JPH10201105A - Photovoltaic power generation system - Google Patents

Photovoltaic power generation system

Info

Publication number
JPH10201105A
JPH10201105A JP9017560A JP1756097A JPH10201105A JP H10201105 A JPH10201105 A JP H10201105A JP 9017560 A JP9017560 A JP 9017560A JP 1756097 A JP1756097 A JP 1756097A JP H10201105 A JPH10201105 A JP H10201105A
Authority
JP
Japan
Prior art keywords
power
distributed power
operation
control device
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9017560A
Other languages
Japanese (ja)
Inventor
Mitsuru Matsukawa
Norio Sakae
Yukio Shimomura
幸男 下村
満 松川
紀雄 榮
Original Assignee
Nissin Electric Co Ltd
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd, 日新電機株式会社 filed Critical Nissin Electric Co Ltd
Priority to JP9017560A priority Critical patent/JPH10201105A/en
Publication of JPH10201105A publication Critical patent/JPH10201105A/en
Application status is Pending legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • Y02B10/14PV hubs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Sector-wide applications using renewable energy
    • Y02P80/23Solar energy

Abstract

PROBLEM TO BE SOLVED: To transmit operation control information without laying an exclusive use signal line respectively between a control device and each dispersed power source, in the case of operating a stationary type power converter device of a plurality of solar battery constitutional dispersed power sources by a common one set of control device. SOLUTION: A common one set of control device 18 and each dispersed power source 19a to 19b is provided with a distribution line carrier communication device 21 which is connected to a power line (distribution line 2') of a system 2 to exchange operation control information of a power converter device (inverter 22) of each dispersed power source 19a to 19d between the control device 18 and each dispersed power source 19a to 19d, thereby controlling the power converter device of each dispersed power source 19a to 19d by the control device 18 through the distribution line of the system 2.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、太陽電池構成の複数の分散電源を有する太陽光発電装置に関する。 The present invention relates to relates to photovoltaic devices having a plurality of distributed power of the solar cell structure.

【0002】 [0002]

【従来の技術】従来、工場,ビル或いは一般住宅等において、いわゆる分散電源として太陽光発電装置を備える場合、それらの屋根や側壁等に大型,大電力出力の大規模の太陽電池を設置できないときは、この大規模の太陽電池を複数の小規模,小型の太陽電池に分散し、これらの小型の太陽電池と,静止型の電力変換装置としての小型,小容量のインバータとを組合せた太陽電池構成の複数の分散電源を前記の屋根や側壁に分散して設置することが行われる。 Conventionally, factories, in buildings or residential houses, etc., when provided with a photovoltaic device as a so-called distributed power, large on their roof and side walls, etc., when it is not possible to set up the large-scale solar cell having a large power output , the large solar cell of multiple small, dispersed in a small solar cell, and solar batteries of small size, small as static power converter, a solar cell that combines a small capacity inverter it is performed to install a plurality of distributed power configuration dispersed in the roof and side walls.

【0003】そして、この複数の分散電源からなる従来の太陽光発電装置は、ほぼ図3に示すように形成される。 [0003] Then, the plurality of consisting distributed power conventional photovoltaic device is formed as shown in nearly FIG.

【0004】同図は受電盤1の負荷側の系統2に4個の分散電源3a,3b,3c,3dを接続して形成された場合を示し、各分散電源3a〜3dは、それぞれ例えば数KW程度の比較的小規模の小型の太陽電池4の出力を静止型の電力変換装置としての例えば電圧型のインバータ5に供給する。 [0004] the figure shows lines 2 into four distributed power 3a of the load side of the incoming panel 1, 3b, 3c, the case where it is formed by connecting the 3d, the distributed power 3a~3d are several example respectively supplying a relatively small output of small-sized solar cell 4 of about KW inverter 5, for example of a voltage-type as static power converter.

【0005】さらに、各分散電源3a〜3dのインバータ5をそれぞれの制御装置(システムコントローラ)6 [0005] Further, each of the control device the inverter 5 of the distributed power 3 a to 3 d (System Controller) 6
により駆動制御して運転し、太陽電池4の直流の出力電力をそれぞれ系統周波数の交流電力に変換し、この交流電力をそれぞれの配線用遮断器7及び負荷切換盤8を介して系統2の各一般負荷9,非常負荷10に給電する。 Controls and drives operated by, to convert the output power of the DC solar cell 4 into AC power for each system frequency, each of the system 2 the AC power via a respective circuit breaker 7 and the load switching 換盤 8 generally the load 9, to power the very load 10.

【0006】そして、系統電源11が健全な通常時は、 [0006] and, usually when the system power supply 11 is healthy is,
インバータ5の出力側の系統電圧等の監視に基づく制御装置6の連系運転制御により、各分散電源3a〜3dがそれぞれの太陽電池4の出力に基づき、個別に系統電源11と連系運転される。 The interconnected operation control of the control unit 6 based on the monitoring of such a system voltage of the output side of the inverter 5, the dispersed generator 3a~3d is based on the output of each of the solar cells 4, it is operated individually system power supply 11 and the interconnection that.

【0007】このとき、発電量の増加に伴う系統2の連系点電圧の上昇を抑制するため、各分散電源3a〜3d [0007] At this time, in order to suppress an increase in the interconnection point voltage of the system 2 with increasing the power generation amount, the distributed power 3a~3d
はインバータ5の進相運転機能を有し、連系点電圧が1 Has a fast operation function of the inverter 5, interconnection node voltage 1
05%〜110%以上に上昇すると、その上昇量に応じてそれぞれのインバータ5が進相運転される。 With increased 05% to 110% or more, each of the inverters 5 in accordance with the increase amount is the phase advance operation.

【0008】つぎに、災害の発生等に伴う系統電源11 [0008] Next, the system power supply 11 due to the occurrence of disaster
の停電が発生すると、各分散電源3a〜3dの非同期運転による弊害を防止するため、各分散電源3a〜3dは予め設定された1台,例えば分散電源3aのみが自立運転に移行し、残りの各分散電源3b〜3dは運転を停止する。 Of a power failure occurs, in order to prevent the adverse effects of asynchronous operation of each distributed power source 3 a to 3 d, 1 single each distributed power source 3 a to 3 d is a preset, for example, only distributed power 3a is shifted to self-sustained operation, the remaining each distributed power 3b~3d stops operating.

【0009】また、自立運転に移行した分散電源3a [0009] In addition, distributed power supply 3a that the transition to self-sustaining operation
は、その出力を非常負荷10に給電するため、制御装置6により負荷切換器8を切換え、この切換器8を介して非常負荷10にのみインバータ5の自立運転出力を供給する。 In order to feed the output to very load 10, switching the load switcher 8 by the control unit 6 supplies the isolated operation output of only the inverter 5 to the very load 10 via the switching unit 8.

【0010】なお、図3の12は受電盤1の各交流遮断器、13は系統2の各負荷フィーダの配線用遮断器、1 [0010] Incidentally, 12 is the AC breaker incoming panel 1 of FIG. 3, 13 is the circuit breaker for wiring each load feeder lines 2, 1
4は負荷切換盤8を形成する各開閉器である。 4 is a respective switches to form a load switching 換盤 8.

