JPH10242274A - Manufacture of multilayer wiring board - Google Patents

Manufacture of multilayer wiring board

Info

Publication number
JPH10242274A
JPH10242274A JP4315797A JP4315797A JPH10242274A JP H10242274 A JPH10242274 A JP H10242274A JP 4315797 A JP4315797 A JP 4315797A JP 4315797 A JP4315797 A JP 4315797A JP H10242274 A JPH10242274 A JP H10242274A
Authority
JP
Japan
Prior art keywords
layer
wiring layer
connection hole
upper wiring
etching stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4315797A
Other languages
Japanese (ja)
Inventor
Mika Fujii
美香 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4315797A priority Critical patent/JPH10242274A/en
Publication of JPH10242274A publication Critical patent/JPH10242274A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the protuberance of lower-layer wiring under a connection hole and the occurrence of voids within the lower-layer wiring, when connecting the lower wiring layer with the upper wiring layer of a multi-layer wiring board by connection hole stopping technique. SOLUTION: A multilayer wiring board is manufactured by forming an etching stopper layer 10 and a lower-layer insulating film 2 in order on a lower wiring layer 1, and making a connection hole 3 in the interlayer insulating film 2 and the etching stopper layer 10 so that the etching stopper layer 10 may remain at the bottom of the connection hole 3, and making an upper wiring layer 5 to fill the connection hole 3 with the upper wiring layer 3 or filling the connection hole with the upper wiring material together with the formation of the upper wiring layer after heat treatment, and connecting the lower wiring layer 1 with the upper wiring layer 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層配線基板の下
層配線層と上層配線層とが、接続孔の埋め込み技術によ
り接続されている多層配線基板の製造方法に関する。
The present invention relates to a method of manufacturing a multilayer wiring board in which a lower wiring layer and an upper wiring layer of a multilayer wiring board are connected by a connection hole filling technique.

【0002】[0002]

【従来の技術】LSIの集積度の向上に伴い、下層配線
層と上層配線層とを微細接続孔の埋め込みにより接続す
る技術が盛んに検討されている。
2. Description of the Related Art With the improvement in the degree of integration of LSIs, techniques for connecting a lower wiring layer and an upper wiring layer by embedding fine connection holes have been actively studied.

【0003】この埋め込み技術としては、CVD法、高
温スパッタ法、リフロー法、高圧リフロー法等が検討さ
れており、中でも高圧リフロー法が、非常に高い埋め込
み性能が得られる点で有望視されている。
As the embedding technique, a CVD method, a high-temperature sputtering method, a reflow method, a high-pressure reflow method and the like have been studied. Among them, the high-pressure reflow method is considered to be promising in that an extremely high embedding performance can be obtained. .

【0004】図3に、高圧リフロー法による埋め込み技
術を用いた上層配線層と下層配線層の接続方法を示す。
FIG. 3 shows a method of connecting an upper wiring layer and a lower wiring layer using an embedding technique based on a high-pressure reflow method.

【0005】まず、多層配線基板を形成する基板の下層
配線層1上に層間絶縁膜2を形成し(同図(a))、層
間絶縁膜2に下層配線層1に達する接続孔3を開口し
(同図(b)、基板を400〜500℃に加熱処理して
層間絶縁膜2中の水分等を脱ガスさせる。
First, an interlayer insulating film 2 is formed on a lower wiring layer 1 of a substrate for forming a multilayer wiring board (FIG. 1A), and a connection hole 3 reaching the lower wiring layer 1 is opened in the interlayer insulating film 2. Then, the substrate is heated to 400 to 500 ° C. to degas moisture and the like in the interlayer insulating film 2.

【0006】次いで、通常スパッタ法により下地層4と
してTi又はTiNあるいはこれらの積層膜を形成し
(同図(c))、その上に上層配線層5を形成するAl
等の配線主材料を、通常、スパッタ法により成膜し、こ
れにより接続孔3の上部を閉塞する(同図(d))。こ
の上層配線層5の成膜条件としては、雰囲気を10-6
10-7Pa程度の高真空とし、基板温度を400℃程度
にすることがなされる。
Next, Ti or TiN or a laminated film of these is formed as a base layer 4 by a normal sputtering method (FIG. 1C), and an upper wiring layer 5 is formed thereon.
A wiring main material such as that described above is usually formed by a sputtering method, thereby closing the upper portion of the connection hole 3 (FIG. 4D). The atmosphere for forming the upper wiring layer 5 is 10 −6 to 10 −6 .
A high vacuum of about 10 −7 Pa is used, and the substrate temperature is set to about 400 ° C.

【0007】そして引き続き、基板を高真空雰囲気下、
400℃程度にして上層配線層5を軟化させ、同時にA
r等の高圧ガスを系内に導入し、この高圧ガスにより上
層配線層5の形成材料をリフローさせて接続孔3内に押
し込む(同図(e))。こうして、接続孔3を上層配線
層5の形成材料で埋め込むことにより上層配線層5と下
層配線層1とを接続する(同図(f))。
Subsequently, the substrate is placed under a high vacuum atmosphere.
At about 400 ° C., the upper wiring layer 5 is softened.
A high-pressure gas such as r is introduced into the system, and the material for forming the upper wiring layer 5 is reflowed by the high-pressure gas and pushed into the connection holes 3 (FIG. 3E). Thus, the upper wiring layer 5 and the lower wiring layer 1 are connected by filling the connection holes 3 with the material for forming the upper wiring layer 5 (FIG. 4F).

