JPH10281671A - Joint structure body of thin rectangular planar heat-pipe module - Google Patents

Joint structure body of thin rectangular planar heat-pipe module

Info

Publication number
JPH10281671A
JPH10281671A JP9118570A JP11857097A JPH10281671A JP H10281671 A JPH10281671 A JP H10281671A JP 9118570 A JP9118570 A JP 9118570A JP 11857097 A JP11857097 A JP 11857097A JP H10281671 A JPH10281671 A JP H10281671A
Authority
JP
Japan
Prior art keywords
heat
heat pipe
connection
thin
unit module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9118570A
Other languages
Japanese (ja)
Other versions
JP4069302B2 (en
Inventor
Hisateru Akachi
久輝 赤地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP11857097A priority Critical patent/JP4069302B2/en
Publication of JPH10281671A publication Critical patent/JPH10281671A/en
Application granted granted Critical
Publication of JP4069302B2 publication Critical patent/JP4069302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an elongation of a thin rectangular planar heat pipe by making the thin rectangular planar heat pipe which is constructed by arranging a group of small-diameter pipes in zigzag or a thin rectangular planar heat pipe which is constructed by providing a zigzag small-diameter heat pipe like a thin-diameter tunnel have a joint structur of unit modules. SOLUTION: In a joint structural body formed by joining it modules 1, 2 of a thin rectangular planar heat pipe which is constructed by arranging a group of small-diameter pies in zigzag or formed by joining unit module 1, 2 of thin rectangular planar heat pipe which is constructed by providing a zigzag small-diameter heat pipe like a thin-diameter tunnel, the join structural body are constructed by overlapping end portions of a plurality of unit modules 1, 2 of the thin rectangular heat pipe having a given length in sequence and thermally connecting them. Here, the length of the thin rectangular planar unit modules 1, 2 is determined such than a given amount of heat input can be thermally transferred at an optimum heat transfer efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は蛇行細管ヒートパイプ及
びその応用ヒートパイプの接続構造体の構造に関するも
のであって、特に蛇行細管ヒートパイプの細管群が整列
せしめられて薄形平板状に構成されてある長尺薄形平板
状構造体または金属薄形平板内に蛇行細管ヒートパイプ
が細径トンネル化せしめられて内蔵せしめられて構成さ
れてある薄形平板状構造体をモジュール化しその接続構
造体とすることにより平板状ヒートパイプの長尺化を可
能とし且つその熱輸送距離による性能低下を大幅に減少
せしめる新規な構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a meandering thin-tube heat pipe and a connection structure of the heat pipe applied thereto, and more particularly, to a thin flat plate formed by aligning thin-tube groups of a meandering thin-tube heat pipe. Modified thin flat plate structure in which a meandering thin-tube heat pipe is formed into a thin-diameter tunnel and built in a long thin flat plate structure or a thin metal flat plate. The present invention relates to a novel structure that enables a plate-shaped heat pipe to be lengthened by being formed into a body and that greatly reduces performance degradation due to the heat transport distance.

【0002】[0002]

【従来の技術】蛇行細管ヒートパイプ技術及びその応用
製品は開発後間もない新技術及び新製品であって、その
長尺化の為の接続技術及び接続構造は全く世にない新技
術及び構造である。従ってこれに関する従来の技術は例
が無いので、引用例を説明することは不可能である。従
来構造のヒートパイプには接続構造の実用化例は無い
が、出願や提案のレベルとしては各種の発明考案が提唱
されている。然し従来構造のヒートパイプと蛇行細管ヒ
ートパイプとは作動原理も作動態様も全く異なる上に接
続構造を採用する目的も全く異なるので同一土俵上で比
較することは出来ない。
2. Description of the Related Art The meandering thin-tube heat pipe technology and its applied products are new technologies and new products which have just been developed, and the connection technology and connection structure for lengthening are new technologies and structures which are not at all available in the world. is there. Therefore, there is no example in the related art, and it is impossible to explain the cited reference. There is no practical example of the connection structure in the heat pipe of the conventional structure, but various inventions are proposed at the level of application and proposal. However, the heat pipe having the conventional structure and the meandering thin tube heat pipe have completely different operating principles and operating modes, and have completely different purposes for adopting the connection structure, so that they cannot be compared on the same ring.

【0003】図5に出願レベルの従来構造の円筒形ヒー
トパイプを長尺化する為の接続構造の一例を示す。図に
おいて11は熱量供給側ヒートパイプ、12は熱量受給
側ヒートパイプ、13は熱接続用ヒートパイプである。
13は中空管状ヒートパイプで中空部内に供給側及び受
給側ヒートパイプ11、12の端末部を圧入し突き合わ
せ接続する。この接続構造は実用性の高い構造ではあっ
たが、図から分かる通り熱量供給側ヒートパイプ11か
ら接続用ヒートパイプ13に熱量を供給する熱抵抗、ヒ
ートパイプ13の内部熱抵抗、接続用ヒートパイプ13
から熱量受給側ヒートパイプ12に熱量を供給する熱抵
抗の3段階の合計熱抵抗が極めて高く、温度降下が大き
いことに起因して実用化に至っていない。またこのヒー
トパイプは円筒形であり、細径化、小容量化が困難であ
ること、接続用ヒートパイプ13が大型化する等の点も
実用化に至らない要因となっている。また従来型の円筒
形ヒートパイプはその長さを延長せしめて長くした場
合、蛇行細管ヒートパイプの如き一定の限界長さで急激
かつ大幅に熱輸送性能が低下する特性はなく、性能低下
は徐々に発生し限界長さが長い特徴がある。この点で蛇
行細管ヒートパイプとは全く異なる特性を示すもので接
続構造の構成目的も異なるものとなる。本発明が対象と
する蛇行細管ヒートパイプは厚さ2mm以下の如く薄肉
化、小型化し、自由に折り曲げて使用し、高密度実装を
適用目的とするに対し、図5の従来例の円筒形ヒートパ
イプはそのような適用は全く不可能であり、適用分野を
全く異にする点から参考にすることは出来ない。
[0003] Fig. 5 shows an example of a connection structure for elongating a cylindrical heat pipe having a conventional structure at the application level. In the figure, 11 is a heat supply side heat pipe, 12 is a heat reception side heat pipe, and 13 is a heat pipe for heat connection.
Reference numeral 13 denotes a hollow tubular heat pipe, which press-fits the ends of the supply-side and reception-side heat pipes 11 and 12 into the hollow portion and butt-connects them. Although this connection structure was a highly practical structure, as can be seen from the figure, the heat resistance for supplying heat from the heat supply side heat pipe 11 to the connection heat pipe 13, the internal heat resistance of the heat pipe 13, the connection heat pipe 13
The total thermal resistance of the three stages of thermal resistance for supplying heat to the heat receiving side heat pipe 12 is extremely high, and has not been put to practical use due to a large temperature drop. In addition, this heat pipe is cylindrical, and it is difficult to reduce the diameter and the capacity of the heat pipe, and the connection heat pipe 13 is increased in size. In addition, when the conventional cylindrical heat pipe is extended to have a longer length, there is no characteristic such that the heat transport performance is sharply and drastically reduced at a certain limit length as in a meandering thin tube heat pipe, and the performance gradually decreases. And has a long limit length. In this regard, the heat pipe has characteristics completely different from those of the meandering thin tube heat pipe, and the purpose of the connection structure is also different. The meandering thin-tube heat pipe to which the present invention is applied is thinned and reduced in size to a thickness of 2 mm or less, and can be freely bent for use. Pipes do not have such an application at all and cannot be referred to in terms of completely different areas of application.

