JPH10260156A - Sensor - Google Patents

Sensor

Info

Publication number
JPH10260156A
JPH10260156A JP9064142A JP6414297A JPH10260156A JP H10260156 A JPH10260156 A JP H10260156A JP 9064142 A JP9064142 A JP 9064142A JP 6414297 A JP6414297 A JP 6414297A JP H10260156 A JPH10260156 A JP H10260156A
Authority
JP
Japan
Prior art keywords
glucose
gate
sensitivity
transistor
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9064142A
Other languages
Japanese (ja)
Inventor
Yasuo Wada
恭雄 和田
Tomihiro Hashizume
富博 橋詰
Seiji Heike
誠嗣 平家
Munehisa Mitsuya
宗久 三矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9064142A priority Critical patent/JPH10260156A/en
Publication of JPH10260156A publication Critical patent/JPH10260156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sensor whose sensitivity and selectivity are high by a method wherein a part to which a protein and an enzyme which are selectively reacted with, or absorbed to, a specific substance is used as a field-effect transistor(FET) or a single-electron transistor. SOLUTION: A glucose oxidation enzyme as a receptor 5 is adsorbed, via polypyrrole, to the part of the gate 4 of an FET which is formed by an ordinary semiconductor technique. The part of the gate 4 is immersed in a solution which contains glucose 6 as a ligand, and a selective reaction with the glucose 6 is caused. Then, a transistor output which is nearly proportional to the concentration of the glucose is obtained. That is to say, when the concentration of the glucose is increased, the transistor output is raised. Consequently, this structure functions as a sensor. In addition, when a plurality of FET's are connected in parallel, their sensitivity can be enhanced. In this manner, the glucose 6 in the solution can be detected with high sensitivity and with high selectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は所謂バイオセンサー
の新規な構造に関するもので、さらに詳述すると、ゲー
ト部分に分子認識機能を持たせた、トランジスタ構造か
らなる、単一分子検出能力を持つバイオセンサーに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel structure of a so-called biosensor. About the sensor.

【0002】[0002]

【従来の技術】従来のバイオセンサーは、特定の分子と
選択的に反応する機能を膜に持たせ、その分子が吸着し
たときのポテンシャルの変化を測定するなどの方法を取
ってきた。例えば相沢、ケミカルコミニュケーション、
945頁(1989年)(M.Aizawa, Chem. Soc. Chem.
Commun., 945 (1989))にあるように、グルコース酸化
酵素を電極表面に固定し、グルコースの酸化に伴う電流
を計測することにより、グルコース量を検出していた。
しかしこの方法では、折角反応基を付着して電極に選択
性を持たせても、化学反応に伴う電流値を直接的に検出
する方式のため、感度が低く、低濃度のグルコースを検
出することが実質上不可能である等、バイオセンサの高
選択性という特徴を必ずしも活かすことができなかっ
た。
2. Description of the Related Art A conventional biosensor has a method in which a membrane has a function of selectively reacting with a specific molecule, and a change in potential when the molecule is adsorbed is measured. For example, Aizawa, Chemical Communication,
945 (1989) (M. Aizawa, Chem. Soc. Chem.
Commun., 945 (1989)), a glucose oxidase was immobilized on the electrode surface, and the amount of glucose was detected by measuring the current accompanying the oxidation of glucose.
However, in this method, even if the electrode has selectivity by attaching a reactive group, the sensitivity is low and low-concentration glucose can be detected because the current value associated with the chemical reaction is directly detected. However, it was not always possible to take advantage of the high selectivity of biosensors, for example, it was impossible.

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような現
在の技術の問題点を解決するためになされたもので、酵
素をゲートに接続した電界効果型あるいは単電子型トラ
ンジスタ構造を取ることにより、従来よりも遥かに高い
感度の、選択性の高いセンサを提供するものである。本
発明により、一個の分子を検出可能なデバイスが実現で
きるため、本発明の技術的効果は大である。
SUMMARY OF THE INVENTION The present invention has been made to solve such problems of the present technology, and has a field effect type or single electron type transistor structure in which an enzyme is connected to a gate. It is intended to provide a highly selective sensor with much higher sensitivity than before. According to the present invention, a device capable of detecting one molecule can be realized, so that the technical effect of the present invention is great.

