JPH10218700A - Alloy-based nanocrystal assembly and its production - Google Patents

Alloy-based nanocrystal assembly and its production

Info

Publication number
JPH10218700A
JPH10218700A JP9024653A JP2465397A JPH10218700A JP H10218700 A JPH10218700 A JP H10218700A JP 9024653 A JP9024653 A JP 9024653A JP 2465397 A JP2465397 A JP 2465397A JP H10218700 A JPH10218700 A JP H10218700A
Authority
JP
Japan
Prior art keywords
alloy
crystal
nanocrystal
aggregate
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9024653A
Other languages
Japanese (ja)
Inventor
Setsuo Kajiwara
節夫 梶原
Takehiko Kikuchi
武丕児 菊池
Kazuyuki Ogawa
一行 小川
Shuichi Miyazaki
修一 宮崎
Takeshi Matsunaga
健 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP9024653A priority Critical patent/JPH10218700A/en
Publication of JPH10218700A publication Critical patent/JPH10218700A/en
Priority to US10/419,119 priority patent/US20030178109A1/en
Priority to US10/798,396 priority patent/US20050126665A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/008Amorphous alloys with Fe, Co or Ni as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent

Abstract

PROBLEM TO BE SOLVED: To enable a highly tough material to be produced at low cost by the presence of such a crystal assembly that nanocrystals are oriented in the identical azimuth in the crystals of an alloy system capable of forming noncrystalline state. SOLUTION: In an alloy system capable of forming noncrystalline state, such an alloy being in noncrystalline state that the composition is deviated from the stoichiometric composition pref. to the extent so as to be easier to form deposits by about 1-5% is treated under heating at a temperature not higher than the crystallization temperature to obtain such an alloy-based nanocrystal assembly that nanocrystals each about 10-60nm in size are oriented in the identical azimuth in crystal grains each 1-10μm in size. A material afforded by the above nanocrystal assembly has a yield strength about 10 times that of a material with crystal grains each 1-2μm in size, and about 30 times that of a material with ordinary crystal grains each 20-40μm in size. This material with nanocrystal assembly is high in stretchability, and is hard to be broken.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、ナノ結晶
集合体とその製造方法に関するものである。さらに詳し
くは、この出願の発明は、材料を強靱化して、いわゆる
スーパーメタルの実現に有用なナノ結晶集合体とその製
造方法に関するものである。
The present invention relates to a nanocrystal aggregate and a method for producing the same. More specifically, the invention of this application relates to a nanocrystal aggregate useful for realizing a so-called supermetal by strengthening a material, and a method for producing the same.

【0002】[0002]

【従来の技術とその課題】従来より、合金系材料の強靱
化のための方法として、結晶粒の大きさをより小さくす
ることが様々に試みられてきている。このような方法に
よって、これまでにもかなりの高強度な材料が実現され
てきている。しかしながら、従来の技術には組成や熱処
理方法の工夫にもかかわらず、これまでの強度レベルを
さらに大きく向上させることには限界があり、たとえば
10倍以上にまで飛躍的に強度を向上させるにはこれま
での技術では難しく、従来の技術的知識とは本質的に異
なる新しい知見が必要とされているのが実情であった。
2. Description of the Related Art Conventionally, various attempts have been made to reduce the size of crystal grains as a method for toughening alloy-based materials. By such a method, a considerably high-strength material has been realized until now. However, despite the ingenuity of the composition and the heat treatment method in the conventional technology, there is a limit to further increasing the strength level up to now, for example, to dramatically improve the strength up to 10 times or more. The current technology is difficult, and new knowledge that is fundamentally different from conventional technical knowledge is required.

【0003】そこで、この出願の発明は、以上のような
従来の技術的限界を克服し、画期的なブレークスルーを
可能とする新しい実用化材料とそのための簡便な製造法
を提供することを目的としている。
Accordingly, the invention of this application is to overcome the conventional technical limitations as described above, and to provide a new practical material capable of making a breakthrough breakthrough and a simple manufacturing method therefor. The purpose is.

【0004】[0004]

【課題を解決するための手段】この出願の発明は、上記
の通りの課題を解決するものとして、非晶質状態が形成
され得る合金系において、結晶粒中にナノスケールの結
晶が同一の結晶方位に配向された状態の結晶集合体とし
て存在することを特徴とする合金系ナノ結晶集合体を提
供する。
Means for Solving the Problems The present invention solves the above-mentioned problems by providing an alloy system in which an amorphous state can be formed, in which a nano-scale crystal in a crystal grain has the same crystal. Disclosed is an alloy-based nanocrystal aggregate that exists as a crystal aggregate that is oriented in an azimuthal direction.

