JPH10207540A - Automated guided vehicle - Google Patents

Automated guided vehicle

Info

Publication number
JPH10207540A
JPH10207540A JP9010786A JP1078697A JPH10207540A JP H10207540 A JPH10207540 A JP H10207540A JP 9010786 A JP9010786 A JP 9010786A JP 1078697 A JP1078697 A JP 1078697A JP H10207540 A JPH10207540 A JP H10207540A
Authority
JP
Japan
Prior art keywords
magnetic
vehicle body
vehicle
guided vehicle
markers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9010786A
Other languages
Japanese (ja)
Inventor
Tatsuo Izumi
達雄 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Original Assignee
Toshiba Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp filed Critical Toshiba Engineering Corp
Priority to JP9010786A priority Critical patent/JPH10207540A/en
Publication of JPH10207540A publication Critical patent/JPH10207540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To construct an automated guided vehicle capable of eliminating the necessity of highly accurate detection and complicated operation processing by providing a means capable of detecting the angle of a vehicle body by using non-contract magnetic markers instead of conventional correcting triangular markers and correcting the time drift of a gyro sensor. SOLUTION: Correcting magnetic markers 12a(c), 12b(d) are stuck to positions on a floor surface 15 which are symmetrical about a traveling route 11 by adhesives stuck to the rear side faces of these markers 12a(c), 12(b). Magnetic sensors 14a, 14b are attached to positions on the rear side face of the vehicle body which correspond to the magnetic markers 12a(c), 12b(d) in a non-contact state when an automated guided vehicle 13 is traveling on the route 11. A main control device 16 receives signals from the magnetic sensors 14a, 14b, generates correction data corresponding to a deviation between the right and left sides, corrects a gyro sensor signal and controls driving wheels to control the travel of the vehicle 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、あらかじめ定めら
れた走行路を自動走行し、各ステーションにて荷積みま
たは荷降し作業を行う無人搬送車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic guided vehicle that automatically travels on a predetermined traveling path and loads or unloads at each station.

【0002】[0002]

【従来の技術】無人搬送車は、走行路に敷設された誘導
体に沿って目的のステーションまで自動走行し、荷積み
または荷降し作業を行う車体であり、特に物流分野で需
要が多い。無人搬送車に対する走行先ステーション等の
情報は走行路外にある中央制御部から無線等により指示
される。
2. Description of the Related Art An automatic guided vehicle is a vehicle body that automatically travels along a conductor laid on a traveling path to a target station and performs loading or unloading work, and is in great demand particularly in the field of logistics. Information on the destination station and the like for the automatic guided vehicle is instructed wirelessly from the central control unit located outside the traveling path.

【0003】ところで、上述した無人搬送車は、主にジ
ャイロセンサを用い、車体の角度、角速度を検出し、そ
の信号を用いて走行方向をコントロールする。しかしな
がら、ジャイロセンサは、時間域信号ドリフトがあるた
め、走行中、定期的に信号の補正処理が必要である。従
来、この補正のためジャイロセンサとは別に、センサも
しくは相当する回路ロジックを用いジヤイロセンサ信号
を定期的に補正していた。
In the automatic guided vehicle described above, the angle and angular velocity of the vehicle body are mainly detected using a gyro sensor, and the traveling direction is controlled using the signals. However, since the gyro sensor has a time-domain signal drift, it is necessary to perform a signal correction process periodically during traveling. Conventionally, a gyro sensor signal is periodically corrected using a sensor or a corresponding circuit logic separately from the gyro sensor for this correction.