【0011】また、15は系統連系保護リレーであり、 [0011] In addition, 15 is a system interconnection protection relay,
系統電圧とコンデンサ分圧の零相変圧器(ZPD)16 Zero-phase transformer of the system voltage and capacitor partial pressure (ZPD) 16
の出力とに基づき、連系点電圧の過電圧,不足電圧,地絡等の異常を検出して所要の遮断器12の開放等を行う。 The basis of the output, performs overvoltage interconnection point voltage, undervoltage, open like a required breaker 12 detects the abnormality of the earth 絡等.

【0012】さらに、この図3の太陽光発電装置は、分散電源3aに2次電池構成の電池電源17を備える。 Furthermore, photovoltaic device of FIG. 3 includes a battery power source 17 of the secondary battery configured to distributed power 3a.

【0013】この電池電源17は自立運転される分散電源3aに接続され、分散電源3aが自立運転されるときは、その制御装置6によりインバータ5の入力が太陽電池4の単独出力から太陽電池4と電池電源17との並列出力に切換わり、電池電源17によりインバータ5の直流入力が補われる。 [0013] The battery power supply 17 is connected to a distributed power supply 3a to be isolated operation, when the dispersed generator 3a is self-sustained operation, the solar cell 4 by the control unit 6 input of the inverter 5 is the single output of the solar cell 4 and switched to parallel output of the battery power supply 17, the DC input of the inverter 5 is compensated by the battery power source 17.

【0014】 [0014]

【発明が解決しようとする課題】前記従来のこの種太陽光発電装置の場合、各分散電源3a〜3dのインバータ5をそれぞれの制御装置6により個別に運転制御するため、分散電源3a〜3d毎に制御装置6が必要になり、 For [0006] the conventional this type photovoltaic device, for operating individually controlled by respective control unit 6 an inverter 5 for each distributed power source 3 a to 3 d, each distributed power 3 a to 3 d the control device 6 is required to,
発電装置が大型化する。 Power generation apparatus is increased in size.

【0015】さらに、各分散電源3a〜3dのインバータ5がそれぞれの制御装置6により別個独立に運転制御されるため、つぎのような問題を招来する。 Furthermore, since the inverter 5 for each distributed power 3a~3d it is subjected to operation control to independently by a respective control unit 6, which lead to problems such as the following.

【0016】まず、連系運転において、発電量の増加に伴う連系点電圧の上昇を分散電源3a〜3dの進相運転で抑制する際、それぞれの制御装置6で行われる抑制判定の基準電圧が分散電源3a〜3dによってばらつき、 [0016] First, in the interconnected operation, when to suppress an increase in interconnection point voltage with an increase in power generation in the fast operation of the distributed power 3 a to 3 d, the reference voltage suppression decision made by the respective control unit 6 There varies depending distributed power 3 a to 3 d,
分散電源3a〜3dの進相運転量のばらつきが生じ、極端な場合は基準電圧の最も低い分散電源のみが進相運転される。 Variations in the phase advance operation of the distributed power 3a~3d occurs, extreme cases only the lowest dispersion supply reference voltage is the phase advance operation.

【0017】なお、一般に進相運転が力率0.85でクリップされるため、分散電源によっては、力率0.85 [0017] Since the general phase advance operation is clipped at a power factor of 0.85, depending distributed power, power factor 0.85
になっても連系点電圧の上昇が続く場合、その出力(発電出力)を実際に絞り込んで低減するものもあり、この場合は、進相運転量のばらつきが生じるだけでなく、全体の発電効率が悪化(低下)する。 If rise of interconnection point voltage becomes continues, while others reduce its output (power generation output) actually narrowing down the, in this case, not only the variations in the phase advance operation amount occurs, the total power efficiency is degraded (reduction).

【0018】つぎに、連系運転中にインバータ5の出力と負荷容量とがつり合って各分散電源3a〜3dが単独運転の状態になるときにも適正な運転を継続するため、 Next, in order to continue the proper operation even when in the output load capacitance of the inverter 5 in the interconnected operation is balanced each dispersed generator 3a~3d a state of islanding,
単独運転の能動方式の検出に広く採用されている無効電力方式で単独運転を検出しようとすると、この検出が無効電力の可変を周期的にくり返して連系点電圧等の変動から系統停電等による単独運転への移行を検出するものであるから、この検出を各分散電源3a〜3dが非同期の状態で別個独立に行うことにより、無効電力の可変による効果が分散電源3a〜3d間で相殺されて検出困難になり、場合によっては単独運転への移行を検出できない事態も生じる。 When you try to detect the islanding operation with reactive power method has been widely employed in the detection of active scheme islanding, by mains failure or the like a variable of the detection reactive power from the variation of such periodically repeated by the interconnection node voltage since it is intended to detect the transition to a single operation, by performing this detection separately and independently in each distributed power 3a~3d asynchronous state variable due to the effect of reactive power offset between distributed power 3a~3d detection becomes difficult Te, in some cases resulting situation can not be detected the transition to a single operation.

【0019】さらに、各分散電源3a〜3dの運転状態を1個所で集中して監視することができず、能率のよい運転管理等が行えない問題もある。 Furthermore, can not be monitored by concentrating the operating status of each distributed power 3a~3d in one location, there is also a good operation management, etc. can not be performed problematic efficiency.

【0020】そこで、各分散電源3a〜3dを共通の1 [0020] Therefore, 1 each distributed power 3a~3d of common
台の制御装置で運転制御し、抑制判定の基準電圧の共通化等を図って前記の諸点を解消することが考えられる。 And operation control by the control unit of the platform, it is conceivable to eliminate the various points of the work to common like reference voltage suppression determination.

【0021】この場合、共通の1台の制御装置と各分散電源3a〜3dとの運転制御情報の伝送は、一般には、 [0021] In this case, transmission of the operation control information and the common one of the control device and the distributed power 3a~3d is generally,
制御装置と各分散電源3a〜3dとの間それぞれに専用の信号線(ケーブル)を敷設し、専用線を用いた有線通信方式で行われる。 Laying a dedicated signal line (cable) to each between the control unit and the respective distributed power 3 a to 3 d, it is carried out in a wired communication system using a dedicated line.

【0022】しかし、この専用の有線通信方式を採用した場合、煩雑で労力,時間及び費用を要する各信号線の敷設工事等の通信工事を要し、その際、分散電源の数が多くなる程信号線が長くなるとともに信号線の数が多くなり、この場合、一層煩雑になるとともに労力,時間及び費用を要する問題点がある。 [0022] However, when employing a wired communication system of the dedicated, complicated and labor, required communication construction of laying of each signal line takes time and expense, this time, as the becomes large number of distributed power source the number of signal lines with the signal lines are longer increases, in this case, is with labor, is a problem requiring time and cost becomes more complicated.

【0023】そして、外乱(ノイズ)の影響を排除するため、各信号線を光ファイバにより形成すると、著しく高価になる。 [0023] Then, in order to eliminate the effect of disturbances (noise), when each signal line is formed by an optical fiber, become considerably expensive.

