JPH10267872A - Method for evaluating characteristic of substance based on programmed temperature desorption spectral method and method for forming semiconductor insulating film using the same - Google Patents

Method for evaluating characteristic of substance based on programmed temperature desorption spectral method and method for forming semiconductor insulating film using the same

Info

Publication number
JPH10267872A
JPH10267872A JP7537897A JP7537897A JPH10267872A JP H10267872 A JPH10267872 A JP H10267872A JP 7537897 A JP7537897 A JP 7537897A JP 7537897 A JP7537897 A JP 7537897A JP H10267872 A JPH10267872 A JP H10267872A
Authority
JP
Japan
Prior art keywords
insulating film
desorption
semiconductor insulating
diffusion
chemical species
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7537897A
Other languages
Japanese (ja)
Inventor
Atsushi Otake
大嶽  敦
Kinya Kobayashi
金也 小林
Kiyotaka Kanetsu
聖隆 加熱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7537897A priority Critical patent/JPH10267872A/en
Publication of JPH10267872A publication Critical patent/JPH10267872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To quickly and easily evaluate a structural characteristic of a substance by forming models of a diffusion process from the interior of the substance of chemical species to the vicinity of a surface and a surface desorption process, e.g. stripping, accumulation, gas phase emission, etc., and combining the models with a programmed temperature desorption spectrum. SOLUTION: Models of a diffusion process and a surface desorption process are represented respectively by formulae I and II wherein T is a temperature, (t) is a time, (x) is a distance in a thicknesswise direction, (c) is a concentration of chemical species, D is a diffusion coefficient, Do ,i is a prediffusion exponential term, Ed ,i is a diffusion activation energy, kB is a Boltzmann factor, (k) is a desorption reaction speed constant, cs is a surface accumulation amount, (n) is a desorption reaction degree, fj is a surface coverage rate, Ao ,j is a predesorption exponential term, and Ea ,j is a desorption activation energy. A sample 11 is heated by a heater 14. The temperature T obtained by a temperature control device 16 and the amount of chemical species in a generated gas which is detected by a quadruple mass spectrometer 21 are stored as an actually measured programmed temperature desorption spectrum in a memory device 33. A calculator 34 carries out fitting with the use of the spectrum according to the method of least squares, determines each parameter of the formulae I, II and displays at a display device 32.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物質特性評価方法
に関わり、特に、昇温脱離スペクトルの解析方法および
この解析法を用いた半導体絶縁膜の成膜法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating material properties, and more particularly to a method for analyzing a thermal desorption spectrum and a method for forming a semiconductor insulating film using the analysis method.

【0002】[0002]

【従来の技術】昇温脱離スペクトル法は、被検体の物質
の温度を上昇させる実験を1回行うことにより、物質に
含まれる化学種について質量数ごとに、各温度のときの
脱離量を知ることができる。また、物質に含まれる化学
種の各温度のときの脱離量から、その化学種の表面脱離
特性(物質の表面における脱離活性化エネルギー)を求
めることができる。
2. Description of the Related Art In the thermal desorption spectroscopy method, the amount of desorption at each temperature is determined for each mass number of a chemical species contained in a substance by performing one experiment in which the temperature of the substance is increased. You can know. Further, the surface desorption characteristics (desorption activation energy on the surface of the substance) of the chemical species can be obtained from the desorption amount of the chemical species contained in the substance at each temperature.

【0003】昇温脱離スペクトル法の結果から、従来は
次のような利用がされていた。
[0003] From the results of the thermal desorption spectroscopy method, the following applications have conventionally been used.

【0004】(1)ピークの現われる温度から気体の脱
離し易さを見積もる。
(1) Ease of gas desorption is estimated from the temperature at which a peak appears.

【0005】昇温脱離スペクトルのピークは、その化学
種が最も多く脱離する温度を示しており、ピークが現わ
れる温度によって、脱離活性化エネルギーの大小がわか
る。ピークが現われる温度が高いほど、その化学種は脱
離反応が低い温度では起こりにくく、すなわち大きな脱
離活性化エネルギーをもつと言える。従って、その化学
種の気体の脱離し易さをピークの現われる温度から定性
的に見積もることができる。
The peak of the thermal desorption spectrum indicates the temperature at which the chemical species desorbs most, and the temperature at which the peak appears indicates the magnitude of the desorption activation energy. The higher the temperature at which the peak appears, the less likely the species is to occur at lower elimination reactions, ie, it has a higher elimination activation energy. Therefore, the ease of desorption of the gas of the chemical species can be qualitatively estimated from the temperature at which the peak appears.

【0006】(2)脱離温度から気体の脱離活性化エネ
ルギーを見積もる。
(2) Estimating the desorption activation energy of a gas from the desorption temperature.

【0007】表面での脱離反応をn次の脱離反応と見な
し、脱離反応速度式から脱離活性化エネルギーを見積も
る。ただし、昇温速度を変えて複数回の実験を行い、脱
離反応の前指数項を求めて、あらかじめ仮定しておく必
要がある。
The elimination reaction on the surface is regarded as the n-th elimination reaction, and the elimination activation energy is estimated from the elimination rate equation. However, it is necessary to carry out a plurality of experiments at different heating rates to determine the pre-exponential term of the elimination reaction and make an assumption in advance.

【0008】[0008]

【発明が解決しようとする課題】上記(1)では、化学
種の脱離し易さが定性的にしかわからない。また、(2)
では、実際の前指数項が仮定した値と大きく異なる場
合、脱離活性化エネルギーを誤って特定する可能性があ
った。
In the above (1), the easiness of desorption of chemical species can be known only qualitatively. Also, (2)
Then, if the actual exponential term is significantly different from the assumed value, the desorption activation energy may be erroneously specified.

