JPH10281846A - Polyphase flowmeter by pattern recognition method utilizing coriolis flowmeter - Google Patents

Polyphase flowmeter by pattern recognition method utilizing coriolis flowmeter

Info

Publication number
JPH10281846A
JPH10281846A JP9100897A JP9100897A JPH10281846A JP H10281846 A JPH10281846 A JP H10281846A JP 9100897 A JP9100897 A JP 9100897A JP 9100897 A JP9100897 A JP 9100897A JP H10281846 A JPH10281846 A JP H10281846A
Authority
JP
Japan
Prior art keywords
flow
gas
liquid
phase
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9100897A
Other languages
Japanese (ja)
Inventor
Yutaka Ogawa
胖 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP9100897A priority Critical patent/JPH10281846A/en
Publication of JPH10281846A publication Critical patent/JPH10281846A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the flow rate of a gas and a liquid based on a statistical method by using a Coriolis flowmeter and utilizing a mass flow rate and a density signal that fluctuate according to a void rate. SOLUTION: A mixed phase flow of a gas and a liquid is fed to a Coriolis flowmeter 1, the fluctuation waveform of a mass flow rate Qm and a density ρthat fluctuate according to a void rate is inputted to a statistical feature measurement part 6, thus obtaining a statistical feature grid cell as the logic sum of a statistical vector diagram as a statistical feature. On the other hand, sample patterns with a known mass flow rate Qm and a density ρ are compared, a position M of the gas flow rate (abscissa) and the fluid flow rate (ordinate) of the statistical feature grid cell is identified by a pattern recognition part 7, and the gas flow rate and the liquid flow rate are obtained according to the two parameters of the mass flow Qm and the density ρ.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コリオリ流量計を
利用したパターン認識法による多相流量計に関し、より
詳細には、コリオリ流量計に気液混相流を流して得られ
るコリオリの力に比例した流量位相差信号等の各種パラ
メータの統計的特徴を求めて、予め求められた前記パラ
メータのサンプルパターンと比較し、該サンプルパター
ンの統計的グリッドセル上の位置を同定して気相流束と
液体流束とを求める多相流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-phase flow meter by a pattern recognition method using a Coriolis flow meter, and more particularly, to a multi-phase flow meter proportional to a Coriolis force obtained by flowing a gas-liquid multiphase flow through a Coriolis flow meter. Calculate the statistical characteristics of various parameters such as the flow rate phase difference signal, compare with the previously determined sample pattern of the parameter, identify the position of the sample pattern on the statistical grid cell, and with the gas phase flux It relates to a multi-phase flow meter for determining the liquid flux.

【0002】[0002]

【従来の技術】流量計測において、測定流体は、目的に
応じ温度,圧力,密度,粘度の異なる多様な流体が計測
対象となる。測定流体が単相流体である場合は、環境条
件や物性値を補正して基準状態における体積流量を求め
ることは比較的簡単に行なわれているが、測定流体が、
例えば、気液混相流である場合は、各々の相毎の流量を
求めるために気相と液相に分離した後に各相毎の流量を
従来方式の流量計測手段により求めることが行われてい
る。しかし、この方式では、相分離機構が大型となり高
価で設置スペースが広くなり、しかも、高粘度の液相を
含む気液混相流からの気相分離を完全に行うことは不可
能に近く高精度の相流量を求めることは不可能であっ
た。
2. Description of the Related Art In a flow rate measurement, various fluids having different temperatures, pressures, densities and viscosities are measured according to purposes. When the measurement fluid is a single-phase fluid, it is relatively easy to determine the volume flow rate in the reference state by correcting environmental conditions and physical property values.
For example, in the case of a gas-liquid multiphase flow, the flow rate of each phase is determined by a conventional flow rate measuring means after separating into a gas phase and a liquid phase in order to determine the flow rate of each phase. . However, in this method, the phase separation mechanism is large, expensive and requires a large installation space, and it is almost impossible to completely separate the gas phase from a gas-liquid mixed phase flow containing a high-viscosity liquid phase. It was not possible to determine the phase flow.

【0003】このため、Archer等は、「水平二相流にお
ける流量計測に関するソフトウエアー技術」(SPE P
roduction Engneering,August 1991)において、水平な
気液混相流路に予め流量計測された気体と液体と流入
し、気液混相流路に複数の絶対圧力計と差圧計および一
台の静電容量式ボイド率計とコンダクタレス・マイクロ
ウエーブを取り付け、該気液混相流路を流れる気液混相
流の圧力波形およびボイド率波形から、音声認識的手法
を用いて確率的特徴を抽出分類し、気液混相流の基準流
量様式を識別して気体流量と液体流量とを求める方法を
用い、前記流量計測された基準となる気体流量,液体流
量に対し5〜10%の誤差で計測できることが報告され
ている。
[0003] For this reason, Archer et al., "Software technology for flow measurement in horizontal two-phase flow" (SPEP
roduction Engneering, August 1991), a gas and a liquid whose flow rate was measured beforehand flow into a horizontal gas-liquid multi-phase flow path, and a plurality of absolute pressure gauges, differential pressure gauges and one capacitance type flow into the gas-liquid multi-phase flow path. A void rate meter and a conductorless microwave were attached, and stochastic features were extracted and classified using the speech recognition method from the pressure waveform and void rate waveform of the gas-liquid multiphase flow flowing through the gas-liquid multiphase flow path. It has been reported that the method can determine the gas flow rate and the liquid flow rate by identifying the reference flow rate form of the multiphase flow and determine the gas flow rate and the liquid flow rate with an error of 5 to 10% with respect to the reference gas flow rate and the liquid flow rate measured as the flow rate. I have.

【0004】しかし、Archer等の流量計測方法は、水平
な気液混相流路を設けて均一な混相流とすることが条件
であり、このため、長大な水平流路を必要とするので、
本出願人らは、先に気液混相流を旋回装置に導入し均質
な気液混相流としてベンチュリに流出し、該ベンチュリ
の喉部と拡大テーパ部との差圧信号を求めて差圧信号の
統計的特徴を計測し、予め校正してあるサンプルパター
ンと比較してパターン認識による気体および液体の流量
を計測する装置を提案した。
However, the flow measurement method of Archer et al. Requires that a horizontal gas-liquid mixed-phase flow path be provided to achieve a uniform multi-phase flow. Therefore, a long horizontal flow path is required.
Applicants previously introduced the gas-liquid multiphase flow into the swirl device, flowed out to the venturi as a homogeneous gas-liquid multiphase flow, obtained the differential pressure signal between the throat of the venturi and the enlarged taper part, and obtained the differential pressure signal. We have proposed an apparatus that measures the statistical characteristics of a sample, compares it with a sample pattern that has been calibrated in advance, and measures the flow rates of gas and liquid by pattern recognition.