【0024】本発明は、太陽電池構成の複数の分散電源の電力変換装置を共通の1台の制御装置で運転制御する際に、制御装置と各分散電源との間それぞれに専用の信号線を敷設することなく、運転制御情報を伝送し得るようにすることを課題とする。 The invention, when the operation control of the electric power conversion device of the plurality of distributed power of the solar cell of a common one of the control device, a dedicated signal line on each between the controller and the distributed power laying without, it is an object to be capable of transmitting the running control information.

【0025】 [0025]

【課題を解決するための手段】前記の課題を解決するために、本発明の太陽光発電装置においては、共通の1台の制御装置及び各分散電源に、系統の電力線に接続され,制御装置と各分散電源との間で電力変換装置の運転制御情報をやりとりする配電線搬送通信装置を設け、制御装置により系統の配電線を介して各分散電源の電力変換装置を制御する。 In order to solve the above problems BRIEF SUMMARY OF THE INVENTION In the solar power generating device of the present invention, the controller and the dispersed power source of one of the common, it is connected to the power line of the system, the control device and controlling the power converter of the distributed power supply through the provided power distribution line communication system for exchanging driving control information of the power conversion apparatus, the system of the distribution line by the control device between each distributed power source.

【0026】したがって、共通の制御装置と各分散電源との間の電力変換装置の運転制御情報の通信が、専用の信号線を敷設することなく、系統の電力線を利用した配電線搬送により行われる。 [0026] Thus, the communication operation control information of the power conversion apparatus between the common control unit and the distributed power, without laying a dedicated signal line, is carried out by distribution line carrier using the power lines of the system .

【0027】また、本発明の太陽光発電装置においては、共通の1台の制御装置及び各分散電源に、制御装置と各分散電源との間で電力変換装置の運転制御情報をやりとりする無線通信装置を設け、制御装置により無線通信で各分散電源の電力変換装置を制御する。 Further, in the photovoltaic device of the present invention, the controller and the dispersed power source of one of the common control device and the wireless communication for exchanging operation control information of the power conversion apparatus between the distributed power the device is provided to control the power conversion device of each distributed power in a wireless communication by the control device.

【0028】したがって、この場合は共通の制御装置と各分散電源との間の電力変換装置の運転制御情報の通信が、専用の信号線を敷設することなく、無線通信で行われる。 [0028] Thus, the communication operation control information of the power conversion apparatus between the common control unit and the distributed power if, without laying a dedicated signal line, is carried out by wireless communication.

【0029】 [0029]

【発明の実施の形態】本発明の実施の形態について、図1及び図2を参照して説明する。 The embodiment of the embodiment of the present invention will be described with reference to FIGS. (実施の第1の形態)まず、請求項1の太陽光発電装置に対応する本発明の実施の第1の形態につき、図1を参照して説明する。 (First Embodiment) First, per the first embodiment of the present invention corresponding to the photovoltaic device according to claim 1, is described with reference to FIG. 図1はアドレス#0の共通の1個の制御装置(メインコントローラ)18,アドレス#1,# Figure 1 is one common control device addresses # 0 (main controller) 18, the address # 1, #
2,#3,#4の4個の分散電源(ACアレイ)19 2, # 3, 4 distributed power (AC array) of # 4 19
a,19b,19c,19d及び電池電源(バッテリー盤)20を備えた場合の単線系統図である。 a, is a single-line diagram of when equipped 19b, 19c, the 19d and a battery power source (battery panel) 20.

【0030】この図1において、図3と同一符号は同一もしくは相当するものを示し、図1の構成が図3の従来構成と異なる点は、主につぎの(i)〜(iv)の点である。 [0030] In FIG. 1, the same reference numerals as in FIG. 3 shows the one that the same or equivalent, the conventional configuration differs from the configuration in FIG. 3 in FIG. 1 mainly in terms of the following (i) ~ (iv) it is.

【0031】(i)各分散電源19a〜19dは図3の従来電源3a〜3dの個別の制御装置6が設けられず、 [0031] (i) each distributed power 19a~19d has not provided a separate control unit 6 of a conventional power 3a~3d in FIG 3,
工場,ビルの管理所等に設けられた共通の1個の制御装置18により集中制御される点。 Plant, one common control unit 18 by the central control is the point provided in the management office, etc. of a building.

【0032】(ii)制御装置18及び各分散電源19a [0032] (ii) the control device 18 and the distributed power 19a
〜19dそれぞれに、系統2の電力線としての配電線2'に接続された配電線搬送通信装置21が設けられた点。 The ~19d respectively, that distribution line carrier communication device 21 connected to the power distribution line 2 'of the power line system 2 is provided.

【0033】(iii )各分散電源19a〜19dに、図3の従来電源3a〜3dのインバータ5の代わりに、系統停電の発生時に太陽電池4の単独入力から太陽電池4 The (iii) The each dispersed generator 19 a to 19 d, in place of the inverter 5 of the conventional power 3a~3d in FIG. 3, the solar cell 4 in the event of a mains failure from a single input of the solar battery 4
の出力と電池電源20の出力との並列入力に切換わる機能及び電池電源20の充電コンバータ機能を付加した電圧型のインバータ22が設けられた点。 That the voltage type inverter 22 by adding a charge converter function of the output and switching switched function and the battery power source 20 in parallel input and output of the battery power source 20 is provided. そして、電池電源20は各分散電源19a〜19dの共通の補助直流電源を形成する。 The battery power source 20 to form a common auxiliary DC power source for each distributed power 19 a to 19 d.

【0034】(iv)図5の系統連系保護リレー15の代わりに、このリレー15に例えば有線の通信機能を付加した構成の系統連系保護リレー23が設けられ、系統連系保護リレー23から制御装置18のマイクロコンピュータ構成の運転制御部24に、リレー23の過電圧,不足電圧等の検出情報の信号が伝送され、系統連系保護リレー23の検出情報を利用して各分散電源19a〜19 [0034] (iv) in place of the system interconnection protection relay 15 of FIG. 5, the system interconnection protection relay 23 of the configuration example obtained by adding a wired communication function to the relay 15 is provided, the system interconnection protection relay 23 the operation control unit 24 of the microcomputer arrangement of the control apparatus 18, an overvoltage relay 23, signals of the detection information of undervoltage or the like is transmitted, each distributed power source using the detection information of the system interconnection protection relay 23 19A~19
dの連系保護を図るようにした点。 Point so as to achieve d interconnection protection.

【0035】そして、制御装置18と各分散電源19a [0035] Then, the control device 18 and each distributed power source 19a
〜19dとの間で、配電線2'を介した配電線搬送通信により、各分散電源19a〜19dのインバータ22の運転制御情報をやりとりするため、各配電線搬送通信装置21は、それぞれインバータ構成の送信器21aと受信用の復調器21bとからなる。 Between ~19D, the distribution line carrier communication via the distribution line 2 ', for exchanging operation control information of the inverter 22 for each distributed power source 19 a to 19 d, each distribution line carrier communication device 21 are each inverter configuration consisting transmitter 21a and a demodulator 21b for reception.

