JPH10227010A - Steel form with main reinforcement for bridge floor panel and bridge floor panel construction method using it - Google Patents

Steel form with main reinforcement for bridge floor panel and bridge floor panel construction method using it

Info

Publication number
JPH10227010A
JPH10227010A JP3193197A JP3193197A JPH10227010A JP H10227010 A JPH10227010 A JP H10227010A JP 3193197 A JP3193197 A JP 3193197A JP 3193197 A JP3193197 A JP 3193197A JP H10227010 A JPH10227010 A JP H10227010A
Authority
JP
Japan
Prior art keywords
reinforcing bar
main reinforcing
steel plate
thin steel
formwork
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3193197A
Other languages
Japanese (ja)
Inventor
Tomohiro Yamamoto
知弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUO BRIDGE
MATSUO KYORYO KK
Original Assignee
MATSUO BRIDGE
MATSUO KYORYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUO BRIDGE, MATSUO KYORYO KK filed Critical MATSUO BRIDGE
Priority to JP3193197A priority Critical patent/JPH10227010A/en
Publication of JPH10227010A publication Critical patent/JPH10227010A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel form with a main reinforcement and a bridge floor panel construction method, by which a shorter site construction period and a less number of site skilled workers than in a conventional method are achieved, a prefabricating method with no scaffold and support required is improved, a light weight for easy handling and high rigidity to prevent the deflection of concrete when placed are realized and a cost increase is minimized. SOLUTION: A steel form 4 with a main reinforcement is placed on main beams 2 arranged in the bridge axial direction and then concrete is placed thereon to construct a floor panel. In this case, upper side main reinforcements 8 and lower side main reinforcements is double number are arranged on the upper face of a thin steel plate 7 to be perpendicular to the bridge axial directional and one upper side main reinforcement and two lower side main reinforcements are joined together via a pair of latticed bars 10 to form a set of space truss bars T, and the lower side main reinforcements are fixed to the thin steel plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、橋梁床版用の主鉄
筋付き鋼製型枠及びそれを用いた橋梁の床版施工法に係
わり、更に詳しくは足場や支保工が不要で施工後には捨
型枠となって床版と一体化する橋梁の床版施工用の型枠
及びその型枠を用いた床版施工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel formwork with a main reinforcing bar for a bridge slab and a method of constructing a bridge slab using the same. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a formwork for slab construction of a bridge which becomes a discarded formwork and is integrated with a slab, and a slab construction method using the formwork.

【0002】[0002]

【従来の技術】従来、橋梁のコンクリート系床版は、橋
脚に架設した主桁の上に、支保工で支持された型枠を構
築し、該型枠上に主鉄筋及び配力筋を縦横に配設して互
いに番線で締結するか又は溶接して固着した後、コンク
リートを打設し、養生硬化後に脱型してなる工法(以下
「在来工法」という)によって現場で建設されている。
しかし、この在来工法は、現場工期が長く、また工期が
天候に左右されやすく、しかも型枠工や配筋工等の熟練
工不足や高所作業となるため安全面の点で問題が多い。
2. Description of the Related Art Conventionally, a concrete floor slab of a bridge is constructed by forming a formwork supported by a shoring on a main girder erected on a pier and vertically and horizontally laying a main reinforcing bar and a distribution bar on the formwork. And then fixed to each other with a wire or welded together, then cast concrete, cured and cured, then removed from the mold (hereinafter referred to as "conventional construction"). .
However, this conventional construction method has many problems in terms of safety because the construction period is long on site, the construction period is easily affected by the weather, and there is a shortage of skilled workers such as formwork and reinforcing work and work at high places.

【0003】そこで、これらの問題点を解消した工法と
して、予め工場でプレキャストコンクリート床版を製作
し、それを現場まで搬送し、大型クレーンで主桁上に載
置して取付けた後、継ぎ目にコンクリートを打設して一
体化する工法(以下「プレキャスト工法」という)が提
供されるに至った。このプレキャスト工法は、在来工法
と比較して現場工期の短縮、熟練工不足への対応、安全
面の配慮等の利点を有するが、コストが2倍程度かかる
ため、例えば跨線橋や床版取り替えといった工期の短縮
化や足場、支保工の施工が困難な場合等、限られたケー
ス以外には使用されてないのが現状で、圧倒的に在来工
法が採用されている。
Therefore, as a method of solving these problems, a precast concrete slab is manufactured in advance at a factory, transported to the site, mounted on a main girder with a large crane, and attached. A method of casting and integrating concrete (hereinafter referred to as "precast method") has been provided. This precast method has the advantages of shortening the on-site work period, coping with the shortage of skilled work, and considering safety, etc. as compared with the conventional method, but the cost is about twice as long, so the work period such as replacement of the overpass or floor slab is required. At present, it is not used except in limited cases, such as in cases where it is difficult to shorten the length of the work, or to construct scaffolds or support works, and the conventional method is overwhelmingly adopted.

