JPH1018888A - Fuel injection valve drive circuit - Google Patents

Fuel injection valve drive circuit

Info

Publication number
JPH1018888A
JPH1018888A JP8171477A JP17147796A JPH1018888A JP H1018888 A JPH1018888 A JP H1018888A JP 8171477 A JP8171477 A JP 8171477A JP 17147796 A JP17147796 A JP 17147796A JP H1018888 A JPH1018888 A JP H1018888A
Authority
JP
Japan
Prior art keywords
solenoid
fuel injection
current
injection valve
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8171477A
Other languages
Japanese (ja)
Other versions
JP3772397B2 (en
Inventor
Koichiro Yonekura
光一郎 米倉
茂樹 ▲吉▼岡
Shigeki Yoshioka
Masami Negishi
正美 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP17147796A priority Critical patent/JP3772397B2/en
Publication of JPH1018888A publication Critical patent/JPH1018888A/en
Application granted granted Critical
Publication of JP3772397B2 publication Critical patent/JP3772397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To control open/close operation of a fuel injection valve with good responsiveness. SOLUTION: A capacitor 2 connected at its one end to a reference potential points is connected at the other end to a connecting point between high and low voltage power supply units and a solenoid 1 of a fuel injection valve. When an application of a voltage from the high voltage power supply unit or the low voltage power supply unit is cut off, the solenoid 1 is quickly discharged by accumulating a magnetic energy which remains in the solenoid 1 as a current in a capacitor C2. At the time of instruction for closing the fuel injection valve, a switching element Q3 disposed between one end of the capacitor C2 and the reference potential point is turn ON and a voltage is applied from the capacitor C2 to the solenoid 1 so as to make a current flow in the direction in which a force of closing the fuel injection valve act, whereby demagnetization of the solenoid 1 is accelerated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンに燃料を
供給する燃料噴射弁の駆動回路に関し、特に応答性の優
れた高速開閉制御のための燃料噴射弁駆動回路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection valve driving circuit for supplying fuel to an engine, and more particularly to a fuel injection valve driving circuit for high-speed opening / closing control with excellent responsiveness.

【0002】[0002]

【従来の技術】近年、自動車用エンジンの燃料供給系に
おいては、燃費および運転性の向上のため、噴射する燃
料の量およびタイミングを極めて高い精度で制御するこ
とが求められている。特に筒内直噴式エンジンでは、燃
料噴射弁の噴射口が直接筒内に臨んでおり、基本的に吸
気行程中の短い時間内に燃料を噴射しなければならず、
とりわけ正確な開閉制御が要求されている。
2. Description of the Related Art In recent years, in a fuel supply system of an automobile engine, it has been required to control the amount and timing of injected fuel with extremely high accuracy in order to improve fuel efficiency and drivability. In particular, in a direct injection type engine, the injection port of the fuel injection valve directly faces the cylinder, and basically, the fuel must be injected within a short time during the intake stroke.
In particular, accurate opening and closing control is required.

【0003】自動車用エンジンに一般に用いられている
ソレノイドによる電磁駆動式燃料噴射弁においては、開
弁および閉弁に要するソレノイドの応答時間を極力短縮
して、噴射パルス信号に対する開弁時間および燃料噴射
量を比例関係として捉えられるようにすることで、燃料
噴射のタイミングおよび量を正確に制御することが容易
になる。
[0003] In an electromagnetically driven fuel injection valve using a solenoid generally used in an automobile engine, the response time of the solenoid required for opening and closing the valve is shortened as much as possible, and the valve opening time and the fuel injection with respect to the injection pulse signal are reduced. By allowing the amount to be taken as a proportional relationship, it becomes easy to accurately control the timing and amount of fuel injection.

【0004】従来、このような応答性の改善を目的とし
た燃料噴射弁駆動回路としては、例えば図9(a) に示す
ようなものがある(特開昭57−49059号公報参
照)。この回路では、図9(b) に示すように、噴射パル
ス信号INが高レベルになるとトランジスタ11と、信号
Qに制御されるトランジスタ12および13がオンし、予め
充電されたコンデンサ14からソレノイド15に、充分に高
い電圧(例えば数100V)を印加して、ソレノイド15
を流れる電流icを急速に立ち上げるものである。そし
て、電流icが所定の値にまで達すると、信号Qが低レ
ベルに転じてトランジスタ12および13をオフしてソレノ
イド15に電圧VB(10数V)を印加し、ソレノイドを
保持状態とする。さらに、噴射パルス信号が立ち下がる
と、トランジスタ11がオフし、ソレノイド15に流れ続け
ようとする電流がコンデンサ14に流れ込む。言い換えれ
ば、ソレノイド15に残留する磁気エネルギーが電流とし
て前記コンデンサ14に流れ込んで、コンデンサ14を高電
圧に充電すると同時にソレノイド15の電流icを立ち下
げる構成となっている。
Conventionally, as a fuel injection valve driving circuit for the purpose of improving such response, there is, for example, a circuit as shown in FIG. 9A (see Japanese Patent Application Laid-Open No. 57-49059). In this circuit, as shown in FIG. 9 (b), when the injection pulse signal IN becomes high level, the transistor 11 and the transistors 12 and 13 controlled by the signal Q are turned on, and the solenoid 15 To the solenoid 15 by applying a sufficiently high voltage (for example, several hundred volts).
The current ic flowing through is rapidly raised. When the current ic reaches a predetermined value, the signal Q changes to a low level, the transistors 12 and 13 are turned off, and a voltage VB (ten tens of volts) is applied to the solenoid 15 to hold the solenoid. Further, when the ejection pulse signal falls, the transistor 11 is turned off, and a current that tends to continue to flow through the solenoid 15 flows into the capacitor 14. In other words, the magnetic energy remaining in the solenoid 15 flows into the capacitor 14 as a current, and the capacitor 14 is charged to a high voltage, and at the same time, the current ic of the solenoid 15 falls.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の駆動回路では、高電圧が印加された立上り時
の状態から電圧VBが印加された保持状態に移行する
際、ソレノイドを流れる電流は、電圧VBとソレノイド
コイルの抵抗とから決まる定常値まで直ちに低下するの
ではなく、ソレノイドコイルのインダクタンス成分によ
り次第に低下することになる。即ち、印加される電圧が
コンデンサの放電電圧からVBに切り替わった後もしば
らくの間(例えば数100μs)は電流が前記の定常値
にならず、必要以上の電流が無駄に流れていることにな
り、燃料噴射弁の発熱を増大させるという問題点があっ
た。
However, in such a conventional drive circuit, when the state shifts from the rising state where the high voltage is applied to the holding state where the voltage VB is applied, the current flowing through the solenoid is: It does not immediately decrease to a steady value determined by the voltage VB and the resistance of the solenoid coil, but gradually decreases due to the inductance component of the solenoid coil. That is, for a while (for example, several hundreds of microseconds) after the applied voltage is switched from the discharge voltage of the capacitor to VB, the current does not reach the above-mentioned steady value, and more current than necessary flows wastefully. However, there is a problem that heat generation of the fuel injection valve is increased.