【0036】つぎに、制御装置18について説明する。 Next, a description will be given of the control device 18.
制御装置18は系統連系保護リレー23の検出情報が供給されるとともに、配電線2'の系統電圧が計器用変圧器25を介して同期電圧(連系点電圧)の情報として供給される。 The controller 18 along with the detection information of the system interconnection protection relay 23 is supplied, the system voltage of the distribution line 2 'is provided as information for synchronization voltage through potential transformers 25 (interconnection point voltage).

【0037】また、手動又は自動の運転モードの選択により、個別連系運転モード,並列自立運転モード,充電運転モードの制御に選択的に切換わり、連系運転時は各分散電源19a〜19dを個別に連系運転に制御し、自立運転時は各分散電源19a〜19dを同期させて並列自立運転に制御し、充電運転時は各分散電源19a〜1 Further, by selection of manual or automatic operation mode, the individual interconnected operation mode, parallel isolated operation mode, selectively switches to control the charging operation mode, interconnection during operation of each distributed power 19a~19d controlled individually interconnected operation, during isolated operation is controlled in parallel autonomous operation by synchronizing the distributed power 19 a to 19 d, during charging operation each distributed power 19a~1
9dのコンバータ運転による電池電源20の充電に制御する。 Controlling the charging of the battery power source 20 by 9d converter operation.

【0038】すなわち、運転モードが選択されると、運転制御部24が予め設定された各動作モードのプログラムを実行する。 [0038] That is, performing the operation mode is selected, the program for each mode of operation the operation control unit 24 is set in advance.

【0039】このとき、計器用変圧器25からの同期電圧の情報は、分周等されて連系運転時の同期制御のタイミング信号(同期信号)に加工されるとともに、その大きさが各分散電源19a〜19dの運転開始(進相運転開始)の共通の判定基準になる。 [0039] At this time, information of the synchronization voltage from the potential transformer 25, while being processed into division, etc. has been the timing signal of the synchronous control during interconnected operation (synchronization signal), the size of each dispersion become common criteria start of operation of the power supply 19 a to 19 d (phase advance operation start).

【0040】なお、同期電圧の情報が得られない自立運転時等は、制御装置18の基準周波数の自走発振出力により、系統周波数の同期制御のタイミング信号が形成される。 [0040] Incidentally, the self-contained run when such information of the synchronization voltage can not be obtained by the free-running oscillation output of the reference frequency of the controller 18, the timing signal of the synchronous control of the system frequency is formed.

【0041】そして、運転制御部24は前記のタイミング信号,系統連系保護リレー23の検出情報,計器用変圧器25の同期電圧及び各分散電源19a〜19dから通知された現在の運転状態や発電出力,出力電圧等に基づくシーケンス制御処理により、系統電源11及び各分散電源19a〜19dの状態等を監視する。 [0041] Then, the timing signal operation control section 24, detection information of the system interconnection protection relay 23, current operation state is notified from the synchronization voltage and the distributed power 19a~19d of the potential transformer 25 and power output by the sequence control processing based on the output voltage or the like, for monitoring the state of the system power supply 11 and each distributed power source 19 a to 19 d.

【0042】さらに、例えば系統連系運転保護リレー2 [0042] Further, for example, the system-interconnected run protection relay 2
3の検出情報に基づき、系統停電の有無を検出するとともに運転/停止の情報を形成する。 Based on the third detection information to form information of start / stop and detects the presence or absence of mains failure.

【0043】すなわち、前記監視に基づき、運転制御部24は選択された運転モード等にしたがって、タイミング信号,進相運転開始の指令信号及び並列運転/個別運転,自立運転/連系運転,発電運転/充電運転,運転/ [0043] That is, based on the monitoring, in accordance with the operation control unit 24 drive mode, which is selected, the timing signal, the command signal and parallel operation / separate operation phase advance operation start, autonomous operation / interconnected operation, the power generation operation / charging operation, operation /
停止のモード変更の信号,データ要求信号等の制御装置側の運転制御情報の信号を形成する。 Mode change signals stop, to form a signal of the operation control information of the control apparatus such as a data request signal.

【0044】さらに、これらの運転制御情報の信号は、 [0044] Further, the signals of the operation control information,
所定の通信フォーマットで各分散電源19a〜19dに個別に又は一斉に伝送するため、制御装置18のアドレス#0(送信元アドレス)及び各分散電源19a〜19 For transmission to individually or simultaneously to each distributed power 19a~19d a predetermined communication format, the address # 0 (source address) of the control device 18 and the distributed power 19a~19
dの個別のアドレス#1〜#4又は共通のアドレス(送信先アドレス)等が付加されて下りの送信信号に加工される。 d individual addresses # 1 to # 4 or a common address is added (the destination address) or the like is processed in the transmission signal of the downlink.

【0045】そして、この下りの送信信号が運転制御部24から配電線搬送通信装置21の送信器21aに送られ、この送信器21aにより下りの送信信号が系統周波数の影響が少ない適当な周波数に変調されて配電線2' [0045] Then, the transmission signal of the downlink transmitted from the operation control unit 24 to the transmitter 21a of the power distribution line communication apparatus 21, a suitable frequency transmission signal of the downlink is less affected system frequency by the transmitter 21a modulated by the power distribution line 2 '
に送出される。 It is sent to.

【0046】また、データ要求信号にしたがって各分散電源19a〜19dから配電線2'に送出された後述の上りの送信信号が制御装置18の復調器21bにより受信されて復調され、この復調により各分散電源19a〜 [0046] Further, the uplink transmission signal will be described later sent to the distribution line 2 'from each distributed power 19a~19d according to the data request signal is being received demodulated by the demodulator 21b of the control unit 18, each by the demodulation distributed power 19a~
19dの現在の運転状態や発電出力,出力電圧等の運転制御情報が再生される。 Current operation status and power output 19d, the operation control information of the output voltage or the like is reproduced.

【0047】そして、各分散電源19a〜19dからの運転制御情報に基づき、運転制御部24は制御装置18 [0047] Then, on the basis of operation control information from the distributed power 19 a to 19 d, the operation control unit 24 controls device 18
の図示省略した表示器に各分散電源19a〜19dの運転状態や発電量等を集中表示する。 A not shown the display of the operating state of the power generation amount of each distributed power 19a~19d concentrated display.

【0048】つぎに、各分散電源19a〜19dについて説明する。 Next, a description will be given of each distributed power 19a~19d. 各分散電源19a〜19dは配電線2'の下りの送信信号をそれぞれの配電線搬送通信装置21の復調器21bにより受信して復調し、自装置のアドレス#1〜#4又は共通のアドレスが付加された運転制御情報の信号を復調器21bからそれぞれのインバータ22 Each distributed power 19a~19d is received and demodulated by the demodulator 21b of the distribution line 2 of the transmission signal of the downlink 'each distribution line carrier communication apparatus 21, address # 1 to # 4 or a common address of the device each of the inverter 22 a signal of the added operation control information from the demodulator 21b
に転送する。 To transfer to.