【0009】また、(1)および(2)においては、物
質内部での化学種または化学種の前駆体の拡散を考慮し
ていないので、拡散の活性化エネルギーおよび前指数項
は求めることができない。このため、拡散の活性化エネ
ルギーおよび前指数項を決定するには、別途、様々な温
度環境下で拡散速度を計測する必要があった。
In (1) and (2), since the diffusion of the chemical species or the precursor of the chemical species inside the substance is not taken into account, the activation energy of diffusion and the pre-exponential term cannot be obtained. . Therefore, in order to determine the activation energy of diffusion and the exponent term, it was necessary to separately measure the diffusion rate under various temperature environments.

【0010】本発明の目的は、各化学種について物質中
での拡散活性化エネルギーと拡散前指数項、および物質
表面での脱離活性化エネルギーと脱離前指数項などの物
質構造特性を迅速かつ容易に求めることにある。
[0010] It is an object of the present invention to rapidly improve material structural characteristics such as diffusion activation energy and pre-diffusion exponent in a substance and desorption activation energy and pre-desorption exponent on a substance surface for each chemical species. And to find it easily.

【0011】本発明の他の目的は、従来よりも成膜時間
が短縮できる半導体絶縁膜成膜法を提供することにあ
る。
Another object of the present invention is to provide a method for forming a semiconductor insulating film, which can reduce the time required for film formation compared to the prior art.

【0012】[0012]

【課題を解決するための手段】上記目的を達成する本発
明の特徴は、昇温脱離スペクトル法を用いるにあたっ
て、化学種が加熱により物質からその表面付近に拡散す
る拡散過程と、拡散してきた化学種が捕獲・蓄積され、
また気相中に放出される表面脱離過程とをモデル化し、
該モデルおよび実測の昇温脱離スペクトルに基づいて物
質構造特性を評価することにある。
A feature of the present invention that achieves the above object is that, in using a thermal desorption spectroscopy method, a diffusion process in which a chemical species diffuses from a substance to near a surface thereof by heating and has been diffused. Chemical species are captured and accumulated,
Modeling the surface desorption process released into the gas phase,
It is to evaluate the material structure characteristics based on the model and the measured thermal desorption spectrum.

【0013】この特徴によれば、モデルと実測の昇温脱
離スペクトルとを合わせることによって、モデル化する
に当たってモデルに未知数として組み込んだ、化学種の
拡散活性化エネルギー,拡散前指数項、および物質表面
での化学種の脱離活性化エネルギー,脱離前指数項など
の各定数を容易に求めることができ、物質の構造特性を
評価することができる。
According to this feature, by combining the model with the actually measured thermal desorption spectrum, the diffusion activation energy, the pre-diffusion exponent term, and the substance The constants such as the desorption activation energy of the chemical species on the surface and the exponent before desorption can be easily obtained, and the structural characteristics of the substance can be evaluated.

【0014】また、単一の昇温脱離スペクトル測定を用
いることによって、迅速かつ容易に各定数を容易に求め
ることができ、物質の構造特性を評価することができ
る。
Further, by using a single thermal desorption spectrum measurement, each constant can be easily and easily obtained, and the structural characteristics of the substance can be evaluated.

【0015】本発明の他の目的を達成する特徴は、半導
体絶縁膜を成膜し、成膜された半導体絶縁膜から脱離し
た化学種の量であって、単一の昇温脱離スペクトル測定
を用いて求められた化学種の量に依存して半導体絶縁膜
の構造特性を評価し、該評価に基づいて半導体絶縁膜を
成膜した条件とは異なる条件で絶縁膜を成膜することに
ある。これにより、迅速かつ容易に半導体絶縁膜の評価
ができ、品質の良い半導体絶縁膜を短時間で成膜でき
る。また、半導体絶縁膜を成膜プロセスの開発に係る時
間を短くすることができる。
Another feature of the present invention to achieve the object is to form a semiconductor insulating film and determine the amount of chemical species desorbed from the formed semiconductor insulating film. Evaluating the structural characteristics of the semiconductor insulating film depending on the amount of the chemical species obtained by using the measurement, and forming the insulating film under conditions different from the conditions under which the semiconductor insulating film was formed based on the evaluation. It is in. Thus, the semiconductor insulating film can be quickly and easily evaluated, and a high-quality semiconductor insulating film can be formed in a short time. Further, the time required for developing a process for forming a semiconductor insulating film can be shortened.

【0016】また、半導体絶縁膜を成膜し、昇温脱離ス
ペクトル法を用いたときの、化学種が加熱により物質か
らその表面付近に拡散する拡散過程と、拡散してきた化
学種が捕獲・蓄積され、また気相中に放出される表面脱
離過程とをモデル化し、該モデルおよび実測の昇温脱離
スペクトルに基づいて物質構造特性を評価し、該評価に
基づいて、半導体絶縁膜を成膜した条件とは異なる条件
で絶縁膜を成膜することによっても、上述した作用効果
と動揺の作用効果が生じる。
In addition, when a semiconductor insulating film is formed and a thermal desorption spectroscopy method is used, a diffusion process in which a chemical species diffuses from a substance to the vicinity of the surface by heating, and the diffusion of the chemical species is carried out. Model the surface desorption process that is accumulated and released into the gas phase, evaluate the material structure characteristics based on the model and the measured thermal desorption spectra, and based on the evaluation, evaluate the semiconductor insulating film. When the insulating film is formed under conditions different from the conditions under which the film is formed, the above-described effects and the effect of fluctuation can be obtained.

【0017】また、半導体絶縁膜を成膜し、成膜された
半導体絶縁膜から脱離した化学種の量であって、単一の
昇温脱離スペクトル測定を用いて求められた化学種の量
に依存して半導体絶縁膜の構造特性を評価し、該評価に
基づいて半導体絶縁膜を成膜した条件と同じ条件で絶縁
膜を成膜することによっても、上述した作用効果と同様
の作用効果が生じ、半導体絶縁膜の品質を保つことがで
きる。
Further, the amount of the chemical species desorbed from the formed semiconductor insulating film after the formation of the semiconductor insulating film, the amount of the chemical species determined by using a single temperature-programmed desorption spectrum measurement. The same effect as described above can also be obtained by evaluating the structural characteristics of the semiconductor insulating film depending on the amount and forming the insulating film under the same conditions as those under which the semiconductor insulating film was formed based on the evaluation. As a result, the quality of the semiconductor insulating film can be maintained.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)本発明の第1の実施例である物質特性評価
方法を図1を用いて説明する。
(Embodiment 1) A material property evaluation method according to a first embodiment of the present invention will be described with reference to FIG.