【0004】図3に従来例を示す。図中、(a)は無人
搬送車の平面図、(b)は側面図、(c)は内部構成を
ブロックで示したものであり、いずれも車体角度検出の
ための該当個所のみ抽出して示してある。図からわかる
ように、走行路31上のあるポイント毎に三角マーカ3
2が設けられており、車体33通過時、車体下面の左右
対称位置に取り付けられた近接式、もしくは光電式のセ
ンサ34により三角マーカ位置通過時間を検知してい
る。走行ルート中心と車体角度がずれていれば左右マー
カ検知センサ34の動作時間に相違を生じ、主制御装置
35はこのずれの量に基づいて演算処理を施し、車体の
走行角度を認識していたものである。
FIG. 3 shows a conventional example. In the figure, (a) is a plan view of the automatic guided vehicle, (b) is a side view, and (c) is a block diagram showing an internal configuration. In each case, only a relevant portion for detecting a vehicle body angle is extracted. Is shown. As can be seen, a triangular marker 3
When the vehicle passes through the vehicle body 33, the proximity marker or photoelectric sensor 34 mounted at a symmetrical position on the lower surface of the vehicle body detects the triangular marker position passage time. If the vehicle route angle deviates from the center of the travel route, a difference occurs in the operation time of the left and right marker detection sensor 34, and the main control device 35 performs an arithmetic process based on the amount of the deviation to recognize the vehicle body travel angle. Things.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述した
従来例によれば、補正三角マーカが大きく、また、金属
製であったため床面への取り付けが困難で、かつ剥がれ
やすいといった欠点を有していた。また、その補正三角
マーカが無人搬送車走行の際における路面段差となっ
て、その衝撃等によりセンサが誤動作することがあり、
かならずしも信頼性の高いものではなかった。
However, according to the above-mentioned prior art, the correction triangular marker has a large size and is disadvantageous in that it is made of metal, so that it is difficult to attach it to the floor and that it is easily peeled off. . Also, the corrected triangular marker becomes a road surface step when the automatic guided vehicle is traveling, and the sensor may malfunction due to the impact or the like,
It was not always reliable.

【0006】本発明は上記事情に鑑みてなされたもので
あり、従来の補正三角マーカに代わって非接触の磁気マ
ーカを用いて車体角度を検出し、ジヤイロセンサの時間
的ドリフトに対する補正の手段を提供することにより、
精度の高い検出と複雑な演算処理を不要とした無人搬送
車を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a means for correcting a time drift of a gyro sensor by detecting a vehicle body angle using a non-contact magnetic marker instead of a conventional correction triangle marker. By doing
It is an object of the present invention to provide an automatic guided vehicle that does not require highly accurate detection and complicated arithmetic processing.

【0007】[0007]

【課題を解決するための手段】本発明は、ジャイロセン
サを用いて車体の角度ならびに角速度を検出し、その信
号に基づいて走行方向を自動制御する無人搬送車におい
て、走行ルートの任意通過点毎、その走行ルートを挟ん
だ左右対称となる床面位置に貼付される磁気マーカと、
無人搬送車が走行中、上記磁気マーカ位置を通過する際
にその磁気マーカと非接触で相対するように車体下部位
置に搭載される磁気センサと、走行ルートの任意通過点
毎、左右の磁気センサを介して得られる信号を比較する
ことによって車体角度を算出し、ジャイロセンサによる
出力を補正し、駆動輪をコントロールして車体の制御を
行う制御装置とを具備することを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to an automatic guided vehicle that detects the angle and angular velocity of a vehicle body using a gyro sensor and automatically controls the traveling direction based on the detected signals. A magnetic marker attached to a floor surface position that is symmetrical with respect to the traveling route,
When the automatic guided vehicle is traveling, a magnetic sensor mounted at the lower part of the vehicle body so as to face the magnetic marker in a non-contact manner when passing the magnetic marker position, and a left and right magnetic sensor at each arbitrary passing point of the traveling route And a control device that calculates the vehicle body angle by comparing signals obtained through the control unit, corrects the output of the gyro sensor, controls the drive wheels, and controls the vehicle body.