【0008】この高圧リフロー法による接続孔の埋め込
み技術において、良好な埋め込み性を得るためには、ス
パッタ法による下地層4の成膜前に基板を加熱処理し、
層間絶縁膜2中の水分等を脱ガスさせることが重要であ
る。この脱ガスが不十分であると、下地層4あるいは上
層配線層5の成膜時、又は上層配線層5のリフロー時の
基板加熱により層間絶縁膜2から水分が放出され、下地
層4と上層配線層5との界面に酸化層が形成され、埋め
込み性が劣化しやすくなる。なお、この加熱処理は、ス
パッタ法による下地層4の成膜前のアニールとしてなさ
れる場合や、下地層4の成膜直前にスパッタ装置内で行
われる。
In the technique of filling the connection holes by the high-pressure reflow method, in order to obtain a good filling property, the substrate is heat-treated before the formation of the underlayer 4 by the sputtering method.
It is important to degas moisture and the like in the interlayer insulating film 2. If the degassing is insufficient, moisture is released from the interlayer insulating film 2 by heating the substrate during the formation of the underlayer 4 or the upper wiring layer 5 or during reflow of the upper wiring layer 5, and the underlayer 4 and the upper layer An oxide layer is formed at the interface with the wiring layer 5, and the embedding property is likely to deteriorate. Note that this heat treatment is performed as an annealing before the formation of the underlayer 4 by the sputtering method or in a sputtering apparatus immediately before the formation of the underlayer 4.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、従来の
高圧リフロー法による接続孔の埋め込み技術において
は、図4に示したように下地層4の成膜前の加熱処理時
に接続孔3の底部で露出している下層配線層1が隆起
し、この下層配線層1の隆起の反動で下層配線層1内に
ボイド6が生じ、配線不良や信頼性の低下が招かれると
いう問題があった。
However, in the conventional technique of filling the connection holes by the high-pressure reflow method, as shown in FIG. 4, the bottom of the connection holes 3 is exposed at the time of heat treatment before the formation of the underlayer 4. The raised lower wiring layer 1 is raised, and a void 6 is generated in the lower wiring layer 1 due to the reaction of the protrusion of the lower wiring layer 1, resulting in a problem that a wiring failure and a reduction in reliability are caused.

【0010】本発明は以上のような従来技術の問題点を
解決しようとするものであり、多層配線基板の下層配線
層と上層配線層とを、接続孔の埋め込み技術により接続
するにあたり、上層配線層の加熱処理による埋め込み性
を向上させ、接続孔底部での下層配線の隆起の抑制し、
配線の信頼性を向上させることを目的としている。
An object of the present invention is to solve the above-described problems of the prior art. In connecting a lower wiring layer and an upper wiring layer of a multilayer wiring board by a technique of burying a connection hole, an upper wiring is used. Improves the embedding property by heat treatment of the layer, suppresses the protrusion of the lower wiring at the bottom of the connection hole,
The purpose is to improve the reliability of wiring.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、下層配線層上にエッチングストッパー層
及び層間絶縁膜を順次形成し、層間絶縁膜及びエッチン
グストッパー層に接続孔を該接続孔の底部にエッチング
ストッパー層が残存するように開口し、加熱処理後上層
配線層を形成し、その上層配線層を接続孔に埋め込む
か、あるいは加熱処理後上層配線層の形成と共にその上
層配線材料で接続孔を埋め込み、下層配線層と上層配線
層とを接続することを特徴とする多層配線基板の製造方
法を提供する。
In order to achieve the above object, the present invention provides an etching stopper layer and an interlayer insulating film sequentially formed on a lower wiring layer, and a connection hole is formed in the interlayer insulating film and the etching stopper layer. An opening is formed so that the etching stopper layer remains at the bottom of the connection hole, and an upper wiring layer is formed after the heat treatment, and the upper wiring layer is buried in the connection hole, or the upper wiring is formed together with the formation of the upper wiring layer after the heat treatment. Provided is a method for manufacturing a multilayer wiring board, characterized by filling connection holes with a material and connecting a lower wiring layer and an upper wiring layer.

【0012】本発明においては、下層配線層と層間絶縁
膜との間にエッチングストッパー層を形成し、接続孔の
開口に際しては、このエッチングストッパー層を接続孔
底部に残存させる。したがって、接続孔の埋め込み技術
を用いて下層配線層と上層配線層とを接続した多層配線
基板を得るにあたり、接続孔の開口後、層間絶縁膜から
脱ガスさせるための加熱処理時には、接続孔底部におい
て下層配線層ではなくエッチングストッパー層が露出す
ることとなる。
In the present invention, an etching stopper layer is formed between the lower wiring layer and the interlayer insulating film, and when opening the connection hole, the etching stopper layer is left at the bottom of the connection hole. Therefore, in obtaining a multilayer wiring board in which the lower wiring layer and the upper wiring layer are connected by using the connection hole embedding technique, after the connection hole is opened, the heat treatment for degassing from the interlayer insulating film is performed at the bottom of the connection hole. In this case, the etching stopper layer is exposed instead of the lower wiring layer.