【0019】本実施例の物質特性評価方法は、物質中に
含まれる化学種(原子,分子,イオン,ラジカルなど)
の熱脱離機構を物質内部から物質の表面付近に拡散する
拡散過程と、表面に捕獲・蓄積され、また気相中に放出
される表面脱離過程とに分けてモデル化し、これらのモ
デルと実測の昇温脱離スペクトルから得られた情報を合
わせることによって、モデル化するに当たってモデルに
未知数として組み込んだ各定数や因子を求め、物質の構
造特性を評価しようとするものである。
The method for evaluating material properties according to the present embodiment uses the chemical species (atoms, molecules, ions, radicals, etc.) contained in the material.
The thermal desorption mechanism of the surface is modeled into a diffusion process that diffuses from the inside of the material to the surface of the material, and a surface desorption process that is captured and accumulated on the surface and released into the gas phase. By combining information obtained from measured thermal desorption spectra, constants and factors incorporated into the model as unknowns in modeling are obtained, and the structural characteristics of the substance are evaluated.

【0020】本実施例では、拡散過程のモデルを(数
1)で表し、表面脱離過程のモデルを(数2)で表す。
In this embodiment, a model of the diffusion process is represented by (Equation 1), and a model of the surface detachment process is represented by (Equation 2).

【0021】[0021]

【数1】 (Equation 1)

【0022】[0022]

【数2】 (Equation 2)

【0023】ここで、T:温度,t:時間,x:物質の
厚さ方向への距離,c:化学種の濃度、D:拡散係数,
0,i:拡散前指数項,Ed,i:拡散活性化エネルギー,
B:ボルツマン因子,k:脱離反応速度定数,cs
表面蓄積量,n:脱離反応次数,fj :表面被覆率比,
0,j:脱離前指数項,Ea,j:脱離活性化エネルギーで
ある。
Here, T: temperature, t: time, x: distance in the thickness direction of the substance, c: concentration of chemical species, D: diffusion coefficient,
D 0, i : exponent before diffusion, E d, i : diffusion activation energy,
k B : Boltzmann factor, k: desorption reaction rate constant, c s :
Surface accumulation amount, n: Desorption reaction order, f j : Surface coverage ratio,
A 0, j : exponential term before desorption, E a, j : desorption activation energy.

【0024】単位時間当たりに表面に到達する化学種の
量dq/dtは(数1)から求めることができる。これ
を(数2)に代入し(数1)を解くことで(数2)左辺
k・cs nの値が求まる。(数2)における左辺kは脱離
速度を表しているので、温度を変えながら(数2)左辺
の値をプロットしていけば昇温脱離スペクトルを再現で
きる。ここで、(数1),(数2)中のパラメータを、実
測の昇温脱離スペクトルを再現するように決定すれば、
拡散活性化エネルギーEd,i,拡散前指数項D0,i,脱離
活性化エネルギーEa,j,脱離前指数項A0,jを求めるこ
とができる。
The amount dq / dt of chemical species reaching the surface per unit time can be obtained from (Equation 1). This (Equation 2) substituted for by equation (1) by solving the equation (2) obtained the value of the left side k · c s n. Since the left side k in (Equation 2) represents the desorption rate, the temperature rising desorption spectrum can be reproduced by plotting the value on the left side while changing the temperature (Equation 2). Here, if the parameters in (Equation 1) and (Equation 2) are determined so as to reproduce the measured thermal desorption spectrum,
The diffusion activation energy E d, i , the pre-diffusion index term D 0, i , the desorption activation energy E a, j , and the pre-desorption index term A 0, j can be obtained.

【0025】本実施例の物質特性評価方法を行う物質特
性評価装置100を図2に示す。
FIG. 2 shows a material property evaluation apparatus 100 for performing the material property evaluation method of this embodiment.

【0026】物質特性評価装置100は、物質構造特性
を求めようとする試料11を格納する試料部10,試料
から脱離した化学種の量を測定する質量分析部20,物
質構造特性を求める解析部30で構成される。
The material property evaluation apparatus 100 includes a sample unit 10 for storing a sample 11 for which material structure characteristics are to be obtained, a mass spectrometer 20 for measuring the amount of chemical species desorbed from the sample, and an analysis for obtaining the material structure characteristics. It is composed of a unit 30.

【0027】試料部10は、試料11を納める真空容器
12,真空容器12に接続されて真空容器12の内部を
1×10~6Torr以下の低圧状態に保つ真空ポンプ13,
試料11を加熱するヒーター14,試料11付近の温度
を測定する熱電対15、およびヒーター14の温度を制
御する温度制御装置16とから構成される。温度制御装
置16は、試料11を加熱する温度の時間変化を任意に
調節することができ、また、熱電対15で測定された温
度に基づいて試料11の温度を求めることができる。
The sample section 10 includes a vacuum vessel 12 for containing the sample 11, a vacuum pump 13 connected to the vacuum vessel 12 and maintaining the inside of the vacuum vessel 12 at a low pressure of 1 × 10 to 6 Torr or less.
It comprises a heater 14 for heating the sample 11, a thermocouple 15 for measuring the temperature near the sample 11, and a temperature controller 16 for controlling the temperature of the heater 14. The temperature control device 16 can arbitrarily adjust the time change of the temperature at which the sample 11 is heated, and can determine the temperature of the sample 11 based on the temperature measured by the thermocouple 15.

【0028】質量分析部20は、四重極質量分析計21
と真空容器12内の気体を四重極質量分析計21に運ぶ
管22から構成される。加熱されて試料11から発生し
た気体は四重極質量分析計21に運ばれ、四重極質量分
析計21で種類と量が測定される。
The mass spectrometer 20 includes a quadrupole mass spectrometer 21
And a tube 22 that carries the gas in the vacuum vessel 12 to the quadrupole mass spectrometer 21. The gas generated from the sample 11 by being heated is conveyed to the quadrupole mass spectrometer 21 where the type and amount are measured.