【0006】また、保持状態に切り換えられてから定常
値になるまでの間ソレノイドを流れる電流は変化し続け
るため、この期間内に噴射パルス入力がオフに転じた場
合には、電流の消滅に要する時間も一定ではなくなり、
ソレノイドの立下りに要する時間が変化することにな
る。この結果、噴射パルスの長さと燃料噴射弁の噴射量
との比例関係が保たれず、正確な制御が困難になるとい
った問題点もあった。
In addition, since the current flowing through the solenoid continues to change from the time when the state is switched to the holding state until the steady value is obtained, if the injection pulse input is turned off during this period, the current is required to disappear. Time is no longer constant,
The time required for the solenoid to fall will vary. As a result, there is a problem that the proportional relationship between the length of the injection pulse and the injection amount of the fuel injection valve is not maintained, and accurate control becomes difficult.

【0007】さらに、噴射パルス信号の立下り時には、
ソレノイドに残留する磁気エネルギーを電流として前記
高電圧印加用コンデンサに吸収して、ソレノイドの電流
を急速に消滅させる構成としているが、磁束の変化には
電流の変化に対する遅れが存在するために電流が消滅し
てもソレノイドの吸引力は直ちに零にはならず、立下り
の遅れを完全に除去することはできないといった問題点
もあった。
Further, when the ejection pulse signal falls,
The magnetic energy remaining in the solenoid is absorbed as a current by the high-voltage application capacitor, and the current of the solenoid is rapidly extinguished.However, the change in the magnetic flux has a delay with respect to the change in the current. Even if it disappears, there is a problem that the suction force of the solenoid does not immediately become zero and the delay in falling cannot be completely eliminated.

【0008】この点、ソレノイドに対してスイッチング
素子をHブリッジ構造に配し、立ち下げ時にはコイルに
逆方向の電流を流すことで急速に消磁して、針弁の応答
性を改善することも可能である。しかし、開弁用コンデ
ンサおよび閉弁用コンデンサの各々に充電部が必要で、
かつ1気筒当たり5個以上のスイッチング素子が必要で
あり、回路の規模が大きく制御が煩雑であるため、より
簡便な構成の駆動回路が望まれていた。
In this regard, it is possible to improve the responsiveness of the needle valve by disposing the switching element in an H-bridge structure with respect to the solenoid, and causing the current to flow in the opposite direction to the coil at the time of the fall to rapidly demagnetize the solenoid. It is. However, a charging unit is required for each of the valve opening and valve closing capacitors,
In addition, since five or more switching elements are required for each cylinder, and the circuit scale is large and control is complicated, a drive circuit having a simpler configuration has been desired.

【0009】本発明はこのような従来の問題点に鑑み、
ソレノイドの応答性とエネルギー効率とに優れた燃料噴
射弁駆動回路を提供することを目的とする。
The present invention has been made in view of such conventional problems,
It is an object of the present invention to provide a fuel injection valve drive circuit that is excellent in responsiveness and energy efficiency of a solenoid.

【0010】[0010]

【課題を解決するための手段】このため、請求項1に係
る発明では、電磁駆動式燃料噴射弁の駆動回路であっ
て、高電圧電源および低電圧電源と、前記燃料噴射弁の
開弁指令時に、一端が電流検出用抵抗を介して基準電位
点に接続された前記燃料噴射弁の駆動用ソレノイドの他
端と前記高電圧電源とを接続して、該ソレノイドに前記
燃料噴射弁の開弁力が作用する方向の高電圧を印加する
開弁スイッチング手段を有する構成として、ソレノイド
に流れる電流を急速に立ち上げる。
According to the present invention, there is provided a driving circuit for an electromagnetically driven fuel injection valve, comprising a high voltage power supply and a low voltage power supply, and a command to open the fuel injection valve. Occasionally, one end of the solenoid for driving the fuel injection valve, one end of which is connected to a reference potential point via a resistance for current detection, is connected to the high voltage power supply, and the solenoid is opened by the solenoid. As a configuration having valve-opening switching means for applying a high voltage in a direction in which a force acts, the current flowing through the solenoid is rapidly raised.

【0011】また、前記開弁指令時から所定時間経過後
に、前記低電圧電源と前記ソレノイドとを遮断したまま
の状態で、前記高電圧電源と前記ソレノイドとの接続を
遮断して高電圧の印加を停止すると共に、前記ソレノイ
ドに流れる電流を前記燃料噴射弁の開弁状態を保持しう
る所定の電流値に低下するまで急速に放電させる急速放
電手段を設け、高電圧印加状態から保持状態へ迅速に移
行させる。
Further, after a predetermined time has passed from the time of the valve opening command, while the low voltage power supply and the solenoid are shut off, the connection between the high voltage power supply and the solenoid is cut off to apply a high voltage. And a rapid discharging means for rapidly discharging the current flowing through the solenoid until the current drops to a predetermined current value capable of maintaining the open state of the fuel injection valve. Move to

【0012】そして、前記急速放電手段による急速放電
後、前記低電圧電源と前記ソレノイドの他端との接続に
よる低電圧の印加と、遮断による放電とを制御して前記
ソレノイドを流れる電流を前記所定の値に保持する電流
保持手段を設けて、閉弁時にソレノイド電流をオフにす
るときにソレノイドを流れている電流が常に一定になる
ようにする。
After the rapid discharge by the rapid discharge means, the application of a low voltage by connecting the low voltage power supply to the other end of the solenoid and the discharge by interruption are controlled so that the current flowing through the solenoid is controlled to the predetermined level. Is provided so that the current flowing through the solenoid is always constant when the solenoid current is turned off when the valve is closed.

