JPH1025124A - Carbon heater for sealing glass - Google Patents

Carbon heater for sealing glass

Info

Publication number
JPH1025124A
JPH1025124A JP8176542A JP17654296A JPH1025124A JP H1025124 A JPH1025124 A JP H1025124A JP 8176542 A JP8176542 A JP 8176542A JP 17654296 A JP17654296 A JP 17654296A JP H1025124 A JPH1025124 A JP H1025124A
Authority
JP
Japan
Prior art keywords
heater
insertion hole
work insertion
carbon
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8176542A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Tanaka
芳幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP8176542A priority Critical patent/JPH1025124A/en
Publication of JPH1025124A publication Critical patent/JPH1025124A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/025Heaters specially adapted for glass melting or glass treatment

Landscapes

  • Resistance Heating (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon heater for sealing glass, enhanced in the efficiency of heat generation in a work insertion hole-arranged region and reduced in an electric current value required for sealing the glass by changing the thickness and resistivity of the carbon heater in the work insertion hole-arranged region. SOLUTION: This carbon heater for sealing glass is provided with a board- like heater main body (upper heater 10, lower heater 20A), electrodes 11a, 11b, 21a, 21b disposed along a pair of the side parts of the heater main body, and work insertion holes 22 in the heater main body between the electrodes in the thickness direction. The thickness of the heater main body in the work insertion hole-arranged region B having work insertion holes 22 therein is enlarged in comparison with the thickness of the heater main body in the side parts having electrodes 21a, 21b disposed therein. The work insertion hole- arranged region B of the heater main body has a composite layer structure in which three layers comprising a low resistant layer C, a high resistant layer R and a low resistant C are piled up in the thickness direction. The ends of the work insertion holes 22 are placed in the low resistant layer C or at its near places, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガラス封止用カーボ
ンヒータに係り、特に、放電管型サージアブソーバを作
製する場合やダイオード等をガラス封止する場合に使用
されるガラス封止用カーボンヒータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon heater for glass sealing, and more particularly to a carbon heater for glass sealing which is used when a discharge tube type surge absorber is manufactured or when a diode or the like is glass-sealed. .

【0002】[0002]

【従来の技術】放電管型サージアブソーバを作製する場
合やダイオード等をガラス封止する場合、一般に、次の
ようにしてガラス封止を行う。即ち、まず、ガラス管と
スラグリード又はジュメット線と封止すべき物をカーボ
ンヒータ内にセットし、これを封入器内にセットして、
排気した後、不活性ガスを導入し、カーボンヒータに通
電してカーボンヒータ自体を発熱させることにより、ガ
ラス管を溶かしスラグリード又はジュメット線とガラス
管とを濡らすことによって封止を行う。
2. Description of the Related Art When a discharge tube type surge absorber is manufactured or a diode or the like is sealed with glass, glass sealing is generally performed as follows. That is, first, a glass tube and a slag lead or a dumet wire and an object to be sealed are set in a carbon heater, and this is set in an enclosing device,
After evacuation, an inert gas is introduced, the carbon heater is energized to generate heat, and the glass tube is melted to seal the slag lead or Dumet wire and wet the glass tube.

【0003】このようなガラス封止に用いられるカーボ
ンヒータは、例えば、図4(a)(斜視図)、(b)
(図4(a)のB−B線に沿う断面図)に示す如く、1
対の側辺部に電極11a,11bが形成された盤状のカ
ーボン製上ヒータ10と、1対の側辺部に電極21a,
21bが形成され、この電極21a,21bの間の領域
に複数のワーク挿入穴22が設けられた盤状のカーボン
製下ヒータ20とで構成されたものが用いられ、下ヒー
タ20のワーク挿入穴22にガラス管等のワークが挿入
されてガラス封止が行われる(なお、以下にカーボンヒ
ータの電極が設けられた部分Aを「電極形成領域」と称
し、ワーク挿入穴が設けられた部分Bを「ワーク挿入穴
配置領域」と称す場合がある。)。
A carbon heater used for such a glass sealing is, for example, shown in FIGS. 4 (a) (perspective view) and (b).
As shown in FIG. 4A, a sectional view taken along line BB of FIG.
A disk-shaped carbon upper heater 10 having electrodes 11a and 11b formed on a pair of side portions, and an electrode 21a,
A lower heater 20 made of a disc-shaped carbon having a plurality of work insertion holes 22 provided in a region between the electrodes 21a and 21b is used. A work such as a glass tube is inserted into 22 and glass sealing is performed. (Hereinafter, a portion A where an electrode of a carbon heater is provided is referred to as an “electrode forming region” and a portion B where a work insertion hole is provided. May be referred to as “work insertion hole arrangement area”.)

【0004】従来、このカーボンヒータは1種類のカー
ボンを用いて形成されており、従って、上ヒータ及び下
ヒータのいずれの箇所もすべて同一の抵抗値のカーボン
で構成されている。
Conventionally, this carbon heater has been formed using one type of carbon, and therefore, both the upper heater and the lower heater are all made of carbon having the same resistance value.

【0005】[0005]

【発明が解決しようとする課題】ガラス封止に当り、ガ
ラス封止用カーボンヒータは封入器内にセットされて使
用されるため、装置上の問題から電極形成領域Aのカー
ボンヒータの厚さには制約がある。
In the glass sealing, the glass heater for sealing the glass is used by being set in an enclosing device. Has restrictions.