【0004】[0004]

【発明が解決しようとする問題点】細管が受熱部と放熱
部の間を往復蛇行を繰り返して構成される蛇行細管ヒー
トパイプは、受熱部の細管群が吸収した熱エネルギーに
より、封入されてある作動液が細管群内で核沸騰を発生
し、その圧力波により作動液が細管内の全ての部分で軸
方向往復振動を発生して、この作用により受熱部から放
熱部に向かって熱量を活発に輸送する。蛇行細管ヒート
パイプの作動原理はこの様であるから、その固有の性質
として細管内における圧力損失による、作動液振動エネ
ルギーの距離に依存する減衰は免れ得ない。従って蛇行
細管ヒートパイプは細管の内径が4mmの場合は受熱部
と放熱部の距離が数メートル、細管の内径が3mmの場
合は受熱部と放熱部の距離が2メートルであっても極め
て良好に熱量を輸送することが可能であるが、細管の内
径が小さくなるに従って実用的な熱量輸送可能距離が急
激に短縮し長尺化が不可能となる。
SUMMARY OF THE INVENTION A meandering thin tube heat pipe in which a thin tube repeats reciprocating meandering between a heat receiving portion and a heat radiating portion is sealed by the heat energy absorbed by the thin tube group of the heat receiving portion. Hydraulic fluid generates nucleate boiling in the narrow tube group, and the pressure wave causes the hydraulic fluid to generate axial reciprocating vibration in all parts of the narrow tube, and this action increases the amount of heat from the heat receiving part to the heat radiating part. Transport to Since the operating principle of the meandering thin-tube heat pipe is as described above, the inherent dependence of the hydraulic fluid energy on the distance due to the pressure loss in the thin tube cannot be avoided. Therefore, in the meandering thin tube heat pipe, when the inner diameter of the thin tube is 4 mm, the distance between the heat receiving portion and the heat radiating portion is several meters, and when the inner diameter of the thin tube is 3 mm, the distance between the heat receiving portion and the heat radiating portion is very good even when the distance is 2 meters. It is possible to transport heat, but as the inside diameter of the thin tube becomes smaller, the practical heat-transportable distance is sharply shortened, making it impossible to increase the length.

【0005】また蛇行細管ヒートパイプの設計は、細管
群の各1本毎における受熱部の核沸騰圧力波が夫々の1
本内の封入作動液に各1本の全長を越えて軸方向振動が
発生するよう、充分に余裕あるエネルギーを有するよう
設計される。この各1本の余裕エネルギーは他の細管群
の作動液の軸方向振動を助けるエネルギーとして作動液
の蒸気泡中に圧縮して蓄えられる。この様にして発生す
る各細管相互のエネルギー相互補完性は、蛇行細管ヒー
トパイプに蛇行ターン数を多数化せしめればせしめる程
に、ターン数増加の割合より遥かに高い比率で熱輸送能
力が増加すると云う優れた特性を与え、またターン数を
増加せしめればせしめる程その重力無依存性即ちトップ
ヒートモードでの作動性が大幅に改善されると云う特異
な機能を蛇行細管ヒートパイプに付与する。蛇行細管ヒ
ートパイプの優れた特性は以上の如くして与えられるか
ら、その反面として、設計上の蛇行細管ヒートパイプの
長さが長過ぎて、各1本の核沸騰エネルギーが夫々の細
管内作動液に各1本の全長に亙る軸方向振動を与えるに
不十分になった場合は上述の細管群間の相互補完性が全
ての細管において一斉に失われるので、蛇行細管ヒート
パイプの熱輸送性能は、一定の長さを限界としてこれを
越えた長さになると急激且つ極端に悪化すると云う、負
の特性をも付与される。
[0005] The meandering thin tube heat pipe is designed so that the nucleate boiling pressure wave of the heat receiving portion in each of the thin tube groups is one.
It is designed to have sufficient energy so that the enclosed hydraulic fluid in the book generates an axial vibration over the entire length of each one. Each of the surplus energy is compressed and stored in the steam bubbles of the working fluid as energy to assist the axial vibration of the working fluid in the other capillary tubes. The energy mutual complementarity of each capillary generated in this way is such that the more the number of meandering turns is increased in the meandering capillary heat pipe, the more the heat transfer capacity increases at a rate much higher than the rate of increase in the number of turns. This gives the meandering thin-tube heat pipe a unique function that gives such excellent characteristics and that the greater the number of turns, the more the gravity independence, that is, the operability in the top heat mode is greatly improved. . Since the excellent characteristics of the meandering thin tube heat pipe are given as described above, on the other hand, the length of the meandering thin tube heat pipe is too long in design, and one nucleate boiling energy is generated in each of the tubes. If the liquid is not sufficiently vibrated in the axial direction over the entire length of each liquid, the mutual complementarity between the above-mentioned groups of thin tubes is lost in all the thin tubes at once, so that the heat transfer performance of the meandering thin tube heat pipe is reduced. Is given a negative characteristic, which is that if the length exceeds a certain length as a limit, the length suddenly and extremely deteriorates.

【0006】上述のごとき理由から蛇行細管ヒートパイ
プには内径が1mm以下の如く大幅に細径化され、また
その長さが作動可能の限界長さを越える場合、熱輸送性
能が極端に悪化し、極端な場合はその作動が急激に停止
する如き固有の負の性質がある。近来業界においては機
器の小型化及び高密度実装の技術が進展するにつれて平
板状ヒートパイプに対する薄型化が厳しく要求されるよ
うになっており、その厚さは2mm以下とすることが求
められている。その為には蛇行細管ヒートパイプ及び蛇
行細径トンネルプレートヒートパイプの細管内径は1m
m以下とする必要がある。その場合はそれらの平板状ヒ
ートパイプの設計長さが上述の如き長さの限界を越える
ことが多くなり、熱輸送能力が設計上の予定能力に対し
極端に不足する事態が増加しつつあり、この点が大きな
問題点となっておりその対策が求められている。図4に
トンネル内径0.9mm、蛇行ターン数40、プレート
幅50mm、プレート厚さ1.9mmのトンネルプレー
トヒートパイプの長さと最大熱輸送量の関係の実験測定
値を線グラフで表してある。この様な細径トンネル内蔵
のプレートヒートパイプの場合は長さが300mm以上
になった場合は熱輸送能力が急激に低下することが分か
る。
For the reasons described above, the meandering thin-tube heat pipe has a significantly reduced inner diameter such as 1 mm or less, and if its length exceeds the operable limit length, the heat transport performance is extremely deteriorated. In an extreme case, there is an inherent negative property that the operation is suddenly stopped. 2. Description of the Related Art In recent years, as technology for miniaturization of devices and high-density mounting has progressed, thinner flat plate heat pipes have been strictly required, and the thickness thereof has been required to be 2 mm or less. . For this purpose, the inner diameter of the meandering thin tube heat pipe and the meandering small diameter tunnel plate heat pipe is 1 m.
m or less. In that case, the design length of those flat heat pipes often exceeds the length limit as described above, and the situation where the heat transport capacity is extremely short of the designed capacity is increasing. This point has become a major problem, and measures for it are required. FIG. 4 is a line graph showing experimental measurement values of the relationship between the length of the tunnel plate heat pipe having a tunnel inner diameter of 0.9 mm, the number of meandering turns of 40, the plate width of 50 mm, and the plate thickness of 1.9 mm and the maximum heat transport amount. It can be seen that in the case of such a plate heat pipe with a built-in small-diameter tunnel, when the length is 300 mm or more, the heat transport capacity is sharply reduced.

【0007】[0007]

【問題点を解決する為の手段】前項で説明した問題点発
生要因から考察すれば、問題点を解決する為の手段は熱
輸送性能が極端急激に低下する限界長さを越えることの
ない長さの複数の平板状ヒートパイプを接合熱抵抗の少
ない手段で相互に接続して、その合計全長により所望の
長さが得られる接続構造体にすることであることが分か
る。本発明はその為の接続構造であり、図1の斜視図に
説明するその基本的構造は以下の通りである。
[Means for Solving the Problems] Considering the causes of the problems described in the preceding paragraph, the means for solving the problems is such that the heat transport performance does not exceed the limit length at which the heat transport performance drops extremely sharply. It can be seen that the plurality of flat heat pipes are connected to each other by means having a small joining thermal resistance to form a connection structure having a desired length based on the total length. The present invention is a connection structure for that purpose, and its basic structure described in the perspective view of FIG. 1 is as follows.

【0008】蛇行細管ヒートパイプの細管群が整列せし
められて薄形平板状に構成されてある薄形長方形平板状
ヒートパイプの単位モジュールまたは金属平板内に蛇行
細管ヒートパイプが細径トンネル化せしめて内蔵せしめ
られて構成されてある薄形長方形平板状ヒートパイプの
単位モジュールの接続構造体において、接続構造体は所
定の長さの複数の薄形長方形平板状ヒートパイプの単位
モジュール1、2の、各単位モジュールの端末部が所定
の手段により順次相互に重ね合わせ熱接続されて構成さ
れて延長されて構成され長尺化された構造体であって、
薄形長方形平板状単位モジュール1、2の長さは、その
モジュールの両端部間を往復蛇行する蛇行細管の内径の
相当直径、蛇行細管の蛇行ターン数、封入作動液の作動
温度における細管内圧力損失、を勘案し所定の量の熱入
力が可及的高い熱輸送効率で熱輸送されるよう決定され
た長さであり、且つモジュール1、2の長さが一定の長
さを越えた場合急激な熱輸送効率低下が発生し始める蛇
行細管ヒートパイプの薄形平板構造体に固有の一定の長
さを限界長さとした場合の、限界長さに到達しない長さ
であり、薄形長方形平板状ヒートパイプの単位モジュー
ルを重ね合わせた熱接続部の形態構造としては、その接
続長さは、接続部面積が限界面積より小さい場合は所定
の輸送熱量以上の輸送が不可能になる蛇行細管ヒートパ
イプの薄形長方形平板状構造体に固有の性質の、限界面
積より小さくならない接続部長さであり、重ね合わせ熱
接続部3の熱接続構造としては、所定の手段による加圧
接続、熱伝導性グリスを併用した加圧接続、ろう接接
続、接着剤接続、の何れかの手段による低損失熱接続構
造として形成されてあることを特徴とする。この接続構
造体において単位モジュールの接続枚数は熱量供給側単
位モジュール1と熱量受給側単位モジュール2の2枚に
限定するものではなく、多数枚を順次接続しても良く、
また接続構造部も多数箇所に構成されてあっても良い。
The meandering thin-tube heat pipe is formed into a thin rectangular plate-shaped heat pipe unit module or a metal flat plate in which the thin tube groups of the meandering thin-tube heat pipe are aligned to form a small-diameter tunnel. In the connection structure of the unit module of the thin rectangular flat plate heat pipe configured to be built-in, the connection structure is formed of a plurality of unit modules 1 and 2 of the thin rectangular flat plate heat pipe having a predetermined length. A terminal body of each unit module is sequentially superimposed on each other by a predetermined means, is thermally connected, is configured to be extended and configured, and is an elongated structure,
The lengths of the thin rectangular flat plate unit modules 1 and 2 are the equivalent diameter of the inner diameter of the meandering thin tube reciprocating between both ends of the module, the number of meandering turns of the meandering thin tube, and the pressure in the thin tube at the operating temperature of the enclosed hydraulic fluid. When a predetermined amount of heat input is determined to be heat transported with as high a heat transport efficiency as possible in consideration of the loss, and the length of the modules 1 and 2 exceeds a certain length. If the fixed length inherent to the thin flat plate structure of the meandering thin-tube heat pipe where the rapid decrease in heat transfer efficiency starts to occur is the limit length, it is a length that does not reach the limit length, and is a thin rectangular flat plate In the form of a thermal connection formed by stacking the unit modules of a heat pipe, the connection length is such that if the area of the connection is smaller than the critical area, it is impossible to transport more than a predetermined amount of transport heat. Thin rectangle of pipe The length of the connection portion, which is a property inherent to the plate-like structure and does not become smaller than the critical area, is used as the heat connection structure of the overlapped heat connection portion 3 by a pressurized connection by a predetermined means and a heat-conductive grease. It is characterized in that it is formed as a low-loss heat connection structure by any one of pressure connection, brazing connection, and adhesive connection. In this connection structure, the number of connected unit modules is not limited to two, ie, the heat supply side unit module 1 and the heat amount reception side unit module 2, and a large number of units may be connected sequentially.
Also, the connection structure may be formed at a number of places.

【0009】[0009]

【作用】このように構成する場合は単位モジュール1、
2は、例えばトンネル内径が0.9mm、の如く細径
で、ターン数40、モジュール幅50mm、モジュール
厚さ1.9mmの如く薄形であった場合、図4から限界
長さは300mm以下と云うことになり、単位モジュー
ルの長さが300mm以下であるならば単位モジュール
は何れも200W以上の最大熱輸送量を保証することが
可能なモジュールであると云うことになる。また重ね合
わせ接合部は幅50mm、長さ100mm即ち熱接合部
3の面積が50m以上であるならば200Wの熱接続
でも熱輸送性能を低下させることなく接合することが出
来ることが実験的に明らかになっている。また重ね合わ
せ接合の熱抵抗値は比較的熱抵抗値の大きな接着剤接合
であっても0.01℃/W以下であり即ち温度降下2℃
以下であることが経験的に知られている。
In the case of such a configuration, the unit module 1,
2 is, for example, a small diameter such as a tunnel inner diameter of 0.9 mm and a thin shape such as 40 turns, a module width of 50 mm, and a module thickness of 1.9 mm. In other words, if the length of the unit module is 300 mm or less, it means that each unit module is a module capable of guaranteeing the maximum heat transfer amount of 200 W or more. Also, it is experimentally possible that the lap joint can be joined without deteriorating the heat transport performance even with a thermal connection of 200 W if the area of the thermal joint 3 is 50 mm 2 or more, that is, 50 mm in width and 100 mm in length. It is clear. Further, the thermal resistance of the lap joint is 0.01 ° C./W or less even for an adhesive joint having a relatively large thermal resistance, that is, a temperature drop of 2 ° C.
It is empirically known that:

【0010】以上の如くであるから、図4から推定して
この例の場合、本発明の基本構造に構成した薄形長方形
平板状ヒートパイプモジュールの接続構造体は全長が5
00mmの長さであっても200Wの熱輸送が可能であ
ることが分かる。この様な長尺の蛇行細径トンネル内蔵
の平板状のヒートパイプの従来の熱輸送性能は、その長
さが限界長さを越えることが明らかであり、漸く20W
の熱量を輸送することが出来る程度であった。本発明の
構造の如く実施する場合はトンネル内径2mm、モジュ
ール幅100mm、モジュール厚さ3mmの蛇行細径ト
ンネル内蔵の平板状ヒートパイプの単位モジュールの長
さは1m以上であり、その接続構造体は長さ2mに構成
することが可能になり、その最大熱輸送量は2KWを越
えるものとなることが期待される。この様な平板状ヒー
トパイプの製作は従来は全く不可能とされていた。
As described above, in the case of this example estimated from FIG. 4, the connecting structure of the thin rectangular flat heat pipe module having the basic structure of the present invention has a total length of 5 mm.
It can be seen that heat transport of 200 W is possible even with a length of 00 mm. It is clear that the conventional heat transport performance of such a flat heat pipe having a long, meandering small-diameter tunnel built therein has a length exceeding a limit length.
Could be transported. In the case of implementing the structure of the present invention, the unit module of the flat heat pipe with a built-in meandering small diameter tunnel having a tunnel inner diameter of 2 mm, a module width of 100 mm, and a module thickness of 3 mm is 1 m or more, and the connection structure is It is possible to construct a length of 2 m and its maximum heat transport is expected to exceed 2 KW. The production of such a flat heat pipe has heretofore been impossible at all.

【0011】[0011]

【実施例】【Example】

[第一実施例] 図2は本発明の接続構造の応用実施例
の一例を示す。本実施例においては重ね合わせ接続部の
形態構造は熱量供給側単位モジュール1の一端と熱量受
給側単位モジュール2の一端とが突き合わせられてあ
り、突き合わせ部の熱量供給側単位モジュール1と熱量
受給側単位モジュール2の両者に跨がって、且つその両
面の夫々に接続用単位モジュール4−1と4−2とが所
定の手段により重ね合わせ接着されてあることを特徴と
している。この接続構造の場合は熱接続部3の接着面積
は3−1、3−2、3−3、3−4と広くすることが出
来るので熱接続部3を通過する最大熱輸送量を大幅に増
加することが出来る。また熱量供給側単位モジュール1
の両面から熱量を取り出し、熱量受給側単位モジュール
2の両面から熱量を伝達するから熱接続効率は基本構造
に比較して倍増する利点もある。
First Embodiment FIG. 2 shows an example of an application embodiment of the connection structure of the present invention. In this embodiment, the form of the overlapped connection portion is such that one end of the heat supply unit module 1 and one end of the heat reception unit module 2 are abutted, and the heat supply unit module 1 and the heat reception side of the butted portion are joined. It is characterized in that the connection unit modules 4-1 and 4-2 are overlaid and bonded by predetermined means on both sides of the unit module 2 and on both sides thereof. In the case of this connection structure, the bonding area of the heat connection portion 3 can be increased to 3-1, 3-2, 3-3, and 3-4, so that the maximum heat transport amount passing through the heat connection portion 3 is greatly increased. Can be increased. Also, the heat supply side unit module 1
Since the heat quantity is taken out from both sides of the unit module 2 and the heat quantity is transmitted from both sides of the heat receiving unit module 2, the heat connection efficiency is also doubled as compared with the basic structure.

【0012】第一実施例の構成は図5の従来型の円筒形
状ヒートパイプの接続構造に類似してはいるが、機能的
には全く異なるものである。本実施例の接続用単位モジ
ュール4は何れも蛇行細径トンネル内蔵型モジュールで
あるから、充分に薄形に形成出来る、充分な可撓性を与
えることが出来る、図5の例の如き圧潰の恐れがないか
ら大きな加圧力で加圧接続が出来るから極めて少ない熱
抵抗の接続が可能となる、円筒の場合に比較して接触面
積を広くすることが出来るから極めて少ない熱抵抗の接
続が可能となる、等の点から従来例の円筒ヒートパイプ
の接続構造とは全く異なるものである。
The structure of the first embodiment is similar to the connection structure of the conventional cylindrical heat pipe of FIG. 5, but is completely different in function. Since each of the connection unit modules 4 of this embodiment is a module with a built-in meandering small-diameter tunnel, it can be formed sufficiently thin and can provide sufficient flexibility. Since there is no fear, it is possible to connect with a very small thermal resistance because a pressurized connection can be made with a large pressing force, and a connection area with a very small heat resistance can be made because the contact area can be made wider than in the case of a cylinder It is completely different from the connection structure of the conventional cylindrical heat pipe from the point of becoming.

【0013】[第二実施例] 図3は本発明の接続構造
の応用実施例の他の一例を示す。本実施例においては熱
量供給側単位モジュール1は一枚の単位モジュールから
なり、熱量受給側単位モジュール2は2枚の単位モジュ
ール2−1、2−2の積層構造であり、重ね合わせ熱接
続部の形態構造としては、熱量受給側単位モジュール2
の一端において積層構造の接着が解除され熱量供給側単
位モジュール1の厚さに相当する熱接続用間隙5が設け
られてあり、この間隙5に熱量供給側単位モジュール1
の一端が圧入されて、然る後に所定の熱接続構造に形成
されてあることを特徴としている。
[Second Embodiment] FIG. 3 shows another example of an application embodiment of the connection structure of the present invention. In this embodiment, the calorie supply unit module 1 is composed of one unit module, and the calorie supply unit module 2 is a laminated structure of two unit modules 2-1 and 2-2. As the form structure of the heat receiving side unit module 2
At one end, the adhesive of the laminated structure is released, and a heat connection gap 5 corresponding to the thickness of the heat supply unit module 1 is provided.
Is press-fitted and then formed into a predetermined thermal connection structure.

【0014】本実施例の特徴は接続構造が簡略化される
点、及び熱量受給側単位モジュール2が2−1、2−2
の積層構造であることにより、熱量受給側単位モジュー
ル2の熱抵抗が小さく熱量受給側単位モジュール2を熱
量供給側単位モジュール1より長尺化することが出来る
点、において基本構造及び第一実施例より優れている。
従来型の円筒形ヒートパイプの接続構造と基本的に異な
る点、円筒形ヒートパイプの接続構造より優れている点
においては第一実施例と同様である。
The features of this embodiment are that the connection structure is simplified, and that the heat receiving side unit modules 2 are 2-1 and 2-2.
The basic structure and the first embodiment in that the heat receiving side unit module 2 has a small thermal resistance and the heat receiving side unit module 2 can be made longer than the heat supplying side unit module 1 by having the laminated structure of Better.
It is the same as the first embodiment in that it is basically different from the connection structure of the conventional cylindrical heat pipe and is superior to the connection structure of the cylindrical heat pipe.

【0015】[0015]

【発明の効果】従来不可能とされていた、蛇行細管ヒー
トパイプの細管群が整列せしめられて薄形平板状に構成
されてある薄形長方形平板状ヒートパイプまたは金属平
板内に蛇行細管ヒートパイプが細径トンネル化せしめて
内蔵せしめられて構成されてある薄形長方形平板状ヒー
トパイプが、何れも単位モジュールの接続構造とするこ
とにより長尺化が可能になり、また長尺化された接続構
造体の熱輸送能力は、非接続構造の一体型長尺体に比較
して10倍に改善された。この様な薄形長方形平板状ヒ
ートパイプの長尺化、及びその熱輸送能力の強力化は近
来の業界の強い要求に合致するものであり機器実装の小
型化及び軽量化に大きな貢献をするものと信ぜられる。
According to the present invention, a thin rectangular flat plate heat pipe or a thin metal plate having a meandering thin tube heat pipe in which the thin tube groups of the meandering thin tube heat pipe are arranged in a thin flat plate shape. The thin rectangular plate-shaped heat pipe, which is constructed by being built into a small-diameter tunnel and built in, can be made longer by adopting the connection structure of the unit modules, and the longer connection becomes possible. The heat transport capacity of the structure was improved by a factor of 10 as compared to the integral long body of the unconnected structure. The lengthening of such a thin rectangular flat heat pipe and the strengthening of its heat transport capability meet the strong demands of the recent industry, and greatly contribute to the miniaturization and weight reduction of equipment mounting. Is believed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の薄形長方形平板状ヒートパイプモジ
ュールの接続構造体の基本構造を示す斜視図である。
FIG. 1 is a perspective view showing a basic structure of a connection structure of a thin rectangular flat heat pipe module of the present invention.

【図2】本発明の薄形長方形平板状ヒートパイプモジュ
ールの接続構造体の第一実施例を示す斜視図である。
FIG. 2 is a perspective view showing a first embodiment of a connection structure of a thin rectangular flat heat pipe module of the present invention.

【図3】本発明の薄形長方形平板状ヒートパイプモジュ
ールの接続構造体の第二実施例を示す斜視図である。
FIG. 3 is a perspective view showing a second embodiment of the connection structure of the thin rectangular flat heat pipe module of the present invention.

【図4】平板状単位モジュールの長さと最大熱輸送量の
関係を表す線グラフ図である。
FIG. 4 is a line graph showing the relationship between the length of a flat unit module and the maximum heat transport amount.

【図5】従来型円筒形ヒートパイプの接続構造の一例を
示す断面図である。
FIG. 5 is a sectional view showing an example of a connection structure of a conventional cylindrical heat pipe.

【符号の説明】[Explanation of symbols]

1 熱量供給側単位モジュール 2 熱量受給側単位モジュール 2−1 熱量受給側単位モジュール 2−2 熱量受給側単位モジュール 3 熱接続部 3−1 熱接続部 3−2 熱接続部 3−3 熱接続部 3−4 熱接続部 4−1 接続用単位モジュール 4−2 接続用単位モジュール 5 熱接続用間隙 11 熱量供給側ヒートパイプ 12 熱量受給側ヒートパイプ 13 熱接続用ヒートパイプ DESCRIPTION OF REFERENCE NUMERALS 1 Heat supply side unit module 2 Heat reception side unit module 2-1 Heat reception side unit module 2-2 Heat reception side unit module 3 Heat connection section 3-1 Heat connection section 3-2 Heat connection section 3-3 Heat connection section 3-4 Thermal connection part 4-1 Connection unit module 4-2 Connection unit module 5 Heat connection gap 11 Heat supply side heat pipe 12 Heat reception side heat pipe 13 Heat connection heat pipe

【手続補正書】[Procedure amendment]

【提出日】平成9年4月8日[Submission date] April 8, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】蛇行細管ヒートパイプの細管群が整列せし
められて薄形平板状に構成されてある薄形長方形平板状
ヒートパイプの単位モジュールまたは金属平板内に蛇行
細管ヒートパイプが細径トンネル化せしめて内蔵せしめ
られて構成されてある薄形長方形平板状ヒートパイプの
単位モジュールの接続構造体において、接続構造体は所
定の長さの複数の薄形長方形平板状ヒートパイプの単位
モジュール1、2の、各単位モジュールの端末部が所定
の手段により順次相互に重ね合わせ熱接続されて構成さ
れて延長されて構成され長尺化された構造体であって、
薄形長方形平板状単位モジュール1、2の長さは、その
モジュールの両端部間を往復蛇行する蛇行細管の内径の
相当直径、蛇行細管の蛇行ターン数、封入作動液の作動
温度における細管内圧力損失、を勘案し所定の量の熱入
力が可及的高い熱輸送効率で熱輸送されるよう決定され
た長さであり、且つモジュール1、2の長さが一定の長
さを越えた場合急激な熱輸送効率低下が発生し始める蛇
行細管ヒートパイプの薄形平板構造体に固有の一定の長
さを限界長さとした場合の、限界長さに到達しない長さ
であり、薄形長方形平板状ヒートパイプの単位モジュー
ルを重ね合わせた熱接続部の形態構造としては、その接
続長さは、接続部面積が限界面積より小さい場合は所定
の輸送熱量以上の輸送が不可能になる蛇行細管ヒートパ
イプの薄形長方形平板状構造体に固有の性質の、限界面
積より小さくならない接続部長さであり、重ね合わせ熱
接続部3の熱接続構造としては、所定の手段による加圧
接続、熱伝導性グリスを併用した加圧接続、ろう接接
続、接着剤接続、の何れかの手段による低損失熱接続構
造として形成されてあることを特徴とする。この接続構
造体において単位モジュールの接続枚数は熱量供給側単
位モジュール1と熱量受給側単位モジュール2の2枚に
限定するものではなく、多数枚を順次接続しても良く、
また接続構造部も多数箇所に構成されてあっても良い。
即ち単位モジュールに複数箇所に接続構造部をも受けて
この接続部構造体は複数分岐型の接続構造体とすること
が可能であり、複数の熱量供給モジュールから供給され
る熱量を単一の熱量受給モジュールに集合受給すること
も、また単一の熱量供給モジュールから供給される熱量
を複数の熱量受給モジュールに分散供給することも可能
になる。
The meandering thin-tube heat pipe is formed into a thin rectangular plate-shaped heat pipe unit module or a metal flat plate in which the thin tube groups of the meandering thin-tube heat pipe are aligned to form a small-diameter tunnel. In the connection structure of the unit module of the thin rectangular flat plate heat pipe configured to be built-in, the connection structure is formed of a plurality of unit modules 1 and 2 of the thin rectangular flat plate heat pipe having a predetermined length. A terminal body of each unit module is sequentially superimposed on each other by a predetermined means, is thermally connected, is configured to be extended and configured, and is an elongated structure,
The lengths of the thin rectangular flat plate unit modules 1 and 2 are the equivalent diameter of the inner diameter of the meandering thin tube reciprocating between both ends of the module, the number of meandering turns of the meandering thin tube, and the pressure in the thin tube at the operating temperature of the enclosed hydraulic fluid. When a predetermined amount of heat input is determined to be heat transported with as high a heat transport efficiency as possible in consideration of the loss, and the length of the modules 1 and 2 exceeds a certain length. If the fixed length inherent to the thin flat plate structure of the meandering thin-tube heat pipe where the rapid decrease in heat transfer efficiency starts to occur is the limit length, it is a length that does not reach the limit length, and is a thin rectangular flat plate In the form of a thermal connection formed by stacking the unit modules of a heat pipe, the connection length is such that if the area of the connection is smaller than the critical area, it is impossible to transport more than a predetermined amount of transport heat. Thin rectangle of pipe The length of the connection portion, which is a property inherent to the plate-like structure and does not become smaller than the critical area, is used as the heat connection structure of the overlapped heat connection portion 3 by a pressurized connection by a predetermined means and a heat-conductive grease. It is characterized in that it is formed as a low-loss heat connection structure by any one of pressure connection, brazing connection, and adhesive connection. In this connection structure, the number of connected unit modules is not limited to two, ie, the heat supply side unit module 1 and the heat amount reception side unit module 2, and a large number of units may be connected sequentially.
Also, the connection structure may be formed at a number of places.
In other words, the connection structure part is also received at multiple locations in the unit module.
This connection structure should be a multi-branch connection structure
Can be supplied from multiple heat supply modules
Collective delivery of heat to a single heat receiving module
Also the amount of heat supplied from a single calorie supply module
Can be distributed to multiple heat receiving modules
become.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】以上の如くであるから、図4から推定して
この例の場合、本発明の基本構造に構成した薄形長方形
平板状ヒートパイプモジュールの接続構造体は全長が5
00mmの長さであっても200Wの熱輸送が可能であ
ることが分かる。この様な長尺の蛇行細径トンネル内蔵
の平板状のヒートパイプの従来の熱輸送性能は、その長
さが限界長さを越えることが明らかであり、漸く20W
の熱量を輸送することが出来る程度であった。本発明の
構造の如く実施する場合はトンネル内径2mm、モジュ
ール幅100mm、モジュール厚さ3mmの蛇行細径ト
ンネル内蔵の平板状ヒートパイプの単位モジュールの長
さは1m以上であり、その接続構造体は長さ2mに構成
することが可能になり、その最大熱輸送量は2KWを越
えるものとなることが期待される。この様な平板状ヒー
トパイプの製作は従来は全く不可能とされていた。また
本発明の構造を適用することにより長尺長方形プレート
ヒートパイプは単に長さ方向の接続構造体を構成するの
みに留まらず、分岐型長尺長方形プレートヒートパイプ
に構成し、複数の長方形プレートヒートパイプをその一
端において結合せしめたり、複数の長方形プレートヒー
トパイプをその一端において分岐せしめた構造体に構成
することにも適用することが可能である。
As described above, in the case of this example estimated from FIG. 4, the connecting structure of the thin rectangular flat heat pipe module having the basic structure of the present invention has a total length of 5 mm.
It can be seen that heat transport of 200 W is possible even with a length of 00 mm. It is clear that the conventional heat transport performance of such a flat heat pipe having a long, meandering small-diameter tunnel built therein has a length exceeding a limit length.
Could be transported. In the case of implementing the structure of the present invention, the unit module of the flat heat pipe with a built-in meandering small diameter tunnel having a tunnel inner diameter of 2 mm, a module width of 100 mm, and a module thickness of 3 mm is 1 m or more, and the connection structure is It is possible to construct a length of 2 m and its maximum heat transport is expected to exceed 2 KW. The production of such a flat heat pipe has heretofore been impossible at all. Also
Long rectangular plate by applying the structure of the present invention
Heat pipes simply constitute a longitudinal connection structure
It is not limited to only, branch type long rectangular plate heat pipe
And multiple rectangular plate heat pipes
Join at the edges or use multiple rectangular plate heaters
The top pipe is made into a structure with a branch at one end
It is also possible to apply to doing.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蛇行細管ヒートパイプの細管群が整列せ
しめられて薄形平板状に構成されてある薄形長方形平板
状ヒートパイプの単位モジュールまたは金属平板内に蛇
行細管ヒートパイプが細径トンネル化せしめて内蔵せし
められて構成されてある薄形長方形平板状ヒートパイプ
の単位モジュールの接続構造体において、接続構造体は
所定の長さの複数の単位薄形長方形平板状ヒートパイプ
モジュールの、各単位モジュールの端末部が所定の手段
により順次重ね合わせ熱接続されて延長して構成され長
尺化された構造体であって、薄形長方形平板状の単位モ
ジュールの長さは、そのモジュールの両端部間を往復蛇
行する蛇行細管の内径の相当直径、蛇行細管の蛇行ター
ン数、封入作動液の作動温度における細管内圧力損失、
を勘案し所定の量の熱入力が可及的高い熱輸送効率で熱
輸送されるよう決定された長さであり、且つこの単位モ
ジュールの長さは、その長さが一定の長さを越えた場合
急激な熱輸送効率低下が発生し始める蛇行細管ヒートパ
イプの薄形平板構造体に固有の一定の長さを限界長さと
した場合の、限界長さに到達しない長さであり、薄形長
方形平板状単位モジュール重ね合わせ熱接続部の形態構
造としては、その接続長さは、接続部面積が限界面積よ
り小さい場合は所定の輸送熱量以上の輸送が不可能にな
る蛇行細管ヒートパイプの薄形長方形平板状構造体に固
有の性質の、限界面積より小さくならない接続部長さで
あり、重ね合わせ熱接続部の熱接続構造は、所定の手段
による加圧接続、熱伝導性グリスを併用した加圧接続、
ろう接接続、接着剤接続、の何れかの手段による低損失
熱接続構造として形成されてあることを特徴とする薄形
長方形平板状ヒートパイプモジュールの接続構造体。
1. A meandering thin tube heat pipe is formed into a thin rectangular flat plate heat pipe unit module or metal flat plate in which thin tube groups of meandering thin tube heat pipes are aligned to form a small diameter tunnel. In a connection structure of a unit module of a thin rectangular flat heat pipe configured to be built-in at least, the connection structure is a unit of a plurality of unit thin rectangular flat heat pipe modules having a predetermined length. A terminal structure of the module is formed by elongating the terminal portions of the module by successively overlapping and thermally connecting them by a predetermined means, and the length of the unit module is a thin rectangular flat plate. Equivalent diameter of the inner diameter of the meandering thin tube reciprocating meandering, the number of meandering turns of the meandering thin tube, pressure loss in the thin tube at the operating temperature of the enclosed working fluid,
The length of the unit module is determined so that a predetermined amount of heat input is transferred with as high a heat transfer efficiency as possible, and the length of the unit module exceeds a certain length. If the fixed length inherent to the thin flat plate structure of the meandering thin-tube heat pipe is considered to be the limit length when the heat transfer efficiency suddenly starts to decrease, the length does not reach the limit length. As the form structure of the rectangular flat plate unit module superimposed thermal connection portion, the connection length is such that when the connection portion area is smaller than the limit area, transport of a predetermined amount of transport heat or more is impossible, and the thin, meandering thin tube heat pipe is not provided. The length of the connection portion, which is a property inherent in the rectangular flat plate-shaped structure and does not become smaller than the critical area, the heat connection structure of the overlapped heat connection portion is a pressurized connection by a predetermined means and a heat-conductive grease. Pressure connection,
A connection structure for a thin rectangular flat heat pipe module, wherein the connection structure is formed as a low-loss heat connection structure by one of a brazing connection and an adhesive connection.
【請求項2】 重ね合わせ熱接続部の形態構造は熱量供
給側単位モジュールの一端と熱量受給側単位モジュール
の一端とが突き合わせられてあり、突き合わせ部の熱量
供給側単位モジュールと熱量受給側単位モジュールの両
者に跨がって、且つその両面の夫々に接続用単位モジュ
ールが所定の手段により重ね合わせ接着されてあること
を特徴とする請求項1に記載の薄形長方形平板状ヒート
パイプモジュールの接続構造体。
2. The form structure of the superimposed thermal connection portion is such that one end of the heat amount supply side unit module and one end of the heat amount reception side unit module are abutted, and the heat amount supply side unit module and the heat amount reception side unit module of the butted portion. 2. The connection of the thin rectangular flat plate-like heat pipe module according to claim 1, wherein the connection unit modules are overlaid and bonded by predetermined means on both sides thereof and on both sides thereof. Structure.
【請求項3】 熱量供給側単位モジュールは一枚の単位
モジュールからなり、熱量受給側単位モジュールは2枚
の単位モジュールの積層構造であり、重ね合わせ熱接続
部の形態構造としては、熱量受給側単位モジュールの一
端において積層構造の接着が解除され熱量供給側単位モ
ジュールの厚さに相当する間隙が設けられてあり、この
間隙に熱量供給側単位モジュールの一端が圧入されて、
然る後に所定の熱接続構造に形成されてあることを特徴
とする請求項1に記載の薄形長方形平板状ヒートパイプ
モジュールの接続構造体。
3. The heat supply side unit module is composed of one unit module, and the heat supply side unit module has a laminated structure of two unit modules. At one end of the unit module, a gap corresponding to the thickness of the calorie supply unit module is provided by releasing the adhesion of the laminated structure, and one end of the calorie supply unit module is press-fitted into this gap,
The connection structure for a thin rectangular flat heat pipe module according to claim 1, wherein the connection structure is formed into a predetermined heat connection structure thereafter.
JP11857097A 1997-04-03 1997-04-03 Rectangular flat heat pipe module connection structure Expired - Lifetime JP4069302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11857097A JP4069302B2 (en) 1997-04-03 1997-04-03 Rectangular flat heat pipe module connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11857097A JP4069302B2 (en) 1997-04-03 1997-04-03 Rectangular flat heat pipe module connection structure