【0013】よって、この加熱処理により接続孔底部に
下層配線層が隆起することや、それにより下層配線層内
にボイドが生じ、配線不良が生じることを防止できる。
また、接続孔の埋め込み性が向上し、接続孔内部にもボ
イドが生じることなく、接続孔内部を配線材料で完全に
充填させることができる。さらに、エレクトロマイグレ
ーションにより接続孔下の下層配線層内にボイドが生じ
ても、エッチングストッパー層が電流バイパス層として
機能するため、この冗長効果により、下層配線層と上層
配線層との導通が確実に確保されるようになる。
Therefore, it is possible to prevent the lower wiring layer from being raised at the bottom of the connection hole due to the heat treatment, and the occurrence of voids in the lower wiring layer due to this, thereby preventing the occurrence of wiring failure.
In addition, the embedding property of the connection hole is improved, and the inside of the connection hole can be completely filled with the wiring material without generating a void inside the connection hole. Furthermore, even if a void is formed in the lower wiring layer below the connection hole due to electromigration, the etching stopper layer functions as a current bypass layer. This redundancy effect ensures conduction between the lower wiring layer and the upper wiring layer. Will be secured.

【0014】[0014]

【発明の実施の形態】以下、本発明を図面に基づいて詳
細に説明する。なお、各図中、同一符号は同一又は同等
の構成要素を表している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. In each of the drawings, the same reference numerals represent the same or equivalent components.

【0015】図1は、本発明の一態様の製造方法の工程
説明図である。
FIG. 1 is a process explanatory view of a manufacturing method according to one embodiment of the present invention.

【0016】同図(a)に示したように、本発明におい
ては、まず、多層配線基板を構成する下層配線層1上に
エッチングストッパー層10及び層間絶縁膜2を順次形
成する。
As shown in FIG. 1A, in the present invention, first, an etching stopper layer 10 and an interlayer insulating film 2 are sequentially formed on a lower wiring layer 1 constituting a multilayer wiring board.

【0017】ここで、下層配線層1、層間絶縁膜2及び
後述する下地層4や上層配線層5の形成材料には特に制
限はなく、従来よりLSI等の高密度多層配線基板で使
用されているものを使用することができる。例えば、下
層配線層や上層配線層は、Al、Al−Cu、Al−S
i、Al−Si−Cu、Al−Ge等のAl合金、A
g、Cu、Cu−Zr 等の配線材料をスパッタ法等で
成膜することにより形成することができる。この場合、
配線層は複数種の配線層の積層構造としてもよい。
Here, the material for forming the lower wiring layer 1, the interlayer insulating film 2, and the underlayer 4 and the upper wiring layer 5, which will be described later, is not particularly limited, and is conventionally used in high-density multilayer wiring boards such as LSIs. Can be used. For example, the lower wiring layer and the upper wiring layer are made of Al, Al-Cu, Al-S
i, Al alloys such as Al-Si-Cu, Al-Ge, A
It can be formed by forming a wiring material such as g, Cu, Cu-Zr or the like by a sputtering method or the like. in this case,
The wiring layer may have a stacked structure of a plurality of types of wiring layers.

【0018】また、層間絶縁膜2としては、例えば、プ
ラズマCVD TEOS−SiO2、O3− TEOS等
からなる絶縁膜を形成することができる。
As the interlayer insulating film 2, an insulating film made of, for example, plasma CVD TEOS-SiO 2 , O 3 -TEOS, or the like can be formed.

【0019】一方、本発明に特徴的なエッチングストッ
パー層10としては、Ti、W、Ta、TiW等の融点
1500℃以上の高融点金属もしくはその合金、又はこ
れらの窒化物(例えば、TiN、WN、TiWN等)を
含む合金から形成することができる。また、エッチング
ストッパー層10は、これらの2種以上の積層構造とす
ることができる。
On the other hand, as the etching stopper layer 10 characteristic of the present invention, a high melting point metal such as Ti, W, Ta, TiW or the like having a melting point of 1500 ° C. or more, an alloy thereof, or a nitride thereof (for example, TiN, WN) is used. , TiWN, etc.). Further, the etching stopper layer 10 can have a laminated structure of two or more of these.

【0020】エッチングストッパー層10の厚さは80
nm以上とすることが好ましい。この層厚が薄すぎる
と、後述するように、接続孔3の開口後にその接続孔3
の底部に残存させるエッチングストッパー層10の層厚
を十分に確保することが困難となり、エッチングストッ
パー層10の形成効果を得ることが困難となる。一方、
エッチングストッパー層10の厚さの上限としては、1
00nm以下とすることが好ましい。エッチングストッ
パー層10の層厚を過度に厚くしても配線のトータル膜
厚が厚くなり、配線収差が増加するので好ましくない。
The thickness of the etching stopper layer 10 is 80
It is preferably at least nm. If this layer thickness is too thin, as will be described later, the connection hole 3
It is difficult to sufficiently secure the thickness of the etching stopper layer 10 remaining at the bottom of the substrate, and it is difficult to obtain the effect of forming the etching stopper layer 10. on the other hand,
The upper limit of the thickness of the etching stopper layer 10 is 1
It is preferable that the thickness be not more than 00 nm. If the thickness of the etching stopper layer 10 is excessively increased, the total thickness of the wiring is increased, and the wiring aberration is increased.

【0021】なお、下層配線層1及びエッチングストッ
パー層10は、適宜エッチングし、所定配線パターンに
形成することができる。
The lower wiring layer 1 and the etching stopper layer 10 can be appropriately etched to form a predetermined wiring pattern.

【0022】次に、層間絶縁膜2及びエッチングストッ
パー層10に接続孔3を、該エッチングストッパー層1
0が接続孔3の底部に残存するように開口する(同図
(b))。この場合、接続孔3の底部に残存させるエッ
チングストッパー層10の厚さは、 20nm以上とす
ることが好ましい。接続孔3の底部に残存させるエッチ
ングストッパー層10の厚さが十分に確保されないと、
エッチングストッパー層10の形成効果を得られず、接
続孔3の開口後の加熱処理により下層配線層1に隆起や
ボイドが発生することを確実に防止することが困難とな
る。
Next, a connection hole 3 is formed in the interlayer insulating film 2 and the etching stopper layer 10 and the etching stopper layer 1 is formed.
0 is opened so as to remain at the bottom of the connection hole 3 (FIG. 4B). In this case, it is preferable that the thickness of the etching stopper layer 10 remaining at the bottom of the connection hole 3 be 20 nm or more. If the thickness of the etching stopper layer 10 remaining at the bottom of the connection hole 3 is not sufficiently secured,
Since the effect of forming the etching stopper layer 10 cannot be obtained, it is difficult to reliably prevent the lower wiring layer 1 from being raised or voided by the heat treatment after the opening of the connection hole 3.

【0023】接続孔3の径や深さは、接続孔3の底部に
エッチングストッパー層10が残存する限り特に制限は
なく、当該多層配線基板の用途、接続孔3の埋め込みプ
ロセス等に応じて適宜設定することができるが、通常、
接続孔3の径は300〜500nm、深さは600〜1
000nmとすることが好ましい。
The diameter and depth of the connection hole 3 are not particularly limited as long as the etching stopper layer 10 remains at the bottom of the connection hole 3. The diameter and depth of the connection hole 3 are appropriately determined according to the application of the multilayer wiring board, the process of filling the connection hole 3, and the like. Can be set, but usually
The diameter of the connection hole 3 is 300-500 nm, and the depth is 600-1.
It is preferably set to 000 nm.

【0024】接続孔3の開口後には加熱処理を行う。こ
の加熱処理は、従来の高圧リフロー法による埋め込み技
術で行われていた加熱処理と同様に層間絶縁膜2からの
脱ガスのために行うものであり、加熱処理条件は、層間
絶縁膜2の形成材料等に応じて適宜設定できる。例え
ば、450〜500℃に〜0.5時間程度加熱し、その
後放冷するアニール処理等を行うことができる。
After the connection holes 3 are opened, heat treatment is performed. This heat treatment is performed for degassing from the interlayer insulating film 2 in the same manner as the heat treatment performed by the conventional embedding technique by the high-pressure reflow method. It can be set appropriately according to the material and the like. For example, an annealing process or the like in which heating is performed at 450 to 500 ° C. for about 0.5 hour, and then cooling is performed.

【0025】加熱処理後には上層配線層5を形成する
が、これに先立ち、図1(c)に示したように、接続孔
3を開口した基板表面を覆う下地層4を形成すること
が、埋め込み性、信頼性の向上の点から好ましい。下地
層4としては、Ti、W、Ta、TiW等の融点150
0℃以上の高融点金属もしくはその合金、又はこれらの
窒化物等の単一膜あるいは積層膜を、層厚30〜70n
m程度に形成することができる。
After the heat treatment, the upper wiring layer 5 is formed. Prior to this, as shown in FIG. 1C, it is necessary to form a base layer 4 covering the surface of the substrate having the connection holes 3 formed therein. It is preferable from the viewpoint of improving the embedding property and the reliability. The underlayer 4 has a melting point of 150, such as Ti, W, Ta, or TiW.
A single film or a laminated film of a high melting point metal or an alloy thereof at 0 ° C. or more, or a nitride thereof is formed to a thickness of 30 to 70 n.
m.

【0026】上層配線層5は、接続孔3の埋め込みプロ
セス等に応じた態様で形成する。例えば、接続孔3を高
圧リフロー法で埋め込む場合には、図1(d)に示した
ように、上層配線層5は接続孔3の上部を閉塞するよう
に形成する。一方、接続孔3を高温リフロー法や高温ス
パッタ法で埋め込む場合には、上層配線層5は接続孔3
の上部が閉塞されないように形成する。なお、接続孔3
を高温スパッタ法で埋め込む場合には、上層配線層5の
形成と共に接続孔3の埋め込みが進行するので、図1
(c)の状態から直接同図(e)の状態を得ることとな
る。
The upper wiring layer 5 is formed in a manner corresponding to the process of filling the connection holes 3 and the like. For example, when the connection hole 3 is buried by a high-pressure reflow method, the upper wiring layer 5 is formed so as to close the upper part of the connection hole 3 as shown in FIG. On the other hand, when the connection hole 3 is buried by the high-temperature reflow method or the high-temperature sputtering method, the upper wiring layer 5 is
Is formed so that the upper part is not closed. In addition, the connection hole 3
1 is buried by a high-temperature sputtering method, the burying of the connection holes 3 progresses simultaneously with the formation of the upper wiring layer 5.
The state shown in FIG. 11E is obtained directly from the state shown in FIG.

【0027】上層配線層5は、上述したように、Al、
Al−Cu、Al−Si、Al−Si−Cu、Al−G
e等のAl合金、Ag、Cu、Cu−Zr等の配線材料
をスパッタ法等で成膜することにより形成することがで
きる。この場合、配線層は複数種の配線層の積層構造と
してもよい。
As described above, the upper wiring layer 5 is made of Al,
Al-Cu, Al-Si, Al-Si-Cu, Al-G
It can be formed by forming a wiring material such as an Al alloy such as e, Ag, Cu, Cu-Zr or the like by a sputtering method or the like. In this case, the wiring layer may have a stacked structure of a plurality of types of wiring layers.

【0028】上層配線層5の形成後又はその形成と共
に、リフロー法やスパッタ法、特に、高圧リフロー法や
高温スパッタ法で図1(e)に示したように接続孔3を
埋め込み、下層配線層1と上層配線層5とを接続する。
ここで、リフロー法とは、スパッタ後に500℃程度の
高温状態にすることをいい、高圧リフロー法とは、スパ
ッタ後に400℃程度に加熱した状態で加圧することを
いい、スパッタ法とは、通常のDCマグネトロンスパッ
タ等をいい、高温スパッタ法とは、500℃程度の高温
状態でスパッタすることをいう。なお、リフローあるい
はスパッタにより接続孔3を埋め込むに際しては、途中
の基板の搬送も含めて、雰囲気圧力10-7〜10-6Pa
程度の高真空雰囲気下で行うことが好ましい。
After or together with the formation of the upper wiring layer 5, the connection hole 3 is buried as shown in FIG. 1E by a reflow method or a sputtering method, in particular, a high-pressure reflow method or a high-temperature sputtering method. 1 and the upper wiring layer 5 are connected.
Here, the reflow method means that a high temperature state of about 500 ° C. is obtained after sputtering, the high-pressure reflow method means that pressure is applied while being heated to about 400 ° C. after sputtering, and the sputtering method is usually used. DC magnetron sputtering, etc., and the high temperature sputtering method refers to sputtering at a high temperature of about 500 ° C. When the connection holes 3 are buried by reflow or sputtering, the atmosphere pressure is 10 −7 to 10 −6 Pa, including the transfer of the substrate in the middle.
It is preferably performed in a high vacuum atmosphere.

【0029】以上の接続孔3の埋め込みにより下層配線
層1と上層配線層5とを接続する工程中においては、必
要に応じて適宜プレヒート処理、酸化膜の除去処理等を
行うことができる。
In the process of connecting the lower wiring layer 1 and the upper wiring layer 5 by filling the connection holes 3 as described above, a preheating process, an oxide film removing process, and the like can be appropriately performed as necessary.

【0030】また、本発明の方法は、下層配線層1と上
層配線層5とを接続後、上層配線層5とさらに上層の配
線層と接続する場合にも適用することができる。したが
って、本発明の方法を繰り返すことにより、例えば、図
2に示したように、下層配線層1と第1の上層配線層5
aとを第1の接続孔3aの埋め込みにより接続し、さら
に第1の上層配線層5aと第2の上層配線層5bとを第
2の接続孔3bの埋め込みにより接続した多層配線基板
を得ることができる。
The method of the present invention can also be applied to the case where the lower wiring layer 1 and the upper wiring layer 5 are connected, and then the upper wiring layer 5 is connected to the upper wiring layer. Therefore, by repeating the method of the present invention, for example, as shown in FIG. 2, the lower wiring layer 1 and the first upper wiring layer 5
a by connecting the first upper wiring layer 5a and the second upper wiring layer 5b by burying the second connection hole 3b. Can be.

【0031】[0031]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0032】実施例1(リフロー法により接続孔を埋め
込む多層配線基板の製造方法) (1)下層配線層及びエッチングストッパー層の形成 通常のLSI処理を施した基板上にDCマグネトロンス
パッタ法により下層配線層及びエッチングストッパー層
を成膜した(図1(a)参照)。この場合、下層配線層
及びエッチングストッパー層の層構造は、TiN100
nm/Al−Cu500nm/TiN50nm/Ti2
0nmの積層構造とし、それぞれ次の成膜条件で成膜し
た。
Example 1 (Method of Manufacturing Multilayer Wiring Board for Filling Connection Holes by Reflow Method) (1) Formation of Lower Wiring Layer and Etching Stopper Layer Lower wiring by DC magnetron sputtering on a substrate that has been subjected to ordinary LSI processing. A layer and an etching stopper layer were formed (see FIG. 1A). In this case, the layer structure of the lower wiring layer and the etching stopper layer is TiN100
nm / Al-Cu500nm / TiN50nm / Ti2
A layered structure having a thickness of 0 nm was formed under the following film forming conditions.

【0033】Ti成膜条件 DCパワー:6kW プロセスガス:Ar100sccm 圧力:0.4Pa 成膜温度:200℃ TiN成膜条件 DCパワー:12kW プロセスガス:Ar/N2=20/70sccm 圧力:0.4Pa 成膜温度:200℃ Al−Cu成膜条件 DCパワー:15kW プロセスガス:Ar100sccm 圧力:0.4Pa 成膜温度:200℃Ti film formation conditions DC power: 6 kW Process gas: Ar 100 sccm Pressure: 0.4 Pa Film formation temperature: 200 ° C. TiN film formation conditions DC power: 12 kW Process gas: Ar / N 2 = 20/70 sccm Pressure: 0.4 Pa Film forming temperature: 200 ° C. Al-Cu film forming conditions DC power: 15 kW Process gas: Ar 100 sccm Pressure: 0.4 Pa Film forming temperature: 200 ° C.

【0034】(2)接続孔の開口 (1)で形成した下層配線層上に層間絶縁膜として、プ
ラズマCVD TEOS−SiO2と、場合によってO3
− TEOSとを600nm堆積し、RIE工程により
接続孔を開口した(図1(b)参照)。この場合、下層
配線層であるAl−Cu層が露出しないように接続孔の
底部がTiN/Ti層内に位置するようにした。また、
接続孔の大きさは深さ0.6μm、径0.3μmとし
た。
(2) Opening of connection hole On the lower wiring layer formed in (1), as an interlayer insulating film, plasma CVD TEOS-SiO 2 and, in some cases, O 3
-600 nm of TEOS was deposited, and a connection hole was opened by an RIE process (see FIG. 1B). In this case, the bottom of the connection hole was located in the TiN / Ti layer so that the Al-Cu layer as the lower wiring layer was not exposed. Also,
The size of the connection hole was 0.6 μm in depth and 0.3 μm in diameter.

【0035】(3)アニール処理(加熱処理) 後に行う上層配線層の配線材料の埋め込みにおいて、良
好な埋め込み性を得るため、アニール処理をこない、層
間絶縁膜の脱ガスを行った。この場合、アニール処理
は、フォアネス・アニールによった。また、アニール条
件は次の通りとした。
(3) Annealing Treatment (Heat Treatment) In burying the wiring material in the upper wiring layer performed afterward, in order to obtain a good burying property, the interlayer insulating film was degassed without annealing treatment. In this case, the annealing treatment was foreness annealing. The annealing conditions were as follows.

【0036】アニール条件 温度:450℃ 時間:30min ガス:N2 Annealing conditions Temperature: 450 ° C. Time: 30 min Gas: N 2

【0037】(4)上層配線層の形成 まず、プレヒート(Pre heat)処理を、基板裏面からの
ガス加熱方式を用いて、次の条件で行った。
(4) Formation of Upper Wiring Layer First, a preheat treatment was performed under the following conditions using a gas heating method from the back surface of the substrate.

【0038】プレヒート条件 温度:500℃ 時間:1min ガス:Ar 裏面ガス圧力:1000PaPreheating conditions Temperature: 500 ° C. Time: 1 min Gas: Ar Backside gas pressure: 1000 Pa

【0039】次いで、通常のArスパッタエッチングに
より接続孔底部のエッチングストッパー層上の酸化膜を
除去した。
Next, the oxide film on the etching stopper layer at the bottom of the connection hole was removed by ordinary Ar sputter etching.

【0040】そして、下地層及び上層配線層としてT
i、TiN、Al−Cuを、DCマグネトロンスパッタ
法により前述の下層配線層及びエッチングストッパー層
の形成と同様の成膜条件で、それぞれ20nm、50n
m、500nm成膜した。
Then, as the underlayer and the upper wiring layer, T
i, TiN, and Al—Cu were deposited by DC magnetron sputtering under the same film forming conditions as those for forming the lower wiring layer and the etching stopper layer described above, for 20 nm and 50 nm, respectively.
m, 500 nm was formed.

【0041】(5)接続孔の埋め込み 基板を次のリフロー条件で加熱し、接続孔の埋め込みを
行った(図1(e)参照)。この場合、加熱方式として
は、基板裏面からのガス加熱方式を用いた。また、この
リフロー工程は、基板の搬送も含めて雰囲気圧力10-7
Pa程度の高真空下で行った。
(5) Embedding Connection Holes The substrate was heated under the following reflow conditions to embed the connection holes (see FIG. 1E). In this case, as the heating method, a gas heating method from the back surface of the substrate was used. In addition, this reflow step is performed under the atmospheric pressure of 10 −7 including the transfer of the substrate.
The test was performed under a high vacuum of about Pa.

【0042】リフロー条件 温度:500℃ 時間:1min ガス:Ar 裏面ガス圧力:1000PaReflow conditions Temperature: 500 ° C. Time: 1 min Gas: Ar Backside gas pressure: 1000 Pa

【0043】こうして得られた多層配線基板の下層配線
層と上層配線層との接続状態をSEMにより観察したと
ころ、接続孔の底部には隆起は見られず、また、下層配
線層内にボイドも観察されず、下層配線層と上層配線層
とが接続孔により良好に接続されていた。
When the connection state between the lower wiring layer and the upper wiring layer of the multilayer wiring board thus obtained was observed by SEM, no protrusion was found at the bottom of the connection hole, and no void was found in the lower wiring layer. No observation was observed, and the lower wiring layer and the upper wiring layer were well connected by the connection holes.

【0044】実施例2(高圧リフロー法により接続孔を
埋め込む多層配線基板の製造方法)実施例1の(1)〜
(4)の各工程を繰り返した後、(5)接続孔の埋め込
み以降を次のように行った。
Example 2 (method of manufacturing a multilayer wiring board in which connection holes are buried by a high-pressure reflow method)
After repeating each of the steps (4), (5) the process after filling the connection holes was performed as follows.

【0045】(5)接続孔の埋め込み 基板を次の高圧リフロー条件で加熱し、高圧リフロー埋
め込みを行った。
(5) Embedding of Connection Hole The substrate was heated under the following high-pressure reflow conditions to perform high-pressure reflow embedding.

【0046】高圧リフロー条件 プロセスガス:Ar 圧力:70MPa リフロー時間:1min 基板温度:450℃High-pressure reflow conditions Process gas: Ar pressure: 70 MPa Reflow time: 1 min Substrate temperature: 450 ° C.

【0047】こうして得られた多層配線基板の下層配線
層と上層配線層との接続状態をSEMにより観察したと
ころ、接続孔の底部には隆起は見られず、また、下層配
線層内にボイドも観察されず、下層配線層と上層配線層
とが接続孔により良好に接続されていた。
When the connection state between the lower wiring layer and the upper wiring layer of the multilayer wiring board thus obtained was observed by SEM, no protrusion was found at the bottom of the connection hole, and no void was found in the lower wiring layer. No observation was observed, and the lower wiring layer and the upper wiring layer were well connected by the connection holes.

【0048】[0048]

【発明の効果】本発明によれば、多層配線基板の下層配
線層と上層配線層とを、接続孔の埋め込み技術により接
続するにあたり、上層配線層の加熱処理による埋め込み
性を向上させることができる。また、接続孔下での下層
配線の隆起や下層配線層内でのボイドの発生を抑制する
ことができる。さらに、エレクトロマイグレーションに
対するエッチングストッパー層の冗長効果により、配線
の信頼性を向上させることが可能となる。
According to the present invention, when the lower wiring layer and the upper wiring layer of the multilayer wiring board are connected by the connection hole filling technique, the embedding property by the heat treatment of the upper wiring layer can be improved. . In addition, it is possible to suppress the protrusion of the lower wiring below the connection hole and the generation of voids in the lower wiring layer. Further, the reliability of the wiring can be improved due to the redundancy effect of the etching stopper layer against electromigration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の工程説明図である。FIG. 1 is a process explanatory view of the present invention.

【図2】本発明により得られる多層配線基板の断面図で
ある。
FIG. 2 is a cross-sectional view of a multilayer wiring board obtained by the present invention.

【図3】従来法の工程説明図である。FIG. 3 is an explanatory view of a process in a conventional method.

【図4】従来法の問題点の説明図であるFIG. 4 is an explanatory diagram of a problem of the conventional method.

【符号の説明】[Explanation of symbols]

1…下層配線層、2…層間絶縁膜、3…接続孔、4…下
地層、5…上層配線層、10…エッチングストッパー層
DESCRIPTION OF SYMBOLS 1 ... Lower wiring layer, 2 ... Interlayer insulating film, 3 ... Connection hole, 4 ... Underlayer, 5 ... Upper wiring layer, 10 ... Etching stopper layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下層配線層上にエッチングストッパー層
及び層間絶縁膜を順次形成し、層間絶縁膜及びエッチン
グストッパー層に接続孔を該接続孔の底部にエッチング
ストッパー層が残存するように開口し、加熱処理後上層
配線層を形成し、その上層配線層を接続孔に埋め込む
か、あるいは加熱処理後上層配線層の形成と共にその上
層配線材料で接続孔を埋め込み、下層配線層と上層配線
層とを接続することを特徴とする多層配線基板の製造方
法。
An etching stopper layer and an interlayer insulating film are sequentially formed on a lower wiring layer, and a connection hole is opened in the interlayer insulating film and the etching stopper layer such that the etching stopper layer remains at the bottom of the connection hole. After the heat treatment, the upper wiring layer is formed, and the upper wiring layer is buried in the connection hole, or after the heat treatment, the connection hole is buried with the upper wiring material together with the formation of the upper wiring layer, and the lower wiring layer and the upper wiring layer are separated. A method for manufacturing a multilayer wiring board, comprising connecting.
【請求項2】 加熱処理後、接続孔の上部を閉塞するよ
うに上層配線層を形成し、その上層配線層を高圧リフロ
ー法により接続孔に埋め込む請求項1記載の多層配線基
板の製造方法。
2. The method according to claim 1, wherein after the heat treatment, an upper wiring layer is formed so as to close the upper portion of the connection hole, and the upper wiring layer is embedded in the connection hole by a high-pressure reflow method.
【請求項3】 エッチングストッパー層が、Ti、W、
Ta、TiW又はこれらの窒素化物を含有する合金から
形成される請求項1又は2記載の多層配線基板の製造方
法。
3. An etching stopper layer comprising Ti, W,
3. The method for manufacturing a multilayer wiring board according to claim 1, wherein the multilayer wiring board is formed from Ta, TiW, or an alloy containing a nitride thereof.
【請求項4】 接続孔を開口する前のエッチングストッ
パー層の厚さが80nm以上である請求項1〜3のいず
れかに記載の多層配線基板の製造方法。
4. The method according to claim 1, wherein the thickness of the etching stopper layer before opening the connection hole is 80 nm or more.
【請求項5】 接続孔を開口後、基板表面に下地層を積
層しその上に上層配線層を形成する請求項1〜4のいず
れかに記載の多層配線基板の製造方法。
5. The method for manufacturing a multilayer wiring board according to claim 1, wherein after forming the connection hole, a base layer is laminated on the substrate surface and an upper wiring layer is formed thereon.
【請求項6】 下地層がTiN及びTiの積層膜からな
る請求項5記載の多層配線基板の製造方法。
6. The method for manufacturing a multilayer wiring board according to claim 5, wherein the underlayer is made of a laminated film of TiN and Ti.
JP4315797A 1997-02-27 1997-02-27 Manufacture of multilayer wiring board Pending JPH10242274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4315797A JPH10242274A (en) 1997-02-27 1997-02-27 Manufacture of multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4315797A JPH10242274A (en) 1997-02-27 1997-02-27 Manufacture of multilayer wiring board

Publications (1)

Publication Number Publication Date
JPH10242274A true JPH10242274A (en) 1998-09-11

Family

ID=12656036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4315797A Pending JPH10242274A (en) 1997-02-27 1997-02-27 Manufacture of multilayer wiring board

Country Status (1)

Country Link
JP (1) JPH10242274A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514872B1 (en) 1999-10-07 2003-02-04 Nec Compound Semiconductor Devices, Ltd. Method of manufacturing a semiconductor device
JP2006147846A (en) * 2004-11-19 2006-06-08 Renesas Technology Corp Manufacturing method of semiconductor device
KR100618794B1 (en) * 1999-12-10 2006-09-06 삼성전자주식회사 Method of forming contact hole for semiconductor device
JP2007165428A (en) * 2005-12-12 2007-06-28 Fujitsu Ltd Process for fabricating semiconductor device
JP2010062578A (en) * 2009-10-28 2010-03-18 Renesas Technology Corp Method of manufacturing semiconductor device
JP2010272898A (en) * 2005-01-21 2010-12-02 Toshiba Corp Method of manufacturing semiconductor device
JP2017108076A (en) * 2015-12-11 2017-06-15 株式会社ニコン Semiconductor device and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514872B1 (en) 1999-10-07 2003-02-04 Nec Compound Semiconductor Devices, Ltd. Method of manufacturing a semiconductor device
KR100618794B1 (en) * 1999-12-10 2006-09-06 삼성전자주식회사 Method of forming contact hole for semiconductor device
JP2006147846A (en) * 2004-11-19 2006-06-08 Renesas Technology Corp Manufacturing method of semiconductor device
JP4583892B2 (en) * 2004-11-19 2010-11-17 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP2010272898A (en) * 2005-01-21 2010-12-02 Toshiba Corp Method of manufacturing semiconductor device
JP2007165428A (en) * 2005-12-12 2007-06-28 Fujitsu Ltd Process for fabricating semiconductor device
JP4567587B2 (en) * 2005-12-12 2010-10-20 富士通株式会社 Manufacturing method of semiconductor device
US8101513B2 (en) 2005-12-12 2012-01-24 Fujitsu Limited Manufacture method for semiconductor device using damascene method
JP2010062578A (en) * 2009-10-28 2010-03-18 Renesas Technology Corp Method of manufacturing semiconductor device
JP4627335B2 (en) * 2009-10-28 2011-02-09 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP2017108076A (en) * 2015-12-11 2017-06-15 株式会社ニコン Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2580096B2 (en) Method for manufacturing semiconductor device
US4937652A (en) Semiconductor device and method of manufacturing the same
US6951809B2 (en) Method for manufacturing semiconductor device
US20070145591A1 (en) Semiconductor device and manufacturing method therof
TW448538B (en) Interconnect structure of semiconductor device and method for manufacturing same
US5985751A (en) Process for fabricating interconnection of semiconductor device
JPH10144688A (en) Method of forming contact plugs of semiconductor device having contact holes different in size
JP3625652B2 (en) Manufacturing method of semiconductor device
JP3104534B2 (en) Semiconductor device and its manufacturing method.
JPH0917785A (en) Aluminum-based metal interconnection for semiconductor device
JPH10242274A (en) Manufacture of multilayer wiring board
KR100369970B1 (en) Manufacturing method of semiconductor device
JP2007335578A (en) Semiconductor device, and its manufacturing method
JP2560626B2 (en) Method for manufacturing semiconductor device
JPH09199593A (en) Semiconductor device and manufacture thereof
JP3087692B2 (en) Method for manufacturing semiconductor device
JP3407516B2 (en) Semiconductor device and manufacturing method thereof
JPH10125678A (en) Semiconductor device
JPH08255833A (en) Manufacture of semiconductor device
JPH08213394A (en) Semiconductor device and its manufacture
JPH04298029A (en) Method of manufacturing semiconductor device
JP2000294640A (en) Manufacture of a semiconductor device
JPH10335330A (en) Multilayered trench wiring
JPH08107145A (en) Manufacture of semiconductor device
JPH08203895A (en) Method for filling hole by high pressure reflow