【0013】さらに、前記急速放電手段による前記高電
圧電源と前記ソレノイドとの遮断時、および前記電流保
持手段による前記低電圧電源と前記ソレノイドとの遮断
時に前記ソレノイドに残留する磁気エネルギーを電流と
して蓄電する蓄電手段と、前記燃料噴射弁の閉弁指令に
同期して、前記ソレノイドに前記燃料噴射弁の閉弁力が
作用する方向に電流が流れるように、前記蓄電手段と前
記ソレノイドとを所定期間接続する閉弁スイッチング手
段とを設けて、前記蓄電手段に蓄積された電荷を利用
し、閉弁時に、開弁時および保持状態とは逆向きの電流
をソレノイドに流す。
Further, magnetic energy remaining in the solenoid is stored as a current when the high-voltage power supply and the solenoid are cut off by the rapid discharge means and when the low-voltage power supply and the solenoid are cut off by the current holding means. Power storage means, and the power storage means and the solenoid for a predetermined period of time such that a current flows in a direction in which the valve closing force of the fuel injection valve acts on the solenoid in synchronization with a valve closing command of the fuel injection valve. A valve closing switching means is provided for connection, and the electric charge accumulated in the power storage means is used to flow a current in the solenoid opposite to the valve opening state and the holding state at the time of valve closing.

【0014】前記蓄電手段は、例えば請求項2に係る発
明のように、前記ソレノイドの他端に一端が接続された
コンデンサと、該コンデンサの他端と基準電位点との間
に介装されたダイオードとを含んで、簡便に構成され
る。また、請求項3に係る発明では、前記コンデンサに
並列接続された定電圧ダイオードを含んで構成し、前記
コンデンサへの蓄電量を一定値に制限する。
[0014] The power storage means is interposed between a capacitor having one end connected to the other end of the solenoid and a reference potential point, for example, as in the second aspect of the present invention. A simple configuration including a diode. Further, in the invention according to claim 3, the power storage device includes a constant voltage diode connected in parallel to the capacitor, and limits the amount of charge stored in the capacitor to a constant value.

【0015】また、前記閉弁スイッチング手段は、請求
項4に係る発明のように、前記コンデンサの他端と基準
電位点との間に介装された前記ダイオードに並列に設け
られたスイッチング素子を含んで構成することで、前記
コンデンサに蓄積された電荷を、開弁時および保持状態
とは逆向きの電流としてソレノイドに流すことができ
る。
The valve-closing switching means may include a switching element provided in parallel with the diode interposed between the other end of the capacitor and a reference potential point. With this configuration, the electric charge accumulated in the capacitor can be made to flow through the solenoid as a current in a direction opposite to that in the valve opening state and the holding state.

【0016】また、請求項5に係る発明では、前記電流
保持手段は、前記電流検出用抵抗に流れる電流値に基づ
いて、前記低電圧電源と前記ソレノイドの他端との接続
と遮断とを制御し、保持状態においてソレノイドを流れ
る電流を所定値に安定するように制御する。
Further, in the invention according to claim 5, the current holding means controls connection and disconnection between the low-voltage power supply and the other end of the solenoid based on a value of a current flowing through the current detecting resistor. Then, control is performed so that the current flowing through the solenoid in the holding state is stabilized at a predetermined value.

【0017】[0017]

【発明の効果】請求項1に係る発明によれば、開弁指令
時にソレノイドのコイルに流れる電流を急速に立ち上げ
る一方、高電圧印加状態から保持状態へ迅速に移行させ
て、余分な電流を削減し、燃料噴射弁の発熱を抑制する
とができるという効果がある。また、閉弁時にソレノイ
ドを流れている電流を常に一定にすると共に、開弁時お
よび保持状態とは逆向きの電流をソレノイドに流して消
磁することで閉弁動作を円滑・迅速に行なうことがで
き、噴射パルス信号のタイミングおよび長さに対応した
正確な開閉弁制御が可能になるという効果もある。
According to the first aspect of the present invention, the current flowing through the solenoid coil at the time of the valve opening command is rapidly raised, while the state is rapidly shifted from the high voltage application state to the holding state, and the extra current is reduced. This has the effect of reducing heat generation of the fuel injection valve. When the valve is closed, the current flowing through the solenoid is always constant, and when the valve is opened and the current flowing in the opposite direction to the holding state is passed through the solenoid to demagnetize, the valve closing operation can be performed smoothly and quickly. There is also an effect that accurate opening / closing valve control corresponding to the timing and length of the injection pulse signal can be performed.

【0018】また、閉弁時にソレノイドを消磁する電流
は、開弁時の高電圧印加状態から保持状態に移行する際
や一定の保持状態に制御する際にソレノイドから放出さ
れる電流を蓄積したものを利用するので、エネルギーを
有効に利用することができ、不要な発熱を抑制できると
いう効果もある。また、請求項2に係る発明によれば、
従来の駆動回路に較べ構造が簡単であるため、部品点
数、製造工程およびコストを削減でき、容易に実施でき
るという効果がある。
The current for degaussing the solenoid when the valve is closed is a current accumulated from the solenoid when the valve shifts from the high voltage application state to the holding state when the valve is opened or when the valve is controlled to a fixed holding state. Is used, energy can be used effectively, and there is an effect that unnecessary heat generation can be suppressed. According to the second aspect of the present invention,
Since the structure is simpler than that of the conventional driving circuit, the number of parts, the number of manufacturing steps, and the cost can be reduced, and there is an effect that it can be easily implemented.