【0004】[0004]

【課題を解決するための手段】本発明によるデバイスの
基本構造を図1に示す。図中でゲート4に接着させたレ
セプター5に対し、リガンド6が選択的に反応をして吸
着する際に起こる電極反応により、該レセプター5に接
続されたゲート4に電位が変化する。この電位変化は、
半導体基板1上に形成されたソース2、ドレーン3、ゲ
ート4からなるトランジスタのコンダクタンスを変化さ
せる。具体的にはソース2とドレーン3との間に流れる
チャンネル電流値が、該レセプター5とリガンド6の反
応数に対応して変化する。このようにして、チャンネル
電流値から、溶液中に存在する該リガンド6の数を、従
来では不可能であった高い選択性と高い感度で検出でき
るため、本発明の技術的な効果は大である。
FIG. 1 shows the basic structure of a device according to the present invention. In the figure, the potential of the gate 4 connected to the receptor 5 changes due to an electrode reaction that occurs when the ligand 6 selectively reacts with and adheres to the receptor 5 adhered to the gate 4. This potential change is
The conductance of a transistor including a source 2, a drain 3, and a gate 4 formed on a semiconductor substrate 1 is changed. Specifically, a channel current value flowing between the source 2 and the drain 3 changes according to the number of reactions between the receptor 5 and the ligand 6. In this manner, the number of the ligands 6 present in the solution can be detected from the channel current value with high selectivity and high sensitivity, which was impossible in the past, so that the technical effect of the present invention is large. is there.

【0005】[0005]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)本実施例では、図1に基づき電界効果トラ
ンジスタ構造を持つ本発明の実施形態を説明する。図1
はシリコン(100)基板1上に、通常の半導体技術を
用いゲート4、ソース2、ドレーン3を形成し、電界効
果トランジスタ構造を形成した状態を示す。図中でシリ
コン基板1は、p型にドープされた比抵抗10ohm-cmの
ものを用い、ソース2、ドレーン3は、燐を1020cm
-3ドープして形成し、接合深さは2ミクロンであった。
また、ゲート4は、厚さ200n m の多結晶シリコンを
用いて形成し、ゲート長は5ミクロン、ゲート幅は10
ミクロンである。このように用意した構造のゲート4部
分にレセプター5としてグルコース酸化酵素を吸着させ
た。グルコース酸化酵素5は、ゲート4にポリピロール
を介して吸着させ、ゲート4と電気的に接続した状態に
なっている。このような状態で、リガンドとしてグルコ
ース6を含む溶液中に該ゲート4部分にレセプター5と
してグルコース酸化酵素を吸着させた部分を浸し、グル
コースとの選択反応を起こさせた。この結果、グルコー
ス濃度にほぼ比例したトランジスタ出力が得られた。す
なわち、図2に示したようにグルコース濃度を上げる
と、それに比例してグルコース酸化酵素に吸着するグル
コース量も増大し、その結果ゲート電圧が実効的に上が
って、トランジスタのコンダクタンスが高くなり、トラ
ンジスタ出力が上昇する。図2から明らかなように、本
発明による構造はセンサとしての機能を十分に持つ。さ
らに図1に示した電界効果トランジスタを並列に並べ、
一個のセンサとして用いることも可能である。このよう
な構造とすることにより、例えば5個の電界効果トラン
ジスタを並列動作させれば、感度を5倍にすることが可
能になる。この理由は、実効的なゲート幅が増大するた
めであるが、単に一つのトランジスタのゲート幅を広げ
るよりは、複数のトランジスタを並列化したほうが雑音
を抑制可能等の理由により、感度が向上できる。
(Embodiment 1) In this embodiment, an embodiment of the present invention having a field effect transistor structure will be described with reference to FIG. FIG.
Shows a state in which a gate 4, a source 2, and a drain 3 are formed on a silicon (100) substrate 1 by using a normal semiconductor technique to form a field effect transistor structure. In the figure, a silicon substrate 1 has a specific resistance of 10 ohm-cm doped with p-type, and a source 2 and a drain 3 have phosphorous of 1020 cm-cm.
-3 doped, and the junction depth was 2 microns.
The gate 4 is formed of polycrystalline silicon having a thickness of 200 nm, and has a gate length of 5 microns and a gate width of 10 nm.
Micron. Glucose oxidase was adsorbed as the receptor 5 to the gate 4 portion of the structure thus prepared. The glucose oxidase 5 is adsorbed on the gate 4 via polypyrrole, and is electrically connected to the gate 4. In this state, the portion where glucose oxidase was adsorbed as the receptor 5 was immersed in the gate 4 portion in a solution containing glucose 6 as a ligand to cause a selective reaction with glucose. As a result, a transistor output almost proportional to the glucose concentration was obtained. That is, when the glucose concentration is increased as shown in FIG. 2, the amount of glucose adsorbed on the glucose oxidase also increases in proportion thereto, and as a result, the gate voltage is effectively increased, and the conductance of the transistor is increased. The output increases. As is apparent from FIG. 2, the structure according to the present invention has a sufficient function as a sensor. Further, the field-effect transistors shown in FIG. 1 are arranged in parallel,
It is also possible to use as one sensor. With such a structure, for example, by operating five field effect transistors in parallel, it is possible to increase the sensitivity five times. The reason for this is that the effective gate width is increased, but the sensitivity can be improved because, for example, noise can be suppressed by paralleling a plurality of transistors rather than simply increasing the gate width of one transistor. .