【0004】また、前述の在来工法とプレキャスト工法
の中間に位置づけられる工法として、薄鋼板に形鋼と鉄
筋を配置したパネル構造の型枠を工場で製作し、この鉄
筋付き型枠を主桁上に取付けた後、現場でコンクリート
を打設する工法(以下「プレハブ工法」という)も提案
されている。この場合、コンクリート打設時に型枠が撓
まないように形鋼で補強しているため、型枠の重量が重
く、また在来工法と比較してコスト高となる。
[0004] As a method intermediate between the conventional method and the precast method described above, a panel-shaped formwork in which a shape steel and a reinforcing bar are arranged on a thin steel plate is manufactured at a factory, and the formwork with a reinforcing bar is used as a main girder. There is also proposed a method of placing concrete on site after mounting on top (hereinafter referred to as "prefabricated method"). In this case, since the form is reinforced with the shape steel so as not to bend at the time of concrete casting, the form is heavy and the cost is higher than the conventional construction method.

【0005】[0005]

【発明が解決しようとする課題】本発明が前述の状況に
鑑み、解決しようとするところは、在来工法と比較して
現場工期の短縮化と現場熟練工の少人数化が図れ、足場
や支保工が不要なプレハブ工法を改良し、取扱いを容易
にするための軽量化とコンクリート打設時に撓みを防止
するための高剛性化を図るとともに、コスト上昇を最小
限に抑制することが可能な橋梁床版用の主鉄筋付き鋼製
型枠及びそれを用いた橋梁の床版施工法を提供する点に
ある。
SUMMARY OF THE INVENTION In view of the above situation, the present invention is intended to solve the problems described above by shortening the on-site construction period and reducing the number of skilled on-site workers compared with the conventional construction method, and A bridge that improves the prefabricated construction method that does not require construction, reduces weight to facilitate handling, increases rigidity to prevent bending during concrete placement, and minimizes cost increases. It is an object of the present invention to provide a steel formwork with a main reinforcing bar for a slab and a method of slab construction of a bridge using the same.

【0006】[0006]

【課題を解決するための手段】本発明は、前述の課題解
決のために、橋軸方向に配設した複数の主桁上に載置し
た後、コンクリートを打設して床版を施工するための主
鉄筋付き鋼製型枠であって、薄鋼板の上面に橋軸方向と
直交する方向に、上側主鉄筋と、該上側主鉄筋の2倍数
の下側主鉄筋を配設し、1本の上側主鉄筋と2本の下側
主鉄筋を一対のラチス筋により結合して一組の立体トラ
ス筋を構成するとともに、下側主鉄筋を前記薄鋼板に固
定してなる橋梁床版用の主鉄筋付き鋼製型枠を構成し
た。
SUMMARY OF THE INVENTION According to the present invention, in order to solve the above-mentioned problems, concrete is cast on a plurality of main girders arranged in the direction of a bridge axis, and concrete is cast to form a floor slab. A steel formwork with a main reinforcing bar, comprising: an upper main reinforcing bar; and a lower main reinforcing bar having a number of twice as many as the upper main reinforcing bar, provided on the upper surface of the thin steel plate in a direction orthogonal to the bridge axis direction. A bridge floor slab in which one upper main reinforcing bar and two lower main reinforcing bars are joined by a pair of lattice bars to form a set of three-dimensional truss bars, and the lower main reinforcing bar is fixed to the thin steel plate. The steel formwork with the main rebar was constructed.

【0007】ここで、前記上側主鉄筋と下側主鉄筋にラ
チス筋を、溶接することなく連結金具にてカシメ結合
し、薄鋼板上面に溶接した固定金具に下側主鉄筋をカシ
メ結合した連結金具を溶接し、薄鋼板上面と間隔を保持
して下側主鉄筋を固定してなることが好ましい。
Here, a lattice bar is connected to the upper main reinforcing bar and the lower main reinforcing bar by a connecting fitting without welding, and the lower main reinforcing bar is connected to a fixing fitting welded to the upper surface of the thin steel plate by a caulking connection. It is preferable that the lower main rebar is fixed by welding the metal fittings and maintaining the gap with the upper surface of the thin steel plate.

【0008】また、前記薄鋼板が主桁間に配設する中間
部薄鋼板と、主桁の側部に配設する片持部薄鋼板とで構
成され、前記上側主鉄筋と下側主鉄筋とラチス筋により
構成された立体トラス筋が前記中間部薄鋼板及び片持部
薄鋼板とに跨がって配設されていることが好ましい。こ
の場合において、各立体トラス筋の間であって、隣接す
る前記中間部薄鋼板間又は中間部薄鋼板と片持部薄鋼板
間に渡って引張り筋を配設してなること、前記片持部薄
鋼板の側端縁に、側面型枠板を一体的に立ち上げ形成し
てなることがより好ましい。
The thin steel plate comprises an intermediate thin steel plate disposed between the main girders, and a cantilever thin steel plate disposed on the side of the main girder, wherein the upper main reinforcing bar and the lower main reinforcing bar are provided. It is preferable that a three-dimensional truss bar composed of a steel plate and a lattice bar is provided so as to straddle the intermediate thin steel plate and the cantilever thin steel plate. In this case, a tension bar is provided between each of the space truss bars and between the adjacent intermediate thin steel plates or between the intermediate thin steel plate and the cantilever thin steel plate. It is more preferable that the side frame plate is integrally formed upright on the side edge of the thin steel plate.