【0006】このため、電極形成領域Aのカーボンヒー
タの厚さよりも長いガラス管を封止するために、カーボ
ンヒータ図5を(a)(斜視図),(b)(図5(a)
のB−B線に沿う断面図)に示す如く、下ヒータ20A
の電極形成領域Aの厚さを変えることなく、ワーク挿入
穴形成領域Bの厚さを厚くして、深いワーク挿入穴22
を形成した構成とした場合、次のような不具合が生じる
(なお、図5(a),(b)において、図4(a),
(b)に示す部材と同一機能を奏する部材には同一符号
を付してある。)。
Therefore, in order to seal a glass tube longer than the thickness of the carbon heater in the electrode forming region A, the carbon heaters shown in FIGS. 5 (a) (perspective view) and (b) (FIG. 5 (a)) are used.
As shown in FIG.
The thickness of the workpiece insertion hole forming area B is increased without changing the thickness of the
In the case of the configuration in which is formed, the following problem occurs (in FIGS. 5A and 5B, FIGS. 4A and 4B).
Members having the same functions as the members shown in (b) are denoted by the same reference numerals. ).

【0007】即ち、ヒータはすべて同一のカーボンで構
成されているため、断面積の小さい電極形成領域Aは、
断面積の大きいワーク挿入穴配置領域Bよりも抵抗値が
高くなる。このためカーボンヒータは、この抵抗値の高
い電極形成領域Aで主に発熱するようになり、ワーク挿
入穴配置領域Bでの発熱が小さいために、ワーク挿入穴
配置領域Bのワーク挿入穴22で効率的な封止を行えな
い。ワーク挿入穴配置領域Bでの発熱を高めるために通
電量を多くした場合には、電極形成領域Aでの過熱によ
り電極の溶融に到る場合もある。
That is, since the heaters are all made of the same carbon, the electrode forming region A having a small sectional area is
The resistance value is higher than that of the work insertion hole arrangement area B having a large sectional area. For this reason, the carbon heater mainly generates heat in the electrode formation region A having a high resistance value, and generates little heat in the work insertion hole arrangement region B. Therefore, the carbon heater generates heat in the work insertion hole 22 in the work insertion hole arrangement region B. It cannot perform efficient sealing. When the amount of electricity is increased to increase heat generation in the work insertion hole arrangement area B, the electrodes may be melted due to overheating in the electrode formation area A.

【0008】カーボンヒータの電極形成領域の厚さに特
に制約がない場合、カーボンヒータの厚さを全体的に厚
くすることにより、このような電極形成領域での過熱は
防止されるが、この場合には、上下ヒータの外面に電極
を形成した構成では、ヒータ内に均一に電流が流れない
ために、ヒータの電極形成面側のみ発熱し、ワーク挿入
穴配置領域で均一に発生しない;必要量の発熱を得るた
めに過大な電流を流す必要があり、十分に大きな容量を
持った電源が必要となる;といった問題が生じる。
When there is no particular limitation on the thickness of the electrode formation region of the carbon heater, overheating in such an electrode formation region can be prevented by increasing the thickness of the carbon heater as a whole. In the configuration in which the electrodes are formed on the outer surfaces of the upper and lower heaters, current does not flow uniformly in the heaters, so that heat is generated only on the electrode forming surface side of the heaters and is not generated uniformly in the work insertion hole arrangement area; It is necessary to supply an excessive current in order to obtain the heat generated by the power supply, and a power supply having a sufficiently large capacity is required.

【0009】本発明は上記従来の問題点を解決し、カー
ボンヒータのワーク挿入穴配置領域での発熱効率が高
く、ガラス封止に必要な電流値の低減を図ることができ
るガラス封止用カーボンヒータを提供することを目的と
する。
The present invention solves the above-mentioned conventional problems, and has a high heat generation efficiency in a work insertion hole arrangement region of a carbon heater and can reduce a current value required for glass sealing. It is an object to provide a heater.

【0010】[0010]

【課題を解決するための手段】請求項1のガラス封止用
カーボンヒータは、盤状のヒータ本体と、該ヒータ本体
の1対の側辺部に沿って設けられた電極と、該電極間の
ヒータ本体に、厚さ方向に設けられたワーク挿入穴とを
備えるガラス封止用カーボンヒータにおいて、該ワーク
挿入穴が設けられたワーク挿入穴配置領域のヒータ本体
の厚さが、該電極が設けられた前記側辺部のヒータ本体
の厚さより厚く、該ヒータ本体の該ワーク挿入穴配置領
域においては、該ヒータ本体は低抵抗層、高抵抗層及び
低抵抗層の3層が厚さ方向に重なった複層構造となって
おり、前記ワーク挿入穴の端部がそれぞれ低抵抗層内又
はその近傍に位置することを特徴とする。
According to the first aspect of the present invention, there is provided a glass sealing carbon heater comprising: a disk-shaped heater body; electrodes provided along a pair of side portions of the heater body; In a glass sealing carbon heater having a work insertion hole provided in the thickness direction, the thickness of the heater body in the work insertion hole arrangement region where the work insertion hole is provided is such that the electrode is The thickness of the heater main body at the side portion provided is greater than the thickness of the heater main body. In the work insertion hole arrangement region of the heater main body, the heater main body has a low resistance layer, a high resistance layer, and a low resistance layer in a thickness direction. And the end portions of the work insertion holes are respectively located in or near the low resistance layer.