【0049】このインバータ22は与えられた運転制御情報の運転モードの指令に基づき、運転モード(動作モード)が前記した個別連系運転モード,並列自立運転モード,充電運転モードのいずれかになる。 [0049] The inverter 22 is based on a command operating mode of a given operation control information, the operation mode (operation mode) individually interconnected operation mode described above is, parallel isolated operation mode, to either of the charging operation mode.

【0050】そして、個別連系運転モードが指令される通常の連系運転時は、受信したタイミング信号に基づき、各分散電源19a〜19dのインバータ22が系統電圧に同期して個別にインバータ動作する。 [0050] Then, the normal interconnection during operation commanded individual interconnected operation mode, based on the timing signal received, the inverter 22 of the distributed power 19a~19d is inverter operation individually in synchronization with the system voltage .

【0051】このとき、太陽電池4の出力電圧等の監視に基づき、インバータ22は太陽電池4から最大電力を取出すように太陽電池4の時々刻々の最大電力に追従して動作する。 [0051] At this time, based on the monitoring of the output voltage or the like of the solar battery 4, inverter 22 operates to follow the maximum power of every moment of the solar cell 4 to take out the maximum power from the solar cell 4.

【0052】このインバータ動作により各分散電源19 [0052] each distributed power source 19 by the inverter operation
a〜19dは系統電圧に同期して個別に連系運転され、 a~19d it is operated individually interconnection in synchronism with the system voltage,
各太陽電池19a〜19dの時々刻々の最大電力が系統周波数の交流電力に変換される。 Maximum power every moment of each solar cell 19a~19d is converted into AC power of the system frequency.

【0053】このとき、各分散電源19a〜19dのインバータ22が系統電圧に同期して運転されるため、各分散電源19a〜19dは同期して連系運転される。 [0053] At this time, the inverter 22 of each distributed power 19a~19d is to be operated in synchronism with the system voltage, the distributed power 19a~19d is operated interconnection synchronously.

【0054】また、連系点電圧が上昇傾向になると、その過大な上昇を抑制するため、個別連系運転中に進相運転開始の指令が受信され、各分散電源19a〜19dのインバータ22が進相運転される。 [0054] Further, the connecting point voltage is on the rise, in order to suppress the excessive rise command phase advance operation start is received while driving individual interconnection, the inverter 22 of the distributed power 19a~19d It is the fast operation.

【0055】このとき、各分散電源19a〜19dが制御装置18からの進相運転開始の指令に基づき、共通化された同一の判定基準の電圧にしたがって進相運転され、従来のような分散電源19a〜19d間の進相運転量のばらつきが防止されて各分散電源19a〜19dが均等に進相運転され、全体の発電効率の低下を防止して連系点電圧が抑制される。 [0055] At this time, based on a command phase advance operation start from the distributed power 19a~19d control device 18, is advancing phase operation in accordance with voltage of the same criteria as used in common, as in the prior art distributed power fast operating variable is the variation of prevented the distributed power 19a~19d between 19a~19d is uniformly is the phase advance operation and interconnection node voltage to prevent a reduction in the overall power generation efficiency is suppressed.

【0056】さらに、系統電圧に同期したタイミング信号に基づき、各分散電源19a〜19dのインバータ2 [0056] Further, on the basis of the timing signal synchronized with the system voltage, the inverter 2 of the distributed power 19a~19d
2は外乱発生タイミングの同期をとってその出力の無効電力を可変し、いわゆる無効電力変動方式で単独運転状態への移行を監視して検出する。 2 varies the reactive power of the output synchronizing the disturbance occurrence timing detected by monitoring the transition to the islanding state with so-called reactive power variation method.

【0057】そのため、各分散電源19a〜19dの無効電力の可変による効果が分散電源19a〜19d間で相殺されず、各分散電源19a〜19dが単独運転状態になっても、この状態が確実に検出されて運転が継続される。 [0057] Therefore, the variable due to the effect of the reactive power of the dispersed generator 19 a to 19 d are not canceled between the distributed power supply 19 a to 19 d, even the dispersed generator 19 a to 19 d are turned islanding state, this state is reliably operation is continued is detected.

【0058】つぎに、系統停電等が発生して並列自立運転モードが指令される並列自立運転時は、各分散電源1 Next, when the parallel autonomous operation of mains failure or the like is commanded parallel isolated operation mode occurs, each distributed power source 1
9a〜19dのインバータ22は自立運転のインバータ動作に切換わり、このとき、制御装置18の自走発振のタイミング信号に基づき、各分散電源19a〜19dのインバータ22は同期して運転される。 Inverter 22 9a~19d is switched to the inverter operation of the autonomous operation, this time, based on the timing signal of the free-running oscillation of the control device 18, inverter 22 of each distributed power 19a~19d is operated synchronously.

【0059】また、各分散電源19a〜19dの入力電源が太陽電池4と電池電源20との並列電源になる。 [0059] The input power of each distributed power 19a~19d is parallel power of the solar battery 4 and the battery power source 20.

【0060】したがって、災害等による系統停電時、各分散電源19a〜19dのインバータ22が同期していずれも自立運転され、従来のように各分散電源19a〜 [0060] Thus, during mains failure by disasters, both the inverter 22 of each distributed power 19a~19d synchronization to be autonomous operation, as in the prior art each distributed power 19a~
19dのうちの1台を運転する場合より非常負荷10に給電可能な電力が大きくなり、非常負荷10を十分な大きさにすることができる。 Feedable electric power very load 10 than when operating the one of 19d becomes large, the very load 10 can be made large enough.

【0061】しかも、電池電源20の併用により、自立運転時の安定給電の確保,給電電力の一層の増大等が図られる。 [0061] Moreover, the combination of the battery power source 20, ensuring a stable power supply during autonomous operation, further increase such feeding power is achieved.

【0062】つぎに、充電運転モードが指令されると、 [0062] Next, when the charging operation mode is commanded,
各分散電源19a〜19dのインバータ22がコンバータ動作に切換わり、各分散電源19a〜19dのコンバータ出力により電池電源20が充電される。 Inverter 22 of each distributed power source 19 a to 19 d is switched to the converter operation, the battery power supply 20 is charged by the converter output for each distributed power source 19 a to 19 d.

【0063】この場合、大型の専用の充電設備等を別途用意することなく、各分散電源19a〜19dのいずれか1台のコンバータ出力で充電する場合より大容量の充電電力で電池電源20が充電され、電池電源20の容量の増大等を図ることができる。 [0063] In this case, without providing a charging facilities for large dedicated separately, the battery power source 20 in the charging power larger capacity than the case of charging charging either one of the converter output for each distributed power source 19a~19d is, it is possible to increase or the like of the capacity of the battery power source 20.

【0064】ところで、各分散電源19a〜19dの運転状態や発電量,出力電圧はそれぞれのインバータ22 [0064] Incidentally, the operating state of the power generation amount of each distributed power 19 a to 19 d, the output voltage of each inverter 22
により監視され、この監視情報が分散電源側の運転制御情報を形成する。 It monitored by, the monitoring information to form a running control information of the distributed power supply side.

【0065】そして、制御装置18からのデータ要求信号を各分散電源19a〜19dが受信すると、それぞれのインバータ22の分散電源側の運転制御情報の信号に各分散電源19a〜19dのアドレス#1〜#4(送信元アドレス),制御装置18のアドレス#0(送信先アドレス)等を付加して上りの送信信号が形成され、この上りの送信信号が分散電源19a〜19dの送信器21 [0065] Then, the control device when a data request signal from 18 is received by the distributed power 19 a to 19 d, the address # 1 of the distributed power supply 19 a to 19 d to each of the signal of the operation control information of the distributed power supply side of the inverter 22 # 4 (source address), the controller 18 addresses # 0 transmitted signal of the uplink by adding (destination address) and the like are formed, the transmitter 21 of the transmission signal of the uplink is distributed power 19a~19d
aにより、下りの送信信号と同様に変調されて配電線に送出される。 The a, is sent to the distribution line is modulated similarly to the transmission signal of the downlink.

【0066】したがって、この図1の場合は配電線2' [0066] Thus, in the case of FIG. 1 power distribution line 2 '
を制御装置18と各分散電源19a〜19dとの運転制御情報の伝送路に利用した配電線搬送の通信により、共通の1台の制御装置18で各分散電源19a〜19dの運転を制御し、各分散電源19a〜19dがそれぞれの制御で個別運転される場合の不都合を解消することができる。 The control device 18 and the communication of the transmission path utilized to distribution line carrier operation control information for each distributed power 19 a to 19 d, and controls the operation of each distributed power source 19 a to 19 d in a common one of the control device 18, can each distributed power 19a~19d to eliminate a disadvantage in the case of being individually operated by respective control.

【0067】そして、制御装置18と各分散電源19a [0067] Then, the control device 18 and each distributed power source 19a
〜19dとの間に運転制御情報の専用の信号線を敷設する必要がなく、そのための信号線(通信ケーブル)が不要でその敷設工事も不要になるため、著しく簡単かつ安価に装置を構築することができる。 There is no need to lay a dedicated signal line operation control information between the ~19D, since the signal line for the (communication cable) is also not required that laying unnecessary to construct a markedly simple and inexpensive device be able to.

【0068】なお、制御装置18と各分散電源19a〜 [0068] Each distributed power 19a~ a control device 18
19dとの間の通信方式としては、制御装置18から各分散電源19a〜19dを呼出すポーリング通信方式等の種々の方式を採用することができるのは勿論である。 The communication method between the 19d, it is of course the control unit 18 can adopt various methods such as polling communication method call each dispersed generator 19 a to 19 d.

【0069】また、制御装置18及び各分散電源19a [0069] The control device 18 and the distributed power 19a
〜19dの送受信周波数(周波数帯),変調方式等は、 ~19d of sending and receiving frequency (frequency band), modulation scheme, etc.,
通信方式等に応じて、同一又は装置毎或いは上り,下り毎に異なるように設定すればよい。 According to the communication system or the like, the same or device or every uplink may be differently set for each downlink.

【0070】(実施の第2の形態)つぎに、請求項2の太陽光発電装置に対応する本発明の実施の第2の形態につき、図2を参照して説明する。 [0070] (Second Embodiment) Next, a second embodiment of the present invention corresponding to the photovoltaic device according to claim 2, will be described with reference to FIG. 図2において、図1と同一符号は同一もしくは相当するものを示す。 2, FIG. 1 and the same numerals indicate which same or corresponding.

【0071】そして、図2においては制御装置18及び各分散電源19a〜19dに、図1の配電線搬送通信装置21の代わりに、変復調用の変換器26a及び無線の送信器26b,受信器26cからなる無線通信装置26 [0071] Then, the control unit 18 and each distributed power 19a~19d in FIG. 2, instead of the power distribution line communication system 21 of FIG. 1, the transducer 26a and the radio transmitter 26b for modem, receiver 26c from wireless communication device 26
を設けた点である。 It is that the provided.

【0072】この場合、制御装置18の下りの運転制御情報の信号,各分散電源19a〜19dの上りの運転制御情報の信号は、それぞれの変換装置26aにより変調されて送信器26bから無線送信される。 [0072] In this case, the signal of the operation control information of the downlink control device 18, an uplink signal operation control information for each distributed power source 19a~19d is wirelessly transmitted from the transmitter 26b is modulated by a respective converter 26a that.

【0073】そして、無線送信された信号が各分散電源19a〜19d,制御装置18の受信器26cにより受信されてそれぞれの変換器26aにより復調される。 [0073] Then, the wireless transmitted signals each distributed power 19 a to 19 d, are demodulated by the respective transducers 26a are received by the receiver 26c of the controller 18.

【0074】したがって、この図2にあっては無線通信により制御装置18と各分散電源19a〜19dとの間の運転情報の伝送が行われ、この場合も図1の場合と同様の効果が得られる。 [0074] Thus, the In the Figure 2 the transmission of operation information between the control device 18 by wireless communication with each distributed power 19a~19d is performed, the same effect as in the case Again in Figure 1 is obtained It is.

【0075】しかも、配電線搬送方式の場合のような系統電力の影響が少なく、送受信周波数の制約もなく、設計の自由度等が図1の場合より大きくなるとともに通信の信頼性が向上する。 [0075] Moreover, less impact of system power, such as in the case of distribution line carrier systems, no restrictions reception frequency, flexibility and the like of the design to improve the reliability of communication with greater than in the case of FIG.

【0076】そして、無線信号はAM,FM,FSK等の種々の方式で変調して形成してよいのは勿論である。 [0076] Then, the radio signal is AM, FM, the may be formed by modulating a variety of ways of FSK such as a matter of course.

【0077】ところで、分散電源の個数等はどのようであってもよい。 [0077] By the way, the number or the like of the distributed power may be what is. また、各分散電源は建物に設けたものでなくてもよく、例えば高速道路や新幹線路等の鉄道路の防音壁等の代わりに設けたものであってもよい。 Moreover, each distributed power source may not those provided in the building, or may be for example provided in place of the sound barrier, such as a railway line highways and Shinkansen line, and the like.

【0078】さらに、各分散電源19a〜19dの静止型の電力変換装置はインバータ以外の電力変換器構成であってもよい。 [0078] Further, static power converter for each distributed power 19a~19d may be power converter configurations other than an inverter.

【0079】つぎに、前記両実施の形態において、制御装置18と一部の分散電源,例えば分散電源19aとの間の通信又は制御装置18と各分散電源19a〜19d Next, the in the form of both embodiments, a portion of a distributed power supply and control device 18, for example, a communication or control device 18 and each distributed power 19a~19d between the distributed power supply 19a
との間の主要な一部の情報の通信を光ファイバ等の有線通信で確保するようにして信頼性の一層の向上を図るようにしてもよい。 It may be further improved communications major part of the information so as to ensure a wired communication such as optical fiber reliability between.