【0019】また、請求項3に係る発明によれば、噴射
パルス信号の長さにかかわらず、ソレノイドからの放電
によりコンデンサに蓄積される蓄電量を所定の値に制限
することにより、閉弁時にソレノイドに流れる消磁用の
電流を一定にし、安定した閉弁動作を得られるという効
果がある。また、請求項4に係る発明によれば、1つの
スイッチング素子を追加するだけでソレノイドを消磁す
る電流の供給を制御することができるので、製造工程や
コストを削減できる。また、スイッチング素子の数が少
ないため制御が単純になるという効果もある。
According to the third aspect of the present invention, the amount of electric charge stored in the capacitor due to the discharge from the solenoid is limited to a predetermined value regardless of the length of the injection pulse signal. There is an effect that the current for demagnetization flowing through the solenoid is made constant and a stable valve closing operation can be obtained. According to the invention of claim 4, the supply of the current for demagnetizing the solenoid can be controlled only by adding one switching element, so that the manufacturing process and the cost can be reduced. In addition, there is an effect that control is simplified because the number of switching elements is small.

【0020】また、請求項5に係る発明によれば、実際
にソレノイドを流れている電流値に基づいて低電圧の印
加を制御するので、変化に対応した正確な制御ができ、
ソレノイドの電流を所定の値に保つことができるという
効果がある。
According to the invention of claim 5, since the application of the low voltage is controlled based on the current value actually flowing through the solenoid, accurate control corresponding to the change can be performed.
There is an effect that the current of the solenoid can be maintained at a predetermined value.

【0021】[0021]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図1は、本発明の一実施例である
燃料噴射弁駆動回路の回路図である。燃料噴射弁のソレ
ノイド1は、電気的にはインダクタンス成分L1と抵抗
成分R1とで構成される。ソレノイド1の一端は電流検
出抵抗R2を介して基準電位点に接続(接地)されてい
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of a fuel injection valve drive circuit according to one embodiment of the present invention. The solenoid 1 of the fuel injection valve is electrically composed of an inductance component L1 and a resistance component R1. One end of the solenoid 1 is connected (grounded) to a reference potential point via a current detection resistor R2.

【0022】ソレノイド1の他端にはスイッチング素子
Q1(図1ではトランジスタ)を介して高電圧充電部2
が接続されている。また、このスイッチング素子Q1と
高電圧充電部2との接続点には、一端を基準電位点に接
続されたコンデンサC1の他端が接続されており、スイ
ッチング素子Q1をオンすることにより、高電圧充電部
2により所定電圧(例えば200V)に充電されたコン
デンサC1からソレノイド1へ高電圧が印加される。こ
の高電圧充電部2とコンデンサ1とが高電圧電源に相当
し、スイッチング素子Q1が開弁スイッチング手段に相
当する。
The other end of the solenoid 1 is connected to a high voltage charging section 2 via a switching element Q1 (transistor in FIG. 1).
Is connected. The other end of the capacitor C1 having one end connected to the reference potential point is connected to a connection point between the switching element Q1 and the high-voltage charging unit 2. When the switching element Q1 is turned on, a high voltage is applied. A high voltage is applied to the solenoid 1 from the capacitor C1 charged to a predetermined voltage (for example, 200 V) by the charging unit 2. The high-voltage charging unit 2 and the capacitor 1 correspond to a high-voltage power supply, and the switching element Q1 corresponds to a valve-opening switching unit.

【0023】また、スイッチング素子Q1とソレノイド
1との接続点には、電流の方向を規制するダイオードD
1と、スイッチング素子Q2とを介して低電圧電源とし
てのバッテリー3(例えば12V)が接続されており、
スイッチング素子Q2をオン/オフ制御することにより
ソレノイド1への低電圧VBの印加が制御される。さら
に、スイッチング素子Q1とソレノイド1との接続点に
は、一端をダイオードD2を介して基準電位点に接続さ
れたコンデンサC2の他端が接続されている。このダイ
オードD2は、スイッチング素子Q1(またはQ2)が
オフされてソレノイドへの電圧印加が停止されたとき
に、当該ソレノイドに残留する磁気エネルギーが電流と
してコンデンサC2に回生する方向にのみ通電を許容し
て、ソレノイドの急速放電を可能にする。また、定電圧
ダイオードZD1がコンデンサC2に並列接続されてお
り、コンデンサC2に所定値以上蓄電されないように制
限している。このダイオードD2、定電圧ダイオードZ
D1およびコンデンサC2が蓄電手段に相当する。ま
た、スイッチング素子Q1は、前述した開弁スイッチン
グ手段の他、急速放電手段としての役割も担う。
A connection point between the switching element Q1 and the solenoid 1 has a diode D
1 and a battery 3 (for example, 12 V) as a low-voltage power supply via a switching element Q2,
By controlling ON / OFF of the switching element Q2, application of the low voltage VB to the solenoid 1 is controlled. Further, the connection point between the switching element Q1 and the solenoid 1 is connected to the other end of a capacitor C2 having one end connected to a reference potential point via a diode D2. When the switching element Q1 (or Q2) is turned off and the application of voltage to the solenoid is stopped, the diode D2 allows energization only in a direction in which magnetic energy remaining in the solenoid regenerates as a current to the capacitor C2. To enable rapid discharge of the solenoid. In addition, a constant voltage diode ZD1 is connected in parallel with the capacitor C2, so that the capacitor C2 is limited so as not to store more than a predetermined value. This diode D2, constant voltage diode Z
D1 and capacitor C2 correspond to power storage means. The switching element Q1 also plays a role as a rapid discharge unit in addition to the valve-opening switching unit described above.