【0011】請求項2のガラス封止用カーボンヒータ
は、盤状のヒータ本体と、該ヒータ本体の1対の側辺部
に沿って設けられた電極と、該電極間のヒータ本体に、
厚さ方向に設けられたワーク挿入穴とを備えるガラス封
止用カーボンヒータにおいて、該ヒータ本体は、ワーク
挿入穴が設けられたワーク挿入穴配置領域に、ワーク挿
入穴と交叉方向に広がる空間部が設けられ、これによっ
て該ワーク挿入穴配置領域が該空間部を挟んで一半側と
他半側とに分離されており、該一半側と他半側とにワー
ク挿入穴が一直線上に配置されて設けられていることを
特徴とする。
The glass sealing carbon heater according to a second aspect of the present invention includes a disk-shaped heater main body, electrodes provided along a pair of side edges of the heater main body, and a heater main body between the electrodes.
In a carbon heater for glass sealing provided with a work insertion hole provided in a thickness direction, the heater main body is provided in a work insertion hole arrangement region provided with the work insertion hole, and a space portion extending in a direction crossing the work insertion hole. Is provided, whereby the work insertion hole arrangement area is separated into one half side and the other half side with the space portion interposed therebetween, and the work insertion holes are arranged in a straight line on the half side and the other half side. It is characterized by being provided.

【0012】請求項1のガラス封止用カーボンヒータで
は、ワーク挿入穴配置領域が、低抵抗層、高抵抗層及び
低抵抗層の3層が厚さ方向に重なった積層構造となって
いるため、このワーク挿入穴配置領域のヒータ本体の厚
さが電極が設けられた側辺部の電極形成領域のヒータ本
体の厚さよりも厚くても、このワーク挿入穴配置領域
を、電極形成領域よりも高い抵抗値を示すものとするこ
とができる。このため、封止の際の通電でワーク挿入穴
配置領域が効率的に発熱するようになる。なお、ワーク
挿入穴配置領域に高抵抗層が設けられていても、実際
に、ワークの封止を行うワーク挿入穴の端部は低抵抗層
内又はその近傍に位置するため、発熱は、主にこのワー
ク挿入穴の端部で起こるものとなることから、高抵抗層
の存在が封止に悪影響を及ぼすことはない。
In the glass sealing carbon heater according to the first aspect, the work insertion hole arrangement region has a laminated structure in which three layers of a low resistance layer, a high resistance layer, and a low resistance layer are overlapped in the thickness direction. Even if the thickness of the heater main body in the work insertion hole arrangement area is thicker than the thickness of the heater main body in the electrode formation area on the side where the electrode is provided, the work insertion hole arrangement area is larger than the electrode formation area. It can exhibit a high resistance value. For this reason, the work insertion hole arrangement area efficiently generates heat by energization at the time of sealing. Note that even if a high resistance layer is provided in the work insertion hole arrangement area, the end of the work insertion hole for actually sealing the work is located in or near the low resistance layer, so that heat is mainly generated. Since this occurs at the end of the work insertion hole, the presence of the high resistance layer does not adversely affect the sealing.

【0013】請求項2のガラス封止用カーボンヒータで
は、ヒータ本体のワーク挿入穴配置領域は、空間部を挟
んで一半側と他半側とに分離され、この一半側と他半側
のワーク挿入穴にワークの端部が位置するものとなるた
め、ワークの端部のみで効率的に発熱するものとなる。
In the glass sealing carbon heater according to the present invention, the work insertion hole arrangement area of the heater body is divided into one half and the other half with the space portion interposed therebetween. Since the end of the work is located in the insertion hole, heat is efficiently generated only at the end of the work.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明のガ
ラス封止用カーボンヒータの実施の形態を説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a glass sealing carbon heater according to an embodiment of the present invention.

【0015】図1〜3は本発明のガラス封止用カーボン
ヒータの実施の形態を示し、各々、(a)図は斜視図、
(b)図は(a)図のB−B線に沿う断面図である。
1 to 3 show an embodiment of a carbon heater for glass sealing according to the present invention, wherein FIG.
FIG. 2B is a cross-sectional view taken along line BB of FIG.

【0016】なお、図1〜3において、図4,5に示す
部材と同一機能を奏する部材には同一符号を付してあ
る。
In FIGS. 1 to 3, members having the same functions as those shown in FIGS. 4 and 5 are denoted by the same reference numerals.