【0080】 [0080]

【発明の効果】本発明は、以下に記載する効果を奏する。 According to the present invention, the effects described below. まず、請求項1の場合は、共通の1台の制御装置1 First, in the case of claim 1, the control device of one common 1
8と各分散電源19a〜19dとの間の各分散電源19 8 and each distributed power source 19 between the distributed power 19a~19d
a〜19dの電力変換装置(インバータ22)の運転制御情報の通信を専用の信号線を敷設することなく、系統2の電力線(配電線2')を利用した配電線搬送により行うことができ、各分散電源19a〜19dの制御装置の共通化を図るとともに通信工事の削減を図って大幅な労力の軽減やコストダウン等を実現することができる。 Without laying a dedicated signal line communication operation control information of the power conversion apparatus A~19d (inverter 22), it can be carried out by distribution line carrier using the system 2 of the power line (distribution line 2 '), together made common aim to reduce communication construction can be realized reduction of significant labor and cost of the control device for each distributed power source 19 a to 19 d.

【0081】しかも、制御装置の共通化により各分散電源19a〜19dに個別に制御装置を設けた場合の不都合が一掃され、性能の向上が図れ、信頼性が向上する。 [0081] Moreover, disadvantages in the case of providing the individual control on each distributed power 19a~19d is swept by common control unit, model improves performance, and reliability is improved.

【0082】つぎに、請求項2の場合は、共通の制御装置18及び各分散電源19a〜19dに無線通信装置2 [0082] Next, in the case of claim 2, the wireless communication device to a common control device 18 and each distributed power source 19 a to 19 d 2
6を設けたため、制御装置18と各分散電源19a〜1 Since provided with 6, the control unit 18 and the distributed power 19a~1
9dとの間の各分散電源19a〜19dの電力変換装置(インバータ22)の運転制御情報の通信を、専用の信号線を敷設することなく、無線通信で行うことができる。 The communication operation control information of the power conversion apparatus of the distributed power 19 a to 19 d (inverter 22) between 9d, without laying a dedicated signal line, can be carried out by wireless communication.

【0083】この場合、請求項1の場合と同様の効果が得られるとともに、系統2の影響に伴う通信条件の制約等がほとんどなく、設計の自由度等が大きくなる利点もある。 [0083] In this case, there the same effects as in claim 1 is obtained, almost no restriction of the communication conditions with the effects of the system 2, an advantage that the degree of freedom such as increases design.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施の第1の形態の結線図である。 1 is a connection diagram of a first embodiment of the present invention.

【図2】本発明の実施の第2の形態の結線図である。 2 is a connection diagram of a second embodiment of the present invention.

【図3】従来例の結線図である。 3 is a connection diagram of a conventional example.

【符号の説明】 DESCRIPTION OF SYMBOLS

2 系統 2' 配電線 18 制御装置 19a〜19d 分散電源 21 配電線搬送通信装置 22 インバータ 26 無線通信装置 2 lines 2 'distribution line 18 controller 19a~19d distributed power 21 distribution line carrier communication device 22 inverter 26 wireless communication device

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 系統に接続された複数の分散電源の静止型の電力変換装置の運転を共通の1台の制御装置により制御し、前記各分散電源の太陽電池の出力を交流電力に変換して系統負荷に給電する太陽光発電装置において、 前記制御装置及び前記各分散電源に、 系統の電力線に接続され,前記制御装置と前記各分散電源との間で前記電力変換装置の運転制御情報をやりとりする配電線搬送通信装置を設け、 前記制御装置により前記系統の配電線を介して前記各分散電源の前記電力変換装置を制御するようにしたことを特徴とする太陽光発電装置。 1. A controlled by a common one of the control device the operation of the static power converter of the plurality of distributed power sources connected to the grid, converts the output of the solar cell of the each distributed power source into AC power in photovoltaic power generator for supplying power to the system load Te, the control device and each dispersed power source, is connected to the power line of the system, the operation control information of the power conversion apparatus between the control device said each distributed power source exchanging power distribution line communication apparatus provided for the control device by a photovoltaic power generation apparatus being characterized in that so as to control the power conversion device of each distributed power source through a distribution line of the system.
  2. 【請求項2】 系統に接続された複数の分散電源の静止型の電力変換装置の運転を共通の1台の制御装置により制御し、前記各分散電源の太陽電池の出力を交流電力に変換して系統負荷に給電する太陽光発電装置において、 前記制御装置及び前記各分散電源に、 前記制御装置と前記各分散電源との間で前記電力変換装置の運転制御情報をやりとりする無線通信装置を設け、 前記制御装置により無線通信で前記各分散電源の前記電力変換装置を制御するようにしたことを特徴とする太陽光発電装置。 2. A controlled by a common one of the control device the operation of the static power converter of the plurality of distributed power sources connected to the grid, converts the output of the solar cell of the each distributed power source into AC power in photovoltaic power generator for supplying power to the system load Te, the control device and to said each distributed power source, provided the wireless communication device for exchanging operation control information of the power conversion apparatus between the control device said each distributed power source , solar power generation apparatus being characterized in that so as to control said power converter for each distributed power in a wireless communication by said control unit.
JP9017560A 1997-01-14 1997-01-14 Photovoltaic power generation system Pending JPH10201105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9017560A JPH10201105A (en) 1997-01-14 1997-01-14 Photovoltaic power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9017560A JPH10201105A (en) 1997-01-14 1997-01-14 Photovoltaic power generation system

Publications (1)

Publication Number Publication Date
JPH10201105A true JPH10201105A (en) 1998-07-31

Family

ID=11947305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9017560A Pending JPH10201105A (en) 1997-01-14 1997-01-14 Photovoltaic power generation system

Country Status (1)

Country Link
JP (1) JPH10201105A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061364A (en) * 2001-08-09 2003-02-28 Matsushita Electric Works Ltd Photovoltaic power generating system
JP2009017758A (en) * 2007-07-09 2009-01-22 Toshiba Corp Distributed power supply and method of suppressing increase in voltage of low-voltage distribution system linked to the distributed power supply
JP2009189143A (en) * 2008-02-06 2009-08-20 Sharp Corp Power system
JP2010186795A (en) * 2009-02-10 2010-08-26 Sony Corp Photoelectric cell device and method for determining failure
WO2010125612A1 (en) * 2009-05-01 2010-11-04 オーナンバ株式会社 Apparatus for detecting abnormality of solar cell power generation system and method therefor
JP2011507465A (en) * 2007-12-05 2011-03-03 ソラレッジ テクノロジーズ リミテッド Safety mechanism, wake-up method and shutdown method in distributed power installation
JP2012125052A (en) * 2010-12-08 2012-06-28 Daihen Corp Control system, control circuit constituting the same, distributed power supply equipped with the same, and server constituting control system
JP2012531756A (en) * 2009-07-03 2012-12-10 クルーズ、イングマール Method for monitoring individual photovoltaic modules in an apparatus comprising several photovoltaic modules and device for performing the method
JP2012533976A (en) * 2009-07-16 2012-12-27 ジェネラル サイバーネイション グループ インコーポレイテッドGeneral Cybernation Group, Inc. Intelligent and scalable power inverter
WO2013014879A1 (en) * 2011-07-28 2013-01-31 パナソニック株式会社 Power line communication device, solar power generation system, power line communication method, and power line communication program
JP2013537025A (en) * 2010-08-31 2013-09-26 エスエムエー ソーラー テクノロジー アーゲー Inverter with AC interface for AC module connection
US8581441B2 (en) 2007-05-17 2013-11-12 Enphase Energy, Inc. Distributed inverter and intelligent gateway
JP2014039374A (en) * 2012-08-13 2014-02-27 Toshiba Corp Controller, power source device and power source system
JP2014087244A (en) * 2012-10-26 2014-05-12 Toshiba Corp Inverter device and inverter system
JP2014197882A (en) * 2009-08-28 2014-10-16 エンフェイズ エナジー インコーポレイテッド Power line communication system
KR101666014B1 (en) * 2016-06-20 2016-10-13 (주)아세아이엔티 Parallel ups synchronization system using power line communication of inverter output, and method thereof
JP2016214066A (en) * 2015-04-28 2016-12-15 台達電子企業管理(上海)有限公司 Power supply system and power conversion device
JP2017501672A (en) * 2013-12-20 2017-01-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Power plant equipment
US10468993B2 (en) 2007-05-17 2019-11-05 Enphase Energy, Inc. Inverter for use in photovoltaic module