【0029】解析部30は、データ解析装置31と表示
装置32から構成され、データ解析装置31は記憶装置
33と計算器34を有する。記憶装置33には、予め入
力しておいたモデルの(数1),(数2)およびパラメー
タの初期値が記憶されており、昇温脱離スペクトル法に
よる測定を行う際に、温度制御装置16から試料の温度
と、四重極質量分析計21から種類ごとに化学種の量が
入力される。
The analyzing section 30 comprises a data analyzing device 31 and a display device 32. The data analyzing device 31 has a storage device 33 and a calculator 34. The storage device 33 stores (Equation 1) and (Equation 2) of the model and the initial values of the parameters which have been input in advance. When the measurement is performed by the thermal desorption spectrum method, the temperature control device is used. From 16, the temperature of the sample and the amount of the chemical species for each type from the quadrupole mass spectrometer 21 are input.

【0030】次に、物質特性評価装置100を用いた試
料11の評価方法を説明する。
Next, a method for evaluating the sample 11 using the material property evaluation apparatus 100 will be described.

【0031】まず、昇温脱離スペクトル法による脱離ガ
ス量の測定を行う。試料11をヒーター14で加熱す
る。温度制御装置16で求められた温度Tと、この温度
Tのときに、四重極質量分析計21で求められた試料か
ら発生した気体に含まれる化学種の量が実測の昇温脱離
スペクトルとして記憶装置33に記憶される。
First, the amount of desorbed gas is measured by a thermal desorption spectroscopy method. The sample 11 is heated by the heater 14. The temperature T determined by the temperature controller 16 and the amount of the chemical species contained in the gas generated from the sample determined by the quadrupole mass spectrometer 21 at this temperature T indicate the measured thermal desorption spectra. Is stored in the storage device 33.

【0032】測定終了後、計算器34で実測の昇温脱離
スペクトルを用いて(数1)および(数2)のパラメー
タを決定する。計算器34は、最小二乗法によるフィッ
ティングを行う。
After completion of the measurement, the calculator 34 determines the parameters of (Equation 1) and (Equation 2) by using the measured thermal desorption spectrum. The calculator 34 performs fitting by the least squares method.

【0033】計算器34で行われるフィッティングプロ
グラムのフローを図3を用いて説明する。
The flow of the fitting program executed by the calculator 34 will be described with reference to FIG.

【0034】(1)(数1)および(数2)の各パラメ
ータについて初期値を設定する。この初期値は、以前の
測定結果を収集したデータベース(図示せず)から予め
選んで記憶装置33に記憶しておいたものである。計算
の開始とともに(数1)および(数2)と各パラメータ
の初期値は記憶装置33からが出力されて、計算器34
で(数1)および(数2)の各パラメータに初期値が設
定される。
(1) Initial values are set for each parameter of (Equation 1) and (Equation 2). The initial value is previously selected from a database (not shown) in which previous measurement results are collected and stored in the storage device 33. At the start of the calculation, (Equation 1) and (Equation 2) and the initial value of each parameter are output from the storage device 33, and the
Then, the initial values are set to the parameters of (Equation 1) and (Equation 2).

【0035】(2)昇温脱離スペクトルの実測データ、
すなわち温度および時間と脱離ガス量が記憶装置33か
ら出力され、計算器34において(数1)および(数
2)にフィッティングされる。このとき、実測データの
内100〜200点程度を代表点として選んでもよい。
(2) Actual measured data of a thermal desorption spectrum,
That is, the temperature, the time, and the amount of desorbed gas are output from the storage device 33, and are fitted to (Equation 1) and (Equation 2) in the calculator 34. At this time, about 100 to 200 points of the measured data may be selected as the representative points.

【0036】(3)(数2)左辺k・cs nの値を求め
る。そして最小二乗フィットを行う。すなわち、各温度
での計算値と実測値の差の二乗をとって全点で和をと
り、この和が設定した許容値以下になるまでパラメータ
を変化させながら計算を繰り返す。 (4)最終的に誤差の二乗和が許容値以下になったら、
各パラメータの値を記憶装置33に蓄える。
(3) (Equation 2) The value of the left side k · c s n is obtained. Then, a least squares fit is performed. That is, the square of the difference between the calculated value and the measured value at each temperature is taken to obtain a sum at all points, and the calculation is repeated while changing the parameters until the sum becomes equal to or less than the set allowable value. (4) When the sum of squares of the error finally falls below the allowable value,
The value of each parameter is stored in the storage device 33.

【0037】フィッティングパラメータの数は昇温脱離
スペクトルのピークの数だけ自動的に用意されるが、計
算器34のプログラムを変更して任意の数に変えてもよ
い。 (5)フィッティングの終了後、表示装置32にパラメ
ータの値が表示される。データ解析装置31は、拡散活
性化エネルギー,拡散前指数項,脱離活性化エネルギー
および脱離前指数項を記憶装置33中のデータと比較し
て、許容範囲の拡散,脱離反応を列記して表示装置32
に表示する。
Although the number of fitting parameters is automatically prepared by the number of peaks of the thermal desorption spectrum, the number of fitting parameters may be changed to an arbitrary number by changing the program of the calculator 34. (5) After the fitting is completed, the values of the parameters are displayed on the display device 32. The data analyzer 31 compares the diffusion activation energy, the pre-diffusion exponential term, the desorption activation energy and the pre-desorption exponent term with the data in the storage device 33, and lists the permissible diffusion and desorption reactions. Display device 32
To be displayed.

【0038】以上のように、本実施例の物質特性評価装
置100によれば、従来は昇温脱離スペクトル測定を何
回も行わなくては求めることができなかった拡散活性化
エネルギーEd,i,拡散前指数項D0,i,脱離活性化エネ
ルギーEa,j ,脱離前指数項A0,j を単一の昇温脱離ス
ペクトル測定で求めることができる。従って、迅速かつ
容易に物質の構造特性を評価することができる。
As described above, according to the material property evaluation apparatus 100 of the present embodiment, the diffusion activation energy E d, which could not be obtained without performing the thermal desorption spectrum measurement many times conventionally . i , the pre-diffusion exponent D 0, i , the desorption activation energy E a, j , and the pre-desorption exponent A 0, j can be determined by a single thermal desorption spectrum measurement. Therefore, the structural characteristics of the substance can be quickly and easily evaluated.

【0039】(実施例2)本発明の第2の実施例である
半導体絶縁膜の成膜方法を以下に説明する。
(Embodiment 2) A method for forming a semiconductor insulating film according to a second embodiment of the present invention will be described below.

【0040】本実施例では、金属配線を施したSiウェ
ハ41上にプラズマCVD法でSiO2 絶縁膜を堆積
し、そのSiO2 絶縁膜の上にさらにフッ素添加SiO
2膜を成膜する半導体絶縁膜の成膜方法を例にし、半導
体絶縁膜の評価の指標となる絶縁膜中の水の脱離活性化
エネルギー,脱離前指数項,拡散活性化エネルギーおよ
び拡散前指数項を明らかにし、半導体絶縁膜の厚さを決
定する。
In this embodiment, an SiO 2 insulating film is deposited on a Si wafer 41 provided with metal wiring by a plasma CVD method, and a fluorine-added SiO 2 film is further formed on the SiO 2 insulating film.
Taking the method of forming a semiconductor insulating film to form two films as an example, the desorption activation energy, pre-desorption exponent, diffusion activation energy, and diffusion of water in the insulating film are used as indices for evaluating the semiconductor insulating film. The exponent term is clarified, and the thickness of the semiconductor insulating film is determined.

【0041】フッ素添加SiO2 膜は水透過性が高いの
で、SiO2 絶縁膜は金属配線の保護膜でもある。Si
2 絶縁膜からの水の脱離活性化エネルギー,脱離前指
数項,SiO2 絶縁膜中での水の拡散活性化エネルギ
ー,拡散前指数項,フッ素添加SiO2 膜中の水の拡散
活性化エネルギーおよび拡散前指数項が明らかになれ
ば、水がフッ素添加SiO2 膜およびSiO2 絶縁膜を
透過して下地の金属配線に到達するまでの時間を求める
ことができる。従って、半導体絶縁膜に要求される耐水
性に応じて、保護膜として必要なSiO2 絶縁膜の厚さ
を決定できる。
Since the fluorine-added SiO 2 film has high water permeability, the SiO 2 insulating film is also a protective film for metal wiring. Si
Activation energy of desorption of water from O 2 insulating film, exponential term before desorption, energy of activation for diffusion of water in SiO 2 insulating film, exponential term of diffusion before, diffusion activity of water in fluorine-added SiO 2 film If the activation energy and the pre-diffusion exponent term become clear, the time required for water to pass through the fluorine-added SiO 2 film and the SiO 2 insulating film and reach the underlying metal wiring can be determined. Therefore, the thickness of the SiO 2 insulating film required as the protective film can be determined according to the water resistance required of the semiconductor insulating film.

【0042】本実施例で用いる半導体製造装置200を
図4を用いて説明する。
The semiconductor manufacturing apparatus 200 used in this embodiment will be described with reference to FIG.

【0043】半導体製造装置200は第1の実施例の物
質特性評価装置100,成膜系40、および試料搬送系
50から構成される。
The semiconductor manufacturing apparatus 200 comprises the material property evaluation apparatus 100 of the first embodiment, a film forming system 40, and a sample transport system 50.

【0044】成膜系40は、成膜装置42,ガス供給系
43,ガス排出系44および制御装置45から構成され
る。
The film forming system 40 includes a film forming device 42, a gas supply system 43, a gas discharge system 44, and a control device 45.

【0045】成膜装置42では複数のSiウェハ41
に、SiO2 絶縁膜とフッ素添加SiO2 膜の成膜が行
われる。成膜装置42には成膜ガスを供給するガス供給
系43と、成膜装置42内の余分なガスを排出するガス
排出系44とが接続されている。
In the film forming apparatus 42, a plurality of Si wafers 41
Next, a SiO 2 insulating film and a fluorine-added SiO 2 film are formed. The film forming apparatus 42 is connected to a gas supply system 43 for supplying a film forming gas and a gas discharging system 44 for discharging extra gas in the film forming apparatus 42.

【0046】制御装置45は、物質特性評価装置100
が出力する半導体絶縁膜中の水の脱離活性化エネルギ
ー,脱離前指数項,拡散活性化エネルギー,拡散前指数
項、および予め入力しておいた想定条件(何%の水がど
の程度の期間阻止される必要があるか)に基づいて、半
導体絶縁膜の厚さを決定し、バルブ46を開閉制御して
ガス供給系43から成膜装置42に供給される成膜ガス
の量を調整し、成膜時間を決定する機能を有する。
The control device 45 includes a material property evaluation device 100
Activation energy, pre-desorption exponent, diffusion activation energy, pre-diffusion exponent, and the pre-input assumptions (what percentage of water is The thickness of the semiconductor insulating film is determined based on whether or not it is necessary to prevent the period, and the amount of the film forming gas supplied from the gas supply system 43 to the film forming apparatus 42 is adjusted by controlling the opening and closing of the valve 46. And has a function of determining a film formation time.

【0047】試料搬送系50はSiウェハ41を成膜装
置42から物質特性評価装置100に運ぶものである。
The sample transport system 50 transports the Si wafer 41 from the film forming device 42 to the material property evaluation device 100.

【0048】半導体製造装置200を用いた半導体絶縁
膜の成膜方法を説明する。
A method for forming a semiconductor insulating film using the semiconductor manufacturing apparatus 200 will be described.