【0006】特定の物質と選択的に反応あるいは吸着す
る蛋白質、酵素に関しては、本実施例では、グルコース
酸化酵素とグルコースの組み合わせの例を挙げたが、本
発明の骨子から当然、特定の所望の物質と選択的に反応
する酵素、蛋白質の組み合わせを任意に選択可能であ
る。すなわち、特に選択性の強いレセプターとリガンド
の組み合わせを目的に応じて任意に選ぶことができる点
が本発明の特徴である。
[0006] In the present embodiment, examples of the combination of glucose oxidase and glucose have been given with respect to proteins and enzymes that selectively react with or adsorb to a specific substance. Combinations of enzymes and proteins that selectively react with the substance can be arbitrarily selected. That is, a feature of the present invention is that a combination of a receptor and a ligand having particularly high selectivity can be arbitrarily selected according to the purpose.

【0007】(実施例2)本実施例では、図3に基づき
単電子トランジスタ構造を持つ本発明の実施形態を説明
する。図3は単電子型トランジスタ構造の量子ドット1
1に、ゲート14を介して特定の物質15と選択的に反
応あるいは吸着する蛋白質、酵素13を付加した状態を
示す。図中で12はトンネル接合であり、該ゲート14
のポテンシャルにより該量子ドット11を介して流れる
電流が制御される。すなわち、該物質15と選択的に反
応あるいは吸着する蛋白質、酵素13に、物質15が反
応或いは吸着している場合には該量子ドット11を介し
て流れる電流は観測されるが、該物質15と選択的に反
応あるいは吸着する蛋白質、酵素13に、物質15が反
応或いは吸着していない場合には該量子ドット11を介
して流れる電流はほぼゼロになるように調整する。無論
正反対に、該物質15と選択的に反応あるいは吸着する
蛋白質、酵素13に、物質15が反応或いは吸着してい
る場合には該量子ドット11を介して流れる電流はゼロ
になるが、該物質15と選択的に反応あるいは吸着する
蛋白質、酵素13に、物質15が反応或いは吸着してい
ない場合には該量子ドット11を介して流れる電流が観
測できるように調整することも可能であり、これはその
測定系の特性により、適切な形を任意に選択可能であ
る。さらに、該量子ドット11の寸法を十分に小さくす
ることにより、検出感度が向上し、分子一個が吸着した
場合の変化を検出することも可能である。本実施例で
は、該量子ドットを10nmまで縮小することにより、
該ゲート14のポテンシャルが10mV変化し、これに
より一個の分子を検出出来た。
(Embodiment 2) In this embodiment, an embodiment of the present invention having a single electron transistor structure will be described with reference to FIG. FIG. 3 shows a quantum dot 1 having a single-electron transistor structure.
1 shows a state in which a protein or enzyme 13 that selectively reacts or adsorbs with a specific substance 15 via a gate 14 is added. In the figure, reference numeral 12 denotes a tunnel junction;
The current flowing through the quantum dot 11 is controlled by the potential. That is, when the substance 15 reacts or adsorbs to the protein or the enzyme 13 which selectively reacts or adsorbs with the substance 15, a current flowing through the quantum dot 11 is observed. When the substance 15 does not react or adsorb to the protein or enzyme 13 which selectively reacts or adsorbs, the current flowing through the quantum dot 11 is adjusted to be almost zero. On the contrary, when the substance 15 reacts or adsorbs to the protein or the enzyme 13 which selectively reacts or adsorbs with the substance 15, the current flowing through the quantum dot 11 becomes zero. If the substance 15 does not react or adsorb to the protein or enzyme 13 which selectively reacts or adsorbs with the substance 15, it is also possible to adjust so that the current flowing through the quantum dot 11 can be observed. Can select an appropriate shape arbitrarily according to the characteristics of the measurement system. Further, by sufficiently reducing the size of the quantum dot 11, the detection sensitivity is improved, and it is possible to detect a change when one molecule is adsorbed. In this embodiment, by reducing the quantum dots to 10 nm,
The potential of the gate 14 changed by 10 mV, whereby one molecule could be detected.

