JPH10277744A - Manufacture of welded tube with thick wall and large diameter - Google Patents

Manufacture of welded tube with thick wall and large diameter

Info

Publication number
JPH10277744A
JPH10277744A JP8951097A JP8951097A JPH10277744A JP H10277744 A JPH10277744 A JP H10277744A JP 8951097 A JP8951097 A JP 8951097A JP 8951097 A JP8951097 A JP 8951097A JP H10277744 A JPH10277744 A JP H10277744A
Authority
JP
Japan
Prior art keywords
welding
pass
groove
over
passes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8951097A
Other languages
Japanese (ja)
Other versions
JP3304815B2 (en
Inventor
Makoto Matsuura
信 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP08951097A priority Critical patent/JP3304815B2/en
Publication of JPH10277744A publication Critical patent/JPH10277744A/en
Application granted granted Critical
Publication of JP3304815B2 publication Critical patent/JP3304815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture with high efficiency a welded tube with high performance, which an satisfy its specification satisfactorily to a line tube to which low temperature toughness in -30 deg.C or below in a thick wall (35 mm or over) is required. SOLUTION: When performing submerge arc welding using melting type flux to the tube with a large diameter of 35 mm-42 mm in thickness, a heat input quantity per pass is limited to 55 kJ/cm-65 kJ/cm, and the welding of one pass on an inside surface and three passes on an outside surface is performed. In is acceptable that at least a part of a groove angle on the outside surface side becomes 65 deg. or over. In that case, further, it is acceptable tat the toe of weld of the weld beads of each layer on the outside surface side, comes into contact with a surface of 65 deg.C or over of a groove on the outside surface side, whose at least a part becomes 65 deg.C or over.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大径溶接鋼管の溶
接による製造方法、特に低温靱性の優れた大径溶接鋼管
の溶接による製造方法に関する。
The present invention relates to a method for manufacturing a large-diameter welded steel pipe by welding, and more particularly to a method for manufacturing a large-diameter welded steel pipe having excellent low-temperature toughness.

【0002】[0002]

【従来の技術】一般に、肉厚30mm以上の大径溶接鋼管を
製管、溶接する際には次のような方法が用いられる。
2. Description of the Related Art Generally, the following method is used for producing and welding a large-diameter welded steel pipe having a thickness of 30 mm or more.

【0003】(1) 溶接にボンド型フラックスを用いる方
法で、1パス当たりの入熱を30kJ/cm以下に制限し、従
来型の多層盛溶接用のX型開先加工を行ってからロール
ベンダまたはC、U、O成形を行って素管となし、次い
で仮付溶接→内面溶接→外面側ガウジング→外面多層盛
溶接という一連の工程を経て製造する方法。
(1) A method using a bond type flux for welding, limiting the heat input per pass to 30 kJ / cm or less, and performing a conventional X-type groove for multi-pass welding, followed by a roll bender. Alternatively, a method of forming a raw pipe by performing C, U, O forming, and then manufacturing through a series of steps of tack welding → inside welding → outside gouging → outside multi-layer welding.

【0004】(2) 38mm鋼板をUO成形後、溶融型フラッ
クスを用いて内面1パス・外面2パスの多層盛溶接を行
い、次いでQT処理とサイジングを行い仕上げる方法
(文献:High Strength Pipe for Tension Leg Platform
'92 TUBE INTERNATIONAL) 。
(2) UO forming of a 38 mm steel sheet, multi-pass welding of one pass on the inner surface and two passes on the outer surface using a molten flux, followed by QT treatment and sizing to finish
(Reference: High Strength Pipe for Tension Leg Platform
'92 TUBE INTERNATIONAL).

【0005】(3) 44mm鋼板をロールベンダー成形後に、
溶融型フラックスを用いて内面1パス・外面2パスの多
層盛溶接を行う方法 (文献:厚肉板巻き鋼管の高能率溶
接技術の開発'89 溶接冶金研究委員会) 。
(3) After forming a 44 mm steel plate by roll bender,
A method of performing multi-pass welding of one pass on the inner surface and two passes on the outer surface using a molten flux (Literature: Development of high-efficiency welding technology for thick-walled steel tube wound pipes '89 Welding Metallurgy Research Committee).