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061364A (en) * 2001-08-09 2003-02-28 Matsushita Electric Works Ltd Photovoltaic power generating system
JP2014241616A (en) * 2007-05-17 2014-12-25 エンフェイズ エナジー インコーポレイテッド Distributed inverter and intelligent gateway
US8581441B2 (en) 2007-05-17 2013-11-12 Enphase Energy, Inc. Distributed inverter and intelligent gateway
US10468993B2 (en) 2007-05-17 2019-11-05 Enphase Energy, Inc. Inverter for use in photovoltaic module
JP2009017758A (en) * 2007-07-09 2009-01-22 Toshiba Corp Distributed power supply and method of suppressing increase in voltage of low-voltage distribution system linked to the distributed power supply
JP2011507465A (en) * 2007-12-05 2011-03-03 ソラレッジ テクノロジーズ リミテッド Safety mechanism, wake-up method and shutdown method in distributed power installation
JP2009189143A (en) * 2008-02-06 2009-08-20 Sharp Corp Power system
JP2010186795A (en) * 2009-02-10 2010-08-26 Sony Corp Photoelectric cell device and method for determining failure
JP2010263027A (en) * 2009-05-01 2010-11-18 Onamba Co Ltd Apparatus for detecting abnormality of solar cell power generation system and method therefor
JP4673921B2 (en) * 2009-05-01 2011-04-20 オーナンバ株式会社 Anomaly detection apparatus and method for solar cell power generation system
WO2010125612A1 (en) * 2009-05-01 2010-11-04 オーナンバ株式会社 Apparatus for detecting abnormality of solar cell power generation system and method therefor
US8581608B2 (en) 2009-05-01 2013-11-12 Onamba Co., Ltd. Apparatus and method for detecting abnormality in solar cell power generation system
JP2012531756A (en) * 2009-07-03 2012-12-10 クルーズ、イングマール Method for monitoring individual photovoltaic modules in an apparatus comprising several photovoltaic modules and device for performing the method
JP2012533976A (en) * 2009-07-16 2012-12-27 ジェネラル サイバーネイション グループ インコーポレイテッドGeneral Cybernation Group, Inc. Intelligent and scalable power inverter
JP2014197882A (en) * 2009-08-28 2014-10-16 エンフェイズ エナジー インコーポレイテッド Power line communication system
JP2013537025A (en) * 2010-08-31 2013-09-26 エスエムエー ソーラー テクノロジー アーゲー Inverter with AC interface for AC module connection
JP2012125052A (en) * 2010-12-08 2012-06-28 Daihen Corp Control system, control circuit constituting the same, distributed power supply equipped with the same, and server constituting control system
WO2013014879A1 (en) * 2011-07-28 2013-01-31 パナソニック株式会社 Power line communication device, solar power generation system, power line communication method, and power line communication program
US9728975B2 (en) 2012-08-13 2017-08-08 Kabushiki Kaisha Toshiba Power supply unit that outputs electric power to a load together with another power supply unit
JP2014039374A (en) * 2012-08-13 2014-02-27 Toshiba Corp Controller, power source device and power source system
JP2014087244A (en) * 2012-10-26 2014-05-12 Toshiba Corp Inverter device and inverter system
US9337747B2 (en) 2012-10-26 2016-05-10 Kabushiki Kaisha Toshiba Inverter apparatus and inverter system
JP2017501672A (en) * 2013-12-20 2017-01-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Power plant equipment
JP2016214066A (en) * 2015-04-28 2016-12-15 台達電子企業管理(上海)有限公司 Power supply system and power conversion device
US9837930B2 (en) 2015-04-28 2017-12-05 Delta Electronics (Shanghai) Co., Ltd Power supply system and power conversion device
KR101666014B1 (en) * 2016-06-20 2016-10-13 (주)아세아이엔티 Parallel ups synchronization system using power line communication of inverter output, and method thereof

Similar Documents

Publication Publication Date Title
EP2810353B1 (en) Dc connection scheme for windfarm with internal mvdc collection grid
US9453861B2 (en) Renewable energy monitoring system
US8102144B2 (en) Power converter for a solar panel
US6639383B2 (en) Multiple energy storage device controller
KR0165580B1 (en) Islanding-operation prevention apparatus and dispersed power generation apparatus and power generation system using the same
US7518266B2 (en) Method and apparatus for improving AC transmission system dispatchability, system stability, and power flow controllability using DC transmission systems
US8183714B2 (en) Electric power distribution methods and apparatus
CN101257223B (en) Backup power system
JP2005151662A (en) Inverter device and distributed power supply system
EP0919077B1 (en) High efficiency lighting system
US20050006958A1 (en) Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems
US6311137B1 (en) Information display apparatus, information relay apparatus used in power generation system, information display method and information relay method, and information transmission method
US6629247B1 (en) Methods, systems, and computer program products for communications in uninterruptible power supply systems using controller area networks
CA2757526C (en) Wind farm island operation
ES2626836T3 (en) Method and apparatus for controlling a hybrid power system
KR101535589B1 (en) distributed inverter and intelligent gateway
US20050043859A1 (en) Modular uninterruptible power supply system and control method thereof
US9136732B2 (en) Distributed energy storage and power quality control in photovoltaic arrays
US20100327657A1 (en) System and method for utility pole distributed solar power generation
US4899217A (en) Communication and energy control system for houses
ES2659399T3 (en) Isolated unit of an isolated power network for communication of energy demands with another isolated unit
EP2528181A1 (en) Power supply system with integration of wind power, solar energy, diesels and mains supply
US4356402A (en) Engine generator power supply system
CN101572437B (en) Power management system
US5101191A (en) Electrical and communication system capable of providing uninterruptable power in a house