【0008】本発明により、補正マーカが小さく、床面
への取り付けも容易となり、複雑な演算処理を不要と
し、高い信頼性が得られる。
According to the present invention, the correction marker is small, it can be easily mounted on the floor, no complicated arithmetic processing is required, and high reliability can be obtained.

【0009】[0009]

【発明の実施の形態】以下、図1乃至図2を使用して本
発明の実施態様につき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIGS.

【0010】図1は本発明の実施態様を示す図であり、
(a)は平面図、(b)は側面図、(c)は無人搬送車
の内部構成を示す。いずれも車体角度検出のための該当
個所のみ抽出して示してある。
FIG. 1 is a diagram showing an embodiment of the present invention.
(A) is a plan view, (b) is a side view, and (c) shows an internal configuration of the automatic guided vehicle. In each case, only relevant portions for detecting the vehicle body angle are extracted and shown.

【0011】図において、11は走行ルート、12a〜
12dは補正用磁気マーカ、13は無人搬送車、14
a,14bは磁気センサ、15は床面である。補正用磁
気マーカ12a(c),12b(d)は、走行ルート1
1を挟んで左右対称の床面15位置に裏面が粘着糊にて
貼り付けられている。磁気センサ14a,14bは、無
人搬送車13が走行ルート11を走行中、磁気マーカ位
置を通過する際にその磁気マーカ12a,12bと非接
触で相対する車体裏面位置に取り付けられている。磁気
センサ14a,bとして、例えば、ホール素子、磁気抵
抗素子等が用いられ、特に後者は、前者に比べ低磁場に
て高感度の特性を有し、また、飽和磁界以上で使用すれ
ば出力も飽和することからディジタル処理に適する。
In the figure, 11 is a traveling route, 12a-
12d is a magnetic marker for correction, 13 is an automatic guided vehicle, 14
a and 14b are magnetic sensors, and 15 is a floor surface. The correction magnetic markers 12a (c) and 12b (d)
The back surface is adhered to the floor surface 15 symmetrical with respect to 1 with adhesive glue. The magnetic sensors 14a and 14b are attached to the back of the vehicle body in a non-contact manner with the magnetic markers 12a and 12b when the automatic guided vehicle 13 passes the magnetic marker position while traveling on the traveling route 11. As the magnetic sensors 14a and 14b, for example, a Hall element, a magnetoresistive element, or the like is used. Suitable for digital processing due to saturation.

【0012】主制御装置16は内蔵するCPUを制御中
枢とし、メモリにあらかじめプログラムされた内容に基
づいて入出力ポートに接続される各種センサ類を介して
入力される信号を処理し、駆動輪をコントロールするこ
とにより無人搬送車としての自動走行を実現する。以下
に詳述するように、車体角度を検出し、この信号により
ジャイロセンサ信号を定期的に補正するのも主制御装置
16の役割である。
Main controller 16 has a built-in CPU as a control center, processes signals input through various sensors connected to input / output ports based on contents programmed in a memory in advance, and controls driving wheels. By controlling it, automatic traveling as an automatic guided vehicle is realized. As will be described in detail below, the role of main controller 16 is to detect the vehicle body angle and to periodically correct the gyro sensor signal based on this signal.

【0013】図2は、磁気マーカ検知時における磁気セ
ンサ14の出力特性を示す図である。
FIG. 2 is a diagram showing output characteristics of the magnetic sensor 14 when a magnetic marker is detected.

【0014】磁気センサ14a,14bは、磁気マーカ
12a,12bの幅方向に出力変化する特性を持つもの
であって、図示するようにアナログタイプであっても、
また、ディジタルタイプであっても構わない。本発明実
施例にて用いられる磁気センサ14a,14bは、磁気
マーカ12a(c),12b(d)の中心にて0V,左
右方向に中心がずれた場合、+V(−V)の電圧を生成
する。主制御装置16は、磁気センサ14a,14bか
らの+,−あるいいは0レベルの電圧を受信し、左右の
ズレ量にみあった分の補正データを生成して、ジャイロ
センサ信号を補正し、駆動輪をコントロールして走行制
御を行う。
The magnetic sensors 14a and 14b have a characteristic that the output changes in the width direction of the magnetic markers 12a and 12b.
Further, it may be a digital type. The magnetic sensors 14a and 14b used in the embodiment of the present invention generate 0V at the center of the magnetic markers 12a (c) and 12b (d), and generate a voltage of + V (-V) when the center is shifted in the horizontal direction. I do. Main controller 16 receives the +,-or 0 level voltage from magnetic sensors 14a and 14b, generates correction data corresponding to the amount of left and right deviation, and corrects the gyro sensor signal. And drive control by controlling the drive wheels.

【0015】以上説明のように本発明は、補正三角マー
クを床面に設置する代わりに、磁気マーカを床面に貼付
し、その床面を車体が走行する際、その車体の対抗位置
に磁気センサを搭載することで車体角度を検出するもの
である。磁気マーカを検出する磁気センサは、磁気マー
カの幅方向に出力変化する特性を持つため、主制御装置
にて左右のセンサ出力値を比較することにより、走行ル
ート中心と車体のずれとを容易に把握できるものであ
る。
As described above, according to the present invention, instead of installing the correction triangle mark on the floor, a magnetic marker is attached to the floor, and when the vehicle travels on the floor, the magnetic marker is placed at a position opposite to the vehicle. A vehicle angle is detected by mounting a sensor. Since the magnetic sensor that detects the magnetic marker has the characteristic of changing the output in the width direction of the magnetic marker, the main controller compares the left and right sensor output values to easily determine the deviation between the center of the traveling route and the vehicle body. It can be grasped.

【0016】[0016]

【発明の効果】以上説明のように本発明によれば、従来
の補正用三角マークに比べ占有面積が小さく、かつ、取
り付けが容易であり、また、非接触で車体のずれを検知
することができるため、衝撃による誤動作がなくなり信
頼性の向上がはかれる。更に、その検出はアナログもし
くはディジタルにて容易に認識でき、従来に比べ複雑な
演算処理を不要とする。従って、補正のためのロジック
も単純となり、廉価構成の無人搬送車を提供できる。
As described above, according to the present invention, the occupied area is smaller than that of the conventional triangular mark for correction, the mounting is easy, and the displacement of the vehicle body can be detected without contact. As a result, malfunctions due to impacts are eliminated and reliability is improved. Further, the detection can be easily recognized by analog or digital, and a complicated calculation process is not required as compared with the related art. Therefore, the logic for correction is simple, and an inexpensive guided vehicle can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明において用いられる磁気センサの出力特
性を示す図。
FIG. 2 is a diagram showing output characteristics of a magnetic sensor used in the present invention.

【図3】従来例の構成を示す図。FIG. 3 is a diagram showing a configuration of a conventional example.

【符号の説明】[Explanation of symbols]

11…走行ルート、12a〜12d…補正用磁気マー
カ、13…無人搬送車、14a,14b…磁気センサ、
15…床面、16…主制御装置。
11: travel route, 12a to 12d: magnetic marker for correction, 13: automatic guided vehicle, 14a, 14b: magnetic sensor,
15: floor surface, 16: main controller.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ジャイロセンサを用いて車体の角度なら
びに角速度を検出し、その信号に基づいて走行方向を自
動制御する無人搬送車において、走行ルートの任意通過
点毎、その走行ルートを挟んだ左右対称となる床面位置
に貼付される磁気マーカと、無人搬送車が走行中、上記
磁気マーカ位置を通過する際にその磁気マーカと非接触
で相対するように車体下部位置に搭載される磁気センサ
と、走行ルートの任意通過点毎、左右の磁気センサを介
して得られる信号を比較することによって車体角度を算
出し、ジャイロセンサによる出力を補正し、駆動輪をコ
ントロールして車体の制御を行う制御装置とを具備する
ことを特徴とする無人搬送車。
1. An automatic guided vehicle that detects an angle and an angular velocity of a vehicle body using a gyro sensor and automatically controls a traveling direction based on a signal thereof. A magnetic marker attached to a symmetrical floor surface position, and a magnetic sensor mounted on a lower part of the vehicle body so as to face the magnetic marker without contact when passing through the magnetic marker position while the automatic guided vehicle is traveling. The vehicle body angle is calculated by comparing the signals obtained through the left and right magnetic sensors at each arbitrary passing point of the travel route, the output from the gyro sensor is corrected, and the drive wheels are controlled to control the vehicle body. An automatic guided vehicle, comprising: a control device.
JP9010786A 1997-01-24 1997-01-24 Automated guided vehicle Pending JPH10207540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9010786A JPH10207540A (en) 1997-01-24 1997-01-24 Automated guided vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9010786A JPH10207540A (en) 1997-01-24 1997-01-24 Automated guided vehicle