【0024】また、コンデンサC2の他端と基準電位点
との間にはダイオードD2と並列に、閉弁スイッチング
手段としてのスイッチング素子Q3が接続されている。
閉弁指令時には、このスイッチング素子Q3をオンする
ことにより、コンデンサC2からソレノイド1に開弁時
および保持状態とは逆向きの消磁用電流が供給される。
A switching element Q3 as valve closing switching means is connected between the other end of the capacitor C2 and the reference potential point in parallel with the diode D2.
At the time of the valve closing command, by turning on the switching element Q3, a demagnetizing current is supplied from the capacitor C2 to the solenoid 1 in a direction opposite to that in the valve opening state and the holding state.

【0025】スイッチング素子Q1およびQ3は、図示
しない論理回路から発生される噴射パルス信号INに同
期した信号P1、P3のそれぞれに基づいてオン/オフ
制御される。一方、スイッチング素子Q2は、保持状態
においてソレノイド1を流れる電流を所定値にするため
にPWM(Pulse Width Modulation: パルス幅変調) 制
御が加えられる。これは、AND素子4の出力信号によ
ってオン/オフ制御されるものであり、AND素子4の
入力側には、電流制御部5が電流検出抵抗R2の端子電
圧V1と所定の基準電圧との比較に基づいて送出する電
流制御信号Pm と、噴射パルス信号INに同期した信号
P2とが入力されている。このスイッチング素子Q2、
電流制御部5およびAND素子4が電流保持手段に相当
する。
The switching elements Q1 and Q3 are on / off controlled based on signals P1 and P3 synchronized with an ejection pulse signal IN generated from a logic circuit (not shown). On the other hand, the switching element Q2 is subjected to PWM (Pulse Width Modulation) control in order to set the current flowing through the solenoid 1 to a predetermined value in the holding state. This is controlled on / off by the output signal of the AND element 4. On the input side of the AND element 4, the current control unit 5 compares the terminal voltage V1 of the current detection resistor R2 with a predetermined reference voltage. , And a signal P2 synchronized with the ejection pulse signal IN. This switching element Q2,
The current control unit 5 and the AND element 4 correspond to a current holding unit.

【0026】図2は、噴射パルス信号INおよび各スイ
ッチング素子を制御する信号P1〜P3の変化に対応し
たソレノイドを流れる電流の推移を示すタイミングチャ
ートである。また、図3〜図7には、本発明駆動回路の
電流の流れを示す。次に、図2および図3〜図7を同時
に参照して、動作を説明する。噴射パルス信号INは、
図示しない論理回路によって生成されるパルス幅tiの
信号である。信号P1は噴射パルス信号INの立上りか
ら所定のパルス幅t1(例えば数100μs)だけ高レ
ベルになる信号であり、信号P2は噴射パルス信号IN
と同じパルス幅tiの期間高レベルになる信号である。
また、信号P3は噴射パルス信号INの立下りから所定
のパルス幅t2(例えば数100μs)の間高レベルに
なる信号である。
FIG. 2 is a timing chart showing the transition of the current flowing through the solenoid corresponding to the change of the ejection pulse signal IN and the signals P1 to P3 for controlling each switching element. 3 to 7 show the current flow of the drive circuit of the present invention. Next, the operation will be described with reference to FIG. 2 and FIGS. The injection pulse signal IN is
This is a signal having a pulse width ti generated by a logic circuit (not shown). The signal P1 is a signal that rises to a high level by a predetermined pulse width t1 (for example, several 100 μs) from the rising of the ejection pulse signal IN, and the signal P2 is the ejection pulse signal IN.
This signal is at a high level during the same pulse width ti.
Further, the signal P3 is a signal that becomes high level during a predetermined pulse width t2 (for example, several 100 μs) from the fall of the ejection pulse signal IN.

【0027】先ず、噴射パルス信号INが低レベルから
高レベルに転じると、信号P1も高レベルとなり、スイ
ッチング素子Q1がオンされて、コンデンサC1に予め
充電されていた高電圧が直ちにソレノイド1に印加され
る。このときの電流の流れる経路を図3に示す。次に、
時間t1が経過すると、信号P1が低レベルになり、ス
イッチング素子Q1はオフになり、ソレノイド1への高
電圧の印加が遮断される。このとき、スイッチング素子
Q2はオフのままであり、ソレノイド1へはバッテリー
3からの電圧VBも印加されない。そして、図4に示す
ように、ソレノイド1に流れ続けようとする電流がコン
デンサC2に流れ込む。すなわち、ソレノイド1に残留
する磁気エネルギーが電流として電流検出抵抗R2およ
びダイオードD2を介してコンデンサC2に吸収・蓄電
される。このようにして、ソレノイド1を流れる電流
は、従来の駆動回路に較べ急速に減少する。
First, when the injection pulse signal IN changes from the low level to the high level, the signal P1 also changes to the high level, the switching element Q1 is turned on, and the high voltage previously charged in the capacitor C1 is immediately applied to the solenoid 1. Is done. FIG. 3 shows a path through which current flows at this time. next,
When the time t1 has elapsed, the signal P1 goes low, the switching element Q1 is turned off, and the application of the high voltage to the solenoid 1 is cut off. At this time, the switching element Q2 remains off, and the voltage VB from the battery 3 is not applied to the solenoid 1. Then, as shown in FIG. 4, a current that is going to continue to flow through the solenoid 1 flows into the capacitor C2. That is, the magnetic energy remaining in the solenoid 1 is absorbed and stored as a current in the capacitor C2 via the current detection resistor R2 and the diode D2. In this way, the current flowing through the solenoid 1 decreases more rapidly than in a conventional drive circuit.