【0006】(4) 厚肉(30 mm以上) で−30℃以下の低温
靱性の要求されるラインパイプ・海洋構造物に対してそ
の仕様を十分に満足し得る、高性能な鋼管を高能率で製
造する方法で、1パス当たりの入熱を50〜60KJ/mm に制
限し、UO成形後に、溶融型フラックスを用いて内面1
パス・外面2パス (肉厚30〜35mm) あるいは内面2パス
・外面2パス (肉厚35mm以上) の多層盛溶接を実施する
方法 (特開平6−328255号公報) 。
(4) A high-performance steel pipe capable of satisfying the specifications sufficiently for line pipes and offshore structures requiring a low-temperature toughness of -30 ° C. or less with a thick wall (30 mm or more) and a high efficiency. The heat input per pass is limited to 50-60 KJ / mm, and after UO molding, the inner surface
A method of performing multi-pass welding of two passes on the outer surface (thickness of 30 to 35 mm) or two passes on the inner surface and two passes on the outer surface (thickness of 35 mm or more) (JP-A-6-328255).

【0007】(5) 板厚40mm以上の厚鋼板の溶接におい
て、初層の溶接を、鉄粉を20〜40重量%を含むフラック
スを用いて溶接し、最終層は鉄粉を含まず、かつ融点を
規制したフラックスを用いて溶接する、ビード外観の良
好な高能率サブマージアーク溶接を達成する方法( 特開
平7−204856号公報) 。
(5) In welding a steel plate having a thickness of 40 mm or more, the first layer is welded by using a flux containing 20 to 40% by weight of iron powder, and the final layer does not contain iron powder, and A method for achieving high-efficiency submerged arc welding with good bead appearance by welding using a flux whose melting point is regulated (Japanese Patent Application Laid-Open No. 7-204856).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
従来技術にはそれぞれ下記のような問題点があり、製造
時の高能率と低温靱性の両立は困難である。すなわち 上記(1) :開先加工の工数が大きく、また溶接パス数が
例えば14パスというように非常に多くなるためにその施
工および溶接補修にも多くの工数を要する。
However, each of the above-mentioned prior arts has the following problems, and it is difficult to achieve both high efficiency and low-temperature toughness during manufacturing. That is, the above (1): the man-hour for groove processing is large, and the number of welding passes is extremely large, for example, 14 passes.

【0009】上記(2) :QT・サイジング処理にともな
う工数増加・コスト増加が不可避である。 上記(3) :1パス当たりの入熱が100 kJ/cm 程度とな
り、例えばAPI Gr X-60以上の高強度鋼管ではvTs-30℃
以下の靱性は確保できない。
(2): An increase in man-hours and cost due to the QT / sizing process is inevitable. (3): Heat input per pass is about 100 kJ / cm. For example, vTs-30 ℃ for high-strength steel pipe of API Gr X-60 or higher
The following toughness cannot be secured.

【0010】上記(4) :35mm以上の肉厚をもつ鋼管の製
造では、内面1パス目から内面2パス目に移行する際に
1パス目のスラグを排除しなければならず、また倣いロ
ールの先端形状も変更しなければならないので工数増加
を招く。 上記(5) : 初層、最終層とフラックス組成を変えて溶接
を行う必要があり、作業の煩雑さを避けられない。
[0010] (4): In the production of a steel pipe having a wall thickness of 35 mm or more, the slag in the first pass must be eliminated when the inner surface passes from the first pass to the second pass, and the copying roll is required. The shape of the tip must also be changed, leading to an increase in man-hours. (5): It is necessary to perform welding by changing the flux composition between the first layer and the last layer, and it is inevitable that the work is complicated.

【0011】よって、本発明の課題は、上述のような従
来技術では不可避な問題点を解決し、低温高靱性鋼管の
高能率な溶接による製造方法を開発することである。本
発明のより具体的目的は、厚肉(35 mm以上) で−30℃以
下の低温靱性の要求されるラインパイプに対してその仕
様を十分に満足し得る、高性能な鋼管を高能率で製造す
る技術を開発することである。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to solve a problem inevitable in the prior art as described above and to develop a method for producing a low-temperature, high-toughness steel pipe by high-efficiency welding. A more specific object of the present invention is to produce a high-performance steel pipe with high efficiency that can sufficiently satisfy the specifications for a line pipe requiring a low-temperature toughness of −30 ° C. or less with a thick wall (35 mm or more). It is to develop the manufacturing technology.

【0012】[0012]

【課題を解決するための手段】ここに、本発明者らは、
フラックスの取扱を容易にするとともにフラックス段取
替の煩雑さを避けるために溶融型フラックスを使い、か
つ靱性のバラツキ、劣化を防止するために溶接入熱を1
パス当たり50〜60kJ/cm と、狭い範囲に制限するととも
に内面1パス、外面3パスとする多電極サブマージアー
ク溶接法により溶接することにより、予想外にも、HAZ
靱性の劣化を抑制しながら溶接作業の能率化および溶接
部の高品質化を図ることができることを知り、本発明を
完成した。
Means for Solving the Problems Here, the present inventors have
Use a molten flux to facilitate the handling of the flux and avoid the complexity of changing the flux, and reduce the welding heat input by 1 to prevent the variation and deterioration of the toughness.
Unexpectedly, HAZ was unexpectedly welded by a multi-electrode submerged arc welding method with 50 to 60 kJ / cm per pass, limited to a narrow range and one pass on the inner surface and three passes on the outer surface.
We have found that it is possible to improve the efficiency of the welding operation and improve the quality of the welded part while suppressing the deterioration of toughness, and completed the present invention.

【0013】よって、本発明の要旨とするところは次の
通りである。 (1) 肉厚35mm以上の大径鋼管に対し溶融型フラックスを
用いたサブマージアーク溶接を行う際に、1パス当たり
の入熱量を55kJ/cm 以上65kJ/cm 以下に制限し、内面1
パス・外面3パスの溶接を行うことを特徴とする製管お
よび溶接方法。
Therefore, the gist of the present invention is as follows. (1) When performing submerged arc welding using a molten flux to a large diameter steel pipe with a wall thickness of 35 mm or more, limit the heat input per pass to 55 kJ / cm or more and 65 kJ / cm or less, and
A pipe making and welding method characterized by performing three passes / outer surface welding.

【0014】(2) 上記サブマージアーク溶接を行う外面
側の開先角度の少なくとも一部が65°以上となっている
ことを特徴とする上記(1) 記載の方法。 (3) 上記の外面3パスの溶接の外面側各層の溶接ビード
の止端が、少なくとも1部が65°以上となっている上記
の外面側の開先角度65°以上の面に接するようにするこ
とを特徴とする上記(2) 記載の方法。
(2) The method according to (1), wherein at least a part of the groove angle on the outer surface side on which the submerged arc welding is performed is 65 ° or more. (3) The toe of the weld bead of each layer on the outer surface side of the above-mentioned three-pass welding of the outer surface is in contact with the surface having the groove angle of 65 ° or more on the outer surface, at least one part of which is 65 ° or more. The method according to the above (2), wherein

【0015】このように本発明によれば、前述の特開平
6−328255号公報記載の発明と比較して、内面を1パス
に減らしている。内面溶接の場合、溶接後のスラグ排出
を次工程で行わなければならないため、2パスにすると
次工程に進めたパイプを再び内面溶接に戻してくる必要
があり、作業が煩雑になるが、本発明によればこれを回
避することができる。また、内面開先追従ロールの形状
変更も不要である。また、前述の特開平7−204856号公
報記載の発明と比較して、フラックス成分は各パスで一
定であるため、フラックス段取替の必要がない。
As described above, according to the present invention, the inner surface is reduced to one pass as compared with the invention described in the above-mentioned JP-A-6-328255. In the case of internal welding, slag discharge after welding must be performed in the next process, so if two passes, it is necessary to return the pipe that has proceeded to the next process to internal welding again, which complicates the work. According to the invention, this can be avoided. Further, it is not necessary to change the shape of the inner surface groove following roll. Further, as compared with the invention described in the above-mentioned Japanese Patent Application Laid-Open No. 7-204856, since the flux component is constant in each pass, there is no need to change the flux.

【0016】[0016]

【発明の実施の形態】ここで、本発明の実施の形態につ
いて説明すれば次の通りである。まず、本発明にあって
は、フラックスの扱いを簡便にするために、溶融型フラ
ックスを使用する。予め溶融調整することで一定組成の
フラックスを用いることができ、操作が簡便になるとと
もに、品質の安定化にも寄与するのである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an embodiment of the present invention will be described as follows. First, in the present invention, a molten flux is used in order to simplify the handling of the flux. By adjusting the melting in advance, it is possible to use a flux having a constant composition, which simplifies the operation and contributes to stabilization of quality.

【0017】ところで、すでに公知のように、一般に、
溶接入熱量の増加に伴い溶接鋼管の遷移温度は上昇し、
衝撃エネルギー値は低下する。例えば、特に、API Gr X
-60を超えるような高強度鋼管では、図1に示すように
入熱量65kJ/cm 、より確実には60kJ/cm を超える範囲で
は衝撃エネルギー値・遷移温度とも大幅に劣化し、例え
ばvTs-30℃≧40J を確保することは困難である。
By the way, as already known, generally,
The transition temperature of the welded steel pipe increases with the increase in welding heat input,
The impact energy value decreases. For example, especially, API Gr X
As shown in Fig. 1, in a high-strength steel pipe exceeding -60, the heat energy value and the transition temperature significantly deteriorate in the heat input range of 65 kJ / cm and more certainly in the range of more than 60 kJ / cm. It is difficult to secure ℃ ≧ 40J.

【0018】したがって、本発明にあっては、入熱量を
65kJ/cm 以下、好ましくは60kJ/cm以下に制限するので
ある。電極数は特に制限されないが、実用上は3電極、
4電極方式であればよい。
Therefore, in the present invention, the heat input
It is limited to 65 kJ / cm or less, preferably 60 kJ / cm or less. The number of electrodes is not particularly limited, but in practice three electrodes,
A four-electrode system may be used.

【0019】一方、溶接作業に際して、所定の能率を確
保するためには入熱量55kJ/cm は必要であり、本発明に
おいても入熱量の下限として55kJ/cm を設定する。かく
して本発明によれば、肉厚35mm以上の製管の溶接が可能
となり、熱処理等の追加処理も不要となるため、能率低
下なしに低温靱性確保が可能となる。
On the other hand, in the welding operation, a heat input of 55 kJ / cm is necessary in order to secure a predetermined efficiency, and in the present invention, the lower limit of the heat input is set at 55 kJ / cm. Thus, according to the present invention, it is possible to weld a pipe having a wall thickness of 35 mm or more, and it is not necessary to perform an additional treatment such as a heat treatment. Therefore, it is possible to ensure low-temperature toughness without lowering efficiency.

【0020】なお、肉厚を35mm以上、好ましくは35〜42
mmに限定した理由は、この領域の肉厚の鋼板が特に大径
鋼管として製造される機会が多く、かつ靱性の劣化等の
品質低下が見られ、また能率的な製造方法の開発が求め
られているからである。
The thickness should be 35 mm or more, preferably 35 to 42.
The reason for limiting the thickness to mm is that there are many opportunities to manufacture steel plates with a thickness in this region especially as large-diameter steel pipes, and there is a decrease in quality such as deterioration in toughness, and the development of an efficient manufacturing method is required. Because it is.

【0021】また、溶接方法を内面1パス・外面3パス
で実施することにより、内面多層盛溶接時に生じる初層
→2層目移行時のパイプ内部のスラグ排除や追従ローラ
の形状変更などの能率上の障害がなくなり、さらに能率
低下を抑制できる。
In addition, by performing the welding method in one pass on the inner surface and three passes on the outer surface, it is possible to efficiently remove slag inside the pipe at the time of transition from the first layer to the second layer and change the shape of the following roller during the multilayer welding on the inner surface. The above obstacles can be eliminated, and the efficiency can be further suppressed.

【0022】一方このような方法で35mm以上の肉厚を溶
接する場合、1パス当たりの入熱量が65kJ/cm 以下では
溶け込み深さ確保の観点から開先深さが深くとらざるを
得ず、これに伴い開先面積が大きくなるため外面初層で
外面開先を全てカバーするような品質良好な溶接は不可
能であり、外面初層を溶接した後に外面開先残りが生じ
る。このとき残った開先の角度が65°未満である場合は
外面初層溶接時のスラグが開先上に固着することが実験
的にわかっており、その排除に大きな工数が必要とな
る。このため外面側開先のうち、各層ビードの止端に当
たる部分の開先角度は65°以上とすることが望ましく、
本発明による内外面の溶着金属量のバランスをも考慮し
て開先形状の規定をするものである。
On the other hand, when welding a wall thickness of 35 mm or more by such a method, if the heat input amount per pass is 65 kJ / cm or less, the groove depth must be taken deep from the viewpoint of securing the penetration depth. With this, the groove area increases, so that it is impossible to perform high quality welding in which the outer surface first layer covers the entire outer surface groove, and the outer surface groove remains after the outer surface first layer is welded. If the angle of the remaining groove at this time is less than 65 °, it is experimentally known that the slag at the time of welding the outer layer first layer adheres to the groove, and a large number of man-hours are required to eliminate the slag. For this reason, of the outer side groove, the groove angle of the portion corresponding to the toe of each layer bead is desirably 65 ° or more,
The groove shape is defined in consideration of the balance of the amount of weld metal on the inner and outer surfaces according to the present invention.

【0023】図2は、本発明における開先部の模式的断
面図であり、外面側の開先角度αが65°以上となってお
り、内面側の開先角度βはα≧βの関係を有している。
図3は、溶接部の側面図であって、外面初層溶接ビード
止端と外面側開先との位置関係を示しており、これから
も明らかなように、初層ビード、したがって、それの続
く各層のビード止端も、図2に示すような開先角度65°
以上の外面側開先に接するように設けられているのが分
かる。
FIG. 2 is a schematic cross-sectional view of a groove portion in the present invention. The groove angle α on the outer surface is 65 ° or more, and the groove angle β on the inner surface is in a relationship of α ≧ β. have.
FIG. 3 is a side view of the weld, showing the positional relationship between the outer surface first layer weld bead toe and the outer surface groove, and as will be apparent, the first layer bead, and therefore the following. The bead toe of each layer also has a groove angle of 65 ° as shown in Fig. 2.
It can be seen that it is provided so as to be in contact with the outer side groove.

【0024】[0024]

【実施例】本例では表1に示す化学組成を有する肉厚35
〜42mmの厚板を用いて、慣用のUO成形法に従って鋼素
管を成形した。この素管を表2に示す組成の溶接ワイヤ
を用いて3電極方式によるサブマージアーク溶接を行っ
た。なお、本例において使用した溶融型フラックスはそ
の組成が下記の通りであり、STM 48/145メッシュ域に入
る粒度を有したものであった。
EXAMPLE In this example, the thickness 35 having the chemical composition shown in Table 1 was used.
Using a thick plate of 4242 mm, a steel tube was formed according to a conventional UO forming method. This raw tube was subjected to submerged arc welding by a three-electrode method using a welding wire having a composition shown in Table 2. The molten flux used in this example had the following composition and had a particle size within the STM 48/145 mesh region.

【0025】SiO2:5〜25%、Al2O3:2〜20%、MnO:0.5
〜15%、TiO2:2〜10%、CaO:5〜25%、BaO:1〜5
%、MgO:3〜15%、CaF2:25〜60%、B2O3:2%以下。溶
接条件、開先形状は図4に、開先1ないし9としてそれ
ぞれまとめて示す。開先9は従来例のそれである。また
これらの製造について特性評価を行った結果を表3に示
す。
SiO 2 : 5 to 25%, Al 2 O 3 : 2 to 20%, MnO: 0.5
~15%, TiO 2: 2~10% , CaO: 5~25%, BaO: 1~5
%, MgO: 3~15%, CaF 2: 25~60%, B 2 O 3: 2% or less. The welding conditions and groove shapes are collectively shown as grooves 1 to 9 in FIG. The groove 9 is that of the conventional example. Table 3 shows the results of evaluating the properties of these products.

【0026】なお、溶接パス数は、ボンド型フラックス
を用いた従来法にあっては、通常14パスであるのに対
し、本発明の場合、外側面が3パスであることから、溶
接能率が大きく改善されているのが分かる。
The number of welding passes in the conventional method using the bond type flux is usually 14 passes, whereas in the present invention, the outer surface is 3 passes, so that the welding efficiency is low. It can be seen that it has been greatly improved.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【発明の効果】溶け込み量の大きい溶融型フラックスを
用い、かつ低温靱性確保可能な範囲でできる限り大きな
入熱量を適用して比較的パス数の少ない多層盛溶接を実
施することにより、従来ボンド型フラックスを用いて製
造していたような低温高靱性鋼管の高能率製造が可能と
なった。
By using a molten flux having a large penetration amount and applying a heat input as large as possible within a range where low-temperature toughness can be ensured, a multi-pass welding with a relatively small number of passes is performed. High-efficiency production of low-temperature, high-toughness steel pipes that had been produced using flux has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】入熱量に対する衝撃試験性能を示すグラフであ
る。
FIG. 1 is a graph showing impact test performance with respect to heat input.

【図2】溶接前開先形状を示す模式的説明図である。FIG. 2 is a schematic explanatory view showing a groove shape before welding.

【図3】外面初層溶接ビード止端と外面側開先との位置
関係を示す模式的説明図である。
FIG. 3 is a schematic explanatory view showing a positional relationship between a toe of an outer surface first layer weld bead and an outer surface side groove;

【図4】製造例の開先形状を示す模式的説明図である。FIG. 4 is a schematic explanatory view showing a groove shape in a manufacturing example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 肉厚35mm以上の大径鋼管に対し溶融型フ
ラックスを用いたサブマージアーク溶接を行う際に、1
パス当たりの入熱量を55kJ/cm 以上65kJ/cm以下に制限
し、内面1パス、外面3パスの溶接を行い、その際、外
面側の開先角度の少なくとも1部が65°以上となってい
ることを特徴とする厚肉大径溶接鋼管の製造方法。
1. When performing submerged arc welding using a molten flux to a large diameter steel pipe having a wall thickness of 35 mm or more,
Limit the heat input per pass to 55kJ / cm or more and 65kJ / cm or less, and perform welding of one pass on the inner surface and three passes on the outer surface. At this time, at least one part of the groove angle on the outer surface becomes 65 ° or more. A method for producing a thick-walled large-diameter welded steel pipe.
【請求項2】 前記の外面3パスの溶接による外面側各
層の溶接ビードの止端が、少なくとも1部が65°以上と
なっている前述の外面側の開先角度65°以上の面に接す
るようにすることを特徴とする請求項1記載の方法。
2. A toe of a weld bead of each layer on the outer surface side formed by the above-mentioned three-pass welding of the outer surface is in contact with the above-mentioned surface having a groove angle of 65 ° or more on the outer surface, at least a portion of which is 65 ° or more. 2. The method according to claim 1, wherein the method comprises:
JP08951097A 1997-04-08 1997-04-08 Manufacturing method of thick wall large diameter welded steel pipe Expired - Fee Related JP3304815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08951097A JP3304815B2 (en) 1997-04-08 1997-04-08 Manufacturing method of thick wall large diameter welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08951097A JP3304815B2 (en) 1997-04-08 1997-04-08 Manufacturing method of thick wall large diameter welded steel pipe

Publications (2)

Publication Number Publication Date
JPH10277744A true JPH10277744A (en) 1998-10-20
JP3304815B2 JP3304815B2 (en) 2002-07-22

Family

ID=13972791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08951097A Expired - Fee Related JP3304815B2 (en) 1997-04-08 1997-04-08 Manufacturing method of thick wall large diameter welded steel pipe

Country Status (1)

Country Link
JP (1) JP3304815B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009662A1 (en) 2003-07-21 2005-02-03 Grant Prideco, L.P. Pipe/connector weld joint, and methods of welding same
WO2013051249A1 (en) 2011-10-03 2013-04-11 Jfeスチール株式会社 Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
WO2013080523A1 (en) * 2011-11-29 2013-06-06 Jfeスチール株式会社 Submerged arc welding method for steel sheets
CN103317216A (en) * 2013-07-08 2013-09-25 武汉钢铁(集团)公司 Gas-shield butt welding method for engineering structural steel of tension-resisting strength >/=650MPa
JP2014024098A (en) * 2012-07-27 2014-02-06 Jfe Steel Corp Melting type flux used for submerged arc welding and welding method using the same
EP2787167A1 (en) * 2013-04-04 2014-10-08 Alstom Technology Ltd Method for welding rotors for power generation
CN105195872A (en) * 2015-10-26 2015-12-30 南京奥特电气股份有限公司 Double-sided submerged arc back-chipping-free welding technology for pipeline steel
CN113385787A (en) * 2021-05-06 2021-09-14 江苏鼎嘉机械设备科技有限公司 Submerged-arc welding process for small-diameter tank body