【0009】そして、本発明は、薄鋼板の上面に橋軸方
向と直交する方向に、上側主鉄筋と、該上側主鉄筋の2
倍数の下側主鉄筋を配設し、1本の上側主鉄筋と2本の
下側主鉄筋を一対のラチス筋により結合して一組の立体
トラス筋を構成するとともに、下側主鉄筋を前記薄鋼板
に固定してなる主鉄筋付き鋼製型枠をユニット型枠と
し、複数の該ユニット型枠を、橋軸方向に配設した複数
の主桁上に、橋軸方向に順次配列させて載置した後、各
ユニット型枠の上側主鉄筋及び下側主鉄筋に渡ってそれ
ぞれ複数の配力筋を固定し、前記型枠内にコンクリート
を打設してなる橋梁の床版施工法を提供するものであ
る。
[0009] The present invention provides an upper main reinforcing bar and two upper main reinforcing bars on the upper surface of a thin steel sheet in a direction perpendicular to the bridge axis direction.
A plurality of lower main reinforcing bars are arranged, and one upper main reinforcing bar and two lower main reinforcing bars are connected by a pair of lattice bars to form a set of three-dimensional truss bars. A steel formwork with a main rebar fixed to the thin steel plate is a unit formwork, and the plurality of unit formworks are sequentially arranged in the bridge axis direction on a plurality of main girders arranged in the bridge axis direction. After placing and mounting, a plurality of distribution bars are fixed respectively over the upper main reinforcing bar and the lower main reinforcing bar of each unit formwork, and concrete is poured into the formwork, and the floor slab construction method of the bridge is carried out. Is provided.

【0010】[0010]

【発明の実施の形態】次に本発明の実施形態を添付した
図面に基づき詳細に説明する。図1は本発明を利用して
施工した橋梁の一例を示し、図2〜図7は本発明の要部
を示し、図中1は橋脚、2は主桁、3は床版をそれぞれ
示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an example of a bridge constructed by using the present invention, and FIGS. 2 to 7 show main parts of the present invention, in which 1 is a pier, 2 is a main girder, and 3 is a floor slab. I have.

【0011】本実施形態の橋梁は、所定間隔毎に立設し
た橋脚1,…に、橋軸方向に沿ってI型鋼からなる複数
の主桁2,…を架設し、該主桁2上に床版3を施工した
構造を有している。尚、前記床版3の上面は、舗装して
道路となる。
In the bridge according to the present embodiment, a plurality of main girders 2 made of I-shaped steel are erected along piers 1 erected at predetermined intervals along the bridge axis direction. The floor slab 3 is constructed. The upper surface of the floor slab 3 is paved to be a road.

【0012】本発明に係る床版3は、複数の主鉄筋付き
鋼製型枠4(以下「型枠4」とする)を、前記主桁2上
に橋軸方向(図3中の矢印Pの方向)に順次配列させて
取付けた後、各型枠4に渡って多数の配力筋5,…を配
設し、前記型枠4内にコンクリート6を打設して施工し
ている。ここで、前記型枠4は、橋軸方向と直交する方
向(図3中の矢印Vの方向)の寸法が橋梁の幅に相当
し、橋軸方向の寸法は重量、施工効率、取扱性を考慮し
て決定され、例えば橋軸方向の寸法を1500mm(図
3中符号Sで表示)に設定している。また、橋軸方向に
隣接する各型枠4の薄鋼板7,7はシールしてコンクリ
ート6の漏れを防止する。
In the floor slab 3 according to the present invention, a plurality of steel forms 4 with main reinforcing bars (hereinafter referred to as "forms 4") are placed on the main girder 2 in the bridge axis direction (arrow P in FIG. 3). ), And a large number of force distribution bars 5 are arranged over each of the molds 4, and concrete 6 is poured into the molds 4 for construction. Here, the dimension of the formwork 4 in the direction perpendicular to the bridge axis direction (the direction of arrow V in FIG. 3) corresponds to the width of the bridge, and the dimension in the bridge axis direction determines weight, construction efficiency, and handleability. For example, the dimension in the bridge axis direction is set to 1500 mm (indicated by reference symbol S in FIG. 3). In addition, the thin steel plates 7, 7 of each form 4 adjacent in the bridge axis direction are sealed to prevent the concrete 6 from leaking.

【0013】前記型枠4は、薄鋼板7の上面に橋軸方向
と直交する方向に、上側主鉄筋8と、該上側主鉄筋8の
2倍数の下側主鉄筋9を配設し、1本の上側主鉄筋8と
2本の下側主鉄筋9,9を一対のラチス筋10,10に
より結合して一組の立体トラス筋Tを構成するととも
に、下側主鉄筋9を前記薄鋼板7に固定した構造であ
る。ここで、前記薄鋼板7は、コンクリート打設時に型
枠として機能すれば良く、床版3としての構造的な強度
は要求されないので、厚さ1.6mmのZn鋼板又は厚
さ1.5mmのステンレス鋼板を用いている。また、上
側主鉄筋8及び下側主鉄筋9の直径は19mm、ラチス
筋10の直径は13mmのものを用いている。
The formwork 4 is provided with an upper main reinforcing bar 8 and a lower main reinforcing bar 9 which is twice as many as the upper main reinforcing bar 8 on the upper surface of the thin steel plate 7 in a direction perpendicular to the bridge axis direction. The upper main reinforcing bar 8 and the two lower main reinforcing bars 9, 9 are connected by a pair of lattice bars 10, 10 to form a pair of three-dimensional truss bars T, and the lower main reinforcing bar 9 is formed of the thin steel plate. 7. Here, the thin steel plate 7 only has to function as a formwork at the time of casting concrete, and the structural strength of the floor slab 3 is not required. Therefore, a 1.6 mm thick Zn steel plate or a 1.5 mm thick Stainless steel plate is used. The diameter of the upper main reinforcing bar 8 and the lower main reinforcing bar 9 is 19 mm, and the diameter of the lattice bar 10 is 13 mm.

【0014】前記ラチス筋10は、波形の鉄筋であり、
その一対を上部が接近するように傾斜させて、各頂部を
それぞれ上側主鉄筋8と下側主鉄筋9に、溶接すること
なく連結金具11,…にてカシメ結合している。尚、前
記上側主鉄筋8と下側主鉄筋9にラチス筋10を溶接し
ない理由は、溶接によって鉄筋が減肉して疲労強度及び
引張り強度が低下することを避けるためであるが、鉄筋
の引張り強度が問題にならなければ、上側主鉄筋8と下
側主鉄筋9とにラチス筋10を溶接しても良い。また、
前記薄鋼板7上面に溶接した固定金具12に下側主鉄筋
9をカシメ結合した連結金具11を溶接し、薄鋼板7上
面と間隔を保持して下側主鉄筋9を固定し、上側主鉄筋
8、下側主鉄筋9及びラチス筋10によって構成された
立体トラス筋Tと薄鋼板7とを一体化し、薄鋼板7の剛
性を高めている。
The lattice 10 is a corrugated reinforcing bar.
The pair is tilted so that the upper portions are close to each other, and the respective top portions are caulked to the upper main reinforcing bar 8 and the lower main reinforcing bar 9 by connecting metal fittings 11 without welding. The reason why the lattice bars 10 are not welded to the upper main reinforcing bar 8 and the lower main reinforcing bar 9 is to avoid a reduction in the thickness of the reinforcing bar due to welding and a decrease in fatigue strength and tensile strength. If the strength does not matter, the lattice bar 10 may be welded to the upper main reinforcing bar 8 and the lower main reinforcing bar 9. Also,
A connection fitting 11 in which a lower main reinforcing bar 9 is caulked to a fixing fitting 12 welded to the upper surface of the thin steel plate 7 is welded, and the lower main reinforcing bar 9 is fixed while maintaining an interval with the upper surface of the thin steel plate 7, and an upper main reinforcing bar is provided. 8, the three-dimensional truss bar T composed of the lower main reinforcing bar 9 and the lattice bar 10 and the thin steel plate 7 are integrated to increase the rigidity of the thin steel plate 7.

【0015】本実施形態では、前記上側主鉄筋8,…を
250mmピッチで配設し、下側主鉄筋9,…を125
mmピッチで配設し、隣接する下側主鉄筋9,9の中間
に上側主鉄筋8を位置させている。また、前記配力筋5
は、直径16mmで、上側主鉄筋8,…の下側に交叉さ
せて番線等によって締結するとともに、下側主鉄筋9,
…の上側に交叉させて同様に締結している。尚、前記配
力筋5,…のピッチは、上側が250mm、下側が12
5mmに設定している。
In this embodiment, the upper main reinforcing bars 8,... Are arranged at a pitch of 250 mm, and the lower main reinforcing bars 9,.
The upper main reinforcing bar 8 is arranged at a pitch of mm and is located between the adjacent lower main reinforcing bars 9 and 9. In addition, the distribution muscle 5
Are 16 mm in diameter, cross over the lower side of the upper main reinforcing bars 8,.
… And are similarly fastened. The pitch of the distribution bars 5 is 250 mm on the upper side and 12 mm on the lower side.
It is set to 5 mm.

【0016】また、前記薄鋼板7が主桁2,2間に配設
する中間部薄鋼板7Aと、主桁2の側部に配設する片持
部薄鋼板7Bとで構成され、前記上側主鉄筋8と下側主
鉄筋9,9とラチス筋10,10により構成された立体
トラス筋Tが前記中間部薄鋼板7A及び片持部薄鋼板7
Bとに跨がって配設されている。また、立体トラス筋T
が前述の如く中間部薄鋼板7Aと片持部薄鋼板7B,7
Bとに固定金具12,…にて固定されていることから、
単又は複数の中間部薄鋼板7A及び片持部薄鋼板7B,
7Bが一体化された1ユニットの型枠4となっている。
The thin steel plate 7 comprises an intermediate thin steel plate 7A provided between the main girders 2 and 2, and a cantilever thin steel plate 7B provided on the side of the main girder 2; The three-dimensional truss bar T composed of the main reinforcing bar 8, the lower main reinforcing bars 9, 9 and the lattice bars 10, 10 is used for the intermediate thin steel plate 7A and the cantilever thin steel plate 7.
And B. In addition, three-dimensional truss T
As described above, the intermediate thin steel plate 7A and the cantilever thin steel plates 7B, 7B
B, and is fixed by the fixing brackets 12,.
One or more intermediate thin steel plates 7A and cantilever thin steel plates 7B,
7B is a single unit formwork 4 integrated therewith.

【0017】前記中間部薄鋼板7Aの両端部及び片持部
薄鋼板7Bの内側端部には、床版3としての厚肉部を形
成すべく下方へ傾斜した傾斜板部13を有し、この傾斜
板部13の端部を主桁2の上面板2Aの縁部に載置して
取付けている。ここで、前記主桁2の上面板2Aであっ
てその上に載置する傾斜板部13,13の間には、複数
のジベル(図示せず)を突設し、主桁2と床版3とがズ
レないようにしている。また、前記片持部薄鋼板7Bの
外側端縁に、側面型枠板14を一体的に立ち上げ形成し
ている。
At both ends of the intermediate thin steel plate 7A and at the inner end of the cantilever thin steel plate 7B, there are inclined plate portions 13 inclined downward to form a thick portion as the floor slab 3, The end of the inclined plate portion 13 is placed and attached to the edge of the upper plate 2A of the main girder 2. Here, a plurality of dowels (not shown) are projected between the upper plate 2A of the main girder 2 and the inclined plate portions 13 and 13 placed thereon, so that the main girder 2 and the floor slab are provided. 3 is not misaligned. In addition, a side frame plate 14 is integrally formed on the outer edge of the cantilevered thin steel plate 7B so as to be integrally raised.

【0018】更に、各立体トラス筋T,Tの間であっ
て、隣接する前記中間部薄鋼板7A,7A間又は中間部
薄鋼板7Aと片持部薄鋼板7B間に渡って、前記主桁2
の上面板2A及び傾斜板部13,13を跨ぐように引張
り筋15を配設している。この引張り筋15は、台形状
に屈曲した二本の鉄筋を脚部を開いた状態で頂部を互い
に連結金具11,…で結合し、各脚部の先端は隣接する
立体トラス筋Tを構成する下側主鉄筋9にそれぞれ連結
金具11,…で結合している。
Further, the main girder is provided between the space truss bars T, T and between the adjacent intermediate thin steel plates 7A, 7A or between the intermediate thin steel plate 7A and the cantilever thin steel plate 7B. 2
A tension bar 15 is provided so as to straddle the upper surface plate 2A and the inclined plate portions 13, 13. The tension bars 15 are formed by connecting two rebars bent in a trapezoidal shape with connecting legs 11,... With their legs open, and the ends of each leg constitute an adjacent three-dimensional truss bar T. Are connected to the lower main reinforcing bar 9 by connecting fittings 11,.

【0019】また、図5及び図6に示すように、前記中
間部薄鋼板7A,7A間又は中間部薄鋼板7Aと片持部
薄鋼板7Bの間に渡した立体トラス筋Tを保高金具16
にて主桁2の上面板2Aに対して支持している。即ち、
前記保高金具16は、立体トラス筋Tを構成する下側主
鉄筋9,9に架設した座板16Aと、該座板16Aに垂
直に螺合したボルト16Bとから構成され、該ボルト1
6Bの下端を主桁2の上面板2Aに載支している。
As shown in FIGS. 5 and 6, the three-dimensional truss T which has been passed between the intermediate thin steel plates 7A, 7A or between the intermediate thin steel plate 7A and the cantilever thin steel plate 7B is held by a metal fitting. 16
At the upper surface plate 2A of the main girder 2. That is,
The holding bracket 16 is composed of a seat plate 16A installed on the lower main reinforcing bars 9, 9 constituting the space truss bar T, and a bolt 16B screwed vertically to the seat plate 16A.
The lower end of 6B is mounted on the upper plate 2A of the main girder 2.

【0020】そして、本発明の橋梁の床版施工法は、予
め工場で製作された前述の主鉄筋付き鋼製型枠4をユニ
ット型枠として用い、複数の該ユニット型枠4を、橋軸
方向に配設した複数の主桁2,…上に、橋軸方向に順次
配列させて載置した後、現場施工によって各ユニット型
枠4の上側主鉄筋8,…及び下側主鉄筋9,…に渡って
それぞれ複数の配力筋5,…を固定し、前記型枠4内に
コンクリート6を打設してなるものである。また、コン
クリート打設前に、隣接する型枠4,4に渡ってプレス
トレスワイヤーを橋軸方向に配設しておき、コンクリー
ト打設後にプレストレスを与える所謂PC床版とするこ
とも可能である。
The bridge slab construction method according to the present invention uses the above-described steel formwork 4 with a main rebar manufactured in a factory as a unit formwork, and a plurality of the unit formworks 4 are connected to the bridge shaft. .. And the lower main reinforcing bars 9, 9 of each unit form 4 by on-site construction after being sequentially arranged on a plurality of main girders 2,. A plurality of distribution muscles 5,... Are fixed to each other, and concrete 6 is cast into the formwork 4. In addition, it is also possible to arrange a prestressing wire in the bridge axis direction over the adjacent formwork 4 and 4 before concrete placing, and to form a so-called PC floor slab which applies prestressing after concrete placing. is there.

【0021】ここで、前記主桁2,2の間隔を3000
mm、床版3の厚みを250mmとすれば、コンクリー
ト打設時の中間部薄鋼板7Aの最大撓みは約2mmと予
測され、前記立体トラス筋Tによって本発明の主鉄筋付
き鋼製型枠4は、型枠として本来満足すべき強度及び剛
性を備えたものとなっている。尚、前記床版3を施工後
は、前記型枠4つまり薄鋼板7は床版3と一体化され
る。
Here, the interval between the main digits 2 and 2 is 3000
Assuming that the thickness of the floor slab 3 is 250 mm, the maximum deflection of the intermediate thin steel plate 7A at the time of casting concrete is predicted to be about 2 mm, and the three-dimensional truss T is used to form the steel form 4 with a main reinforcing bar of the present invention. Has a strength and a rigidity which are originally satisfactory as a mold. After the floor slab 3 is constructed, the form 4, that is, the thin steel plate 7 is integrated with the floor slab 3.

【0022】[0022]

【発明の効果】以上にしてなる本発明の橋梁床版用の主
鉄筋付き鋼製型枠によれば、主鉄筋と薄鋼板とを工場で
接合させた作製するので、寸法精度、品質のバラツキが
少なく、軽量な薄鋼板を用いても立体トラス筋によって
型枠としての本来満足すべきコンクリート打設時に撓み
を防止するための剛性を備えているのである。また、本
発明の橋梁の床版施工法によれば、鉄筋コンクリート系
床版の在来工法と比較して現場工期を半分以下に短縮
し、また現場熟練工の人数を少なくすることができ、ま
た足場や支保工が不要であり、型枠が軽量で取扱いが容
易であるとともに、高剛性を備えている。総合的には、
コスト上昇を最小限に抑制し、短期間で品質が安定した
床版を施工できるのである。
According to the steel formwork with a main reinforcing bar for a bridge slab of the present invention as described above, since the main reinforcing bar and the thin steel plate are joined at the factory, variations in dimensional accuracy and quality are caused. Thus, even if a thin steel plate is used, the truss bars have sufficient rigidity to prevent bending when the concrete is cast as a formwork. Further, according to the bridge slab construction method of the present invention, the on-site construction period can be reduced to half or less compared to the conventional method of reinforced concrete slabs, and the number of skilled on-site workers can be reduced. No shoring or support is required, the formwork is lightweight and easy to handle, and it has high rigidity. Overall,
The cost increase can be minimized, and floor slabs with stable quality can be constructed in a short period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明により施工する橋梁の簡略断面図であ
る。
FIG. 1 is a simplified sectional view of a bridge constructed according to the present invention.

【図2】本発明の主鉄筋付き鋼製型枠を主桁上に載置
し、配力筋を配設した状態の部分簡略斜視図である。
FIG. 2 is a partially simplified perspective view of a state in which a steel formwork with a main reinforcing bar according to the present invention is placed on a main girder, and distribution bars are disposed.

【図3】同じく部分平面図である。FIG. 3 is a partial plan view of the same.

【図4】本発明の要部の拡大斜視図である。FIG. 4 is an enlarged perspective view of a main part of the present invention.

【図5】主桁と主鉄筋付き鋼製型枠との関係を示し、橋
軸方向と直交する方向に破断した部分拡大断面図であ
る。
FIG. 5 is a partially enlarged cross-sectional view showing a relationship between a main girder and a steel formwork with a main reinforcing bar, which is broken in a direction orthogonal to a bridge axis direction.

【図6】同じく橋軸方向に破断した部分拡大断面図であ
る。
FIG. 6 is a partially enlarged cross-sectional view similarly broken in the bridge axis direction.

【図7】薄鋼板に下側主鉄筋を固定する構造を示す部分
断面図である。
FIG. 7 is a partial cross-sectional view showing a structure for fixing a lower main reinforcing bar to a thin steel plate.

【符号の説明】[Explanation of symbols]

1 橋脚 2 主桁 2A 上面板 3 床版 4 型枠 5 配力筋 6 コンクリート 7 薄鋼板 7A 中間部薄鋼板 7B 片持部薄鋼板 8 上側主鉄筋 9 下側主鉄筋 10 ラチス筋 11 連結金具 12 固定金具 13 傾斜板部 14 側面型枠板 15 引張り筋 16 保高金具 16A 座板 16B ボルト T 立体トラス筋 DESCRIPTION OF SYMBOLS 1 Bridge pier 2 Main girder 2A Top plate 3 Floor slab 4 Formwork 5 Reinforcement 6 Concrete 7 Thin steel plate 7A Intermediate thin steel plate 7B Cantilever thin steel plate 8 Upper main reinforcing bar 9 Lower main reinforcing bar 10 Lattice bar 11 Connecting bracket 12 Fixing bracket 13 Inclined plate portion 14 Side frame plate 15 Tensile bar 16 Height bracket 16A Seat plate 16B Bolt T Three-dimensional truss bar

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 橋軸方向に配設した複数の主桁上に載置
した後、コンクリートを打設して床版を施工するための
主鉄筋付き鋼製型枠であって、薄鋼板の上面に橋軸方向
と直交する方向に、上側主鉄筋と、該上側主鉄筋の2倍
数の下側主鉄筋を配設し、1本の上側主鉄筋と2本の下
側主鉄筋を一対のラチス筋により結合して一組の立体ト
ラス筋を構成するとともに、下側主鉄筋を前記薄鋼板に
固定してなることを特徴とする橋梁床版用の主鉄筋付き
鋼製型枠。
Claims 1. A steel formwork with a main reinforcing bar for placing concrete on a plurality of main girders arranged in the bridge axis direction and then casting concrete to form a floor slab. An upper main reinforcing bar and a lower main reinforcing bar that is twice as many as the upper main reinforcing bar are arranged on the upper surface in a direction orthogonal to the bridge axis direction, and one upper main reinforcing bar and two lower main reinforcing bars are paired. A steel formwork with a main reinforcing bar for a bridge slab, wherein a pair of three-dimensional truss bars are connected by lattice bars and a lower main reinforcing bar is fixed to the thin steel plate.
【請求項2】 前記上側主鉄筋と下側主鉄筋にラチス筋
を、溶接することなく連結金具にてカシメ結合し、薄鋼
板上面に溶接した固定金具に下側主鉄筋をカシメ結合し
た連結金具を溶接し、薄鋼板上面と間隔を保持して下側
主鉄筋を固定してなる請求項1記載の橋梁床版用の主鉄
筋付き鋼製型枠。
2. A connection fitting in which a lattice stud is connected to the upper main reinforcement and the lower main reinforcement by a connection fitting without welding, and a lower main reinforcement is crimped to a fixing fitting welded to the upper surface of the thin steel plate. The steel formwork with a main reinforcing bar for a bridge floor slab according to claim 1, wherein the lower main reinforcing bar is fixed while maintaining an interval with the upper surface of the thin steel plate.
【請求項3】 前記薄鋼板が主桁間に配設する中間部薄
鋼板と、主桁の側部に配設する片持部薄鋼板とで構成さ
れ、前記上側主鉄筋と下側主鉄筋とラチス筋により構成
された立体トラス筋が前記中間部薄鋼板及び片持部薄鋼
板とに跨がって配設されている請求項1又は2記載の橋
梁床版用の主鉄筋付き鋼製型枠。
3. The upper main reinforcing bar and the lower main reinforcing bar, wherein the thin steel plate includes an intermediate thin steel plate disposed between main girders and a cantilever thin steel plate disposed on a side of the main girder. 3. A three-dimensional truss bar composed of a steel plate and a lattice bar is disposed so as to straddle the intermediate thin steel plate and the cantilever thin steel plate. 3. Formwork.
【請求項4】 各立体トラス筋の間であって、隣接する
前記中間部薄鋼板間又は中間部薄鋼板と片持部薄鋼板間
に渡って引張り筋を配設してなる請求項3記載の橋梁床
版用の主鉄筋付き鋼製型枠。
4. A tensile bar is provided between each space truss bar and between the adjacent intermediate thin steel plates or between the intermediate thin steel plate and the cantilever thin steel plate. Steel formwork with main rebar for bridge slabs.
【請求項5】 前記片持部薄鋼板の側端縁に、側面型枠
板を一体的に立ち上げ形成してなる請求項3記載の橋梁
床版用の主鉄筋付き鋼製型枠。
5. The steel formwork with a main reinforcing bar for a bridge slab according to claim 3, wherein a side formwork plate is integrally formed upright on a side edge of the cantilevered thin steel plate.
【請求項6】 薄鋼板の上面に橋軸方向と直交する方向
に、上側主鉄筋と、該上側主鉄筋の2倍数の下側主鉄筋
を配設し、1本の上側主鉄筋と2本の下側主鉄筋を一対
のラチス筋により結合して一組の立体トラス筋を構成す
るとともに、下側主鉄筋を前記薄鋼板に固定してなる主
鉄筋付き鋼製型枠をユニット型枠とし、複数の該ユニッ
ト型枠を、橋軸方向に配設した複数の主桁上に、橋軸方
向に順次配列させて載置した後、各ユニット型枠の上側
主鉄筋及び下側主鉄筋に渡ってそれぞれ複数の配力筋を
固定し、前記型枠内にコンクリートを打設してなること
を特徴とする橋梁の床版施工法。
6. An upper main reinforcing bar and a lower main reinforcing bar which is twice as many as the upper main reinforcing bar are disposed on the upper surface of the thin steel sheet in a direction orthogonal to the bridge axis direction, and one upper main reinforcing bar and two upper main reinforcing bars are provided. The lower main rebar is joined by a pair of lattice bars to form a set of three-dimensional truss bars, and the steel formwork with main rebars, which is formed by fixing the lower main rebar to the thin steel plate, is used as a unit formwork. After the plurality of unit formwork are sequentially arranged and placed in the bridge axis direction on a plurality of main girders arranged in the bridge axis direction, the unit formwork is then mounted on the upper main reinforcing bar and the lower main reinforcing bar of each unit formwork. A method for constructing a bridge slab, wherein a plurality of distribution bars are fixed across the bridge, and concrete is poured into the formwork.
JP3193197A 1997-02-17 1997-02-17 Steel form with main reinforcement for bridge floor panel and bridge floor panel construction method using it Pending JPH10227010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193197A JPH10227010A (en) 1997-02-17 1997-02-17 Steel form with main reinforcement for bridge floor panel and bridge floor panel construction method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3193197A JPH10227010A (en) 1997-02-17 1997-02-17 Steel form with main reinforcement for bridge floor panel and bridge floor panel construction method using it

Publications (1)

Publication Number Publication Date
JPH10227010A true JPH10227010A (en) 1998-08-25

Family

ID=12344726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193197A Pending JPH10227010A (en) 1997-02-17 1997-02-17 Steel form with main reinforcement for bridge floor panel and bridge floor panel construction method using it

Country Status (1)

Country Link
JP (1) JPH10227010A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624402B1 (en) * 2004-09-20 2006-09-15 강기주 Fold-up Sandwich Panels with Three Dimensional Truss Cores
JP2008088634A (en) * 2006-09-29 2008-04-17 Sumitomo Metal Ind Ltd Composite steel-concrete floor slab
JP2013064252A (en) * 2011-09-16 2013-04-11 Yokogawa Sumikin Bridge Corp Panel for steel concrete composite floor slab construction, and steel concrete composite floor slab
JP2015232213A (en) * 2014-06-09 2015-12-24 近藤 弘 Lattice hardware, truss and beam structure
CN112176850A (en) * 2020-09-30 2021-01-05 长沙理工大学 Steel-UHPC combined structure shear connector and manufacturing and mounting method thereof
CN112982162A (en) * 2021-03-17 2021-06-18 河南新昱鑫桥梁钢构有限责任公司 Steel bar truss type steel-concrete combined bridge deck and construction method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624402B1 (en) * 2004-09-20 2006-09-15 강기주 Fold-up Sandwich Panels with Three Dimensional Truss Cores
JP2008088634A (en) * 2006-09-29 2008-04-17 Sumitomo Metal Ind Ltd Composite steel-concrete floor slab
JP2013064252A (en) * 2011-09-16 2013-04-11 Yokogawa Sumikin Bridge Corp Panel for steel concrete composite floor slab construction, and steel concrete composite floor slab
JP2015232213A (en) * 2014-06-09 2015-12-24 近藤 弘 Lattice hardware, truss and beam structure
CN112176850A (en) * 2020-09-30 2021-01-05 长沙理工大学 Steel-UHPC combined structure shear connector and manufacturing and mounting method thereof
CN112982162A (en) * 2021-03-17 2021-06-18 河南新昱鑫桥梁钢构有限责任公司 Steel bar truss type steel-concrete combined bridge deck and construction method

Similar Documents

Publication Publication Date Title
KR100427405B1 (en) Pssc complex girder
JP5945418B2 (en) How to build a box girder bridge
KR200407092Y1 (en) Support Structure for PC Panel of Cantilever Part
JPH10227010A (en) Steel form with main reinforcement for bridge floor panel and bridge floor panel construction method using it
EP1416101A1 (en) Composite beam
JP2003213623A6 (en) Bridge superstructure
KR100480471B1 (en) Connecting Structure and Connecting Method of Honeycomb Type Composite Beam Stiffened with Prestressed Concrete Panel
JP3701078B2 (en) Road slab construction method
JP3881135B2 (en) Connecting structure of floor slabs using concrete truss with concrete slab in bridge girder
JP2002275833A (en) Continuing method of simple beam of existing bridge and continuous beam structure
JPH10227011A (en) Steel form with main reinforcement for bridge floor, and construction of bridge floor using the form
JPH11166294A (en) Steel frame-contained concrete beam and floor construction method using the concrete beam
JP2620118B2 (en) Net formwork method for walls and floors
JP2001049616A (en) Precast pc web for use in concrete bridge and prestressed concrete bridge having the pc web
JP2003041516A (en) Integral structure of upper and lower parts of continuous girder bridge and method of constructing it
JP6089096B2 (en) Method for suppressing twist of precast girder and method for joining precast girder
JPH0781355B2 (en) Construction method of joist slab using precast concrete girder
JP2001200594A (en) Method for constructing structure consisting of column with large section and beam
JP2568987B2 (en) Support member for reinforcing steel assembly and bridge construction method using the same
JPH10121417A (en) Concrete frame, and method for constructing concrete structure using this concrete frame
JPH06299718A (en) Construction of wall, floor in atomic power plant and wall slab thereof
KR930005630B1 (en) Assembling slab of building
JPH11166207A (en) Form for floor slab
KR20220021356A (en) deck plate structure for long span without support using steel tube reinforcement
JP3684196B2 (en) Floor slab structural material