【0008】特定の物質と選択的に反応あるいは吸着す
る蛋白質、酵素に関しては、本実施例では、グルコース
酸化酵素とグルコースの組み合わせの例を挙げたが、本
発明の骨子から当然、特定の所望の物質と選択的に反応
する酵素、蛋白質の組み合わせを任意に選択可能であ
る。すなわち、特に選択性の強いレセプターとリガンド
の組み合わせを目的に応じて任意に選ぶことができる点
が本発明の特徴である。
[0008] In the present embodiment, examples of the combination of glucose oxidase and glucose have been given with respect to proteins and enzymes that selectively react with or adsorb to a specific substance. Combinations of enzymes and proteins that selectively react with the substance can be arbitrarily selected. That is, a feature of the present invention is that a combination of a receptor and a ligand having particularly high selectivity can be arbitrarily selected according to the purpose.

【0009】図4は図3に開示した単電子型トランジス
タ構造21を並列に並べ、一個のセンサとして用いる場
合の構成例を示したものである。このような並列構造と
することにより、例えば図4に示したような5個の単電
子型トランジスタを並列動作させれば、感度を5倍にす
ることが可能になる。この理由は、実効的な電流経路が
5倍に増大するためである。単に一つの単電子型トラン
ジスタの量子ドット寸法を小さくしたのでは電流が小さ
くなり却って感度が低くなる。一方量子ドット寸法を大
きくすると、温度に起因する熱雑音が大きくなったり、
一個の反応に起因する電圧変化が小さくなるために、や
はり感度は低下する。従って、単電子型トランジスタを
用いる場合には、感度向上のためには並列化は必須であ
る。単電子型トランジスタを仕様する本方法では、従来
方法の100倍以上、電界効果トランジスタ型の10倍
以上の高感度化が可能である。このため本発明の工学的
な効果は大きい。
FIG. 4 shows an example of a configuration in which the single-electron transistor structures 21 disclosed in FIG. 3 are arranged in parallel and used as one sensor. With such a parallel structure, for example, by operating five single-electron transistors in parallel as shown in FIG. 4, the sensitivity can be increased fivefold. This is because the effective current path is increased by a factor of five. If the quantum dot size of one single-electron transistor is simply reduced, the current becomes smaller and the sensitivity is rather lowered. On the other hand, when the quantum dot size is increased, thermal noise due to temperature increases,
Since the voltage change caused by one reaction is small, the sensitivity also decreases. Therefore, when a single-electron transistor is used, parallelization is indispensable for improving the sensitivity. According to the method of using a single-electron transistor, it is possible to achieve a sensitivity that is 100 times or more higher than that of the conventional method and 10 times or more that of the field effect transistor type. Therefore, the engineering effect of the present invention is great.

【0010】[0010]

【発明の効果】以上の実施例から明らかなように、本発
明によれば、従来よりも遥かに高い感度の、選択性の高
いセンサを実現可能である。また、本発明により、一個
の分子を検出可能なデバイスが実現できるため、本発明
の技術的効果は大である。
As is clear from the above embodiments, according to the present invention, a highly selective sensor having much higher sensitivity than the conventional one can be realized. Further, according to the present invention, a device capable of detecting one molecule can be realized, so that the technical effect of the present invention is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理と実施例を説明する図。FIG. 1 is a diagram illustrating the principle and an embodiment of the present invention.

【図2】本発明の効果を示す図。FIG. 2 is a diagram showing the effect of the present invention.