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009662A1 (en) 2003-07-21 2005-02-03 Grant Prideco, L.P. Pipe/connector weld joint, and methods of welding same
EP1646472A1 (en) * 2003-07-21 2006-04-19 Grant Prideco LP Pipe/connector weld joint, and methods of welding same
EP1646472A4 (en) * 2003-07-21 2008-10-29 Grant Prideco Lp Pipe/connector weld joint, and methods of welding same
US7510218B2 (en) 2003-07-21 2009-03-31 Grant Prideco, L.P. Pipe/connector weld joint, and methods of welding same
US7527301B2 (en) 2003-07-21 2009-05-05 Grant Prideco, L.P. Pipe/connector weld joint, and methods of welding same
US7741580B2 (en) 2003-07-21 2010-06-22 National Oilwell Varco, L.P. Method of welding a pipe/connector joint
WO2013051249A1 (en) 2011-10-03 2013-04-11 Jfeスチール株式会社 Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
WO2013080523A1 (en) * 2011-11-29 2013-06-06 Jfeスチール株式会社 Submerged arc welding method for steel sheets
JPWO2013080523A1 (en) * 2011-11-29 2015-04-27 Jfeスチール株式会社 Submerged arc welding method for steel sheet
CN103958109A (en) * 2011-11-29 2014-07-30 杰富意钢铁株式会社 Submerged arc welding method for steel sheets
JP2014024098A (en) * 2012-07-27 2014-02-06 Jfe Steel Corp Melting type flux used for submerged arc welding and welding method using the same
CN104096953A (en) * 2013-04-04 2014-10-15 阿尔斯通技术有限公司 Method for welding rotors for power generation
EP2787167A1 (en) * 2013-04-04 2014-10-08 Alstom Technology Ltd Method for welding rotors for power generation
US9441487B2 (en) 2013-04-04 2016-09-13 General Electric Technology Gmbh Method for welding rotors for power generation
CN104096953B (en) * 2013-04-04 2017-06-06 通用电器技术有限公司 Method for welding the rotor for generating electricity
CN103317216A (en) * 2013-07-08 2013-09-25 武汉钢铁(集团)公司 Gas-shield butt welding method for engineering structural steel of tension-resisting strength >/=650MPa
CN103317216B (en) * 2013-07-08 2015-11-11 武汉钢铁(集团)公司 The gas of tensile strength >=650MPa level Kind of Steels Used in Engineering Structures protects docking welding method
CN105195872A (en) * 2015-10-26 2015-12-30 南京奥特电气股份有限公司 Double-sided submerged arc back-chipping-free welding technology for pipeline steel
CN113385787A (en) * 2021-05-06 2021-09-14 江苏鼎嘉机械设备科技有限公司 Submerged-arc welding process for small-diameter tank body

Also Published As

Publication number Publication date
JP3304815B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
JP3304815B2 (en) Manufacturing method of thick wall large diameter welded steel pipe
US6734395B2 (en) Flux-cored wire for stainless steel arc welding
JP2002011575A (en) Welding method for steel pipe
JP3801186B2 (en) Ultra-thick welded material by multilayer submerged arc welding
JP2669283B2 (en) Pipe welding method for thick and large diameter welded steel pipe
JP2650601B2 (en) Manufacturing method of thick wall large diameter steel pipe by welding
JP2002144081A (en) Steel wire for mag welding and mag welding method using the same
JPH07276086A (en) Flux cored wire for mag welding small in welding deformation
JP2852317B2 (en) Square steel pipe and method for manufacturing square steel pipe
JP5057615B2 (en) Manufacturing method of welded joint
JP3624727B2 (en) Multi-layer submerged arc welding method for extra-thick steel plates
JPH08197283A (en) Flux cored wire for mig welding by which high-toughness weld zone having lessened welding deformation is obtainable
JPH0775876A (en) Tube manufacturing welding method
JP2006142377A (en) Flux cored wire for submerged arc welding
CN1089048C (en) Preparation of low Cr and high Mn austenitic steel welding bar for hand electric arc-welding
JP2520454B2 (en) Manufacturing method of high strength ERW steel pipe
KR102161966B1 (en) Welding flux cored seamless wire
JP3266093B2 (en) High toughness UOE steel pipe and method of manufacturing the same
JP3120709B2 (en) Manufacturing method of welded steel pipe
JPH0342994B2 (en)
JPH0811311B2 (en) Flux cored wire for stainless steel welding
JPH079191A (en) Mag welding flux cored wire having less welding deformation
JPH08164484A (en) Flashbutt welding method of dissimilar steel strip
JPH0788688A (en) Mig welding flux cored wire having less welding deformation
JPS5913316B2 (en) Manufacturing method of small diameter flux-cored wire

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020409

LAPS Cancellation because of no payment of annual fees