Publications (2)

Publication Number Publication Date
JPH10281671A true JPH10281671A (en) 1998-10-23
JP4069302B2 JP4069302B2 (en) 2008-04-02

Family

ID=14739876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11857097A Expired - Lifetime JP4069302B2 (en) 1997-04-03 1997-04-03 Rectangular flat heat pipe module connection structure

Country Status (1)

Country Link
JP (1) JP4069302B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151636A (en) * 2000-11-10 2002-05-24 Ts Heatronics Co Ltd Heat sink
EP1366990A1 (en) * 2002-05-30 2003-12-03 Alcatel Heat transfer device for satellite comprising an evaporator
US7986520B2 (en) 2009-06-22 2011-07-26 Kabushiki Kaisha Toshiba Electronic device
US8054081B2 (en) * 2006-03-27 2011-11-08 Horiba Stec, Co., Ltd. Residual gas analyzer
US8098490B2 (en) 2009-11-20 2012-01-17 Kabushiki Kaisha Toshiba Electronic apparatus
CN103946661A (en) * 2012-01-27 2014-07-23 古河电气工业株式会社 Heat transport apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151636A (en) * 2000-11-10 2002-05-24 Ts Heatronics Co Ltd Heat sink
EP1366990A1 (en) * 2002-05-30 2003-12-03 Alcatel Heat transfer device for satellite comprising an evaporator
US8054081B2 (en) * 2006-03-27 2011-11-08 Horiba Stec, Co., Ltd. Residual gas analyzer
US7986520B2 (en) 2009-06-22 2011-07-26 Kabushiki Kaisha Toshiba Electronic device
US8098490B2 (en) 2009-11-20 2012-01-17 Kabushiki Kaisha Toshiba Electronic apparatus
US8861201B2 (en) 2009-11-20 2014-10-14 Kabushiki Kaisha Toshiba Electronic apparatus
CN103946661A (en) * 2012-01-27 2014-07-23 古河电气工业株式会社 Heat transport apparatus
JPWO2013111815A1 (en) * 2012-01-27 2015-05-11 古河電気工業株式会社 Heat transport equipment

Also Published As

Publication number Publication date
JP4069302B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP2544701B2 (en) Plate type heat pipe
JPH0914875A (en) Porous flat metal tube heat pipe type heat exchanger
US10317143B2 (en) Heat exchanger and method of making the same
US8859882B2 (en) Solid state heat pipe heat rejection system for space power systems
EP2639539A1 (en) Tube for heat exchanger
JPH10281671A (en) Joint structure body of thin rectangular planar heat-pipe module
US20110036553A1 (en) Integral evaporator and defrost heater system
JP4901283B2 (en) Stack and manufacturing method thereof
US20050217837A1 (en) Compact counterflow heat exchanger
WO2013048922A2 (en) Brazed microchannel heat exchanger with thermal expansion compensation
US8646677B2 (en) Method of joining graphite fibers to a substrate
JPH08271175A (en) Stainless steel plate laminated heat exchanger, and its production
JP2001241870A (en) Small-diameter tunnel plate heat pipe
JP2002151636A (en) Heat sink
JP3829242B2 (en) Flat piping
JP3962932B2 (en) Composite plate heat pipe
JP4193189B2 (en) Pressure-resistant structure thin plate heat pipe and its manufacturing method
JPH06174386A (en) Thermal connection tape
EP2679327A2 (en) Method of brazing graphite fibers to a substrate
JP3997555B2 (en) Composite plate heat pipe
JP2006194548A (en) Heat pipe joint and heat pipe with heat pipe joint
CN220366602U (en) Cold screen device
JP2001280868A (en) Perforated flat metal heat pipe
CN110148589B (en) Chip assembly and chip refrigerating device based on pulse tube micro-channel
JPH04361841A (en) Composite honeycomb structural material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term