【0005】また、気液混相流の気体と液体の流量計測
方法として、気液混相流路にベンチュリと容積流量計と
を直列接続し、容積流量計で求めた気体流量と液体流量
との和の流量に対し、ベンチュリの差圧が気体流量と液
体流量の流量比に比例することを利用して各々気体流
量,液体流量を求める方法がアガー社から提示されてい
る。
As a method for measuring the flow rate of gas and liquid in a gas-liquid multi-phase flow, a venturi and a volume flow meter are connected in series in a gas-liquid multi-phase flow path, and the sum of the gas flow rate and the liquid flow rate obtained by the volume flow meter is measured. Agar proposes a method for obtaining a gas flow rate and a liquid flow rate by utilizing the fact that the differential pressure of the venturi is proportional to the flow rate ratio between the gas flow rate and the liquid flow rate.

【0006】[0006]

【発明が解決しようとする課題】旋回装置により均質化
された気液混相流をベンチュリに導入して、ベンチュリ
の差圧信号の統計的特徴を計測する方法は、装置を小型
化することができる利点があるが、統計的特徴をあらわ
すパラメータは差圧信号だけであり、測定精度に限度が
生じ、より高精度にするためには、入力信号のパラメー
タを多くする必要がある。
A method for measuring the statistical characteristics of a differential pressure signal of a venturi by introducing a gas-liquid multi-phase flow homogenized by a swirler into the venturi can reduce the size of the device. Although there is an advantage, the only parameter that represents a statistical feature is the differential pressure signal, which limits the measurement accuracy, and requires more parameters of the input signal for higher accuracy.

【0007】また、容積流量計とベンチュリを接続する
方法では、容積流量計は、可動部を有しているので、異
物の混入や過酷な条件で使用すると停止する場合がある
等の信頼性に不安がある。
Further, in the method of connecting the volume flow meter and the venturi, since the volume flow meter has a movable portion, the volume flow meter has a reliability in that it may stop if it is mixed with foreign substances or used under severe conditions. I have anxiety.

【0008】本発明は、上述した実情に鑑みてなされた
もので、可動部を持たない流量計測手段としてコリオリ
流量計を用いている。コリオリ流量計は、気液混相流の
限界仕様として均質化された例えば、アイスクリーム原
液のような場合、20%のボイド率まで計測可能である
が、通常の場合、10%のボイド率ではドライブゲイン
が不安定となり流量,密度の計測は不能となる。本発明
では、コリオリ流量計の上記の問題点を利用し、流量と
密度の信号波形の統計的特徴の計測により、予め校正さ
れた多様なボイド率を持った気液混相流の統計的特徴の
サンプルパターンと比較し、パターン認識により気体流
量と液体流量を決定しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and uses a Coriolis flow meter as a flow measuring means having no movable part. The Coriolis flow meter can measure up to 20% void ratio in the case of, for example, an ice cream stock solution, which is homogenized as the limit specification of the gas-liquid multiphase flow. The gain becomes unstable and the flow rate and density cannot be measured. In the present invention, utilizing the above-mentioned problems of the Coriolis flowmeter, by measuring the statistical characteristics of the signal waveforms of the flow rate and the density, the statistical characteristics of the gas-liquid multiphase flow having various void fractions calibrated in advance are obtained. It is intended to determine the gas flow rate and the liquid flow rate by pattern recognition as compared with a sample pattern.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、2点
支持された測定管を固有振動数で駆動するコリオリ流量
計と、該コリオリ流量計に気液混相流を流し、前記測定
管に作用するコリオリの力に応じた流量位相差信号と前
記気液混相流の密度に応じた振動数の振動波形を検出
し、前記気液混相流の温度補正された流量信号および密
度信号を出力する変換器と、該流量信号と該密度信号の
統計的特徴を特徴ベクトルの強度として求めて、あらか
じめ定められた気液混相流における気相流束と液相流束
のサンプルパターンと対比し、該サンプルパターンの統
計的グリッドセル上の位置を同定して前記気液混相流の
気体流束と液体流束を求める混相流演算器とを有するも
のである。
According to a first aspect of the present invention, there is provided a Coriolis flowmeter for driving a measurement tube supported at two points at a natural frequency, a gas-liquid multiphase flow through the Coriolis flowmeter, A flow rate phase difference signal corresponding to the Coriolis force acting on the flow rate and a vibration waveform having a frequency corresponding to the density of the gas-liquid multi-phase flow are detected, and the temperature-corrected flow rate signal and density signal of the gas-liquid multi-phase flow are output. A converter to determine the statistical characteristics of the flow rate signal and the density signal as the strength of the feature vector, and compare the gas phase flux and the liquid phase flux sample pattern in a predetermined gas-liquid multiphase flow, A multi-phase flow calculator for identifying a position of the sample pattern on a statistical grid cell to obtain a gas flux and a liquid flux of the gas-liquid multi-phase flow.

【0010】請求項2の発明は、請求項1に記載のコリ
オリ流量計を利用したパターン認識法よる多相流量計に
おいて、前記測定管の両端に差圧を検出する差圧計を設
け、前記混相流演算器で求めた前記流量信号と前記密度
信号の特徴ベクトルの強度に加え、前記差圧計で検出し
た差圧信号の特徴ベクトルの強度を求め、前記サンプル
パターンに前記差圧信号を含めるものである。
According to a second aspect of the present invention, in the multi-phase flow meter according to the first aspect of the present invention, a differential pressure gauge for detecting a differential pressure is provided at both ends of the measurement pipe, and the multi-phase flow meter is provided. In addition to the strength of the feature vector of the flow rate signal and the density signal obtained by the flow calculator, the strength of the feature vector of the differential pressure signal detected by the differential pressure gauge is obtained, and the sample pattern includes the differential pressure signal. is there.

【0011】請求項3の発明は、請求項2に記載のコリ
オリ流量計を利用したパターン認識法よる多相流量計に
おいて、前記混相流演算器において求めた前記流量信号
と前記密度信および前記差圧信号に加え、コリオリ流量
計の前記測定管を駆動する駆動電力の特徴ベクトルの強
度を求め、前記サンプルパターンに前記駆動電力を含め
るものである。
According to a third aspect of the present invention, there is provided a multi-phase flow meter based on a pattern recognition method using a Coriolis flow meter according to the second aspect, wherein the flow signal, the density signal, and the difference obtained by the multi-phase flow calculator are obtained. In addition to the pressure signal, the strength of a characteristic vector of driving power for driving the measurement tube of the Coriolis flowmeter is determined, and the driving power is included in the sample pattern.

【0012】請求項4の発明は、請求項1乃至3の何れ
かに記載のコリオリ流量計を利用したパターン認識法に
よる多相流量計において、前記気液混相流において、液
相が水と油である三相流体であるとき、前記コリオリ流
量計の後流に油水分計を設け、液相の水と油の各々の流
量を求めるようにしたものである。
According to a fourth aspect of the present invention, there is provided a multi-phase flow meter based on the pattern recognition method using the Coriolis flow meter according to any one of the first to third aspects, wherein the liquid phase is water and oil in the gas-liquid multi-phase flow. In the case of a three-phase fluid, an oil / moisture meter is provided downstream of the Coriolis flow meter, and the flow rates of water and oil in the liquid phase are determined.

【0013】請求項5の発明は、請求項1乃至4の何れ
かに記載のコリオリ流量計を利用したパターン認識法に
よる多相流量計において、前記コリオリ流量計の上流
に、前記気液混相流の気相と液相とを均一に混合する混
合手段を設けたものである。
According to a fifth aspect of the present invention, there is provided a multi-phase flow meter based on the pattern recognition method using the Coriolis flow meter according to any one of the first to fourth aspects, wherein the gas-liquid mixed phase flow is provided upstream of the Coriolis flow meter. And a mixing means for uniformly mixing the gas phase and the liquid phase.

【0014】[0014]

【発明の実施の形態】図1は、本発明の実施形態を説明
するためのブロック図であり、図中、1はコリオリ流量
計、2は流入管、3は流出管、4はコリオリ流量計1の
変換器、5は混相流演算器、6は統計的特徴計測部、7
はパターン認識部、8は学習部、9はサンプルパター
ン、10は出力である。
FIG. 1 is a block diagram for explaining an embodiment of the present invention. In the drawing, reference numeral 1 denotes a Coriolis flow meter, 2 denotes an inflow pipe, 3 denotes an outflow pipe, and 4 denotes a Coriolis flow meter. 1 is a converter, 5 is a multiphase flow calculator, 6 is a statistical feature measuring unit, 7
Is a pattern recognition unit, 8 is a learning unit, 9 is a sample pattern, and 10 is an output.

【0015】図1に示すコリオリ流量計1は、気液混相
流が流れる流入管2と流出管3とに両端接続される、U
字形状の測定管1aを有し、測定管1aは両端部1b,
1cを支点として紙面と直角方向に駆動手段(図示せ
ず)により固有振動数fで駆動される。測定管1aの固
有振動数fは、内部を流れる気液混相流の流体密度ρに
従って変化する。固有振動数fで駆動された測定管1a
には、コリオリの力に比例した捩じれθが生じ、この捩
じれを時間差信号τとして検知し、該時間差信号τは、
気液混相流の温度Tと前記固有振動数fとともに変換器
4に伝達される。なお、図1に示すコリオリ流量計1
は、U字形状の測定管1aで説明したが、どんな形状の
測定管でも良く、また1本でも複数本で構成されていて
も良い。
A Coriolis flowmeter 1 shown in FIG. 1 has a U-shaped pipe connected to an inflow pipe 2 and an outflow pipe 3 through which a gas-liquid multiphase flow flows.
The measuring tube 1a has a V-shaped measurement tube 1a.
It is driven at a natural frequency f by a driving means (not shown) in a direction perpendicular to the paper surface with 1c as a fulcrum. The natural frequency f of the measuring tube 1a changes according to the fluid density ρ of the gas-liquid multiphase flow flowing inside. Measuring tube 1a driven at natural frequency f
Generates a torsion θ proportional to the Coriolis force, and detects this torsion as a time difference signal τ.
The temperature T of the gas-liquid multiphase flow and the natural frequency f are transmitted to the converter 4. The Coriolis flow meter 1 shown in FIG.
Has been described with reference to the U-shaped measuring tube 1a, the measuring tube may have any shape, and may be composed of one or a plurality of tubes.

【0016】変換器4に伝達された時間差信号τは、気
液混相流の質量流量Qmに比例した値であり、気液混相
流の温度Tは、固有振動数fに関係する測定管1aのヤ
ング率を変化させる値であり、質量流量Qm,流体密度
ρは変換器4内で温度Tを基にして補正して求められ、
変換器4から混相流演算器5の統計的特徴計測部6に伝
達される。
The time difference signal τ transmitted to the converter 4 is a value proportional to the mass flow rate Qm of the gas-liquid multiphase flow, and the temperature T of the gas-liquid multiphase flow is the value of the measuring tube 1a related to the natural frequency f. It is a value that changes the Young's modulus, and the mass flow rate Qm and the fluid density ρ are obtained by correcting in the converter 4 based on the temperature T,
The signal is transmitted from the converter 4 to the statistical feature measuring unit 6 of the multiphase flow calculator 5.

【0017】混相流演算器5は、統計的特徴計測部6,
パターン認識部7,学習部8,サンプルパターン9とか
らなり、パターン認識部7で同定された液体流量と気体
流量とを出力端10から出力する構成となっている。
The multi-phase flow calculator 5 includes a statistical feature measuring unit 6,
It comprises a pattern recognition unit 7, a learning unit 8, and a sample pattern 9, and is configured to output the liquid flow rate and the gas flow rate identified by the pattern recognition unit 7 from an output terminal 10.

【0018】統計的特徴計測部6は、気液混相流を計測
することにより生ずる質量流量Qm,密度ρの変動値を
入力して統計的特徴を計測するもので、気液混相流の気
体流量と液体流量との比率に従って生ずる質量流量Q
m、密度ρの変動波形を解折するものである。統計的特
徴の解折は振幅領域特徴と周波領域特徴を求めるもの
で、各々質量流量Qm、密度ρの変動波形に関して行わ
れる。
The statistical feature measuring unit 6 measures the statistical feature by inputting the mass flow rate Qm and the fluctuation value of the density ρ generated by measuring the gas-liquid multi-phase flow. Mass flow Q resulting from the ratio of
This is to analyze the fluctuation waveform of m and density ρ. The analysis of the statistical features determines the amplitude domain features and the frequency domain features, and is performed on the fluctuation waveforms of the mass flow rate Qm and the density ρ, respectively.

【0019】振幅領域特徴は、前記変動波形をディジタ
ル的にサンプリングした各データに対する瞬時値が、平
均値からどの程度離れているかを求める尺度となる標準
偏差σ、変動波形の分布の平均値を中心とする非対称の
度合を示すゆがみ係数γ1,変動波形の分布のばらつき
の度合を示す尖り係数γ2とからなり、周波数領域特徴
は、ランダムな変動波形をフーリエ変換して変動波形の
特性を周波数領域で示すためのパワースペクトル密度S
である。上述の振幅領域特徴と周波数領域特徴からなる
変動波形の統計的特徴は波形の特徴ベクトルと呼ばれ、
横軸に気体流束(気体の見掛け流量:以後、気体流量と
記す)、縦軸に液体流束(液体の見掛け流量:以後、液
体流量と記す)をとった二次元座標系に対し、各々の特
徴ベクトルの強度を等高表示した地図状の特徴ベクトル
図が得られる。
The amplitude area feature is characterized by a standard deviation σ, which is a measure for determining how much the instantaneous value for each data digitally sampled from the fluctuation waveform is different from the average value, and the average value of the distribution of the fluctuation waveform. A distortion coefficient γ 1 , which indicates the degree of asymmetry, and a sharpness coefficient γ 2 , which indicates the degree of variation in the distribution of the fluctuation waveform. Power spectral density S for showing in area
It is. The statistical feature of the fluctuation waveform composed of the amplitude domain feature and the frequency domain feature described above is called a waveform feature vector,
For a two-dimensional coordinate system in which the horizontal axis represents the gas flux (apparent flow rate of gas: hereinafter referred to as gas flow rate) and the vertical axis represents the liquid flux (apparent flow rate of liquid: hereinafter referred to as liquid flow rate), A map-like feature vector diagram in which the intensity of the feature vector is displayed at the same height is obtained.