【図3】本発明の実施例を示す図。FIG. 3 is a diagram showing an embodiment of the present invention.

【図4】本発明の実施例を示す図。FIG. 4 is a diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…基板、2、3…拡散層、4、14…ゲート、5、1
3…レセプタ、6、15…リガンド、11…量子ドッ
ト、12…トンネル接合、21…単電子型トランジスタ
センサ。
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2, 3 ... Diffusion layer, 4, 14 ... Gate, 5, 1
3. Receptor, 6, 15 Ligand, 11 Quantum dot, 12 Tunnel junction, 21 Single electron transistor sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三矢 宗久 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Munehisa Miya 2520 Akanuma, Hatoyama-cho, Hiki-gun, Saitama Prefecture Basic Research Laboratory, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】特定の物質と選択的に反応あるいは吸着す
る蛋白質、酵素を付加した部分を有することを特徴とす
るセンサー。
1. A sensor having a portion to which a protein or enzyme that selectively reacts or adsorbs with a specific substance is added.
【請求項2】該特定の物質と選択的に反応あるいは吸着
する蛋白質、酵素を付加した部分が電界効果トランジス
タのゲートであることを特徴とする請求項1に記載のセ
ンサー。
2. The sensor according to claim 1, wherein the portion to which a protein or enzyme selectively reacting or adsorbing with the specific substance is added is a gate of a field effect transistor.
【請求項3】該特定の物質と選択的に反応あるいは吸着
する蛋白質、酵素を付加した部分が単電子トランジスタ
のゲートであることを特徴とする請求項1に記載のセン
サー。
3. The sensor according to claim 1, wherein the portion to which a protein or enzyme that selectively reacts or adsorbs with the specific substance is added is a gate of a single-electron transistor.
【請求項4】該電界効果トランジスタが複数個並列に並
んでいることを特徴とする請求項2に記載のセンサー。
4. The sensor according to claim 2, wherein a plurality of said field effect transistors are arranged in parallel.
【請求項5】該単電子トランジスタが複数個並列に並ん
でいることを特徴とする請求項3に記載のセンサー。
5. The sensor according to claim 3, wherein a plurality of said single-electron transistors are arranged in parallel.
JP9064142A 1997-03-18 1997-03-18 Sensor Pending JPH10260156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9064142A JPH10260156A (en) 1997-03-18 1997-03-18 Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9064142A JPH10260156A (en) 1997-03-18 1997-03-18 Sensor

Publications (1)

Publication Number Publication Date
JPH10260156A true JPH10260156A (en) 1998-09-29

Family

ID=13249542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9064142A Pending JPH10260156A (en) 1997-03-18 1997-03-18 Sensor

Country Status (1)

Country Link
JP (1) JPH10260156A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1464953A1 (en) * 2003-04-02 2004-10-06 Lucent Technologies Inc. Biosensor comprising an organic field effect transistor and method for the fabrication of the sensor
WO2005022134A1 (en) * 2003-08-29 2005-03-10 Japan Science And Technology Agency Field-effect transistor, single electron transistor, and sensor using same
WO2006025481A1 (en) * 2004-09-03 2006-03-09 Japan Science And Technology Agency Sensor unit and reaction field cell unit and analyzer
JP2007513322A (en) * 2003-11-07 2007-05-24 キネテイツク・リミテツド Molecular single electron transistor (MSET) detection device
US7317216B2 (en) * 2003-10-31 2008-01-08 University Of Hawaii Ultrasensitive biochemical sensing platform
WO2009116534A1 (en) 2008-03-17 2009-09-24 三菱化学メディエンス株式会社 Electric analysis method
JP2009229341A (en) * 2008-03-25 2009-10-08 Hiroshima Univ Biosensor and manufacturing method thereof
EP2685250A1 (en) 2003-05-23 2014-01-15 Japan Science and Technology Agency Method for sensing a substance to be detected in a sample