【0017】図1に示すガラス封止用カーボンヒータ
は、下ヒータ20Aのワーク挿入穴配置領域Bがカーボ
ンCとこのカーボンよりも抵抗率の高い材料(以下「高
抵抗材料」と称す。)Rとで構成され、カーボンC製の
上ヒータ10を下ヒータ20Aに被せた使用状態におい
て、ワーク挿入穴配置領域BがカーボンCの層,高抵抗
材料Rの層及びカーボンCの層の3層が厚さ方向に重な
った積層構造となっており、ワーク挿入穴22の一端2
2aが下ヒータ20AのカーボンC内に位置し、他端2
2bが上ヒータ10のカーボンCの近傍に位置するよう
に構成される点が、図5に示すガラス封止用カーボンヒ
ータと異なり、その他は同様の構成とされている。
In the carbon sealing glass heater shown in FIG. 1, the work insertion hole arrangement region B of the lower heater 20A has carbon C and a material R having a higher resistivity than the carbon (hereinafter referred to as a "high resistance material"). In the use state in which the upper heater 10 made of carbon C is placed on the lower heater 20A, the work insertion hole arrangement area B has three layers of the carbon C layer, the high resistance material R layer, and the carbon C layer. It has a laminated structure that is overlapped in the thickness direction.
2a is located in the carbon C of the lower heater 20A,
The point that 2b is configured to be located near the carbon C of the upper heater 10 is different from the glass sealing carbon heater shown in FIG.

【0018】図2に示すガラス封止用カーボンヒータ
は、下ヒータ20Aの代りに上ヒータ10Aにワーク挿
入穴12が設けられ、上ヒータ10Aのワーク挿入穴配
置領域BがカーボンCと高抵抗材料Rとで構成され、下
ヒータ20がカーボンCで構成されている点が図1に示
すガラス封止用カーボンヒータと異なり、その他は同様
の構成とされている。
In the carbon sealing glass heater shown in FIG. 2, a work insertion hole 12 is provided in an upper heater 10A instead of the lower heater 20A, and the work insertion hole arrangement region B of the upper heater 10A is made of carbon C and a high resistance material. R, and the lower heater 20 is made of carbon C, which is different from the glass sealing carbon heater shown in FIG.

【0019】これら図1,2に示すガラス封止用カーボ
ンヒータであれば、上ヒータ10,10Aと下ヒータ2
0A,20とを重ね合せた使用状態において、ワーク挿
入穴配置領域Bが、低抵抗のカーボンCの層、高抵抗の
高抵抗材料Rの層及び低抵抗のカーボンCの層の3層が
厚さ方向に重なった積層構造となる。このため、このワ
ーク挿入穴配置領域Bの下ヒータ20A又は上ヒータ1
0Aの厚さが電極形成領域Aの厚さよりも厚くても、こ
のワーク挿入穴配置領域Bを、電極形成領域Aよりも高
い抵抗値を示すものとすることができる。このため、封
止の際の通電でワーク挿入穴配置領域Bを効率的に発熱
させることができる。
In the case of the glass sealing carbon heaters shown in FIGS. 1 and 2, the upper heaters 10 and 10A and the lower heater 2 are used.
In the use state in which 0A and 20 are superimposed, the work insertion hole arrangement area B has three layers of a low resistance carbon C layer, a high resistance high resistance material R layer, and a low resistance carbon C layer. It becomes a laminated structure that overlaps in the vertical direction. Therefore, the lower heater 20A or the upper heater 1
Even if the thickness of 0A is larger than the thickness of the electrode formation region A, the work insertion hole arrangement region B can have a higher resistance value than the electrode formation region A. For this reason, it is possible to efficiently generate heat in the work insertion hole arrangement area B by energization at the time of sealing.

【0020】なお、ワーク挿入穴配置領域Bには、高抵
抗材料Rの層が設けられていても、実際に、ワークの封
止を行うワーク挿入穴22又は12の端部は低抵抗のカ
ーボンC層内又はその近傍に位置するため、発熱は、主
にこのワーク挿入穴22又は12の端部で起こるものと
なることから、高抵抗材料Rの層の存在が封止に悪影響
を及ぼすことはない。
Even if a layer of a high resistance material R is provided in the work insertion hole arrangement area B, the end of the work insertion hole 22 or 12 for actually sealing the work is formed of a low resistance carbon material. Since it is located in or near the C layer, heat is mainly generated at the end of the work insertion hole 22 or 12, so that the presence of the layer of the high resistance material R adversely affects the sealing. There is no.

【0021】図1,2に示すガラス封止用カーボンヒー
タにおいて、カーボンCとしては、通常のカーボンヒー
タの構成材料として用いられる抵抗率500〜1500
μΩ・cm程度のカーボンを用いることができる。ま
た、高抵抗材料としては、このカーボンよりも抵抗率の
高いものであれば良く、特に制限はないが、通常の場
合、抵抗率1500μΩ・cm以上のカーボン又は、S
iC,SiO2 ,SiN等、或いは、絶縁性のアルミ
ナ、コランダム、ムライト等のセラミックスを用いるこ
とができる。
In the glass sealing carbon heater shown in FIGS. 1 and 2, carbon C is a resistivity of 500 to 1500 used as a constituent material of an ordinary carbon heater.
Carbon of about μΩ · cm can be used. The high-resistivity material is not particularly limited as long as it has a higher resistivity than this carbon, and usually, carbon having a resistivity of 1500 μΩ · cm or more, or S
Ceramics such as iC, SiO 2 , SiN, or insulating alumina, corundum, and mullite can be used.