【0005】また、この出願の発明は、非晶質状態が形
成され得る合金系において、非晶質状態の合金を結晶化
温度以下の温度で加熱処理することを特徴とするナノス
ケールの結晶が同一の結晶方位に配向された状態の結晶
集合体として存在する合金系ナノ結晶集合体の製造方法
を提供する。
[0005] Further, the invention of the present application is directed to a method of forming a nano-scale crystal in an alloy system in which an amorphous state can be formed, wherein the alloy in the amorphous state is heated at a temperature lower than a crystallization temperature. Provided is a method for producing an alloy-based nanocrystal aggregate existing as a crystal aggregate oriented in the same crystal orientation.

【0006】[0006]

【発明の実施の形態】さらに詳しく発明の実施の形態に
ついて説明すると、まず、この出願の発明のナノ結晶集
合体は、ナノスケール、つまり100ナノメートル(n
m)以下の単位で表わされる超微小径の結晶の大きさを
持つナノ結晶が、普通の意味の結晶粒、たとえばミクロ
ンメートル(μm)スケールの微細結晶粒の中におい
て、同一の結晶方向に配向された状態で、たとえば数万
個も存在しているという特有の構造を有している。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the present invention will be described in more detail. First, the nanocrystal aggregate of the invention of this application has a nanoscale, that is, 100 nanometers (n).
m) Nanocrystals having an ultra-fine crystal size expressed in the following units are oriented in the same crystal direction in ordinary meaning crystal grains, for example, micro-meter (μm) scale fine crystal grains. In this state, for example, tens of thousands exist.

【0007】このようなナノ結晶集合体は、その組成が
化学量論組成からずれており、しかも非晶質状態が形成
され得る合金系であるという特徴も有している。組成
が、析出物が生成しやすい側にずれていれば、非晶質か
ら結晶となったときに、余分の原子を均一固溶体として
含んでいることが著しく困難となる。そのため結晶化と
同時に、結晶となった部分は化学量論組成をもつ規則合
金となり、過剰成分側元素の余分の原子は非晶質相には
きだされる。これがある量以上となると板状整合析出物
を析出して境界をつくり、結果的にナノ結晶を作り出
す。その過程を繰り返し、同一結晶方位をもったナノ結
晶集合体を創製する。
[0007] Such a nanocrystal aggregate is characterized in that its composition deviates from the stoichiometric composition, and that it is an alloy system capable of forming an amorphous state. If the composition is shifted to the side where precipitates are easily formed, it becomes extremely difficult to include extra atoms as a uniform solid solution when the composition changes from amorphous to crystalline. Therefore, at the same time as the crystallization, the crystallized portion becomes an ordered alloy having a stoichiometric composition, and the excess atoms of the element on the excess component side are exposed to the amorphous phase. When this amount exceeds a certain amount, plate-like matched precipitates are precipitated to form a boundary, and as a result, nanocrystals are produced. This process is repeated to create a nanocrystal aggregate having the same crystal orientation.

【0008】より具体的に例示すると、この発明の合金
系ナノ結晶集合体においては、その組成は、好ましくは
化学量論組成より約1〜5%だけ析出物を生成しやすい
方向にずれていることである。たとえばTi−Ni合金
では、Ti側(Ti過剰側)にずれていることが考えら
れる。このようなずれは、合金系の状態図より適宜に定
められることになる。そして、合金系としては、たとえ
ばTi−Ni系合金、Ti−Co系合金、Ti−Al系
合金、Fe−Al系合金等が例示されることになる。そ
して、たとえば、ナノスケールの結晶の径は約10〜6
0nmで、結晶粒の径は約1〜10μm程度のものが例
示されることになる。
[0008] More specifically, in the alloy-based nanocrystal aggregate of the present invention, the composition thereof is preferably shifted by about 1 to 5% from the stoichiometric composition in a direction in which a precipitate is easily formed. That is. For example, in the case of a Ti—Ni alloy, it is conceivable that it is shifted to the Ti side (Ti excess side). Such a shift is appropriately determined from the phase diagram of the alloy system. As the alloy system, for example, a Ti-Ni-based alloy, a Ti-Co-based alloy, a Ti-Al-based alloy, an Fe-Al-based alloy and the like are exemplified. And, for example, the diameter of a nanoscale crystal is about 10-6.
A crystal grain having a diameter of 0 nm and a diameter of about 1 to 10 μm is exemplified.

【0009】この発明のナノ結晶集合体は、その生成の
観点からみれば、非晶質から結晶化する過程で生ずるた
め、非晶状態が実現される合金系に属する合金でなけれ
ばならない。つまり、たとえば、Ti−Ni、Ti−A
l、Ti−Co、Fe−Alの合金系、およびこれらの
合金と同様な状態図を示す合金系においてこの発明のナ
ノ結晶集合体を製造することが可能となる。
[0009] The nanocrystal aggregate of the present invention is generated in the process of crystallization from amorphous from the viewpoint of its formation, and therefore must be an alloy belonging to an alloy system that realizes an amorphous state. That is, for example, Ti-Ni, Ti-A
It is possible to manufacture the nanocrystal aggregate of the present invention in an alloy system of 1, Ti—Co, and Fe—Al, and an alloy system showing a phase diagram similar to these alloys.

【0010】また、この発明のナノ結晶集合体の生成で
は、結晶化と同時に化学量論組成を有する規則格子を形
成し、余分の合金元素を析出物としてナノ結晶粒と非晶
質相との界面に放出するという機構に基づいているた
め、化学量論組成から少し析出物を生成しやすい方向に
ずれている合金系であることが必要である。そして、そ
の生成は、非晶質状態の合金を結晶化温度以下の温度で
加熱処理することにより可能とされる。
In the production of the nanocrystal aggregate according to the present invention, an ordered lattice having a stoichiometric composition is formed simultaneously with the crystallization, and the excess alloy element is used as a precipitate to form the nanocrystals and the amorphous phase. Since it is based on the mechanism of release to the interface, it is necessary that the alloy system be slightly deviated from the stoichiometric composition in a direction in which precipitates are easily generated. The formation can be achieved by heating the alloy in an amorphous state at a temperature lower than the crystallization temperature.

【0011】この発明によって提供される材料の降伏強
度は、極微細といわれる1〜2μmの粒径から構成され
る材料と比較した場合でも約10倍の強度となり、また
通常の結晶粒20〜40μmと比較すると約30倍にも
なる。しかも、同一結晶方位のナノ結晶から構成されて
いるため、伸縮性に富み、破断しにくい。さらに、この
発明においては、非晶質からの結晶化において、規則化
の傾向と析出の方向を巧みに組み合わせた方法で、適当
な合金系さえあれば、極めて簡単に実用化することが可
能であり、いわゆるスーパーメタルといわれる特性をも
具現できる。
The yield strength of the material provided by the present invention is about ten times as high as that of a material having a particle size of 1 to 2 μm, which is said to be extremely fine, and ordinary crystal grains of 20 to 40 μm It is about 30 times as large as. Moreover, since they are composed of nanocrystals having the same crystal orientation, they have high elasticity and are not easily broken. Further, in the present invention, in the crystallization from an amorphous state, it is possible to practically use the method very easily as long as there is an appropriate alloy system by a method that skillfully combines the tendency of ordering and the direction of precipitation. Yes, it can also realize what is called super metal.

【0012】以下、実施例を示し、この発明の実施の形
態についてさらに詳しく説明する。
The present invention will be described in more detail with reference to the following Examples.

【0013】[0013]

【実施例】Ti−Ni合金が等組成からTi側(Ti過
剰)にずれているTi−48.2at%Ni合金の非晶
質状態の材料を結晶化温度(737K)よりも約50K
低い温度で熱処理することによって、20〜40μm径
のナノ結晶が生成された。これらはその集合体として約
1〜2μmの径のいわゆる結晶粒をつくっていることが
確認された。図1は、687Kの温度で2時間焼鈍した
ときに形成される結晶粒の通常電子顕微鏡による写真で
あり、図2は、この図1における一つの結晶粒が、極め
て多数の20〜40nmの径のナノスケール結晶から構
成されていることを示している電子顕微鏡写真である。
EXAMPLE An amorphous material of a Ti-48.2 at% Ni alloy in which the Ti-Ni alloy is shifted from the iso-composition to the Ti side (excess Ti) is about 50K higher than the crystallization temperature (737K).
Heat treatment at low temperature produced nanocrystals with a diameter of 20-40 μm. It was confirmed that these aggregates formed so-called crystal grains having a diameter of about 1 to 2 μm. FIG. 1 is a photograph of a crystal grain formed by annealing at a temperature of 687 K for 2 hours by a normal electron microscope. FIG. 2 shows that one crystal grain in FIG. 5 is an electron micrograph showing that the sample is composed of nanoscale crystals of the present invention.

【0014】さらに詳しく説明すると、添付した図面の
図3は、生成されたナノ結晶集合体の、〔111〕bc
c方位から電子線を入射した場合の高分解能電子顕微鏡
写真であり、図4は、図3の白枠部分の拡大写真であ
る。原子列、格子面の像より隣接したナノ結晶が全く同
一結晶方位であることがわかる。さらに、隣接ナノ結晶
粒間には非晶質部分も存在していることがわかる。
More specifically, FIG. 3 of the accompanying drawings illustrates the [111] bc of the resulting nanocrystal assembly.
FIG. 4 is a high-resolution electron microscope photograph when an electron beam is incident from the c direction, and FIG. 4 is an enlarged photograph of a white frame portion in FIG. From the images of the atomic row and lattice plane, it can be seen that adjacent nanocrystals have exactly the same crystal orientation. Further, it can be seen that an amorphous portion also exists between adjacent nanocrystal grains.

【0015】図5は、生成されたナノ結晶集合体の、
〔001〕bcc方位から電子線を入射した場合の高分
解能電子顕微鏡写真であり、図6は、図5の白枠部分の
拡大写真である。隣接したナノ結晶との境界面に板状析
出物が確認される。そして、図6に示されているよう
に、白く輝いてみえる部分が析出物であり、(b.c.t.)構
造を有しており、この境界面には非晶質部分も観察され
る。
FIG. 5 shows the resulting nanocrystal aggregate,
FIG. 6 is a high-resolution electron microscope photograph when an electron beam is incident from the [001] bcc direction, and FIG. 6 is an enlarged photograph of a white frame portion in FIG. Plate-like precipitates are observed at the interface between adjacent nanocrystals. Then, as shown in FIG. 6, a portion that looks white and shining is a precipitate, has a (bct) structure, and an amorphous portion is also observed at this boundary surface.

【0016】添付した図面の図7は、隣接するナノ結晶
の境界面に生じた析出物(b.c.t.)の原子配列を示した
ものである。さらに、図8〜図10は、同一方向である
ナノ結晶の形成過程を示す模式図である。図8は、〔0
01〕bcc方位から観察した図であり、図9は、〔1
11〕bcc方位から観察した図である。ハッチングし
た部分は析出物を示す。また、図10は、全体像を立体
的に示したものである。
FIG. 7 of the accompanying drawings shows the atomic arrangement of precipitates (bct) generated at the interface between adjacent nanocrystals. 8 to 10 are schematic diagrams showing the process of forming nanocrystals in the same direction. FIG.
01] bcc direction, and FIG. 9 shows [1]
11] A diagram observed from the bcc direction. The hatched portions indicate precipitates. FIG. 10 shows the whole image in three dimensions.

【0017】ナノ結晶の形成過程を、まず〔001〕方
位をもった図8について説明する。結晶化した部分
(1)が球状に成長するが、その径が20〜40nmφ
になったときに非晶質との界面に板状整合析出物をつく
る(斜線部分)。次に、析出物と整合を保った新しい結
晶粒が界面から核生成し、成長して結晶粒(2)とな
る。以後、この過程を繰り返す。Ti−Ni合金の高温
相は体心立法格子(b.c.c.)であり、板状析出物は{1
00}面上に生成するので、3つのバリアントがあり、
図8では、結晶粒(2)から(3)へ成長することもで
きる。このようにして、立体的にナノ結晶粒が増殖され
ていく。図8は、これを〔001〕方向から投影した図
であり、図9は〔111〕方向から投影した図である。
The process of forming nanocrystals will be described first with reference to FIG. 8 having a [001] orientation. Although the crystallized portion (1) grows spherically, its diameter is 20 to 40 nmφ.
When the surface becomes amorphous, plate-like matched precipitates are formed at the interface with the amorphous phase (shaded area). Next, nuclei are generated at the interface from the interface, and new crystal grains that maintain the consistency with the precipitates are grown to become crystal grains (2). Thereafter, this process is repeated. The high-temperature phase of the Ti-Ni alloy is a body-centered cubic lattice (bcc), and the plate-like precipitate is # 1.
Since it is generated on the 00} plane, there are three variants,
In FIG. 8, the crystal grains can grow from (2) to (3). In this way, the nanocrystal grains are multiplied three-dimensionally. FIG. 8 is a diagram projected from the [001] direction, and FIG. 9 is a diagram projected from the [111] direction.

【0018】また図10は、このようなナノ結晶集合体
を立体的に表したもので、大きな丸が個々のナノ結晶粒
を示している。但し、分かり易くするために、各ナノ結
晶粒は隣接ナノ結晶粒から離して描いてある。また板状
整合析出物は、この図には描いてないが、これらは、隣
り合うナノ結晶粒が接したところに存在している。もち
ろんこの発明は以上の例によって何ら限定されるもので
はない。様々なナノ結晶集合体が提供されることにな
る。
FIG. 10 shows such a nanocrystal aggregate three-dimensionally, and large circles indicate individual nanocrystal grains. However, for the sake of clarity, each nanocrystal grain is drawn away from adjacent nanocrystal grains. Although plate-like matched precipitates are not drawn in this figure, they exist where adjacent nanocrystal grains are in contact. Of course, the present invention is not limited by the above examples. Various nanocrystal aggregates will be provided.

【0019】[0019]

【発明の効果】以上詳しく説明したように、この発明に
よって、従来の技術では全く予想できなかった同一結晶
方位のナノ結晶から構成されるナノ結晶集合体が提供さ
れる。これにより、低廉な製造コストで、極めて強靱な
材料の製造が可能になり、いわゆるスーパーメタルとい
われる特性をも具現することが可能である。
As described in detail above, the present invention provides a nanocrystal aggregate composed of nanocrystals having the same crystal orientation, which could not be expected at all with the prior art. This makes it possible to produce extremely tough materials at a low production cost, and it is also possible to realize characteristics called a so-called supermetal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】687Kで2時間焼鈍したときに形成される結
晶粒の、図面に代わる通常電子顕微鏡の写真である。
FIG. 1 is a photograph of a crystal grain formed when annealed at 687K for 2 hours, taken by a normal electron microscope instead of a drawing.

【図2】図1の一つの結晶粒が20〜40μmのナノ結
晶から構成されていることを示す、図面に代わる電子顕
微鏡写真である。
FIG. 2 is an electron micrograph instead of a drawing, showing that one crystal grain of FIG. 1 is composed of 20 to 40 μm nanocrystals.

【図3】この発明の実施例としてのナノ結晶集合体に対
して〔111〕bcc方位から電子線を入射した場合
の、図面に代わる高分解能電子顕微鏡写真である。
FIG. 3 is a high-resolution electron micrograph instead of a drawing when an electron beam is incident from a [111] bcc direction on a nanocrystal aggregate as an example of the present invention.

【図4】図3の白枠部分の拡大電子顕微鏡写真である。FIG. 4 is an enlarged electron micrograph of a white frame portion in FIG. 3;

【図5】ナノ結晶集合体に対して〔001〕bcc方位
から電子線を入射した場合の、図面に代わる高分解能電
子顕微鏡写真である。
FIG. 5 is a high-resolution electron micrograph instead of a drawing when an electron beam is incident on the nanocrystal aggregate from the [001] bcc direction.

【図6】図5の白枠部分の電子顕微鏡拡大写真である。FIG. 6 is an electron microscope enlarged photograph of a white frame portion in FIG. 5;

【図7】隣接するナノ結晶の境界面に生じた析出物の原
子配列を示した図である。
FIG. 7 is a diagram showing an atomic arrangement of a precipitate formed on an interface between adjacent nanocrystals.

【図8】同一方位を有するナノ結晶集合体の形成過程を
示す模式図であり、〔001〕bcc方位から観察した
図である。
FIG. 8 is a schematic diagram showing a process of forming a nanocrystal aggregate having the same orientation, and is a diagram observed from the [001] bcc orientation.

【図9】同一方位を有するナノ結晶集合体の形成過程を
示す模式図であって、〔111〕bcc方位から観察し
た図である。
FIG. 9 is a schematic view showing a process of forming a nanocrystal aggregate having the same orientation, as viewed from the [111] bcc orientation.

【図10】同一方位を有するナノ結晶集合体の形成過程
を示す模式図であって、全体像を立体的に示した図であ
る。
FIG. 10 is a schematic diagram showing a process of forming nanocrystal aggregates having the same orientation, and is a diagram showing a three-dimensional overall image.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 630 C22F 1/00 630A 682 682 691 691B (72)発明者 宮崎 修一 茨城県つくば市天王台1丁目1番1号 筑 波大学物質工学系内 (72)発明者 松永 健 茨城県つくば市天王台1丁目1番1号 筑 波大学物質工学系内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C22F 1/00 630 C22F 1/00 630A 682 682 691 691B (72) Inventor Shuichi Miyazaki 1-1-1, Tennodai, Tsukuba-shi, Ibaraki Pref. University of Tsukuba, Department of Materials Engineering (72) Inventor Ken Matsunaga 1-1-1, Tennodai, Tsukuba, Ibaraki Prefecture, Department of Materials Engineering, University of Tsukuba

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非晶質状態が形成され得る合金系におい
て、結晶粒中にナノスケールの結晶が同一の結晶方位に
配向された状態の結晶集合体として存在することを特徴
とする合金系ナノ結晶集合体。
1. An alloy system capable of forming an amorphous state, wherein nanoscale crystals are present in a crystal grain as a crystal aggregate oriented in the same crystal orientation. Crystal aggregate.
【請求項2】 その組成が、化学量論組成から約1〜5
%だけ析出物を生成しやすい方向にずれている請求項1
の合金系ナノ結晶集合体。
2. The composition according to claim 1, wherein said composition is from about 1 to 5 from the stoichiometric composition.
% In a direction in which precipitates are easily formed.
Alloy-based nanocrystal aggregates.
【請求項3】 ナノスケールの結晶の径が約10〜60
nmで、結晶粒の径が約1〜10μmである請求項1ま
たは2の合金系ナノ結晶集合体。
3. A nano-scale crystal having a diameter of about 10 to 60.
The alloy-based nanocrystal aggregate according to claim 1 or 2, wherein the crystal grains have a diameter of about 1 to 10 µm in nm.
【請求項4】 Ti−Ni系合金、Ti−Co系合金、
Ti−Al系合金、またはFe−Al系合金である請求
項1ないし3のいずれかの合金系ナノ結晶集合体。
4. A Ti—Ni-based alloy, a Ti—Co-based alloy,
The alloy-based nanocrystal aggregate according to any one of claims 1 to 3, which is a Ti-Al-based alloy or an Fe-Al-based alloy.
【請求項5】 非晶質状態が形成され得る合金系におい
て、非晶質状態の合金を結晶化温度以下の温度で加熱処
理することを特徴とするナノスケールの結晶が同一の結
晶方位に配向された状態の結晶集合体として存在する合
金系ナノ結晶集合体の製造方法。
5. An alloy system capable of forming an amorphous state, wherein a nano-scale crystal is heat-treated at a temperature equal to or lower than a crystallization temperature in an amorphous state alloy, and the nano-scale crystals are oriented in the same crystal orientation. A method for producing an alloy-based nanocrystal aggregate present as a crystal aggregate in a state of being separated.
【請求項6】 その組成が、化学量論組成から1〜5%
だけ析出物を生成しやすい方向にずれている請求項5の
合金系ナノ結晶集合体の製造方法。
6. The composition according to claim 1, wherein the composition is 1 to 5% from the stoichiometric composition.
The method for producing an alloy-based nanocrystal aggregate according to claim 5, wherein the nanocrystal aggregate is shifted only in a direction in which a precipitate is easily generated.
JP9024653A 1997-02-07 1997-02-07 Alloy-based nanocrystal assembly and its production Pending JPH10218700A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9024653A JPH10218700A (en) 1997-02-07 1997-02-07 Alloy-based nanocrystal assembly and its production
US10/419,119 US20030178109A1 (en) 1997-02-07 2003-04-21 Alloy-based nono-crystal texture and method of preparing same
US10/798,396 US20050126665A1 (en) 1997-02-07 2004-03-12 Alloy-based nano-crystal texture and method of preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9024653A JPH10218700A (en) 1997-02-07 1997-02-07 Alloy-based nanocrystal assembly and its production

Publications (1)

Publication Number Publication Date
JPH10218700A true JPH10218700A (en) 1998-08-18

Family

ID=12144109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9024653A Pending JPH10218700A (en) 1997-02-07 1997-02-07 Alloy-based nanocrystal assembly and its production

Country Status (2)

Country Link
US (2) US20030178109A1 (en)
JP (1) JPH10218700A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175582A (en) * 2004-11-26 2006-07-06 Fujikura Ltd Nano-structure and manufacturing method thereof
US8163084B2 (en) 2004-11-26 2012-04-24 Fujikura Ltd. Nanostructure and manufacturing method for same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769616B2 (en) * 1987-03-30 1998-06-25 時枝 直満 Polycrystalline crystal orientation rearrangement method
DE3741119A1 (en) * 1987-12-04 1989-06-15 Krupp Gmbh PRODUCTION OF SECONDARY POWDER PARTICLES WITH NANOCRISTALLINE STRUCTURE AND WITH SEALED SURFACES
JP2698369B2 (en) * 1988-03-23 1998-01-19 日立金属株式会社 Low frequency transformer alloy and low frequency transformer using the same
US5178689A (en) * 1988-05-17 1993-01-12 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy, method of treating same and dust core made therefrom
JP2753739B2 (en) * 1989-08-31 1998-05-20 健 増本 Method for producing aluminum-based alloy foil or aluminum-based alloy fine wire
JP3302031B2 (en) * 1991-09-06 2002-07-15 健 増本 Manufacturing method of high toughness and high strength amorphous alloy material
CA2073470A1 (en) * 1992-07-08 1994-01-09 Barry Muddle Aluminium alloy
JP2899682B2 (en) * 1996-03-22 1999-06-02 科学技術庁金属材料技術研究所長 Ti-Ni based shape memory alloy and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175582A (en) * 2004-11-26 2006-07-06 Fujikura Ltd Nano-structure and manufacturing method thereof
US8163084B2 (en) 2004-11-26 2012-04-24 Fujikura Ltd. Nanostructure and manufacturing method for same

Also Published As

Publication number Publication date
US20050126665A1 (en) 2005-06-16
US20030178109A1 (en) 2003-09-25

Similar Documents

Publication Publication Date Title
Wells An electron transmission study of the tempering of martensite in an Fe-Ni-C alloy
Liu et al. Twinning and detwinning of< 0 1 1> type II twin in shape memory alloy
Porro et al. Exploring thermally induced states in square artificial spin-ice arrays
Smallman et al. Physical metallurgy and advanced materials
TW226034B (en)
Pushin et al. Features of structure and phase transformations in shape memory TiNi-based alloys after severe plastic deformation
Ishida et al. Microstructure of Ti-48.2 at. pct Ni shape memory thin films
JP2899682B2 (en) Ti-Ni based shape memory alloy and method for producing the same
Zárubová et al. Initial stages of γ2 precipitation in an aged Cu-Al-Ni shape memory alloy
JP2010166053A (en) Electrothermal nanowire and method of manufacturing the same
Ichinose et al. Type II deformation twinning in γ′ 1 martensite in a Cu-Al-Ni alloy
Kajiwara et al. Formation of nanocrystals with an identical orientation in sputter-deposited Ti Ni thin films
Kovalenko et al. Solid state dewetting of polycrystalline Mo film on sapphire
Al‐Jiboory et al. Magnetic domains and microstructural defects in Terfenol‐D
KR101303859B1 (en) Method for fabricating thermoelectricity nanowire having core/shell structure
JPH10218700A (en) Alloy-based nanocrystal assembly and its production
Sasmal Mechanism of the formation of lamellar M 23 C 6 at and near twin boundaries in austenitic stainless steels
Kayali et al. Ageing effects on ordering degree and morphology of 18R-type martensite in shape memory CuZnAl alloys
WO2012005423A1 (en) Thermoelectric nanowire of a heterostructure and method for manufacturing same
JPWO2005022565A1 (en) Nanoparticle device and method for producing nanoparticle device
Santamarta et al. Twinned bcc spherical particles in a partially crystallized Ti50Ni25Cu25 melt-spun ribbon
JP5131728B2 (en) High strength Ti-Ni-Cu shape memory alloy and manufacturing method thereof
Ma et al. In-situ synchrotron high energy X-ray diffraction study of spontaneous reorientation of R phase upon cooling in nanocrystalline Ti50Ni45. 5Fe4. 5 alloy
KR20190061632A (en) Single crystal metal foil, and method of manufacturing the same
KR20090003975A (en) Ferromagnetic single-crystalline metal nanowire and the fabrication method thereof