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189987B2 (en) 2003-04-02 2007-03-13 Lucent Technologies Inc. Electrical detection of selected species
EP1464953A1 (en) * 2003-04-02 2004-10-06 Lucent Technologies Inc. Biosensor comprising an organic field effect transistor and method for the fabrication of the sensor
US7534646B2 (en) 2003-04-02 2009-05-19 Alcatel-Lucent Usa Inc. Method of fabricating an organic field transistor
KR101129503B1 (en) * 2003-04-02 2012-03-30 알카텔-루센트 유에스에이 인코포레이티드 The electrical detection of selected species
KR101235860B1 (en) * 2003-04-02 2013-02-20 알카텔-루센트 유에스에이 인코포레이티드 The electrical detection of selected species
EP2685250A1 (en) 2003-05-23 2014-01-15 Japan Science and Technology Agency Method for sensing a substance to be detected in a sample
US8502277B2 (en) 2003-08-29 2013-08-06 Japan Science And Technology Agency Field-effect transistor, single-electron transistor and sensor using the same
WO2005022134A1 (en) * 2003-08-29 2005-03-10 Japan Science And Technology Agency Field-effect transistor, single electron transistor, and sensor using same
US9506892B2 (en) 2003-08-29 2016-11-29 Japan Science And Technology Agency Field-effect transistor, single-electron transistor and sensor using the same
US8772099B2 (en) 2003-08-29 2014-07-08 Japan Science And Technology Agency Method of use of a field-effect transistor, single-electron transistor and sensor
US8766326B2 (en) 2003-08-29 2014-07-01 Japan Science And Technology Agency Field-effect transistor, single-electron transistor and sensor
US7317216B2 (en) * 2003-10-31 2008-01-08 University Of Hawaii Ultrasensitive biochemical sensing platform
JP2007513322A (en) * 2003-11-07 2007-05-24 キネテイツク・リミテツド Molecular single electron transistor (MSET) detection device
WO2006025481A1 (en) * 2004-09-03 2006-03-09 Japan Science And Technology Agency Sensor unit and reaction field cell unit and analyzer
JPWO2009116534A1 (en) * 2008-03-17 2011-07-21 三菱化学メディエンス株式会社 Electrical analysis method
JP5416692B2 (en) * 2008-03-17 2014-02-12 三菱化学メディエンス株式会社 Electrical analysis method
WO2009116534A1 (en) 2008-03-17 2009-09-24 三菱化学メディエンス株式会社 Electric analysis method
US8785144B2 (en) 2008-03-17 2014-07-22 Mitsubishi Chemical Medience Corporation Electric analysis method
JP2009229341A (en) * 2008-03-25 2009-10-08 Hiroshima Univ Biosensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101026468B1 (en) Apparatus for detecting biomolecules and detecting method the same
Sakata et al. Potential behavior of biochemically modified gold electrode for extended-gate field-effect transistor
Yin et al. Glucose ENFET doped with MnO2 powder
US20060197118A1 (en) Detection of molecular interactions using a field effect transistor
EP1843152B1 (en) Method of detecting bio-molecules using the same field effect transistor on the gate sensing surface
Juang et al. Proton-ELISA: Electrochemical immunoassay on a dual-gated ISFET array
Yang et al. An amperometric horseradish peroxidase inhibition biosensor based on a cysteamine self-assembled monolayer for the determination of sulfides
JP5061342B2 (en) Carbon nanotube electrode and sensor using the electrode
EP1212795A1 (en) Sensing devices using chemically-gated single electron transistors
US20100126885A1 (en) Sensor device and method of measuring a solution
Poghossian Method of fabrication of ISFET-based biosensors on an Si–SiO2–Si structure
JPH0460549B2 (en)
Ltith et al. Penicillin detection by means of silicon-based field-effect structures
KR20160013768A (en) Dual gate ion-sensitive field-effect transistor sensor
Estrela et al. Chemical and biological sensors using polycrystalline silicon TFTs
JPH10260156A (en) Sensor
Chang et al. CMOS ion sensitive field effect transistors for highly sensitive detection of DNA hybridization
Chen et al. Surface-modified silicon nano-channel for urea sensing
Sarcina et al. Enzyme based field effect transistor: State‐of‐the‐art and future perspectives
KR20090060635A (en) Bio sensor and method for fabricating the same
Lee et al. All solid type ISFET glucose sensor with fast response and high sensitivity characteristics
WO2016111237A1 (en) Target substance detection method using fet biosensor
Vering et al. Field‐Effect transistors as transducers in biosensors for substrates of dehydrogenases
Martin et al. Electrochemical determination of allopurinol based on its interaction with xanthine oxidase
Shul'ga et al. An alternative microbiosensor for hydrogen peroxide based on an enzyme field effect transistor with a fast response