【0022】この高抵抗材料Rの層の厚さは、カーボン
ヒータの寸法やワーク挿入穴の長さ、高抵抗材料の抵抗
率とカーボンの抵抗率との差、必要とされる通電効率等
に応じて適宜決定されるが、通常の場合、例えば図1に
おいて、カーボンC部分の厚さの合計(d1 +d2 )に
対して、高抵抗材料R部分の厚さd3 の割合が10〜9
5%程度となるようにするのが好ましい。
The thickness of the layer of the high-resistance material R depends on the dimensions of the carbon heater, the length of the work insertion hole, the difference between the resistivity of the high-resistance material and the resistivity of the carbon, the required power supply efficiency, and the like. In a normal case, for example, in FIG. 1, the ratio of the thickness d 3 of the high-resistance material R portion to the total thickness (d 1 + d 2 ) of the carbon C portion is 10 to 10. 9
It is preferable to set it to about 5%.

【0023】特に、高抵抗材料Rとして絶縁性材料を用
いる場合には、ワーク挿入穴配置領域BのカーボンC部
分の厚さd2 と電極形成領域Aの厚さd4 とが等しくな
るように、高抵抗材料Rの層の厚さd3 を設定するのが
好ましい。
In particular, when an insulating material is used as the high resistance material R, the thickness d 2 of the carbon C portion of the work insertion hole arrangement region B and the thickness d 4 of the electrode formation region A are made equal. It is preferable to set the thickness d 3 of the layer of the high-resistance material R.

【0024】図3に示すガラス封止用カーボンヒータ
は、ヒータ本体30のワーク挿入穴配置領域Bに、ワー
ク挿入穴32(32A,32B)と交叉方向に広がる空
間部33が設けられ、これによってワーク挿入穴配置領
域Bがこの空間部33を挟んで一半側と他半側とに分離
されており、一半側と他半側とにワーク挿入穴32A,
32Bが一直線上に配置されて設けられている。なお、
31a,31b,31c,31dは電極である。
In the glass sealing carbon heater shown in FIG. 3, a space portion 33 is provided in the work insertion hole arrangement area B of the heater body 30 so as to extend in a direction crossing the work insertion holes 32 (32A, 32B). The work insertion hole arrangement area B is separated into one half and the other half with the space 33 interposed therebetween, and the work insertion holes 32A,
32B are provided on a straight line. In addition,
31a, 31b, 31c, 31d are electrodes.

【0025】このガラス封止用カーボンヒータでは、ヒ
ータ本体30のワーク挿入穴配置領域Bは、空間部33
を挟んで一半側と他半側とに分離され、この一半側と他
半側のワーク挿入穴32A,32Bにワークの端部が位
置するものとなるため、ワークの端部のみで効率的に発
熱させることができる。
In the glass sealing carbon heater, the work insertion hole arrangement area B of the heater main body 30 is
Is separated into one half and the other half, and the ends of the work are located in the work insertion holes 32A and 32B of the one half and the other half, so that only the end of the work is efficiently used. Can generate heat.

【0026】このガラス封止用カーボンヒータにおい
て、空間部33の厚さは、ヒータ本体30の電極形成領
域Aの厚さT1 が、ワーク挿入穴配置領域Bの一半側の
厚さT2 と他半側の厚さT3 との合計と等しくなるよう
に、即ち、T1 ≧T2 +T3 となるように設定するのが
好ましい。
In the glass sealing carbon heater, the thickness of the space 33 is such that the thickness T 1 of the electrode forming area A of the heater body 30 is equal to the thickness T 2 of one half of the work insertion hole arrangement area B. It is preferable that the thickness is set so as to be equal to the sum of the thickness T 3 on the other half side, that is, T 1 ≧ T 2 + T 3 .

【0027】なお、本発明において、電極部の材料、そ
の他の構成には特に制限はなく、従来と同様の構成を採
用することができる。
In the present invention, the material of the electrode portion and other structures are not particularly limited, and the same structure as that of the related art can be employed.

【0028】[0028]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0029】実施例1 図1(a),(b)に示す構成のガラス封止用カーボン
ヒータを作製した。
Example 1 A glass sealing carbon heater having the structure shown in FIGS. 1A and 1B was manufactured.

【0030】このガラス封止用カーボンヒータの上ヒー
タは長さ254mm,幅152mm,厚さ6.3mmで
ある。また、下ヒータは長さ254mm,幅152mm
で、電極形成領域は長さ30mm,厚さ8.7mm,ワ
ーク挿入穴配置領域は長さ194mm,厚さ20mm
で、ワーク挿入穴配置領域には直径5.0μm,深さ1
5mmのワーク挿入穴が400個設けられている。
The upper heater of this glass sealing carbon heater has a length of 254 mm, a width of 152 mm, and a thickness of 6.3 mm. The lower heater has a length of 254 mm and a width of 152 mm.
The electrode forming area is 30 mm long and 8.7 mm thick, and the work insertion hole arrangement area is 194 mm long and 20 mm thick.
In the work insertion hole arrangement area, the diameter is 5.0 μm and the depth is 1.
There are provided 400 5 mm work insertion holes.

【0031】上ヒータは全体を抵抗率1000μΩ・c
mのカーボンで作製した。また、下ヒータは、抵抗率1
000μΩ・cmのカーボンと抵抗2000μΩ・cm
のカーボンとで作製した。この抵抗2000μΩ・cm
のカーボンで形成した部分は、下ヒータのワーク挿入穴
配置領域のうち、幅152mm,長さ176.6mm,
厚さ11.3mmの部分である。
The upper heater has a total resistivity of 1000 μΩ · c.
m of carbon. The lower heater has a resistivity of 1
2,000μΩ ・ cm carbon and resistance 2000μΩ ・ cm
And carbon. This resistance 2000μΩcm
The portion made of carbon has a width of 152 mm, a length of 176.6 mm, and a work insertion hole arrangement area of the lower heater.
This is a portion having a thickness of 11.3 mm.

【0032】これら上ヒータ及び下ヒータには銅電極を
形成した。
Copper electrodes were formed on the upper and lower heaters.

【0033】このようなガラス封止用カーボンヒータの
下ヒータのワーク挿入穴にワークを挿入し上ヒータを被
せ、これを封入器にセットしてガス置換した後通電し、
ワークを封止した。封止に要した最大電流値と、封止時
の電極の溶融の有無を調べ、結果を表1に示した。
A work is inserted into the work insertion hole of the lower heater of the carbon heater for glass sealing, and the upper heater is covered. The upper heater is set in an enclosing device, and gas is replaced.
The work was sealed. The maximum current value required for sealing and the presence or absence of melting of the electrode at the time of sealing were examined. The results are shown in Table 1.

【0034】実施例2 実施例1において、下ヒータの高抵抗材料として、抵抗
率2000μΩ・cmのカーボンの代りに絶縁性のアル
ミナを用いたこと以外は同様にしてガラス封止用カーボ
ンヒータを作製し、同様に封止に要した最大電流値及び
電極の溶融の有無を調べ、結果を表1に示した。
Example 2 A carbon heater for glass sealing was produced in the same manner as in Example 1 except that insulating alumina was used instead of carbon having a resistivity of 2000 μΩ · cm as a high resistance material of the lower heater. Similarly, the maximum current value required for sealing and the presence or absence of melting of the electrode were examined, and the results are shown in Table 1.

【0035】実施例3 図2(a),(b)に示す構成のガラス封止用カーボン
ヒータを作製した。
Example 3 A glass sealing carbon heater having the structure shown in FIGS. 2A and 2B was manufactured.

【0036】このガラス封止用カーボンヒータの下ヒー
タは長さ254mm,幅152mm,厚さ6.3mmで
ある。また、上ヒータは長さ254mm,幅152mm
で、電極形成領域は長さ30mm,厚さ8.7mm,ワ
ーク挿入穴配置領域は長さ194mm,厚さ20mm
で、ワーク挿入穴配置領域には直径5.0μm,深さ1
5mmのワーク挿入穴が400個設けられている。
The lower heater of the glass sealing carbon heater has a length of 254 mm, a width of 152 mm, and a thickness of 6.3 mm. The upper heater is 254 mm long and 152 mm wide.
The electrode forming area is 30 mm long and 8.7 mm thick, and the work insertion hole arrangement area is 194 mm long and 20 mm thick.
In the work insertion hole arrangement area, the diameter is 5.0 μm and the depth is 1.
There are provided 400 5 mm work insertion holes.

【0037】下ヒータは全体を抵抗率1000μΩ・c
mのカーボンで作製した。また、上ヒータは、抵抗率1
000μΩ・cmのカーボンと抵抗2000μΩ・cm
のカーボンとで作製した。この抵抗2000μΩ・cm
のカーボンで形成した部分は、下ヒータのワーク挿入穴
配置領域のうち、幅152mm,長さ176.6mm,
厚さ11.3mmの部分である。
The lower heater has an overall resistivity of 1000 μΩ · c.
m of carbon. The upper heater has a resistivity of 1
2,000μΩ ・ cm carbon and resistance 2000μΩ ・ cm
And carbon. This resistance 2000μΩcm
The portion made of carbon has a width of 152 mm, a length of 176.6 mm, and a work insertion hole arrangement area of the lower heater.
This is a portion having a thickness of 11.3 mm.

【0038】これら上ヒータ及び下ヒータには銅電極を
形成した。
Copper electrodes were formed on these upper and lower heaters.

【0039】このようなガラス封止用カーボンヒータに
ついて、実施例1と同様にして封止に要した最大電流値
及び電極の溶融の有無を調べ、結果を表1に示した。
With respect to such a carbon heater for glass sealing, the maximum current value required for sealing and the presence or absence of melting of the electrode were examined in the same manner as in Example 1, and the results are shown in Table 1.

【0040】実施例4 実施例3において、上ヒータの高抵抗材料として、抵抗
率2000μΩ・cmのカーボンの代りに絶縁性のアル
ミナを用いたこと以外は同様にしてガラス封止用カーボ
ンヒータを作製し、同様に封止に要した最大電流値及び
電極の溶融の有無を調べ、結果を表1に示した。
Example 4 A carbon heater for glass sealing was produced in the same manner as in Example 3, except that insulating alumina was used instead of carbon having a resistivity of 2000 μΩ · cm as a high resistance material of the upper heater. Similarly, the maximum current value required for sealing and the presence or absence of melting of the electrode were examined, and the results are shown in Table 1.

【0041】実施例5 図3(a),(b)に示す構成のガラス封止用カーボン
ヒータを作製した。
Example 5 A carbon sealing glass heater having the structure shown in FIGS. 3A and 3B was manufactured.

【0042】このガラス封止用カーボンヒータのヒータ
本体は長さ254mm,幅152mm、電極形成領域は
長さ30mm,厚さ15mm,ワーク挿入穴配置領域の
一半側及び他半側の厚さは各々7.5mmで、空間部の
厚さは8.5mmである。
The heater body of this glass sealing carbon heater has a length of 254 mm, a width of 152 mm, an electrode forming area of 30 mm in length, a thickness of 15 mm, and a thickness of one half and the other half of a work insertion hole arrangement area. At 7.5 mm, the thickness of the space is 8.5 mm.

【0043】ワーク挿入穴配置領域の一半側には直径
5.0μmの貫通孔が、他半側には直径5.0μm、深
さ6mmの孔が各々一直線状に400個設けられてい
る。
A through-hole having a diameter of 5.0 μm is provided on one half of the work insertion hole arrangement area, and 400 holes having a diameter of 5.0 μm and a depth of 6 mm are provided in a straight line on the other half.

【0044】ヒータ本体は全体を抵抗率1000μΩ・
cmのカーボンで形成し、銅電極を形成した。
The entire heater body has a resistivity of 1000 μΩ.
cm of carbon to form a copper electrode.

【0045】このガラス封止用カーボンヒータについ
て、実施例1と同様にして封止に要した最大電流値及び
電極の溶融の有無を調べ、結果を表1に示した。
For this carbon heater for glass sealing, the maximum current value required for sealing and the presence or absence of melting of the electrodes were examined in the same manner as in Example 1, and the results are shown in Table 1.

【0046】比較例1 実施例1において、高抵抗材料を用いず、下ヒータ全体
を抵抗率1000μΩ・cmのカーボンで構成したこと
以外は同様にしてガラス封止用カーボンヒータを作製
し、同様に封止に要した最大電流値及び電極の溶融の有
無を調べ、結果を表1に示した。
Comparative Example 1 A glass sealing carbon heater was produced in the same manner as in Example 1, except that the lower heater was entirely made of carbon having a resistivity of 1000 μΩ · cm without using a high-resistance material. The maximum current value required for sealing and the presence or absence of melting of the electrode were examined. The results are shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】表1より、本発明のガラス封止用カーボン
ヒータによれば、ワーク挿入穴配置領域における発熱効
率が良いため、封止時の通電電流を小さくすることがで
き、また、ワーク挿入穴配置領域において主に発熱する
ため、電極の溶融を防止できることが明らかである。
As can be seen from Table 1, according to the carbon heater for glass sealing of the present invention, since the heat generation efficiency in the work insertion hole arrangement area is good, the energizing current at the time of sealing can be reduced. It is clear that the electrodes generate heat mainly in the arrangement region, so that the electrodes can be prevented from melting.

【0049】[0049]

【発明の効果】以上詳述した通り、本発明のガラス封止
用カーボンヒータによれば、従来品に比べてワーク挿入
穴配置領域における発熱効率が高められるため、封入時
の電流値を低減して効率的な封入を行える。また、封止
に必要な電流値を低減できることから、封入器に必要な
電源の容量を小さくすることが可能である。更に、本発
明のガラス封止用カーボンヒータは、主にワーク挿入穴
配置領域で発熱するため、電極形成領域の過熱による電
極の溶融の問題が解消される。
As described above in detail, according to the carbon heater for glass sealing of the present invention, the heat generation efficiency in the work insertion hole arrangement region is increased as compared with the conventional product, so that the current value at the time of sealing is reduced. And efficient encapsulation. Further, since the current value required for sealing can be reduced, it is possible to reduce the capacity of the power supply required for the enclosing device. Further, since the carbon heater for glass sealing of the present invention generates heat mainly in the work insertion hole arrangement area, the problem of electrode melting due to overheating of the electrode formation area is solved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガラス封止用カーボンヒータの実施の
形態を示し、(a)図は斜視図、(b)図は(a)図の
B−B線に沿う断面図である。
FIG. 1 shows an embodiment of a carbon heater for glass sealing of the present invention, wherein FIG. 1 (a) is a perspective view and FIG. 1 (b) is a cross-sectional view taken along line BB of FIG. 1 (a).

【図2】本発明のガラス封止用カーボンヒータの他の実
施の形態を示し、(a)図は斜視図、(b)図は(a)
図のB−B線に沿う断面図である。
FIGS. 2A and 2B show another embodiment of the glass sealing carbon heater of the present invention, wherein FIG. 2A is a perspective view and FIG.
It is sectional drawing which follows the BB line of the figure.

【図3】本発明のガラス封止用カーボンヒータの別の実
施の形態を示し、(a)図は斜視図、(b)図は(a)
図のB−B線に沿う断面図である。
3A and 3B show another embodiment of the glass sealing carbon heater of the present invention, wherein FIG. 3A is a perspective view and FIG.
It is sectional drawing which follows the BB line of the figure.

【図4】従来例を示し、(a)図は斜視図、(b)図は
(a)図のB−B線に沿う断面図である。
4A and 4B show a conventional example, in which FIG. 4A is a perspective view, and FIG. 4B is a cross-sectional view taken along line BB of FIG.

【図5】従来例を示し、(a)図は斜視図、(b)図は
(a)図のB−B線に沿う断面図である。
5A and 5B show a conventional example, in which FIG. 5A is a perspective view, and FIG. 5B is a sectional view taken along line BB in FIG.

【符号の説明】[Explanation of symbols]

10,10A 上ヒータ 20,20A 下ヒータ 12,22,32(32A,32B) ワーク挿入穴 11a,11b,21a,21b,31a,31b,3
1c,31d 電極 30 ヒータ本体 33 空間部 A 電極形成領域 B ワーク挿入穴配置領域 C カーボン R 高抵抗材料
10, 10A Upper heater 20, 20A Lower heater 12, 22, 32 (32A, 32B) Work insertion hole 11a, 11b, 21a, 21b, 31a, 31b, 3
1c, 31d electrode 30 heater body 33 space A electrode formation area B work insertion hole arrangement area C carbon R high resistance material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 盤状のヒータ本体と、該ヒータ本体の1
対の側辺部に沿って設けられた電極と、該電極間のヒー
タ本体に、厚さ方向に設けられたワーク挿入穴とを備え
るガラス封止用カーボンヒータにおいて、 該ワーク挿入穴が設けられたワーク挿入穴配置領域のヒ
ータ本体の厚さが、該電極が設けられた前記側辺部のヒ
ータ本体の厚さより厚く、 該ヒータ本体の該ワーク挿入穴配置領域においては、該
ヒータ本体は低抵抗層、高抵抗層及び低抵抗層の3層が
厚さ方向に重なった複層構造となっており、前記ワーク
挿入穴の端部がそれぞれ低抵抗層内又はその近傍に位置
することを特徴とするガラス封止用カーボンヒータ。
1. A disk-shaped heater main body, and one of said heater main bodies.
A glass sealing carbon heater comprising electrodes provided along the pair of side portions and a work insertion hole provided in a thickness direction in a heater body between the electrodes, wherein the work insertion hole is provided. The thickness of the heater body in the work insertion hole arrangement region is larger than the thickness of the heater body in the side portion where the electrode is provided, and the heater body is low in the work insertion hole arrangement region of the heater body. It has a multilayer structure in which three layers of a resistance layer, a high resistance layer and a low resistance layer are overlapped in the thickness direction, and the ends of the work insertion holes are respectively located in or near the low resistance layer. Glass sealing carbon heater.
【請求項2】 盤状のヒータ本体と、該ヒータ本体の1
対の側辺部に沿って設けられた電極と、該電極間のヒー
タ本体に、厚さ方向に設けられたワーク挿入穴とを備え
るガラス封止用カーボンヒータにおいて、 該ヒータ本体は、ワーク挿入穴が設けられたワーク挿入
穴配置領域に、ワーク挿入穴と交叉方向に広がる空間部
が設けられ、これによって該ワーク挿入穴配置領域が該
空間部を挟んで一半側と他半側とに分離されており、 該一半側と他半側とにワーク挿入穴が一直線上に配置さ
れて設けられていることを特徴とするガラス封止用カー
ボンヒータ。
2. A disk-shaped heater main body, and one of the heater main bodies.
A carbon sealing glass heater comprising: electrodes provided along a pair of side portions; and a work insertion hole provided in a thickness direction in a heater main body between the electrodes. In the work insertion hole arrangement area provided with the hole, there is provided a space extending in a direction crossing the work insertion hole, whereby the work insertion hole arrangement area is separated into one half side and the other half side with the space part interposed therebetween. A glass sealing carbon heater, wherein work insertion holes are provided on the one half side and the other half side in a straight line.
JP8176542A 1996-07-05 1996-07-05 Carbon heater for sealing glass Withdrawn JPH1025124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8176542A JPH1025124A (en) 1996-07-05 1996-07-05 Carbon heater for sealing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8176542A JPH1025124A (en) 1996-07-05 1996-07-05 Carbon heater for sealing glass

Publications (1)

Publication Number Publication Date
JPH1025124A true JPH1025124A (en) 1998-01-27

Family

ID=16015418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8176542A Withdrawn JPH1025124A (en) 1996-07-05 1996-07-05 Carbon heater for sealing glass

Country Status (1)

Country Link
JP (1) JPH1025124A (en)

Similar Documents

Publication Publication Date Title
JPH10229227A (en) Monolithic laminated actuator
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
JPH1041104A (en) Positive temperature coefficient thermistor element and positive temperature coefficient thermistor
JPH1025124A (en) Carbon heater for sealing glass
JP3635020B2 (en) Inverter control module
JPH04162691A (en) Hybrid integrated circuit
JP3817995B2 (en) Surge absorbing element and manufacturing method thereof
JP3108021B2 (en) Thermal head
JPH02103987A (en) Semiconductor laser-array device
JPWO2020110954A1 (en) Ceramic structure and structure with terminals
JPH11242989A (en) Ceramic heater
JP2021190355A (en) Structure with terminal
JP3367995B2 (en) Multilayer ceramic heater
CN217507928U (en) Heat sink matched with sectional chip and laser
JPH04365303A (en) Heating element of positive resistance-temperature coefficient and manufacture thereof
JPH06226465A (en) Spot welding electrode
JPH10233436A (en) Electrostatic chuck
WO2024058183A1 (en) Attractive-adhesion substrate
JP2006269437A (en) Protection element
JP4842457B2 (en) Electronic components
JPH04162489A (en) Hybrid integrated circuit
WO2020090379A1 (en) Board-like structure and heater system
JP3893328B2 (en) Power semiconductor device
JPH04162690A (en) Hybrid integrated circuit
KR20220019054A (en) Electric Heated Catalytic Converter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007