【0020】標準偏差σ、ゆがみ係数γ1、尖り係数γ2
およびパワースペクトル密度S等の特徴ベクトル図は、
気液混合流体の気液混合比および流量等により定められ
る変動波形のパターンによるもので各々の特徴ベクトル
図の横軸、縦軸上における論理和は、特徴空間における
クラスを表わすものであるが、そのクラスの基準となる
気体流量、液体流量は未知である。
Standard deviation σ, distortion coefficient γ 1 , sharpness coefficient γ 2
And feature vector diagrams such as power spectral density S
The logical sum on the horizontal axis and vertical axis of each feature vector diagram represents the class in the feature space, based on the pattern of the fluctuation waveform determined by the gas-liquid mixing ratio and the flow rate of the gas-liquid mixed fluid, The gas flow rate and liquid flow rate that are the reference for the class are unknown.

【0021】サンプルパターン9は、統計的特徴計測部
6で求められた特徴ベクトルの論理和としての特徴空間
のクラスを定めるため、予め実験により求められたを校
正データである。すなわち、気・液混合比、流量をパラ
メータとして特徴空間のクラスを定めている。
The sample pattern 9 is calibration data obtained by experiments in advance to determine a class of a feature space as a logical sum of the feature vectors obtained by the statistical feature measuring unit 6. That is, the class of the feature space is determined using the gas / liquid mixture ratio and the flow rate as parameters.

【0022】学習部8は、サンプルパターン9により予
めクラスが定められた校正データの集合から、統計的特
徴計測部6で求めた特徴空間のクラスを分類するために
用いられるパラメータを計算する。
The learning unit 8 calculates a parameter used for classifying the class of the feature space obtained by the statistical feature measuring unit 6 from a set of calibration data whose class is determined in advance by the sample pattern 9.

【0023】パターン認識部7は、学習部8で分類され
た特徴空間のクラスに基づいて統計的特徴計測部6の特
徴空間のクラスをパターン認識に基づいて同定するもの
である。
The pattern recognition section 7 identifies the class of the feature space of the statistical feature measurement section 6 based on the pattern recognition based on the class of the feature space classified by the learning section 8.

【0024】図2は、本発明に係る統計的特徴グリット
セルを説明するための図で、パターン認識部7で同定さ
れた点を、図2に示す統計的特徴グリットセル上の位置
Mとすると、位置Mに対する気体流量と液体流量をコン
ピュータによる画像処理により計測できる。しかも、位
置Mは、質量流量Qmと密度ρと2つの統計的特徴の解
折によるものであり、従来の圧力信号だけを用いた場合
に比べるとパラメータが2倍となりより高精度で信頼性
の高い気体流量,液体流量を求めることができる。
FIG. 2 is a diagram for explaining a statistical feature grid cell according to the present invention. Assuming that a point identified by the pattern recognition unit 7 is a position M on the statistical feature grid cell shown in FIG. The gas flow rate and the liquid flow rate for the position M can be measured by image processing using a computer. Moreover, the position M is based on the analysis of the mass flow rate Qm, the density ρ, and two statistical features, and the parameter is doubled as compared with the case where only the conventional pressure signal is used, so that the accuracy and reliability are improved. High gas flow and liquid flow can be obtained.

【0025】図3は、請求項2の発明の実施形態を説明
するためのブロック図で、図中、11は差圧伝送器、1
2は差圧変換器であり、図1と同様の作用をする部分に
は、図1と同じ参照番号を付してある。なお、図3にお
いて、図1に示した混相流演算器5と同じものを用いる
ため、混相流演算器5を構成するパターン認識部7,学
習部8,サンプルパターン9の図示を省いている。
FIG. 3 is a block diagram for explaining an embodiment of the second aspect of the present invention. In FIG.
Reference numeral 2 denotes a differential pressure converter, and portions having the same operation as in FIG. 1 are denoted by the same reference numerals as in FIG. In FIG. 3, the pattern recognition unit 7, the learning unit 8, and the sample pattern 9 constituting the multi-phase flow computing unit 5 are not shown in order to use the same one as the multi-phase flow computing unit 5 shown in FIG.

【0026】請求項2の発明は、統計的特徴を質量流量
Qm,密度ρの2つのパラメータだけでなく更に、コリ
オリ流量計1の変動する差圧ΔPを加えたものである。
すなわち、差圧伝送器11は、測定管1aの両端に導管
11a,11bを介して取り付けられ、差圧変換器12
を介してコリオリ流量計1の差圧ΔPを統計的特徴計測
部6に伝送し、該差圧ΔPの統計的特徴を求め、前記質
量流量Qm,密度ρの統計的特徴と同様に、振幅領域特
徴と、周波数領域特徴と差圧ΔP波形の特徴ベクトル図
を求めるものである。従ってサンプルパターン9におい
ては、質量流量Qm,密度ρの校正データの他に差圧Δ
P波形の校正データも含まれ、パターン認識部7におい
て質量流量Qmと密度ρ、および差圧ΔPの統計的特徴
グリットセルの点から、気体流量,液体流量が同定され
る。従って、統計的特徴グリットセルの点は、更に差圧
ΔPの変動波形の特徴ベクトル図が加えられて同定され
たものであるから請求項1の場合よりも、更に高精度、
高信頼度の気体流量,液体流量が求められる。
According to the second aspect of the present invention, the statistical characteristic is obtained by adding not only the two parameters of the mass flow rate Qm and the density ρ but also the fluctuating differential pressure ΔP of the Coriolis flowmeter 1.
That is, the differential pressure transmitter 11 is attached to both ends of the measuring pipe 1a via the conduits 11a and 11b,
The differential pressure ΔP of the Coriolis flow meter 1 is transmitted to the statistical characteristic measuring unit 6 via the, and the statistical characteristic of the differential pressure ΔP is obtained. A feature, a frequency vector feature, and a feature vector diagram of a differential pressure ΔP waveform are obtained. Therefore, in the sample pattern 9, in addition to the calibration data of the mass flow rate Qm and the density ρ, the differential pressure Δ
The calibration data of the P waveform is also included, and the gas flow rate and the liquid flow rate are identified in the pattern recognition unit 7 in terms of the mass flow rate Qm and the density ρ and the statistical characteristic grid cell of the differential pressure ΔP. Therefore, the points of the statistical feature grid cell are identified by further adding the feature vector diagram of the fluctuation waveform of the differential pressure ΔP, so that the accuracy is higher than in the case of claim 1.
Highly reliable gas and liquid flow rates are required.

【0027】請求項3の発明は、請求項2の発明におい
て、統計的特徴として質量流量Qm,密度ρおよび差圧
ΔPをあげたが、これに加えて、更に測定管1aの駆動
電力Wを加えたものである。
According to a third aspect of the present invention, the mass flow rate Qm, the density ρ and the differential pressure ΔP are mentioned as statistical features in the second aspect of the invention. In addition to this, the driving power W of the measuring tube 1a is further reduced. In addition.

【0028】前述のごとく、測定管1aを固有振動数で
駆動する方式のコリオリ流量計1にボイド率の高い気液
混相流を流したときは、ドライブゲインが不安定となり
計測不能になるが、逆にドライブゲインの不安定要素
は、統計的手法においては有意義なものである。すなわ
ち、測定管1aの駆動電力Wの統計的特徴を求めること
により、統計的グリットセル上の気体流量と、液体流量
の点を同定できるが、これを質量流量Qm,密度ρおよ
び差圧ΔPの統計的特徴に加えることにより、より高精
度、高信頼度の気体流量,液体流量を求めることができ
る。この場合も、サンプルパターン9には、駆動電力W
を含める。
As described above, when a gas-liquid multiphase flow having a high void ratio is passed through the Coriolis flowmeter 1 of a type that drives the measuring tube 1a at a natural frequency, the drive gain becomes unstable and measurement becomes impossible. Conversely, an unstable element of the drive gain is significant in a statistical method. That is, by determining the statistical characteristics of the driving power W of the measuring tube 1a, the points of the gas flow rate and the liquid flow rate on the statistical grit cell can be identified, and the points of the mass flow rate Qm, the density ρ and the differential pressure ΔP can be identified. By adding to the statistical features, more accurate and highly reliable gas flow rates and liquid flow rates can be obtained. Also in this case, the driving power W
Include.

【0029】図4は、請求項4の発明に係る油水分計の
例を説明するためのブロック図であり、図中、13は油
水分計、14はマイクロウエーブ発信器、15はマイク
ロウェーブ受信器、16は差動アンプ、17は基準エネ
ルギである。
FIG. 4 is a block diagram for explaining an example of an oil / moisture meter according to the fourth aspect of the present invention. In the figure, 13 is an oil / moisture meter, 14 is a microwave transmitter, and 15 is a microwave receiver. , 16 is a differential amplifier, and 17 is reference energy.

【0030】請求項4の発明は、気液混相流中の液相が
油と水の混相流であるとき、請求項1乃至3項の発明で
求められた液体流量から油流量と水流量を求めるもので
ある。
According to a fourth aspect of the present invention, when the liquid phase in the gas-liquid multiphase flow is a multiphase flow of oil and water, the oil flow rate and the water flow rate are determined from the liquid flow rates obtained in the first to third aspects. Is what you want.

【0031】図4に示した油水分計13は、周知のもの
で、例えば、図1に示した流出管3を流れる気液混相流
中にマイクロウエーブ発信器14とマイクロウェーブ受
信器15とを所定間隔をもって設置してある。マイクロ
ウエーブ発信器14から送信され、マイクロウェーブ受
信器15で受信したマイクロウエーブは気液混相流中の
水に吸収されて減衰し差動アンプ16の一方に入力し、
基準エネルギ17と比較される。差動アンプ16は比較
信号を零とするようにマイクロウエーブ発信器14の出
力を増加し、このときの差動アンプ16の出力から油分
濃度および水分濃度を検出する。
The oil-moisture meter 13 shown in FIG. 4 is a well-known one. For example, a microwave transmitter 14 and a microwave receiver 15 are connected to a gas-liquid multiphase flow flowing through the outlet pipe 3 shown in FIG. They are installed at predetermined intervals. The microwave transmitted from the microwave transmitter 14 and received by the microwave receiver 15 is absorbed by water in the gas-liquid multiphase flow, attenuated, and input to one of the differential amplifiers 16,
This is compared with the reference energy 17. The differential amplifier 16 increases the output of the microwave transmitter 14 so that the comparison signal becomes zero, and detects the oil concentration and the water concentration from the output of the differential amplifier 16 at this time.

【0032】空気と油と水の多相流中の油と水の流量
は、気液混相流中の液相の流量に、油分濃度と水分濃度
の比率を乗算することにより求められる。なお、油水分
計13は一例を示すもので、混相流の誘電率差により静
電容量を求める静電容量式又は、混相流の導電率から求
める導電率方式から油分、水分濃度を求めることができ
る。
The flow rates of oil and water in the multiphase flow of air, oil and water can be obtained by multiplying the flow rate of the liquid phase in the gas-liquid multiphase flow by the ratio of the oil concentration to the water concentration. Note that the oil / moisture meter 13 is an example, and it is possible to obtain the oil content and the water concentration from the capacitance type for obtaining the capacitance from the dielectric constant difference of the multiphase flow, or the conductivity type obtained from the conductivity of the multiphase flow. it can.

【0033】図5は、請求項5の発明の実施形態例を説
明するためのブロック図であり、図中、18はホモジナ
イザであり、図3と同様の作用をする部分には、図3と
同一の参照番号を付してある。
FIG. 5 is a block diagram for explaining an embodiment of the fifth aspect of the present invention. In FIG. 5, reference numeral 18 denotes a homogenizer, and portions having the same functions as those in FIG. The same reference numbers are given.

【0034】図中、ホモジナイザ18はコリオリ流量計
1に流入する気液混相流を略一定な気液混相流にするた
めの混合装置であり、例えば、流入する気液混相流を施
回し、次に逆施回することにより気液混相流中の気相を
微細な気泡としてコリオリ流量計1に流入し、常に安定
した混合比の気液混相流としたものである。
In the figure, a homogenizer 18 is a mixing device for converting a gas-liquid mixed-phase flow flowing into the Coriolis flowmeter 1 into a substantially constant gas-liquid mixed-phase flow. The gas phase in the gas-liquid mixed-phase flow flows into the Coriolis flowmeter 1 as fine bubbles by reversely rotating the gas-liquid mixed-phase flow, so that the gas-liquid mixed-phase flow always has a stable mixing ratio.

【0035】気液混相流は、Taiter and Dukier等の流
れの形態マップが示すように、水手流れにおいては気体
流束と液体流束の大きさに従ったクラス分けされ、その
クラス毎に流れ形態が変化し気泡流,階層流,波状流,
砲弾流,環状流等が形成される。従って、この様にクラ
ス分けされた流れがコリオリ流量計に直接流入すること
により測定管1aの駆動を不安定にする可能性があるの
で、ホモジナイザ18をコリオリ流量計1の上流側に設
けることにより、より大きいボイド率の気液混相流の計
測を可能にする。
The gas-liquid multiphase flow is classified into classes according to the magnitudes of the gas flux and the liquid flux as shown in the flow morphology map of Taiter and Dukier. Changes, bubble flow, hierarchical flow, wavy flow,
A shell flow, an annular flow, etc. are formed. Therefore, since the flow classified in this way flows directly into the Coriolis flowmeter, there is a possibility that the driving of the measurement tube 1a becomes unstable. Therefore, by providing the homogenizer 18 upstream of the Coriolis flowmeter 1, Enables the measurement of gas-liquid multiphase flows with a higher void fraction.

【0036】[0036]

【発明の効果】【The invention's effect】

請求項1に対応する効果:気液混相流をコリオリ流量計
に流したとき、ボイド率が高くなると計測不能になるこ
とを利用して、流量Qm,密度ρの変動波形の統計的特
徴を特徴ベクトルの強度として特徴ベクトル図を設けて
サンプルパターンと対比して統計的特徴グリットセル上
の点を同定するので、従来は差圧信号の特徴ベクトルの
強度からのみ点を同定したのに比ベ、2倍の統計的情報
に従って同定するので気体流量,液体流量の測定精度が
向上し、且つ、信頼性が向上する。
According to the first aspect of the present invention, when a gas-liquid multiphase flow is caused to flow through a Coriolis flowmeter, it becomes impossible to measure when the void fraction is increased, and the statistical characteristics of the fluctuation waveform of the flow rate Qm and the density ρ are used. Since a point on the statistical feature grid cell is identified by comparing the sample pattern with a sample pattern as the strength of the vector, a point is conventionally identified only from the strength of the feature vector of the differential pressure signal. Since the identification is performed according to twice the statistical information, the measurement accuracy of the gas flow rate and the liquid flow rate is improved, and the reliability is improved.

【0037】請求項2に対応する効果:請求項1の発明
に対し、更に、コリオリ流量計の差圧ΔPの変動波形の
統計的特徴を付加したので、請求項1の発明に対し、更
に測定精度と信頼性が向上する。
Effect corresponding to the second aspect: The statistical feature of the fluctuation waveform of the differential pressure ΔP of the Coriolis flowmeter is added to the first aspect of the present invention, so that the first aspect of the present invention is further measured. Accuracy and reliability are improved.

【0038】請求項3に対応する効果:請求項2の発明
に対し、コリオリ流量計を駆動する駆動電力Wの波形統
計的特徴を付加したので、請求項2の発明に対し、更に
測定精度と信頼性が向上する。
Effect corresponding to the third aspect: Since the statistical feature of the waveform of the driving power W for driving the Coriolis flowmeter is added to the second aspect, the measurement accuracy and the second aspect are further improved. Reliability is improved.

【0039】請求項4に対応する効果:請求項1乃至3
の発明により求められた液体が、油と水の混相流である
とき、油水分計を用いて油濃度と水濃度の比率が計測で
きるので、油分流量と水分流量とを分離計測することが
できる。
Advantages Corresponding to Claim 4: Claims 1 to 3
When the liquid determined by the invention of the above is a mixed phase flow of oil and water, the ratio of oil concentration to water concentration can be measured using an oil / moisture meter, so that the oil flow rate and the water flow rate can be separately measured. .

【0040】請求項5に対応する効果:請求項1乃至4
項の発明において、コリオリ流量計の上流に混相流の混
合手段を設けたので、ボイド率の高い気液混相流の計測
を可能とする。
Advantages Corresponding to Claim 5: Claims 1 to 4
In the invention described in the section, the mixing means of the multiphase flow is provided upstream of the Coriolis flowmeter, so that the gas-liquid multiphase flow having a high void ratio can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態を説明するためのブロック
図である。
FIG. 1 is a block diagram illustrating an embodiment of the present invention.

【図2】 本発明に係る統計的特徴グリットセルを説明
するための図である。
FIG. 2 is a diagram for explaining a statistical feature grid cell according to the present invention.

【図3】 請求項2の発明の実施形態を説明するための
ブロック図である。
FIG. 3 is a block diagram for explaining an embodiment of the invention of claim 2;

【図4】 請求項4の発明に係る油水分計の例を説明す
るためのブロック図である。
FIG. 4 is a block diagram for explaining an example of an oil-moisture meter according to the invention of claim 4;

【図5】 請求項5の発明の実施形態例を説明するため
のブロック図である。
FIG. 5 is a block diagram for explaining an embodiment of the invention of claim 5;

【符号の説明】[Explanation of symbols]

1…コリオリ流量計、2…流入管、3…流出管、4…コ
リオリ流量計1の変換器、5…混相流演算器、6…統計
的特徴計測部、7…パターン認識部、8…学習部、9…
サンプルパターン、10…出力、11…差圧伝送器、1
2…差圧変換器、13…油水分計、14…マイクロウエ
ーブ発信器、15…マイクロウェーブ受信器、16…差
動アンプ、17…基準エネルギ、18…ホモジナイザ。
DESCRIPTION OF SYMBOLS 1 ... Coriolis flowmeter, 2 ... Inflow pipe, 3 ... Outflow pipe, 4 ... Converter of Coriolis flowmeter 1, 5 ... Multiphase flow calculator, 6 ... Statistical feature measurement unit, 7 ... Pattern recognition unit, 8 ... Learning Part, 9 ...
Sample pattern, 10 ... output, 11 ... differential pressure transmitter, 1
2 ... Differential pressure converter, 13 ... Oil moisture meter, 14 ... Microwave transmitter, 15 ... Microwave receiver, 16 ... Differential amplifier, 17 ... Reference energy, 18 ... Homogenizer.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 2点支持された測定管を固有振動数で駆
動するコリオリ流量計と、該コリオリ流量計に気液混相
流を流し、前記測定管に作用するコリオリの力に応じた
流量位相差信号と前記気液混相流の密度に応じた振動数
の振動波形を検出し、前記気液混相流の温度補正された
流量信号および密度信号を出力する変換器と、該流量信
号と該密度信号の統計的特徴を特徴ベクトルの強度とし
て求めて、あらかじめ定められた気液混相流における気
相流束と液相流束のサンプルパターンと対比し、該サン
プルパターンの統計的グリッドセル上の位置を同定して
前記気液混相流の気体流束と液体流束を求める混相流演
算器とを有することを特徴とするコリオリ流量計を利用
したパターン認識法による多相流量計。
1. A Coriolis flowmeter for driving a measurement tube supported at two points at a natural frequency, a gas-liquid multiphase flow flowing through the Coriolis flowmeter, and a flow rate corresponding to a Coriolis force acting on the measurement tube. A converter that detects a phase difference signal and a vibration waveform having a frequency corresponding to the density of the gas-liquid multiphase flow, and outputs a temperature-corrected flow signal and a density signal of the gas-liquid multiphase flow; and The statistical feature of the signal is obtained as the strength of the feature vector, and the gas-phase flux and the liquid-phase flux in a predetermined gas-liquid multiphase flow are compared with sample patterns, and the position of the sample pattern on the statistical grid cell is determined. And a multi-phase flow calculator for determining the gas flux and the liquid flux of the gas-liquid multi-phase flow by a pattern recognition method using a Coriolis flow meter.
【請求項2】 前記測定管の両端に差圧を検出する差圧
計を設け、前記混相流演算器で求めた前記流量信号と前
記密度信号の特徴ベクトルの強度に加え、前記差圧計で
検出した差圧信号の特徴ベクトルの強度を求め、前記サ
ンプルパターンに前記差圧信号を含めることを特徴とす
る請求項1に記載のコリオリ流量計を利用したパターン
認識法による多相流量計。
2. A differential pressure gauge for detecting a differential pressure is provided at both ends of the measuring pipe, and the differential pressure is detected by the differential pressure gauge in addition to the strength of the characteristic vector of the flow rate signal and the density signal obtained by the multiphase flow calculator. 2. The multi-phase flow meter according to claim 1, wherein a strength of a feature vector of the differential pressure signal is obtained, and the sample pattern includes the differential pressure signal.
【請求項3】 前記混相流演算器において求めた前記流
量信号と前記密度信および前記差圧信号に加え、コリオ
リ流量計の前記測定管を駆動する駆動電力の特徴ベクト
ルの強度を求め、前記サンプルパターンに前記駆動電力
を含めることを特徴とする請求項2に記載のコリオリ流
量計を利用したパターン認識法による多相流量計。
3. In addition to the flow rate signal, the density signal, and the differential pressure signal obtained by the multiphase flow calculator, the strength of a characteristic vector of drive power for driving the measurement tube of the Coriolis flowmeter is obtained, and the sample is obtained. 3. The multi-phase flow meter according to claim 2, wherein the driving power is included in a pattern by a pattern recognition method using a Coriolis flow meter.
【請求項4】 前記気液混相流において、液相が水と油
である三相流体であるとき、前記コリオリ流量計の後流
に油水分計を設け、液相の水と油の各々の流量を求める
ことを特徴とする請求項1乃至3の何れかに記載のコリ
オリ流量計を利用したパターン認識法による多相流量
計。
4. In the gas-liquid multi-phase flow, when the liquid phase is a three-phase fluid of water and oil, an oil-moisture meter is provided downstream of the Coriolis flow meter, and each of the liquid-phase water and oil is provided. 4. A multi-phase flow meter based on a pattern recognition method using a Coriolis flow meter according to claim 1, wherein a flow rate is obtained.
【請求項5】 前記コリオリ流量計の上流に、前記気液
混相流の気相と液相とを均一に混合する混合手段を設け
たことを特徴とする請求項1乃至4の何れかに記載のコ
リオリ流量計を利用したパターン認識法による多相流量
計。
5. A mixing means for uniformly mixing a gas phase and a liquid phase of the gas-liquid mixed phase flow upstream of the Coriolis flow meter. Multi-phase flow meter by pattern recognition method using Coriolis flow meter.
JP9100897A 1997-04-09 1997-04-09 Polyphase flowmeter by pattern recognition method utilizing coriolis flowmeter Pending JPH10281846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9100897A JPH10281846A (en) 1997-04-09 1997-04-09 Polyphase flowmeter by pattern recognition method utilizing coriolis flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9100897A JPH10281846A (en) 1997-04-09 1997-04-09 Polyphase flowmeter by pattern recognition method utilizing coriolis flowmeter

Publications (1)

Publication Number Publication Date
JPH10281846A true JPH10281846A (en) 1998-10-23

Family

ID=14014502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9100897A Pending JPH10281846A (en) 1997-04-09 1997-04-09 Polyphase flowmeter by pattern recognition method utilizing coriolis flowmeter

Country Status (1)

Country Link
JP (1) JPH10281846A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1345013A1 (en) * 2002-03-14 2003-09-17 Endress + Hauser Flowtec AG Coriolis mass flow meter with swirl mixer
JP2004526135A (en) * 2001-01-31 2004-08-26 マイクロ・モーション・インコーポレーテッド Fluid delivery system
JP2007286052A (en) * 2006-04-12 2007-11-01 Krohne Messtechnik Gmbh & Co Kg Control method of coriolis-type mass flow rate measuring instrument
US7360453B2 (en) 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
US7360452B2 (en) 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
WO2008050522A1 (en) * 2006-10-27 2008-05-02 Oval Corporation Multi-phase flowmeter
DE102006062600A1 (en) 2006-12-29 2008-07-03 Endress + Hauser Flowtec Ag Inline measuring device starting and/or monitoring method for use in measuring system, involves detecting momentary inclination of measuring sensor corresponding to inclination of principal axis of sensor opposite to intended reference axis
JP2008534959A (en) * 2005-03-29 2008-08-28 マイクロ・モーション・インコーポレーテッド Meter electronics and method for determining the proportion of liquid flow in a gas flow material
EP2026042A1 (en) 2005-12-27 2009-02-18 Endress+Hauser Flowtec AG In-line measuring devices and method for compensating measurement errors in in-line measuring devices
DE102007062908A1 (en) * 2007-12-21 2009-06-25 Endress + Hauser Flowtec Ag Process variable e.g. concentration, determining method for biogas, involves measuring volume flow rate of flowing medium by using measuring principles, and determining process variable from measured values of measuring principles
JP2010535337A (en) * 2007-07-30 2010-11-18 マイクロ・モーション・インコーポレーテッド Flow meter system and method for measuring flow characteristics of a three-phase flow
JP4599454B1 (en) * 2009-09-07 2010-12-15 株式会社オーバル Volumetric gas-liquid two-phase flow meter and multi-phase flow measurement system
JP2013544355A (en) * 2010-11-19 2013-12-12 クローネ メステヒニーク ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Operation method of resonance measurement system
CN103674139A (en) * 2013-12-11 2014-03-26 中国石油大学(华东) Two-phase flow measurement method based on mass flowmeter parametric statistical characteristics
EP2772730A1 (en) 2005-09-27 2014-09-03 Endress + Hauser Flowtec AG Process for measuring a medium flowing in a pipe and measurement system therefor
JP2015522831A (en) * 2012-08-01 2015-08-06 マイクロ モーション インコーポレイテッド Fluid characterization of multi-element fluids with compressible and non-compressible elements
CN108332808A (en) * 2017-01-18 2018-07-27 横河电机株式会社 Field instrumentation and field instrumentation manage system
CN110793584A (en) * 2019-11-13 2020-02-14 四川奥达测控装置有限公司 Multiphase flow mass flow measurement system and measurement method
CN115540959A (en) * 2022-10-21 2022-12-30 成都洋湃科技有限公司 Mixed phase flow measuring method based on liquid-solid two-phase pressure taking and mixed phase flow meter

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526135A (en) * 2001-01-31 2004-08-26 マイクロ・モーション・インコーポレーテッド Fluid delivery system
WO2003076880A1 (en) * 2002-03-14 2003-09-18 Endress + Hauser Flowtec Ag Coriolis mass flowmeter comprising a swirl generator
CN100353150C (en) * 2002-03-14 2007-12-05 恩德斯+豪斯流量技术股份有限公司 Coriolis mass flow meter with swirl generator
EP1345013A1 (en) * 2002-03-14 2003-09-17 Endress + Hauser Flowtec AG Coriolis mass flow meter with swirl mixer
US7974792B2 (en) 2005-03-29 2011-07-05 Micro Motion, Inc. Meter electronics and methods for determining a liquid flow fraction in a gas flow material
JP2008534959A (en) * 2005-03-29 2008-08-28 マイクロ・モーション・インコーポレーテッド Meter electronics and method for determining the proportion of liquid flow in a gas flow material
EP2772730A1 (en) 2005-09-27 2014-09-03 Endress + Hauser Flowtec AG Process for measuring a medium flowing in a pipe and measurement system therefor
US7360453B2 (en) 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
US7360452B2 (en) 2005-12-27 2008-04-22 Endress + Hauser Flowtec Ag In-line measuring devices and method for compensation measurement errors in in-line measuring devices
EP2026042A1 (en) 2005-12-27 2009-02-18 Endress+Hauser Flowtec AG In-line measuring devices and method for compensating measurement errors in in-line measuring devices
JP2007286052A (en) * 2006-04-12 2007-11-01 Krohne Messtechnik Gmbh & Co Kg Control method of coriolis-type mass flow rate measuring instrument
US7827869B2 (en) 2006-10-27 2010-11-09 Oval Corporation Multiphase flowmeter for measuring each phase flow rate of a three-phase flow consisting of gas and two kinds of liquid
WO2008050522A1 (en) * 2006-10-27 2008-05-02 Oval Corporation Multi-phase flowmeter
DE102006062600A1 (en) 2006-12-29 2008-07-03 Endress + Hauser Flowtec Ag Inline measuring device starting and/or monitoring method for use in measuring system, involves detecting momentary inclination of measuring sensor corresponding to inclination of principal axis of sensor opposite to intended reference axis
JP2010535337A (en) * 2007-07-30 2010-11-18 マイクロ・モーション・インコーポレーテッド Flow meter system and method for measuring flow characteristics of a three-phase flow
US8302489B2 (en) 2007-07-30 2012-11-06 Micro Motion, Inc. Flow meter system and method for measuring flow characteristics of a three phase flow
DE102007062908A1 (en) * 2007-12-21 2009-06-25 Endress + Hauser Flowtec Ag Process variable e.g. concentration, determining method for biogas, involves measuring volume flow rate of flowing medium by using measuring principles, and determining process variable from measured values of measuring principles
JP4599454B1 (en) * 2009-09-07 2010-12-15 株式会社オーバル Volumetric gas-liquid two-phase flow meter and multi-phase flow measurement system
JP2011058838A (en) * 2009-09-07 2011-03-24 Oval Corp Volume type gas-liquid two-phase flowmeter and system for measuring multiphase flow
CN102782462A (en) * 2009-09-07 2012-11-14 株式会社奥巴尔 Positive displacement gas-liquid two-phase flowmeter and multiphase flow rate measurement system
WO2011027606A1 (en) * 2009-09-07 2011-03-10 株式会社オーバル Positive displacement gas-liquid two-phase flowmeter and multiphase flow rate measurement system
JP2013544355A (en) * 2010-11-19 2013-12-12 クローネ メステヒニーク ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Operation method of resonance measurement system
JP2015522831A (en) * 2012-08-01 2015-08-06 マイクロ モーション インコーポレイテッド Fluid characterization of multi-element fluids with compressible and non-compressible elements
CN103674139A (en) * 2013-12-11 2014-03-26 中国石油大学(华东) Two-phase flow measurement method based on mass flowmeter parametric statistical characteristics
CN108332808A (en) * 2017-01-18 2018-07-27 横河电机株式会社 Field instrumentation and field instrumentation manage system
CN110793584A (en) * 2019-11-13 2020-02-14 四川奥达测控装置有限公司 Multiphase flow mass flow measurement system and measurement method
CN110793584B (en) * 2019-11-13 2021-02-09 四川奥达测控装置有限公司 Multiphase flow mass flow measurement system and measurement method
CN115540959A (en) * 2022-10-21 2022-12-30 成都洋湃科技有限公司 Mixed phase flow measuring method based on liquid-solid two-phase pressure taking and mixed phase flow meter
CN115540959B (en) * 2022-10-21 2023-09-15 成都洋湃科技有限公司 Mixed phase flow measurement method based on liquid-solid two-phase pressure taking and mixed phase flowmeter

Similar Documents

Publication Publication Date Title
JPH10281846A (en) Polyphase flowmeter by pattern recognition method utilizing coriolis flowmeter
EP1554550B1 (en) Detection and measurement of two-phase flow
US4856344A (en) Measuring flow in a pipe
US7366621B2 (en) Program product to measure density, specific gravity, and flow rate of fluids
US6655221B1 (en) Measuring multiphase flow in a pipe
EP1305579B1 (en) A meter for the measurement of multiphase fluids and wet gas
USRE36597E (en) Apparatus and method for measuring two- or three-phase fluid flow utilizing one or more momentum flow meters and a volumetric flow meter
US8494788B2 (en) Gas pressure determination in a gas/liquid flow
US9091581B2 (en) Wet gas measurement
US20070136008A1 (en) Method and system for multi-path ultrasonic flow measurement of partially developed flow profiles
JPH05507350A (en) Improvements in the measurement of two- and three-phase flows
EP2192391A1 (en) Apparatus and a method of measuring the flow of a fluid
US7580801B2 (en) Monitoring of two-phased fluid flow
WO1993017305A1 (en) Flow measurement system
US4118780A (en) Technique for monitoring flow rate differences in water cooling conduit
WO2005040732A1 (en) Wet gas measurement apparatus and method
US9605987B2 (en) Method and apparatus for accurately measuring individual components of a multiphase fluid using separately measured Reynolds number
US4753106A (en) Steam quality meter
EP3052905B1 (en) A method and apparatus for measurement of individual components of a multiphase fluid
JPH1096656A (en) Vapor and liquid two-phase flow meter
USRE33909E (en) Steam quality meter
US11592379B2 (en) Flowing vapor pressure apparatus and related method
KR102136292B1 (en) Slug and plug flow type classification method of two-phase flow
CN113405622A (en) Novel gas-liquid two-phase flow metering device and metering method
Brown Factors affecting the performance of ultrasonic flowmeters