【0049】(1)はじめに予め、金属配線を施したS
iウェハ41上にプラズマCVD法でSiO2 絶縁膜を
堆積した試料について、物質特性評価装置100を用い
てSiO2 絶縁膜中の水の脱離活性化エネルギー,脱離
前指数項,拡散活性化エネルギーおよび拡散前指数項を
求める。物質特性評価装置100を用いれば、5〜10
分程度でこれらの定数を知ることがでる。
(1) First, a metal wiring is applied to the S
Regarding the sample in which the SiO 2 insulating film is deposited on the i-wafer 41 by the plasma CVD method, the deactivation activation energy of water in the SiO 2 insulating film, the exponent before desorption, the diffusion activation Find the energy and pre-diffusion exponential terms. If the material property evaluation device 100 is used, 5 to 10
You can find these constants in minutes.

【0050】(2)次に、成膜装置42で、金属配線と
SiO2 絶縁膜を施したSiウェハ41上のSiO2
縁膜上に、水透過性の高いフッ素添加SiO2 膜を形成
する。
(2) Next, a fluorine-added SiO 2 film having high water permeability is formed on the SiO 2 insulating film on the Si wafer 41 on which the metal wiring and the SiO 2 insulating film have been formed by the film forming apparatus 42. .

【0051】(3)試料搬入系80は、フッ素添加Si
2 膜が成膜されたSiウェハ41の内の一部を物質特
性評価装置100に送る。
(3) The sample loading system 80 is made of fluorine-added Si
A part of the Si wafer 41 on which the O 2 film is formed is sent to the material property evaluation device 100.

【0052】(4)物質特性評価装置100では、送ら
れてきたSiウェハ41のフッ素添加SiO2 膜中の水
の拡散活性化エネルギーおよび拡散前指数項を求める。
(4) The material property evaluation apparatus 100 obtains the diffusion activation energy and the pre-diffusion exponent term of the water in the fluorinated SiO 2 film of the Si wafer 41 sent thereto.

【0053】(5)制御装置45は、物質特性評価装置
100が出力する絶縁膜中の水の脱離活性化エネルギ
ー,脱離前指数項,拡散活性化エネルギー,拡散前指数
項および想定条件に基づき、SiO2 絶縁膜の厚さを決
定する。
(5) The control unit 45 sets the desorption activation energy, pre-desorption exponent, diffusion activation energy, pre-diffusion exponent, and assumed conditions of water in the insulating film output from the material property evaluation unit 100. Based on this, the thickness of the SiO 2 insulating film is determined.

【0054】物質特性評価装置100で、SiO2 絶縁
膜では拡散活性化エネルギーは18〜20kcal/mol程
度であり、拡散前指数項は2.5×10~92/s であ
った。また、脱離速度は拡散速度より十分に速く、脱離
の影響を無視できることが判った。
In the material property evaluation apparatus 100, the diffusion activation energy of the SiO 2 insulating film was about 18 to 20 kcal / mol, and the exponent before diffusion was 2.5 × 10 to 9 m 2 / s. In addition, the desorption speed was sufficiently higher than the diffusion speed, and it was found that the influence of desorption was negligible.

【0055】(6)制御装置45は、SiO2 絶縁膜の
厚さに基づいて、バルブ46を開閉制御してガス供給系
43から成膜装置42に供給される成膜ガスの量を調整
し、成膜時間を決定して再びSiO2 絶縁膜の成膜を行
う。
(6) The controller 45 controls the opening and closing of the valve 46 based on the thickness of the SiO 2 insulating film to adjust the amount of the film forming gas supplied from the gas supply system 43 to the film forming apparatus 42. Then, the film formation time is determined, and the SiO 2 insulating film is formed again.

【0056】以上のように、従来は昇温脱離スペクトル
測定を何回も行わなくては求めることができなかった半
導体絶縁膜の評価が、本実施例では単一の昇温脱離スペ
クトル測定で求めることができる。従って、迅速かつ容
易に絶縁膜の構造特性を評価することができ、品質の良
い絶縁膜を迅速かつ容易に成膜することができる。
As described above, the evaluation of a semiconductor insulating film, which could not be obtained without performing the thermal desorption spectrum measurement many times in the past, is described in the present embodiment. Can be obtained by Therefore, the structural characteristics of the insulating film can be quickly and easily evaluated, and a high-quality insulating film can be formed quickly and easily.

【0057】このような半導体製造装置200を用い
て、半導体絶縁膜の性質をチェックしながら成膜するこ
とで、プロセス条件(圧力,温度,ガス流量など)の微
妙な変化に対して、一定の品質の半導体絶縁膜を成膜す
ることができる。
By using such a semiconductor manufacturing apparatus 200 to form a film while checking the properties of the semiconductor insulating film, a constant change in process conditions (pressure, temperature, gas flow rate, etc.) can be maintained. A high-quality semiconductor insulating film can be formed.

【0058】本実施例では、半導体絶縁膜中の水につい
て各定数をチェックしたが、水,弗化水素,フッ素は配
線腐食の原因と考えられているので、フッ素添加SiO
2 膜を絶縁膜として用いる場合は、物質特性評価装置1
00で評価の対象とする化学種を水,弗化水素およびフ
ッ素とすれば、より正確に品質の良い半導体絶縁膜の厚
さを決定できる。
In this embodiment, each constant was checked for water in the semiconductor insulating film. However, since water, hydrogen fluoride, and fluorine are considered to be the cause of wiring corrosion, fluorine-added SiO 2 was used.
When two films are used as insulating films, material property evaluation device 1
If the chemical species to be evaluated are water, hydrogen fluoride, and fluorine at 00, the thickness of the high-quality semiconductor insulating film can be determined more accurately.

【0059】従来は、拡散活性化エネルギー,拡散前指
数項を求めるためには、複数回の昇温脱離スペクトル測
定を繰り返し行う必要があった。本実施例では、単一の
昇温脱離スペクトル測定で、複数の化学種について同時
に拡散活性化エネルギー,拡散前指数項を決定できる。
評価に要する時間は、解析系での計算時間が多少必要な
だけであり、昇温脱離スペクトル測定時間を含めた全体
の時間増大は10%以下に抑制できる。従って、本発明
を半導体絶縁膜のプロセス開発に適用することで、開発
期間の大幅な短縮が可能である。
Conventionally, in order to obtain the diffusion activation energy and the pre-diffusion exponential term, it has been necessary to repeat a plurality of thermal desorption spectrum measurements. In this embodiment, the diffusion activation energy and the pre-diffusion exponent term can be simultaneously determined for a plurality of chemical species by a single thermal desorption spectrum measurement.
The time required for the evaluation requires only a small amount of calculation time in the analysis system, and an increase in the entire time including the time for measuring the temperature-programmed desorption spectrum can be suppressed to 10% or less. Therefore, by applying the present invention to the process development of a semiconductor insulating film, the development period can be significantly reduced.

【0060】また、本実施例ではフッ素添加SiO2
を成膜した過程において物質特性評価装置100で半導
体絶縁膜の評価を行ったが、半導体装置の製造過程の要
所要所で物質特性評価装置100による評価を行えば、
より品質の良い半導体装置を製造することができる。
In this embodiment, the semiconductor insulating film was evaluated by the material characteristic evaluation device 100 in the process of forming the fluorine-added SiO 2 film. If you perform an evaluation with 100,
A higher quality semiconductor device can be manufactured.

【0061】[0061]

【発明の効果】本発明によれば、物質中の化学種の拡散
活性化エネルギー,拡散前指数項、および物質表面での
化学種の脱離活性化エネルギー,脱離前指数項などの各
定数を容易に求めることができ、物質の構造特性を評価
することができる。
According to the present invention, each constant such as the diffusion activation energy of a chemical species in a substance, a pre-diffusion exponent, and the desorption activation energy of a chemical species on a substance surface, a pre-desorption exponent term, etc. Can be easily obtained, and the structural characteristics of the substance can be evaluated.

【0062】また、単一の昇温脱離スペクトル測定を用
いることによって、迅速かつ容易に各定数を容易に求め
ることができ、物質の構造特性を評価することができ
る。
Also, by using a single thermal desorption spectrum measurement, each constant can be easily and quickly obtained, and the structural characteristics of the substance can be evaluated.

【0063】また、迅速かつ容易に半導体絶縁膜の評価
ができ、品質の良い半導体絶縁膜を短時間で成膜でき
る。また、半導体絶縁膜を成膜プロセスの開発に係る時
間を短くすることができる。
Further, the semiconductor insulating film can be evaluated quickly and easily, and a high-quality semiconductor insulating film can be formed in a short time. Further, the time required for developing a process for forming a semiconductor insulating film can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の物質特性評価方法を説明する図
である。
FIG. 1 is a diagram for explaining a material property evaluation method according to a first embodiment.

【図2】第1の実施例の物質特性評価装置100を示す
図である。
FIG. 2 is a diagram illustrating a material property evaluation device 100 according to a first embodiment.

【図3】計算器34で行われるフィッティングプログラ
ムのフロー図である。
FIG. 3 is a flowchart of a fitting program executed by a calculator 34;

【図4】第2の実施例の半導体製造装置200を示す図
である。
FIG. 4 is a diagram illustrating a semiconductor manufacturing apparatus 200 according to a second embodiment.

【符号の説明】[Explanation of symbols]

10…試料部、11…試料、12…真空容器、13…真
空ポンプ、14…ヒーター、15…熱電対、16…温度
制御装置、20…質量分析部、21…四重極質量分析
計、22…管、30…解析部、31…データ解析装置、
32…表示装置、33…記憶装置、34…計算器、40
…成膜系、41…Siウェハ、42…成膜装置、43…
ガス供給系、44…ガス排出系、45…制御装置、46
…バルブ、50…試料搬送系、100…物質特性評価装
置、200…半導体製造装置。
DESCRIPTION OF SYMBOLS 10 ... sample part, 11 ... sample, 12 ... vacuum container, 13 ... vacuum pump, 14 ... heater, 15 ... thermocouple, 16 ... temperature controller, 20 ... mass spectrometer, 21 ... quadrupole mass spectrometer, 22 ... pipe, 30 ... analysis unit, 31 ... data analysis device,
32 display device, 33 storage device, 34 calculator, 40
... film forming system, 41 ... Si wafer, 42 ... film forming device, 43 ...
Gas supply system, 44 ... Gas discharge system, 45 ... Control device, 46
… Valve, 50… sample transport system, 100… material property evaluation device, 200… semiconductor manufacturing device.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】物質構造の分析手法として昇温脱離スペク
トル法を用いた物質構造特性評価方法において、前記昇
温脱離スペクトル法を用いるにあたって、化学種が加熱
により物質からその表面付近に拡散する拡散過程と、拡
散してきた化学種が捕獲・蓄積され、また気相中に放出
される表面脱離過程とをモデル化し、該モデルおよび実
測の昇温脱離スペクトルに基づいて物質特性を評価する
ことを特徴とする物質特性評価方法。
In a method for evaluating a material structure using a thermal desorption spectroscopy method as a method for analyzing a substance structure, when the thermal desorption spectroscopy method is used, a chemical species diffuses from a substance to near a surface thereof by heating. Model the diffusion process that occurs and the surface desorption process in which the diffused species are captured and accumulated and released into the gas phase, and evaluate the material properties based on the model and the measured thermal desorption spectra. A material property evaluation method.
【請求項2】請求項1において、単一の昇温脱離スペク
トル測定で、拡散及び脱離の活性化エネルギーを求める
ことを特徴とする物質特性評価方法。
2. The method according to claim 1, wherein the activation energies for diffusion and desorption are determined by a single thermal desorption spectrum measurement.
【請求項3】半導体絶縁膜を成膜するステップと、該成
膜された半導体絶縁膜から脱離した化学種の量であっ
て、単一の昇温脱離スペクトル測定を用いて求められた
化学種の量に依存して前記半導体絶縁膜の構造特性を評
価するステップと、該評価に基づいて、前記半導体絶縁
膜を成膜した条件とは異なる条件で絶縁膜を成膜するス
テップとを備えることを特徴とする半導体絶縁膜成膜
法。
3. The step of forming a semiconductor insulating film and the amount of a chemical species desorbed from the formed semiconductor insulating film, the amount being determined using a single thermal desorption spectrum measurement. Evaluating the structural characteristics of the semiconductor insulating film depending on the amount of the chemical species, and forming an insulating film under conditions different from the conditions under which the semiconductor insulating film was formed based on the evaluation. A method for forming a semiconductor insulating film, comprising:
【請求項4】半導体絶縁膜を成膜するステップと、物質
構造の分析手法である昇温脱離スペクトル法を用いたと
きの、化学種が加熱により物質からその表面付近に拡散
する拡散過程と、拡散してきた化学種が捕獲・蓄積さ
れ、また気相中に放出される表面脱離過程とをモデル化
し、該モデルおよび実測の昇温脱離スペクトルに基づい
て物質構造特性を評価するステップと、該評価に基づい
て、前記半導体絶縁膜を成膜した条件とは異なる条件で
絶縁膜を成膜するステップとを備えることを特徴とする
半導体絶縁膜成膜法。
4. A step of forming a semiconductor insulating film, and a diffusion process in which a chemical species is diffused from a substance to near a surface thereof by heating when a thermal desorption spectroscopy method, which is a technique for analyzing a substance structure, is used. Modeling the surface desorption process in which the diffused species are captured and accumulated, and released into the gas phase, and evaluating the material structural characteristics based on the model and the measured temperature-programmed desorption spectrum; Forming an insulating film under conditions different from the conditions under which the semiconductor insulating film was formed based on the evaluation.
【請求項5】半導体絶縁膜を成膜するステップと、該成
膜された半導体絶縁膜から脱離した化学種の量であっ
て、単一の昇温脱離スペクトル測定を用いて求められた
分子の量に依存して前記絶縁膜の構造特性を評価するス
テップと、該評価に基づいて、前記半導体絶縁膜を成膜
した条件と同じ条件で半導体絶縁膜を成膜するステップ
とを備えることを特徴とする半導体絶縁膜成膜法。
5. The step of forming a semiconductor insulating film and the amount of chemical species desorbed from the formed semiconductor insulating film, which is determined by using a single thermal desorption spectrum measurement. Evaluating the structural characteristics of the insulating film depending on the amount of molecules, and forming a semiconductor insulating film under the same conditions as those for forming the semiconductor insulating film based on the evaluation. A method for forming a semiconductor insulating film, comprising:
JP7537897A 1997-03-27 1997-03-27 Method for evaluating characteristic of substance based on programmed temperature desorption spectral method and method for forming semiconductor insulating film using the same Pending JPH10267872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7537897A JPH10267872A (en) 1997-03-27 1997-03-27 Method for evaluating characteristic of substance based on programmed temperature desorption spectral method and method for forming semiconductor insulating film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7537897A JPH10267872A (en) 1997-03-27 1997-03-27 Method for evaluating characteristic of substance based on programmed temperature desorption spectral method and method for forming semiconductor insulating film using the same

Publications (1)

Publication Number Publication Date
JPH10267872A true JPH10267872A (en) 1998-10-09

Family

ID=13574487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7537897A Pending JPH10267872A (en) 1997-03-27 1997-03-27 Method for evaluating characteristic of substance based on programmed temperature desorption spectral method and method for forming semiconductor insulating film using the same

Country Status (1)

Country Link
JP (1) JPH10267872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169362A (en) * 2011-02-10 2012-09-06 Taiyo Nippon Sanso Corp Method of forming silicon nitride film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169362A (en) * 2011-02-10 2012-09-06 Taiyo Nippon Sanso Corp Method of forming silicon nitride film

Similar Documents

Publication Publication Date Title
US20040015300A1 (en) Method and apparatus for monitoring solid precursor delivery
Mitterdorfer et al. Identification of the reaction mechanism of the Pt, O2 (g)| yttria-stabilized zirconia system: Part II: Model implementation, parameter estimation, and validation
Malyshev et al. Trace rare gases optical emission spectroscopy: nonintrusive method for measuring electron temperatures in low-pressure, low-temperature plasmas
US9128493B2 (en) Method and apparatus for plating solution analysis and control
US4493745A (en) Optical emission spectroscopy end point detection in plasma etching
US10113235B2 (en) Source gas supply unit, film forming apparatus and source gas supply method
US7881886B1 (en) Methods for performing transient flow prediction and verification using discharge coefficients
TWI834662B (en) Methods and apparatus for detecting an endpoint of a seasoning process
JP2005504290A (en) Method and apparatus for dynamic chemical analysis in real time
US20100122564A1 (en) Liquid sample evaporator for vapor analysis
Long et al. The application of the extended pair approximation to hopping conduction in rf sputtered amorphous silicon
Yasuda et al. Layer-resolved kinetics of Si oxidation investigated using the reflectance difference oscillation method
JP2009537811A (en) A method to determine the feasibility of the proposed structural analysis process
US20030171903A1 (en) System and method for leak rate testing during adiabatic cooling
KR20190047583A (en) Method and system of adjusting process gas flow of vacuum coating equipment
US20040001524A1 (en) Method and apparatus for thermally investigating a material
EP3608941B1 (en) Isotope ratio measurement
JPH10325835A (en) Method for estimating hold time of gas chromatograph system
JPH10267872A (en) Method for evaluating characteristic of substance based on programmed temperature desorption spectral method and method for forming semiconductor insulating film using the same
JPH07307301A (en) Semiconductor device and its manufacture
US6313648B1 (en) Method for quantitating impurity concentration in a semiconductor device
Farag et al. Numerical transformations of wide-range time-and frequency-domain relaxational spectra
EP0844479A2 (en) Method for rapidly determining an impurity level in a gas source or a gas distribution system
EP0196259B1 (en) Regulation method for a chemical medium
JPH08264614A (en) Method and apparatus for evaluating silicon substrate, method and apparatus for evaluating silicon oxide film and method and apparatus for manufacturing semiconductor device