Publications (1)

Publication Number Publication Date
JPH10207540A true JPH10207540A (en) 1998-08-07

Family

ID=11760028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9010786A Pending JPH10207540A (en) 1997-01-24 1997-01-24 Automated guided vehicle

Country Status (1)

Country Link
JP (1) JPH10207540A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9821824B2 (en) 2013-01-29 2017-11-21 Mitsubishi Heavy Industries, Ltd. Vehicle and track transportation system
CN109279543A (en) * 2018-11-07 2019-01-29 上海大学 A kind of fork-lift type AGV magnetic conductance rail tracking control system and method
JP2019211304A (en) * 2018-06-04 2019-12-12 愛知製鋼株式会社 Method for calibrating gyro sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9821824B2 (en) 2013-01-29 2017-11-21 Mitsubishi Heavy Industries, Ltd. Vehicle and track transportation system
JP2019211304A (en) * 2018-06-04 2019-12-12 愛知製鋼株式会社 Method for calibrating gyro sensor
CN109279543A (en) * 2018-11-07 2019-01-29 上海大学 A kind of fork-lift type AGV magnetic conductance rail tracking control system and method
CN109279543B (en) * 2018-11-07 2020-10-30 上海大学 Forklift AGV magnetic guide rail tracking control system and method

Similar Documents

Publication Publication Date Title
US6971464B2 (en) Driverless vehicle guidance system and method
CA2824189C (en) Automatic guided vehicle system and method
JP7260856B2 (en) VEHICLE DRIVING CONTROL METHOD AND VEHICLE CONTROL SYSTEM
JP2004520592A (en) Magnetic sensors for automatic vehicle guidance systems
JPH10207540A (en) Automated guided vehicle
JP2003067053A (en) Unmanned carriage
JP3317159B2 (en) Automatic guided vehicle
JPS60175117A (en) Device for correcting posture of unmanned carrying car
JP4694599B2 (en) Unmanned vehicle
JP2002108453A (en) Unmanned vehicle
JPH0370802B2 (en)
JPH08202449A (en) Automatic operation controller for carring truck
JP2673458B2 (en) Control information indicating device for mobile body
JP2002108447A (en) Gyroscopic guidance type unmanned carrier device
JP2914472B2 (en) Moving vehicle stop state detection device
JP2003067052A (en) Actual attitude angle detecting method for unmanned carriage
JPH05312585A (en) Navigation device for vehicle
JP3239992B2 (en) Error Correction Method for Steering Zero Information in Gyro Guided Automated guided Vehicle
JPH09185411A (en) Traveling direction detecting method for unmanned vehicle
JP2003058251A (en) Unmanned carrier
JPS59191617A (en) Controlling method of automatic travelling truck
US6321146B1 (en) Drift sensor for land vehicles
JPS60175118A (en) Device for correcting posture of unmanned carrying car
CN118159925A (en) Control method and control system
JPH0423283B2 (en)