【0028】そして、電流制御部5が、電流検出抵抗R
2の端子電圧V1と所定の基準電圧との比較に基づい
て、開弁状態を保持する所定値まで電流が低下したと判
断すると、電流制御信号Pm が高レベルになる。このと
き、信号P2は噴射パルス信号INと共に高レベルにな
っているので、AND素子4の出力信号も高レベルとな
り、スイッチング素子Q2がオンになる。こうして、図
5に示すように、ソレノイド1に電圧VBがダイオード
D1を介して印加され、ソレノイド1を流れる電流が増
大し始める。
Then, the current control unit 5 controls the current detection resistor R
When it is determined that the current has decreased to a predetermined value for maintaining the valve-open state based on a comparison between the terminal voltage V1 of the second terminal and the predetermined reference voltage, the current control signal Pm goes high. At this time, since the signal P2 is at the high level together with the ejection pulse signal IN, the output signal of the AND element 4 is also at the high level, and the switching element Q2 is turned on. Thus, as shown in FIG. 5, the voltage VB is applied to the solenoid 1 via the diode D1, and the current flowing through the solenoid 1 starts to increase.

【0029】その後、ソレノイド1を流れる電流値が所
定値を上回ると、電流制御部5の検出する端子電圧V1
が所定の基準電圧を上回り、電流制御部5から出力され
る電流制御信号Pm が低レベルになる。これにより、A
ND素子4の出力も低レベルに転じ、スイッチング素子
Q2がオフになることで、ソレノイド1への電圧VBの
印加が遮断される。
Thereafter, when the value of the current flowing through the solenoid 1 exceeds a predetermined value, the terminal voltage V1
Exceeds a predetermined reference voltage, and the current control signal Pm output from the current control unit 5 goes low. Thus, A
The output of the ND element 4 also changes to a low level, and the switching element Q2 is turned off, whereby the application of the voltage VB to the solenoid 1 is cut off.

【0030】このように、電流制御部5の検出する電流
検出抵抗R2の端子電圧V1に基づいて、スイッチング
素子Q2のオン/オフが繰り返されるPWM制御によ
り、ソレノイド1に流れる電流は、燃料噴射弁を開弁状
態に保持しておくのに充分な電流値にほぼ一定に保たれ
る。また、このPWM制御においてスイッチング素子Q
2がオフに転じた瞬間には、図6に示すように、コンデ
ンサC2への蓄電作用が上述と同様の経路で発生する。
このコンデンサC2への蓄電は、スイッチング素子Q2
がオフに転じるたびに繰り返されるが、コンデンサC2
に並列接続された定電圧ダイオードZD1により蓄電量
が制限される。このため、最終的にコンデンサC2に充
電される電圧は、噴射パルス幅tiの長さによって変化
せず、常に一定になる。
As described above, based on the terminal voltage V1 of the current detection resistor R2 detected by the current control unit 5, the current flowing through the solenoid 1 is changed by the PWM control in which the switching element Q2 is repeatedly turned on / off. Is kept substantially constant at a current value sufficient to keep the valve open. Also, in this PWM control, the switching element Q
At the moment when the capacitor 2 is turned off, as shown in FIG. 6, the power storage action on the capacitor C2 occurs along the same path as described above.
The charge stored in the capacitor C2 is stored in the switching element Q2.
Is turned off each time the capacitor C2 is turned off.
Is limited by the constant voltage diode ZD1 connected in parallel to the power supply. Therefore, the voltage finally charged in the capacitor C2 does not change depending on the length of the ejection pulse width ti, and is always constant.

【0031】時間tiが経過し、噴射パルス信号INが
低レベルに転じると、信号P2も低レベルとなり、AN
D素子4の出力信号も低レベルとなるため、スイッチン
グ素子Q2がオフになる。これに同期して、信号P3が
高レベルとなり、スイッチング素子Q3が所定時間t2
の間だけオンになる。すると、蓄電されたコンデンサC
2からソレノイド1に対し、図7に示す経路で電流が流
れる向きに電圧が印加される。これは、ソレノイド1が
保持状態であったときの電流の向きとは反対の向きであ
り、この逆電流により、ソレノイド1に残留する磁束を
極めて急峻に消滅させることができる。前述したよう
に、コンデンサC2の蓄電量は定電圧ダイオードZD1
により一定量に制限されているため、過剰な電圧が印加
されることはなく、安定した消磁作用が得られる。
When the time ti has elapsed and the injection pulse signal IN has turned to a low level, the signal P2 also has a low level, and
Since the output signal of the D element 4 also becomes low level, the switching element Q2 is turned off. In synchronization with this, the signal P3 goes high, and the switching element Q3 is turned on for a predetermined time t2.
Turns on only during Then, the stored capacitor C
2 applies a voltage to the solenoid 1 in the direction in which current flows in the path shown in FIG. This is the direction opposite to the direction of the current when the solenoid 1 is in the holding state, and the reverse current can cause the magnetic flux remaining in the solenoid 1 to disappear very steeply. As described above, the storage amount of the capacitor C2 is determined by the constant voltage diode ZD1.
, The voltage is limited to a constant value, so that an excessive voltage is not applied, and a stable demagnetizing action can be obtained.

【0032】上述したソレノイド1を流れる電流の変化
とソレノイドの動作、即ち燃料噴射弁の針弁変位を図8
に示す。従来の駆動回路に比べて、立上り動作から保持
状態に移行するときの電流の下がり方が急峻であり、余
分な電流が少ないため、燃料噴射弁の発熱を抑制するこ
とができる。また、噴射期間の終了時には逆電流により
ソレノイド1の消磁が促進されるため、針弁の戻り方が
速くなっている。
The change in the current flowing through the solenoid 1 and the operation of the solenoid, that is, the needle valve displacement of the fuel injection valve are shown in FIG.
Shown in Compared to a conventional drive circuit, the current drops sharply when transitioning from the rising operation to the holding state, and the amount of excess current is small, so that the heat generation of the fuel injection valve can be suppressed. At the end of the injection period, the degaussing of the solenoid 1 is promoted by the reverse current, so that the needle valve returns more quickly.

【0033】以上説明した本発明の燃料噴射弁駆動回路
によれば、3つのスイッチング素子のオン/オフによ
り、噴射パルス信号INに対し応答性の良い燃料噴射弁
の制御ができる。また、余分な電流を削減できるため、
エネルギー効率の良い燃料噴射弁の駆動が可能である。
According to the fuel injection valve driving circuit of the present invention described above, it is possible to control the fuel injection valve having a good response to the injection pulse signal IN by turning on / off the three switching elements. Also, since the extra current can be reduced,
It is possible to drive the fuel injection valve with high energy efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例である燃料噴射弁駆動回路
の回路図
FIG. 1 is a circuit diagram of a fuel injection valve drive circuit according to one embodiment of the present invention.

【図2】 各制御信号とソレノイドを流れる電流の推移
を示すタイミングチャート
FIG. 2 is a timing chart showing transition of each control signal and a current flowing through a solenoid.

【図3】 本発明駆動回路の電流の流れを示す図FIG. 3 is a diagram showing a current flow of the drive circuit of the present invention.

【図4】 本発明駆動回路の電流の流れを示す図FIG. 4 is a diagram showing a current flow of the drive circuit of the present invention.

【図5】 本発明駆動回路の電流の流れを示す図FIG. 5 is a diagram showing a current flow of the drive circuit of the present invention.

【図6】 本発明駆動回路の電流の流れを示す図FIG. 6 is a diagram showing a current flow of the drive circuit of the present invention.

【図7】 本発明駆動回路の電流の流れを示す図FIG. 7 is a diagram showing a current flow of the drive circuit of the present invention.

【図8】 ソレノイド電流と燃料噴射弁の針弁変位を示
す図
FIG. 8 is a diagram showing solenoid current and needle valve displacement of a fuel injection valve.

【図9】 従来の燃料噴射弁駆動回路を示す図FIG. 9 is a diagram showing a conventional fuel injection valve drive circuit.

【符号の説明】[Explanation of symbols]

1 ソレノイド 2 高電圧充電部 3 バッテリー 4 AND素子 5 電流制御部 C1、C2 コンデンサ D1、D2 ダイオード L1 ソレノイドのインダクタンス成分 Q1〜Q3 スイッチング素子 R1 ソレノイドの抵抗成分 R2 電流検出用抵抗 ZD1 定電圧ダイオード DESCRIPTION OF SYMBOLS 1 Solenoid 2 High voltage charging part 3 Battery 4 AND element 5 Current control part C1, C2 Capacitor D1, D2 Diode L1 Solenoid inductance component Q1-Q3 Switching element R1 Solenoid resistance component R2 Current detection resistance ZD1 Constant voltage diode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電磁駆動式燃料噴射弁の駆動回路であっ
て、 高電圧電源および低電圧電源と、 前記燃料噴射弁の開弁指令時に、一端が電流検出用抵抗
を介して基準電位点に接続された前記燃料噴射弁の駆動
用ソレノイドの他端と前記高電圧電源とを接続して、該
ソレノイドに前記燃料噴射弁の開弁力が作用する方向の
高電圧を印加する開弁スイッチング手段と、 前記開弁指令時から所定時間経過後に、前記低電圧電源
と前記ソレノイドとを遮断したままの状態で、前記高電
圧電源と前記ソレノイドとの接続を遮断して高電圧の印
加を停止すると共に、前記ソレノイドに流れる電流を前
記燃料噴射弁の開弁状態を保持しうる所定の電流値に低
下するまで急速に放電させる急速放電手段と、 該急速放電手段による急速放電後、前記低電圧電源と前
記ソレノイドの他端との接続による低電圧の印加と、遮
断による放電とを制御して、前記ソレノイドを流れる電
流を前記所定の値に保持する電流保持手段と、 前記急速放電手段による前記高電圧電源と前記ソレノイ
ドとの遮断時、および前記電流保持手段による前記低電
圧電源と前記ソレノイドとの遮断時に前記ソレノイドに
残留する磁気エネルギーを電流として蓄電する蓄電手段
と、 前記燃料噴射弁の閉弁指令に同期して、前記ソレノイド
に前記燃料噴射弁の閉弁力が作用する方向に電流が流れ
るように、前記蓄電手段と前記ソレノイドとを所定期間
接続する閉弁スイッチング手段と、 を含んで構成されることを特徴とする燃料噴射弁駆動回
路。
1. A drive circuit for an electromagnetically driven fuel injection valve, comprising: a high-voltage power supply and a low-voltage power supply; one end of which is connected to a reference potential point via a current detection resistor when a command to open the fuel injection valve is provided. Valve opening switching means for connecting the other end of the connected solenoid for driving the fuel injection valve to the high voltage power supply and applying a high voltage to the solenoid in a direction in which the valve opening force of the fuel injection valve acts. After a lapse of a predetermined time from the valve opening command, while the low voltage power supply and the solenoid are kept shut off, the connection between the high voltage power supply and the solenoid is cut off to stop the application of the high voltage. A rapid discharge means for rapidly discharging a current flowing through the solenoid until the current decreases to a predetermined current value capable of holding the valve opening state of the fuel injection valve; and after the rapid discharge by the rapid discharge means, the low-voltage power supply And before Current holding means for controlling the application of a low voltage by connection with the other end of the solenoid and the discharge by interruption to hold the current flowing through the solenoid at the predetermined value; and the high voltage by the rapid discharge means. Power storage means for storing magnetic energy remaining in the solenoid as a current when the power supply and the solenoid are cut off and when the low voltage power supply and the solenoid are cut off by the current holding means, and a valve closing command for the fuel injection valve; Valve closing switching means for connecting the power storage means and the solenoid for a predetermined period so that a current flows in a direction in which the valve closing force of the fuel injection valve acts on the solenoid in synchronization with the solenoid. And a fuel injection valve drive circuit.
【請求項2】前記蓄電手段は、前記ソレノイドの他端に
一端が接続されたコンデンサと、 該コンデンサの他端と基準電位点との間に介装されたダ
イオードと、 を含んで構成されることを特徴とする請求項1記載の燃
料噴射弁駆動回路。
2. The power storage means includes: a capacitor having one end connected to the other end of the solenoid; and a diode interposed between the other end of the capacitor and a reference potential point. The fuel injection valve drive circuit according to claim 1, wherein:
【請求項3】前記蓄電手段は、前記コンデンサに並列接
続された定電圧ダイオードを含んで構成されることを特
徴とする請求項2記載の燃料噴射弁駆動回路。
3. The fuel injection valve drive circuit according to claim 2, wherein said power storage means includes a constant voltage diode connected in parallel to said capacitor.
【請求項4】前記閉弁スイッチング手段は、前記コンデ
ンサの他端と基準電位点との間に介装された前記ダイオ
ードに並列に設けられたスイッチング素子を含んで構成
されることを特徴とする請求項2または請求項3記載の
燃料噴射弁駆動回路。
4. The valve closing switching means comprises a switching element provided in parallel with the diode interposed between the other end of the capacitor and a reference potential point. The fuel injection valve drive circuit according to claim 2 or 3.
【請求項5】前記電流保持手段は、前記電流検出用抵抗
に流れる電流値に基づいて、前記低電圧電源と前記ソレ
ノイドの他端との接続と遮断とを制御するものであるこ
とを特徴とする請求項1〜請求項4のいずれか1つに記
載の燃料噴射弁駆動回路。
5. The apparatus according to claim 1, wherein the current holding means controls connection and disconnection between the low-voltage power supply and the other end of the solenoid based on a value of a current flowing through the current detection resistor. The fuel injection valve drive circuit according to any one of claims 1 to 4.
JP17147796A 1996-07-01 1996-07-01 Fuel injection valve drive circuit Expired - Fee Related JP3772397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17147796A JP3772397B2 (en) 1996-07-01 1996-07-01 Fuel injection valve drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17147796A JP3772397B2 (en) 1996-07-01 1996-07-01 Fuel injection valve drive circuit

Publications (2)

Publication Number Publication Date
JPH1018888A true JPH1018888A (en) 1998-01-20
JP3772397B2 JP3772397B2 (en) 2006-05-10

Family

ID=15923839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17147796A Expired - Fee Related JP3772397B2 (en) 1996-07-01 1996-07-01 Fuel injection valve drive circuit

Country Status (1)

Country Link
JP (1) JP3772397B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205437A (en) * 1999-01-19 2000-07-25 Nippon Soken Inc Solenoid valve drive circuit
JP2003086422A (en) * 2001-09-12 2003-03-20 Bosch Automotive Systems Corp Electromagnetic valve driver
JP2013008974A (en) * 2011-06-24 2013-01-10 National Cheng Kung Univ Magnetization apparatus
DE102013217806A1 (en) 2012-09-13 2014-03-13 Denso Corporation FUEL INJECTION CONTROL UNIT
JP2014055571A (en) * 2012-09-13 2014-03-27 Denso Corp Fuel injection control device
KR20190008280A (en) * 2016-05-12 2019-01-23 일리노이즈 툴 워크스 인코포레이티드 Method for dispensing material onto a substrate using a solenoid valve of a pneumatically actuated dispensing unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205437A (en) * 1999-01-19 2000-07-25 Nippon Soken Inc Solenoid valve drive circuit
JP2003086422A (en) * 2001-09-12 2003-03-20 Bosch Automotive Systems Corp Electromagnetic valve driver
JP2013008974A (en) * 2011-06-24 2013-01-10 National Cheng Kung Univ Magnetization apparatus
DE102013217806A1 (en) 2012-09-13 2014-03-13 Denso Corporation FUEL INJECTION CONTROL UNIT
JP2014055571A (en) * 2012-09-13 2014-03-27 Denso Corp Fuel injection control device
JP2014055572A (en) * 2012-09-13 2014-03-27 Denso Corp Fuel injection control device
US9835108B2 (en) 2012-09-13 2017-12-05 Denso Corporation Fuel injection controller
DE102013217806B4 (en) 2012-09-13 2019-01-17 Denso Corporation FUEL INJECTION CONTROL UNIT
KR20190008280A (en) * 2016-05-12 2019-01-23 일리노이즈 툴 워크스 인코포레이티드 Method for dispensing material onto a substrate using a solenoid valve of a pneumatically actuated dispensing unit
JP2019516900A (en) * 2016-05-12 2019-06-20 イリノイ トゥール ワークス インコーポレイティド Method of dispensing material on substrate using solenoid valve of pneumatic drive type dispensing unit

Also Published As

Publication number Publication date
JP3772397B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
US5574617A (en) Fuel injection valve drive control apparatus
US6431155B1 (en) Electromagnetic fuel injector and control method thereof
US6031707A (en) Method and apparatus for control of current rise time during multiple fuel injection events
EP1903202B1 (en) Apparatus for driving electromagnetic valves
JP3613885B2 (en) Drive control method and drive control apparatus for injector for internal combustion engine
EP0460660A2 (en) A device for driving a piezoelectric element
US6766788B2 (en) Pre-charging strategy for fuel injector fast opening
WO1987001765A1 (en) Solenoid driver control unit
GB2318466A (en) Fuel injector driver with boost supply provided by solenoid back-emf
US5796223A (en) Method and apparatus for high-speed driving of electromagnetic load
JPH09115727A (en) Apparatus and method for controlling electromagnetic load
JPH1018888A (en) Fuel injection valve drive circuit
JP2002364768A (en) Solenoid valve driving device
US5711280A (en) Method and apparatus for triggering an electromagnetic consumer
JP3562125B2 (en) Drive circuit for fuel injection valve for in-cylinder direct injection internal combustion engine
JP2003086422A (en) Electromagnetic valve driver
JPH0758898B2 (en) High-speed switching device for electromagnetic loads
EP1669577B1 (en) Inductive load driver with overcurrent detection
JPH09209807A (en) Controller for fuel injecting injector
JP3268245B2 (en) Solenoid valve drive circuit
WO2005014992A1 (en) Method for operating an inductive electroactuator control device
JPH10252930A (en) Solenoid valve drive device
JPH11141381A (en) Solenoid valve drive circuit
JP2002021680A (en) Method for driving fuel injection valve
JPH1182130A (en) Fuel injection valve driving device of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees