixture thereof can be used. Here, the “main component” refers to a case where at least one of them is contained in 60% or more. As a good solvent having a low boiling point, ketones such as acetone, methyl ethyl ketone, pentanone, hexanone and methyl isobutyl ketone, ethers of tetrahydrofuran, tetrahydropyran, and ethyl acetate are used. These low-boiling good solvents may be used as a mixture of two or more.

【0014】貧溶媒としてはベンゼン、トルエン、キシ
レンなどが用いられる。ここで用いられる低沸点の良溶
媒と貧溶媒の溶解パラメータの差は2未満であることが
好ましい。低沸点の良溶媒と貧溶媒の溶解パラメータの
差が大きい場合(例えばアセトンとへプタンの組み合わ
せの場合等)、溶媒蒸発時に溶液が不均一になり、副生
成物としてαーHNIWが得られる場合がある。例え
ば、アセトンとヘプタンの混合溶媒を用いた場合は溶媒
の蒸発が進むと、溶液が不均一になり、αーHNIWが
得られる。溶媒の加え方としては、如何なる加え方でも
良いが、低沸点の良溶媒にHNIWを溶解した後に貧溶
媒を加える方法が好ましい。
As the poor solvent, benzene, toluene, xylene and the like are used. The difference between the solubility parameter of the good solvent and the poor solvent of the low boiling point used here is preferably less than 2. When the difference between the solubility parameters of a good solvent and a poor solvent having a low boiling point is large (for example, in the case of a combination of acetone and heptane), the solution becomes non-uniform upon evaporation of the solvent, and α-HNIW is obtained as a by-product There is. For example, when a mixed solvent of acetone and heptane is used, as the solvent evaporates, the solution becomes non-uniform, and α-HNIW is obtained. As a method of adding the solvent, any method may be used, but a method of adding a poor solvent after dissolving HNIW in a good solvent having a low boiling point is preferable.

【0015】低沸点の良溶媒と貧溶媒の混合溶媒を用い
る場合の溶媒量は、通常、HNIW1gに対して、5〜
50ml、好ましくは10〜40mlの範囲で使用され
る。溶媒量が5ml未満の場合、溶媒蒸発時に溶液が不
均一になり、副生成物としてαーHNIWが得られる場
合がある。また、溶媒量が50mlを越えると析出まで
に長い時間が必要となる。溶媒として低沸点の良溶媒と
貧溶媒の混合溶媒を用いる場合の貧溶媒の容積は良溶媒
の容積を1とした場合の容積比で表現して通常、1〜1
0、好ましくは2〜5の範囲で使用される。1未満の場
合、蒸発速度のコントロールが難しく、10を越えると
結晶の析出量が少なくなる。
When a mixed solvent of a good solvent and a poor solvent having a low boiling point is used, the amount of the solvent is usually 5 to 1 g of HNIW.
It is used in a range of 50 ml, preferably 10 to 40 ml. When the amount of the solvent is less than 5 ml, the solution becomes non-uniform during the evaporation of the solvent, and α-HNIW may be obtained as a by-product. When the amount of the solvent exceeds 50 ml, a long time is required until precipitation. When a mixed solvent of a good solvent and a poor solvent having a low boiling point is used as the solvent, the volume of the poor solvent is usually expressed as a volume ratio when the volume of the good solvent is set to 1 and usually 1 to 1
It is used in the range of 0, preferably 2 to 5. When it is less than 1, it is difficult to control the evaporation rate, and when it is more than 10, the amount of precipitated crystals is small.

【0016】別法として、溶媒として低沸点の良溶媒と
貧溶媒の組み合わせを用いず、メタノールを用いる方法
もある。溶媒としてメタノールを用いる場合の溶媒量
は、通常、HNIWの1gに対して60〜100ml、
好ましくは60〜80mlの範囲で使用される。溶媒量
が60未満の場合、HNIWを溶解させるのが難しく、
溶媒量が100を越える場合は析出までに長い時間が必
要となる。
As another method, there is a method in which methanol is used as a solvent without using a combination of a good solvent having a low boiling point and a poor solvent. When methanol is used as the solvent, the amount of the solvent is usually 60 to 100 ml per 1 g of HNIW,
Preferably, it is used in the range of 60 to 80 ml. When the amount of the solvent is less than 60, it is difficult to dissolve HNIW,
When the amount of the solvent exceeds 100, a long time is required until precipitation.

【0017】低沸点の良溶媒と貧溶媒の混合溶媒の蒸発
速度は、通常0.1〜4.0重量%/時間、好ましくは
0.5〜3.0重量%/時間の範囲でコントロールされ
る。0.1重量%/時間未満の場合は、析出までに長い
時間が必要となり、4.0重量%/時間を越えると、副
生成物としてαーHNIWあるいはβーHNIWが得ら
れる場合がある。メタノールを溶媒とした場合の蒸発速
度は、通常0.1〜10.0重量%/時間、好ましくは
2.0〜7.0重量%/時間の範囲でコントロールされ
る。0.1重量%/時間未満の場合は、析出までに長い
時間が必要となり、10.0重量%/時間を越えると、
副生成物としてαーHNIWあるいはβーHNIWが得
られる場合がある。
The evaporation rate of a mixed solvent of a good solvent and a poor solvent having a low boiling point is controlled in the range of usually 0.1 to 4.0% by weight / hour, preferably 0.5 to 3.0% by weight / hour. You. If the amount is less than 0.1% by weight / hour, a long time is required until precipitation, and if it exceeds 4.0% by weight / hour, α-HNIW or β-HNIW may be obtained as a by-product. The evaporation rate when methanol is used as the solvent is controlled in the range of usually 0.1 to 10.0% by weight / hour, preferably 2.0 to 7.0% by weight / hour. If the amount is less than 0.1% by weight / hour, a long time is required until precipitation, and if it exceeds 10.0% by weight / hour,
Α-HNIW or β-HNIW may be obtained as a by-product.

【0018】溶媒の蒸発速度はどのような方法でコント
ロールしてもよいが、用いる低沸点の良溶媒の種類によ
って、蒸発した溶媒が通る容器上部の表面積を変更させ
るか、または容器上部をフィルター等で覆うことによっ
てコントロールされる。良溶媒と貧溶媒の混合溶媒を用
いる場合は、溶媒の減少量が20〜30%に達した時点
で濾過を行い、メタノールを用いる場合は溶媒の減少量
が80〜90%に達した時点で濾過を行う。いずれの溶
媒を用いる場合も、溶媒の蒸発は、溶液中のHNIWの
濃度を均一に保つため、攪拌状態で行うことが好まし
い。通常は50〜500rpm、好ましくは100〜3
00rpmの範囲で行われる。いずれの溶媒を用いる場
合においても、溶媒蒸発時の温度は、通常0〜50℃、
好ましくは10〜40℃で行われる。
Although the evaporation rate of the solvent may be controlled by any method, the surface area of the upper portion of the container through which the evaporated solvent passes may be changed or the upper portion of the container may be filtered depending on the type of the good solvent having a low boiling point. Controlled by covering with. When a mixed solvent of a good solvent and a poor solvent is used, filtration is performed when the amount of solvent reduction reaches 20 to 30%. When methanol is used, filtration is performed when the amount of solvent reduction reaches 80 to 90%. Perform filtration. Regardless of which solvent is used, evaporation of the solvent is preferably performed with stirring to keep the concentration of HNIW in the solution uniform. Usually 50-500 rpm, preferably 100-3
It is performed in the range of 00 rpm. When using any solvent, the temperature during evaporation of the solvent is usually 0 to 50 ° C,
Preferably, it is carried out at 10 to 40 ° C.

【0019】[0019]

【実施例】以下に、実施例を用いて本発明を更に詳細に
説明するが、本発明はこれらの実施例により何ら限定さ
れるものではない。なお、以下、ヘキサニトロヘキサア
ザイソウルチタンを「HNIW」と示す。 (実施例1) [α−HNIW → 実質的ε−HNIW;アセトンと
キシレンの混合溶媒を用いる例]200mlビーカー
に、α−HNIW2.50g、アセトン10mlを添加
し、完全に溶解させた後、キシレン50mlを添加す
る。ビーカー上部の表面積が1/25になるようにアル
ミホイルで覆い、蒸発速度1.0〜1.5重量%/時間
の範囲になるようにコントロールしながら、スリーワン
モーターを用いて200rpmで攪拌する。20℃で2
0時間経過後、析出した結晶をろ過、乾燥し、実質的ε
ーHNIW2.31g(収率92.4%)を得た。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Hereinafter, hexanitrohexaazaisosoultitanium is referred to as “HNIW”. (Example 1) [α-HNIW → substantially ε-HNIW; example of using mixed solvent of acetone and xylene] 2.50 g of α-HNIW and 10 ml of acetone were added to a 200 ml beaker and completely dissolved, and then xylene was dissolved. Add 50 ml. The top of the beaker is covered with aluminum foil so that the surface area becomes 1/25, and stirring is performed at 200 rpm using a three-one motor while controlling the evaporation rate to be in the range of 1.0 to 1.5% by weight / hour. 2 at 20 ° C
After 0 hour, the precipitated crystals are filtered and dried, and substantially ε
2.31 g (92.4% yield) of -HNIW was obtained.

【0020】析出した結晶の構造解析は以下のようにし
て行った。赤外吸収(以下「IR」と表現する)スペク
トルをKBr法で、分解能2cm-1で測定した結果、α
−HNIWの特性吸収である1166cm-1の吸収、9
03cm-1の吸収が消去し、ε−HNIWの特性吸収で
ある1138cm-1、1183cm-1、1193cm-1
が確認された。また、739cm-1、746cm-1、7
52cm-1、759cm-1、をピークトップとする4本
の吸収、821cm-1、833cm-1をピークトップと
する2本の吸収も確認された。これらの吸収特性は、文
献[Propellants,Explosives,
Pyrotechnics 19,63−69(199
4)]に掲載されたε−HNIWのIRスペクトルの特
性吸収と一致する。以上のことより、実質的ε−HNI
Wに変換されていることを確認した。
The structural analysis of the precipitated crystals was performed as follows. As a result of measuring an infrared absorption (hereinafter, referred to as “IR”) spectrum by a KBr method at a resolution of 2 cm −1 , α
Absorption of 1166 cm -1 which is characteristic absorption of HNIW, 9
Absorption of 03cm -1 is erased, 1138cm -1 which is the characteristic absorption of an ε-HNIW, 1183cm -1, 1193cm -1
Was confirmed. 739 cm -1 , 746 cm -1 , 7
52cm -1, 759cm -1, 4 pieces of absorption having a peak top of, 821cm -1, 2 pieces of absorption having a peak top of 833cm -1 was also confirmed. These absorption properties are described in the literature [Propellants, Explosives,
Pyrotechnics 19, 63-69 (199
4)], which is consistent with the characteristic absorption of the IR spectrum of ε-HNIW. From the above, substantially ε-HNI
It was confirmed that it was converted to W.

【0021】(実施例2) [β−HNIW → 実質的ε−HNIW;アセトンと
キシレンの混合溶媒を用いる例]200mlビーカー
に、β−HNIW2.50g、アセトン10mlを添加
し完全に溶解させた後、キシレン50mlを添加する。
ビーカー上部の表面積が1/25になるようにアルミホ
イルで覆い、蒸発速度1.0〜1.5重量%/時間以内
になるようにコントロールしながら、スリーワンモータ
ーを用いて200rpmで攪拌する。20℃で20時間
経過後、析出した結晶をろ過、乾燥し、実質的εーHN
IW2.35g(収率94.0%)を得た。析出した結
晶の構造解析は以下のようにして行った。
(Example 2) [β-HNIW → substantially ε-HNIW; Example using mixed solvent of acetone and xylene] In a 200 ml beaker, 2.50 g of β-HNIW and 10 ml of acetone were added and completely dissolved. , 50 ml of xylene are added.
The top of the beaker is covered with aluminum foil so that the surface area becomes 1/25, and stirring is performed at 200 rpm using a three-one motor while controlling the evaporation rate to be within 1.0 to 1.5% by weight / hour. After elapse of 20 hours at 20 ° C., the precipitated crystals were filtered and dried, and substantially ε-HN
2.35 g (94.0% yield) of IW was obtained. The structural analysis of the precipitated crystal was performed as follows.

【0022】IRスペクトルをKBr法で、分解能2c
-1で測定した結果、β−HNIWの特性吸収である1
154m-1の吸収、991cm-1の吸収が消去し、ε−
HNIWの特性吸収である1138cm-1、1193c
-1、吸収が確認された。また、739cm-1、746
cm-1、752cm-1、759cm-1、をピークトップ
とする4本の吸収、821cm-1、833cm-1をピー
クトップとする2本の吸収も確認された。これらの吸収
特性は、文献[Propellants,Explos
ives,Pyrotechnics 19,63−6
9(1994)]に掲載されたε−HNIWのIRスペ
クトルの特性吸収と一致する。以上のことより、実質的
ε−HNIWに変換されていることを確認した。
The IR spectrum is obtained by the KBr method at a resolution of 2c.
As a result of measurement at m −1 , the characteristic absorption of β-HNIW, 1
The absorption at 154 m -1 and the absorption at 991 cm -1 disappear, and ε-
1138cm -1 , 1193c which is characteristic absorption of HNIW
m -1 , absorption was confirmed. Also, 739 cm -1 , 746
cm -1, 752cm -1, 759cm -1 , 4 pieces of absorption having a peak top of, 821cm -1, 2 pieces of absorption having a peak top of 833cm -1 was also confirmed. These absorption properties are described in the literature [Propellants, Explos].
ives, Pyrotechnics 19, 63-6
9 (1994)], which is consistent with the characteristic absorption of the IR spectrum of ε-HNIW. From the above, it was confirmed that it was substantially converted to ε-HNIW.

【0023】(比較例1) [α−HNIW → 実質的ε−HNIW;アセトンと
キシレンの混合溶媒を用いる例]200mlビーカー
に、α−HNIW2.50g、アセトン10mlを添加
し完全に溶解させた後、トルエン50mlを添加する。
蒸発速度5〜7重量%/時間で溶媒を留去しながら、ス
リーワンモーターを用いて200rpmで攪拌する。2
0℃で5時間経過した後、析出した結晶をろ過、乾燥し
たが、実質的ε−HNIWには変換せず、α−HNIW
2.48g(収率99.2%)を回収した。
(Comparative Example 1) [α-HNIW → substantially ε-HNIW; example using mixed solvent of acetone and xylene] In a 200 ml beaker, 2.50 g of α-HNIW and 10 ml of acetone were added and completely dissolved. , 50 ml of toluene are added.
The mixture is stirred at 200 rpm using a three-one motor while distilling off the solvent at an evaporation rate of 5 to 7% by weight / hour. 2
After 5 hours at 0 ° C., the precipitated crystals were filtered and dried, but were not substantially converted to ε-HNIW.
2.48 g (99.2% yield) were recovered.

【0024】(実施例3) [α−HNIW → 実質的ε−HNIW;酢酸エチル
とトルエンの混合溶媒を用いる例]200mlビーカー
に、α−HNIW2.50g、酢酸エチル10mlを添
加し、完全に溶解させた後、トルエン50mlを添加す
る。ビーカー上部の表面積が1/25になるようにアル
ミホイルで蓋をし、蒸発速度1.0〜2.0重量%/時
間になるようにコントロールしながら、スリーワンモー
ターを用いて200rpmで攪拌する。20℃で20時
間経過後、析出した結晶をろ過、乾燥し、実質的ε体に
変換されたε−HNIW2.41g(収率96.4%)
を得た。析出した結晶は、実施例1と同様にして実質ε
−HNIWであることを確認した。
(Example 3) [α-HNIW → substantially ε-HNIW; Example using mixed solvent of ethyl acetate and toluene] 2.50 g of α-HNIW and 10 ml of ethyl acetate were added to a 200 ml beaker and completely dissolved. After that, 50 ml of toluene are added. The top of the beaker is covered with aluminum foil so that the surface area becomes 1/25, and stirring is performed at 200 rpm using a three-one motor while controlling the evaporation rate to be 1.0 to 2.0% by weight / hour. After 20 hours at 20 ° C., the precipitated crystals were filtered and dried, and 2.41 g of ε-HNIW substantially converted to ε-isomer (96.4% yield).
I got The precipitated crystal was substantially ε as in Example 1.
-HNIW was confirmed.

【0025】(比較例2) [α−HNIW → 実質的ε−HNIW;酢酸エチル
とトルエンの混合溶媒を用いる例]200mlビーカー
に、α−HNIW2.50g、酢酸エチル10mlを添
加し完全に溶解させた後、トルエン50mlを添加す
る。蒸発速度5.0〜7.0重量%/時間で溶媒を蒸発
しながら、スリーワンモーターを用いて200rpmで
攪拌する。20℃で5時間経過後、析出した結晶をろ
過、乾燥したが、実質的ε−HNIWには変換せず、α
−HNIW2.49g(収率99.6%)を回収した。
(Comparative Example 2) [α-HNIW → substantially ε-HNIW; Example using mixed solvent of ethyl acetate and toluene] In a 200 ml beaker, 2.50 g of α-HNIW and 10 ml of ethyl acetate were added and completely dissolved. After that, 50 ml of toluene are added. While the solvent is being evaporated at an evaporation rate of 5.0 to 7.0% by weight / hour, the mixture is stirred at 200 rpm using a three-one motor. After 5 hours at 20 ° C., the precipitated crystals were filtered and dried, but were not substantially converted to ε-HNIW.
2.49 g of HNIW (99.6% yield) was recovered.

【0026】(実施例4) [α−HNIW → 実質的ε−HNIW;テトラヒド
ロフランとトルエンの混合溶媒を用いる例]200ml
ビーカーに、α−HNIW2.50g、テトラヒドロフ
ラン10mlを添加し完全に溶解させた後、トルエン5
0mlを添加する。蒸発速度1.0〜2.0重量%/時
間で溶媒を留去し、スリーワンモーターにより200r
pmで攪拌する。20℃で20時間経過後、析出した結
晶をろ過、乾燥し、実質的εーHNIW2.31g(収
率92.4%)を得た。析出した結晶は、実施例1と同
様にして実質的ε−HNIWであることを確認した。
Example 4 [α-HNIW → substantially ε-HNIW; Example using a mixed solvent of tetrahydrofuran and toluene] 200 ml
2.50 g of α-HNIW and 10 ml of tetrahydrofuran were added to a beaker and completely dissolved.
Add 0 ml. The solvent was distilled off at an evaporation rate of 1.0 to 2.0% by weight / hour, and 200 r by three one motor.
Stir at pm. After 20 hours at 20 ° C., the precipitated crystals were filtered and dried to obtain 2.31 g (yield 92.4%) of substantially ε-HNIW. The precipitated crystals were confirmed to be substantially ε-HNIW in the same manner as in Example 1.

【0027】(比較例3) [α−HNIW → 実質的ε−HNIW;テトラヒド
ロフランとトルエンの混合溶媒を用いる例]200ml
ビーカーに、α−HNIW2.50g、テトラヒドロフ
ラン10mlを添加し完全に溶解させた後、トルエン5
0mlを添加する。液温を40℃に昇温し、蒸発速度
4.5〜5.0重量%/時間で溶媒を蒸発しながら、ス
リーワンモーターを用いて200rpmで攪拌する。5
時間経過後、析出した結晶をろ過、乾燥したが、実質的
εーHNIWには変換せず、α−HNIW2.48g
(収率99.2%)を回収した。
(Comparative Example 3) [α-HNIW → substantially ε-HNIW; Example using a mixed solvent of tetrahydrofuran and toluene] 200 ml
2.50 g of α-HNIW and 10 ml of tetrahydrofuran were added to a beaker and completely dissolved.
Add 0 ml. The liquid temperature is raised to 40 ° C., and the mixture is stirred at 200 rpm using a three-one motor while evaporating the solvent at an evaporation rate of 4.5 to 5.0% by weight / hour. 5
After the elapse of time, the precipitated crystals were filtered and dried, but were not substantially converted to ε-HNIW, and 2.48 g of α-HNIW.
(99.2% yield).

【0028】(実施例5) [α−HNIW → 実質的ε−HNIW;メタノール
を溶媒として用いる例]200mlビーカーに、α−H
NIW1.0g、メタノール60mlを添加し完全に溶
解させる。蒸発速度5.0〜6.0重量%/時間で溶媒
を留去しながら、スリーワンモーターにより200rp
mで攪拌する。20℃で20時間経過後、析出した結晶
をろ過、乾燥し、実質的εーHNIW0.95g(収率
95%)を得た。析出した結晶は、実施例1と同様にし
て実質的ε−HNIWであることを確認した。
(Example 5) [α-HNIW → substantially ε-HNIW; an example using methanol as a solvent]
Add 1.0 g of NIW and 60 ml of methanol to completely dissolve. While the solvent is being distilled off at an evaporation rate of 5.0 to 6.0% by weight / hour, 200 rpm by a three-one motor.
Stir at m. After 20 hours at 20 ° C., the precipitated crystals were filtered and dried to obtain 0.95 g (yield: 95%) of substantially ε-HNIW. The precipitated crystals were confirmed to be substantially ε-HNIW in the same manner as in Example 1.

【0029】(実施例6) [α−HNIW → 実質的ε−HNIW;メチルエチ
ルケトンとトルエンの混合溶媒を用いる例]200ml
ビーカーに、α−HNIW2.50g、メチルエチルケ
トン10mlを添加し完全に溶解させた後、トルエン5
0mlを添加する。蒸発速度1.0〜2.0重量%/時
間で溶媒を留去し、スリーワンモーターにより200r
pmで攪拌する。室温で20時間経過後、析出した結晶
をろ過、乾燥し、実質的εーHNIW2.30g(収率
92.0%)を得た。析出した結晶は、実施例1と同様
にして実質的ε−HNIWであることを確認した。
(Example 6) [α-HNIW → substantially ε-HNIW; Example using a mixed solvent of methyl ethyl ketone and toluene] 200 ml
2.50 g of α-HNIW and 10 ml of methyl ethyl ketone were added to a beaker and completely dissolved.
Add 0 ml. The solvent was distilled off at an evaporation rate of 1.0 to 2.0% by weight / hour, and 200 r by three one motor.
Stir at pm. After 20 hours at room temperature, the precipitated crystals were filtered and dried to obtain 2.30 g (yield: 92.0%) of substantially ε-HNIW. The precipitated crystals were confirmed to be substantially ε-HNIW in the same manner as in Example 1.

【0030】(比較例4) [α−HNIW → 実質的ε−HNIW;アセトンと
ヘプタンの混合溶媒を用いる例]200mlビーカー
に、α−HNIW2.50g、アセトン20mlを添加
し完全に溶解させた後、ヘプタン50mlを添加した。
蒸発速度0.5〜1.0重量%/時間で溶媒を蒸発しな
がら、スリーワンモーターを用いて200rpmで攪拌
する。20℃で20時間経過後、析出した結晶をろ過、
乾燥したが、実質的ε−HNIWには変換せず、α−H
NIW0.32g(収率12.8%)を回収した。
(Comparative Example 4) [α-HNIW → substantially ε-HNIW; Example using mixed solvent of acetone and heptane] 2.50 g of α-HNIW and 20 ml of acetone were added to a 200 ml beaker and completely dissolved. , 50 ml of heptane were added.
While the solvent is evaporated at an evaporation rate of 0.5 to 1.0% by weight / hour, the mixture is stirred at 200 rpm using a three-one motor. After 20 hours at 20 ° C., the precipitated crystals were filtered,
Dried but not substantially converted to ε-HNIW, α-HNIW
0.32 g (12.8% yield) of NIW was recovered.

【0031】(比較例5) [α−HNIW → 実質的ε−HNIW;アセトフェ
ノンとキシレンの混合溶媒を用いる例]200mlビー
カーに、α−HNIW2.50gに、キシレン50ml
を添加し、更にアセトフェノン5mlを添加する。20
℃で24時間経過後、析出した結晶をろ過、乾燥し、実
質的に変換したε−HNIW1.98g(収率79.2
%)を得た。析出した結晶は、実施例1と同様にして実
質的ε−HNIWであることを確認した。
(Comparative Example 5) [α-HNIW → substantially ε-HNIW; Example using mixed solvent of acetophenone and xylene] In a 200 ml beaker, 2.50 g of α-HNIW and 50 ml of xylene
And then 5 ml of acetophenone are added. 20
After 24 hours at ℃, the precipitated crystals were filtered, dried and substantially converted 1.98 g of converted ε-HNIW (yield 79.2).
%). The precipitated crystals were confirmed to be substantially ε-HNIW in the same manner as in Example 1.

【0032】[0032]

【発明の効果】本発明により、高密度で高エネルギーな
εーヘキサニトロヘキサアザイソウルチタン結晶を90
%以上の純度で収率よく得られた。
According to the present invention, a high-density and high-energy ε-hexanitrohexaazaisowurtzitane crystal is
% And a good yield was obtained with a purity of not less than%.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 下記の一般式(1)で表されるヘキサニ
トロヘキサアザイソウルチタンを溶媒に溶解させてヘキ
サニトロヘキサアザイソウルチタン溶液とし、ついで溶
媒を蒸発させて結晶を析出させることによりεーヘキサ
ニトロヘキサアザイソウルチタンを製造する方法であっ
て、前記溶媒として低沸点の良溶媒と貧溶媒の混合溶媒
を用いることを特徴とするεーヘキサニトロヘキサアザ
イソウルチタンの製法。 W(NO2 6 (1) [式中、Wは次の式(2)に示す6価のヘキサアザイソ
ウルチタン残基を表す。] 【化1】
1. A method of dissolving hexanitrohexaazaisowurtzitanium represented by the following general formula (1) in a solvent to form a hexanitrohexaazaisowurtzitanium solution, and then evaporating the solvent to precipitate crystals. By using a mixed solvent of a good solvent and a poor solvent having a low boiling point as the solvent, the method for producing ε-hexanitrohexaazaisowurtzitane . W (NO 2 ) 6 (1) [wherein, W represents a hexavalent hexaazaisowurtzitanium residue represented by the following formula (2). ]
【請求項2】 ヘキサニトロヘキサアザイソウルチタン
を溶媒に溶解させてヘキサニトロヘキサアザイソウルチ
タン溶液とし、ついで溶媒を蒸発させて結晶を析出させ
ることによりεーヘキサニトロヘキサアザイソウルチタ
ンを製造する方法であって、前記溶媒としてメタノール
を用いることを特徴とするεーヘキサニトロヘキサアザ
イソウルチタンの製法。
2. A solution of hexanitrohexaazaisowurtzitanium in a solvent to form a hexanitrohexaazaisowurtzitanium solution, and then evaporating the solvent to precipitate crystals, thereby obtaining ε-hexanitrohexaazaisowurtzitanium. A method for producing ε-hexanitrohexaazaisowurtzitane, wherein methanol is used as the solvent.
【請求項3】 溶媒に溶解させるヘキサニトロヘキサア
ザイソウルチタンがαーヘキサニトロヘキサアザイソウ
ルチタン、またはβーヘキサニトロヘキサアジソウルチ
タン、またはγーヘキサニトロヘキサアザイソウルチタ
ンを主成分とするヘキサニトロヘキサアザイソウルチタ
ンであることを特徴とする請求項1又は2記載のεーヘ
キサニトロヘキサアザイソウルチタンの製法。
3. The method according to claim 1, wherein the hexanitrohexaazaisosoultitanium to be dissolved in the solvent is mainly composed of α-hexanitrohexaazaisosoultitanium, β-hexanitrohexaazisoulitoltitanium, or γ-hexanitrohexaazaisosoultitanium. The method for producing ε-hexanitrohexaazaisowurtzitane according to claim 1 or 2, wherein
【請求項4】 低沸点の良溶媒と貧溶媒の容積比が1:
1から1:10の範囲であることを特徴とする請求項1
又は3記載のεーヘキサニトロヘキサアザイソウルチタ
ンの製法。
4. The volume ratio of a good solvent and a poor solvent having a low boiling point is 1:
2. The method according to claim 1, wherein the range is from 1 to 1:10.
Or a method for producing ε-hexanitrohexaazaisowurtzitane according to 3 above.
【請求項5】 低沸点の良溶媒がアセトン、メチルエチ
ルケトン、テトラヒドロフランのいずれか一種以上であ
ることを特徴とする請求項4記載のεーヘキサニトロヘ
キサアザイソウルチタンの製法。
5. The method according to claim 4, wherein the good solvent having a low boiling point is at least one of acetone, methyl ethyl ketone and tetrahydrofuran.
【請求項6】 貧溶媒がトルエンおよび/またはキシレ
ンであることを特徴とする請求項4又は5記載のεーヘ
キサニトロヘキサアザイソウルチタンの製法。
6. The method for producing ε-hexanitrohexaazaisowurtzitanium according to claim 4, wherein the poor solvent is toluene and / or xylene.
【請求項7】 貧溶媒がトルエンであることを特徴とす
る請求項4又は5記載のεーヘキサニトロヘキサアザイ
ソウルチタンの製法。
7. The process for producing ε-hexanitrohexaazaisowurtzitane according to claim 4, wherein the poor solvent is toluene.
【請求項8】 溶媒を蒸発速度0.1〜4.0重量%/
時間の範囲で蒸発させることを特徴とする請求項1又は
2〜7記載のεーヘキサニトロヘキサアザイソウルチタ
ンの製法。
8. Evaporation rate of the solvent is 0.1 to 4.0% by weight /
8. The method for producing .epsilon.-hexanitrohexaazaisowurtzitane according to claim 1, wherein the evaporation is performed within a time range.
【請求項9】 溶媒を蒸発速度0.1〜10.0重量%
/時間の範囲で蒸発させることを特徴とする請求項2記
載のεーヘキサニトロヘキサアザイソウルチタンの製
法。
9. The solvent is evaporated at a rate of 0.1 to 10.0% by weight.
3. The method for producing .epsilon.-hexanitrohexaazaisowurtzitane according to claim 2, wherein the evaporation is performed within a range of / hour.
JP11175697A 1997-04-15 1997-04-15 Production method of ε-hexanitrohexaazaisosoul titanium Expired - Fee Related JP2779614B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11175697A JP2779614B1 (en) 1997-04-15 1997-04-15 Production method of ε-hexanitrohexaazaisosoul titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11175697A JP2779614B1 (en) 1997-04-15 1997-04-15 Production method of ε-hexanitrohexaazaisosoul titanium

Publications (2)

Publication Number Publication Date
JP2779614B1 JP2779614B1 (en) 1998-07-23
JPH10287674A true JPH10287674A (en) 1998-10-27

Family

ID=14569400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11175697A Expired - Fee Related JP2779614B1 (en) 1997-04-15 1997-04-15 Production method of ε-hexanitrohexaazaisosoul titanium

Country Status (1)

Country Link
JP (1) JP2779614B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399200B1 (en) * 2001-07-05 2003-09-26 국방과학연구소 Purification of high purity hniw by recrystallization
WO2007116728A1 (en) * 2006-03-28 2007-10-18 Kaneka Corporation Process for production of intermediate for meropenem
JP2013505894A (en) * 2009-09-29 2013-02-21 エスエムウー Hexanitrohexazaisoleum titanium crystal suspension, method for producing said suspension, and method for producing pyrotechnic objects
JP2014514237A (en) * 2011-04-08 2014-06-19 エラクレス Method for obtaining an explosive of hexanitrohexaazai Seoul titanium crystal having a rounded form, explosive and corresponding energy material
WO2022215519A1 (en) * 2021-04-07 2022-10-13 三菱瓦斯化学株式会社 Method for producing solid electrolyte powder, and method for producing all solid state battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399200B1 (en) * 2001-07-05 2003-09-26 국방과학연구소 Purification of high purity hniw by recrystallization
WO2007116728A1 (en) * 2006-03-28 2007-10-18 Kaneka Corporation Process for production of intermediate for meropenem
JP2013505894A (en) * 2009-09-29 2013-02-21 エスエムウー Hexanitrohexazaisoleum titanium crystal suspension, method for producing said suspension, and method for producing pyrotechnic objects
JP2014514237A (en) * 2011-04-08 2014-06-19 エラクレス Method for obtaining an explosive of hexanitrohexaazai Seoul titanium crystal having a rounded form, explosive and corresponding energy material
WO2022215519A1 (en) * 2021-04-07 2022-10-13 三菱瓦斯化学株式会社 Method for producing solid electrolyte powder, and method for producing all solid state battery

Also Published As

Publication number Publication date
JP2779614B1 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
EP1192115B1 (en) Dinitramide based liquid mono-propellants
Zhu et al. Kinetics of thermal decomposition of ε-hexanitrohexaazaisowurtzitane by TG-DSC-MS-FTIR
Naud et al. Synthesis and Explosive Properties of 5, 5′-Dinitro-3, 3′-azo-1 H-1, 2, 4-triazole (DNAT)
CN111943786B (en) Method for preparing spherical compound with explosive/aluminum powder core-shell structure based on pickering emulsion method
CN106831278B (en) A kind of Subjective and Objective explosive and preparation method thereof with high crystalline density
JP2779614B1 (en) Production method of ε-hexanitrohexaazaisosoul titanium
EP0810224A1 (en) Method of producing amorphous paroxetine hydrochloride
Chamberlin et al. Stereoselective acyclic enolate formation via conjugate reduction: correlation with enone conformational preferences
HU229087B1 (en) Process for the crystallization of a reverse transcriptase inhibitor using an anti-solvent
JP2893524B2 (en) Production of ε-hexanitrohexaazaisowurtzitane using seed crystals
CN1261365A (en) Crystalline macrolides and process for their preparation
CN106810409B (en) Embedded Subjective and Objective explosive crystal based on gas displacement technology and preparation method thereof
Patil et al. Co-agglomerated crystals of 2, 2′, 4, 4′, 6, 6′-hexanitro-stilbene/-azobenzene with attractive nitramines
Guan et al. Novel aluminum-based fuel: Facile preparation to improve thermal reactions
Zhang et al. Analysis of the thermal behaviour of CL-20, potassium perchlorate, lithium perchlorate and their Admixtures by DSC and TG
JP4467240B2 (en) Crystallization of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.05,903,11] -dodecane
WO2014084344A1 (en) Liquid propellant
Zhang et al. Investigation on the dissolution behavior of 2HNIW· HMX co-crystal prepared by a solvent/non-solvent method in N, N-dimethylformamide at T=(298.15–318.15) K
CN116283452A (en) Method for preparing explosive/HNS core-shell structure spherical compound based on pickering emulsion method
Albinati et al. Synthesis of both enantiomers of optically pure saturated and α, β-unsaturated γ-substituted γ-lactones from chiral sulphoxides. X-Ray molecular structure of (3 R, 4 S)-4-methyl-4-t-butyl-3-(p-tolylthio) butanolide and of (3 R, 4 R)-4-(cyclohex-1-enyl)-4-methyl-3-(p-tolylthio) butanolide
CN109503494B (en) Crystal form of 1,1 '-diamino-4, 4', 5,5 '-tetranitro-2, 2' -biimidazole and preparation method thereof
EP0177248B1 (en) Process for preparing diazomethane derivative
JP2021059529A (en) Hexadecyl treprostinil crystals and methods for preparation thereof
US4425274A (en) Process for the production of ursodesoxycholic acid
JPH02258733A (en) Reduction dechlorination of 1,1,2-tetrafluoro-2- chloroethane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080515

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees