JPH10176863A - Hot water supply device and temperature adjusting method - Google Patents

Hot water supply device and temperature adjusting method

Info

Publication number
JPH10176863A
JPH10176863A JP8335514A JP33551496A JPH10176863A JP H10176863 A JPH10176863 A JP H10176863A JP 8335514 A JP8335514 A JP 8335514A JP 33551496 A JP33551496 A JP 33551496A JP H10176863 A JPH10176863 A JP H10176863A
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
mixed
bathtub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8335514A
Other languages
Japanese (ja)
Other versions
JP3167632B2 (en
Inventor
Tetsuji Morita
哲司 森田
Shigenobu Okuda
重信 奥田
Tamotsu Enomoto
有 榎本
Mitsuru Tanaka
充 田中
Hironao Imaida
洋尚 今井田
Noriatsu Nakanishi
教温 中西
Masayoshi Yasukawa
雅由 保川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Harman Co Ltd
Original Assignee
Osaka Gas Co Ltd
Harman Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Harman Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP33551496A priority Critical patent/JP3167632B2/en
Publication of JPH10176863A publication Critical patent/JPH10176863A/en
Application granted granted Critical
Publication of JP3167632B2 publication Critical patent/JP3167632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable a hot water feeding to be carried out at a bathtub under an application of both heating sections in a high fuel efficiency at an accurate hot water feeding temperature and in a less amount of deposition of scale in a hot water feeding device having a single burner used commonly for heating a heating section for hot water supply and another heating section for bathtub water reheating. SOLUTION: Hot water is fed from a hot water supply heating section 11 to a predetermined location C within a going passage 6 and a returning passage 5 forming a circulating passage between a bathtub 23 and an additional boiling heating section 25, the flow is divided into two systems 50, 51 from the predetermined location C, only one system is passed through the bathtub water reheating heating section 25. There are provided a bathtub temperature calculating means for calculating a bathtub temperature Tc in response to a flow rate ratio R between both systems and hot water temperatures T1, T2 in a supply line 6 and a return line 5, and a control means for controlling the hot water supply temperature T1 at the hot water supply heating section 11 in such a way that the calculated bathtub temperature Tc calculated by the bathtub temperature calculating means and a predetermined set bathtub temperature Ts may be coincided with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単一のバーナから
なる燃焼部で共通に加熱される第1熱交換部と第2熱交
換部を備えてなる給湯装置に関し、更に詳しくは、風呂
浴槽への給湯温度制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water supply apparatus having a first heat exchange section and a second heat exchange section which are commonly heated by a combustion section comprising a single burner, and more particularly to a bathtub. The control of hot water supply temperature.

【0002】[0002]

【従来の技術】従来より、この種の給湯装置としては、
給水路からの水を給湯用熱交換器で加熱して給湯路に供
給する給湯用加熱部と、浴槽からの復路の湯水を追焚用
熱交換器で加熱して前記浴槽への往路に循環供給する追
焚用加熱部と、前記給湯用熱交換器と前記追焚用熱交換
器とを共通に加熱する単一のバーナからなる燃焼部とを
備えたものがある。かかる給湯装置を用いて風呂浴槽へ
の給湯を行う場合、単位時間当たりの給湯量をなるべく
多く確保して給湯時間を短くするために、前記往路と復
路の両方を使用して給湯する両搬送型の給湯方法が主流
である。ところが、両搬送型の給湯方法では、所定温度
の湯を出湯すべく制御されている前記給湯用加熱部の湯
の一部が前記追焚用加熱部で再加熱されるため、前記浴
槽への給湯温度が前記所定温度より高くなるという潜在
的な問題があった。
2. Description of the Related Art Conventionally, as this type of hot water supply device,
A hot water supply heating unit that heats water from a water supply channel with a heat exchanger for hot water supply and supplies the hot water to the hot water channel, and heats hot water from the bathtub on the return path from the bathtub with a heat exchanger for additional heating and circulates on the outward route to the bathtub. Some include a heating unit for additional heating to be supplied and a combustion unit composed of a single burner for heating the heat exchanger for hot water supply and the heat exchanger for additional heating in common. When hot water is supplied to the bath tub using such a hot water supply device, in order to secure as much hot water supply per unit time as possible and to shorten the hot water supply time, in order to shorten the hot water supply time, a two-transport type in which hot water is supplied using both the forward path and the return path. Hot water supply method is mainstream. However, in the two-conveyance type hot water supply method, since a part of the hot water of the hot water supply heating unit which is controlled to discharge hot water of a predetermined temperature is reheated by the additional heating heating unit, There was a potential problem that the hot water supply temperature was higher than the predetermined temperature.

【0003】両搬送型の給湯方法において、この潜在的
問題点を解決するために、前記給湯用加熱部の前記給湯
路を2回路に分岐し、各回路に逆止弁を設け、前記往路
と前記復路の途中に夫々接続し、前記追焚用加熱部を経
由しない構造にしたものがあった。
In order to solve this potential problem in the two-conveying type hot water supply method, the hot water supply path of the hot water supply heating section is branched into two circuits, each circuit is provided with a check valve, There was a structure in which each was connected in the middle of the return route and did not pass through the additional heating unit.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た前記追焚用加熱部を経由しない構造の給湯装置では、
前記給湯路を2回路に分岐し、各回路に逆止弁を設け、
浴槽給湯時に前記追焚用加熱部を分離独立させる複雑な
構造となるため、分岐用継手、逆止弁等の余分な回路部
品を必要とし、製造コスト高騰の要因となっていた。ま
た、前記追焚用熱交換器に滞留する湯は、前記給湯用加
熱部と同時に加熱されて沸騰するため、スケールが析出
し、製品の性能品質を低下させるという問題があった。
更に、前記追焚用熱交換器に滞留する湯は、不必要に加
熱されるため、給湯装置全体の熱効率を実質的に低下さ
せ、燃料消費効率が悪く不経済であった。
However, in the above-described hot water supply apparatus which does not pass through the additional heating unit,
Branching the hot water supply path into two circuits, providing a check valve in each circuit,
Because of the complicated structure that separates and separates the heating unit for additional heating at the time of hot water supply in a bathtub, extra circuit parts such as a joint for branching and a check valve are required, causing a rise in manufacturing cost. Further, the hot water staying in the additional heat exchanger is heated and boiled at the same time as the hot water supply heating unit, so that there is a problem that scale is deposited and the performance quality of the product is deteriorated.
Further, the hot water staying in the additional heat exchanger is unnecessarily heated, so that the heat efficiency of the entire hot water supply apparatus is substantially reduced, and the fuel consumption efficiency is poor and uneconomical.

【0005】本発明は、かかる点に着目してなされたも
のであり、その目的は、両搬送型の給湯方法で正確な給
湯温度の湯を供給できる温度調整方法を提供し、且つ、
構造が簡単な、スケール析出が少なく、燃料消費効率の
高い給湯装置を提供し、従来の給湯装置に比して、高性
能化、高品質化、低コスト化、低ランニングコスト化を
図ることにある。
The present invention has been made in view of the above point, and an object of the present invention is to provide a temperature adjusting method capable of supplying hot water at an accurate hot water supply temperature by a two-conveyance type hot water supply method, and
To provide a hot water supply system with a simple structure, low scale deposition and high fuel consumption efficiency, and to achieve higher performance, higher quality, lower cost, and lower running cost compared to conventional hot water supply systems. is there.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

〔構成〕この目的を達成するための本発明の第一の特徴
構成は、特許請求の範囲の欄の請求項1に記載した通
り、給水路からの水を給湯用熱交換器で加熱して給湯路
に供給する給湯用加熱部と、浴槽からの復路の湯水を追
焚用熱交換器で加熱して前記浴槽への往路に循環供給す
る追焚用加熱部と、前記給湯用熱交換器と前記追焚用熱
交換器とを共通に加熱する単一のバーナからなる燃焼部
とを備えた給湯装置において、前記給湯路の湯を前記浴
槽へ供給する場合、その湯が2系統に分流し、その内の
一系統の湯が前記往路から前記浴槽へ出湯し、他系統の
湯が前記復路から前記浴槽へ出湯し、何れかの一方の系
統の湯が途中で前記追焚用熱交換器を経由して再加熱さ
れて前記浴槽へ出湯するように構成された湯はり給湯路
と、前記往路及び前記復路の2系統に分流した湯の給湯
温度を各別に測定可能な流路別給湯温度測定手段とを備
え、前記浴槽へ前記往路及び前記復路から供給された湯
が前記浴槽内で混合した結果の浴槽温度を、前記往路及
び前記復路の2系統に分流した湯の流量比と前記流路別
給湯温度測定手段で測定された前記往路及び前記復路か
ら供給される湯の給湯温度に基づいて算出する浴槽温度
算出手段とを備え、前記給湯路の湯を前記浴槽へ供給す
る場合、前記浴槽温度算出手段で算出した算出浴槽温度
と予め設定された設定浴槽温度とが合致するように、前
記給湯用加熱部の給湯温度を制御する制御手段を備えて
いる点にある。
[Configuration] A first characteristic configuration of the present invention for achieving this object is to heat water from a water supply channel with a heat exchanger for hot water supply, as described in claim 1 of the claims. A heating unit for supplying hot water to the hot water supply path, a heating unit for additional heating, which heats the hot water from the bathtub on the return path with the additional heat exchanger and circulates it on the outward path to the bathtub, and the heat exchanger for hot water supply And a combustion unit comprising a single burner for commonly heating the reheating heat exchanger and the reheating unit, when the hot water in the hot water supply path is supplied to the bathtub, the hot water is divided into two systems. Sinking, one of the hot water flows out of the outbound path to the bathtub, the other hot water flows out of the return path to the bathtub, and one of the hot water flows in the middle for the reheating heat exchange. A hot water supply channel configured to be reheated via a vessel and to supply hot water to the bathtub; A hot water supply temperature measuring means capable of separately measuring the hot water temperature of the hot water diverted to the two systems of the return path, wherein the hot water supplied from the forward path and the return path to the bathtub is mixed in the bathtub. The bathtub temperature is calculated based on the flow ratio of the hot water diverted into the two systems of the forward route and the return route and the hot water supply temperature of the hot water supplied from the forward route and the return route measured by the hot water temperature measuring means for each flow channel. A bathtub temperature calculating means for supplying hot water from the hot water supply path to the bathtub, so that the calculated bathtub temperature calculated by the bathtub temperature calculating means coincides with a preset setting bathtub temperature. The present invention is characterized in that control means for controlling the hot water supply temperature of the heating unit is provided.

【0007】同第二の特徴構成は、特許請求の範囲の欄
の請求項2に記載した通り、上述の第一の特徴構成に加
えて、前記浴槽内の湯を前記往路及び前記復路の少なく
とも一方に誘引してその湯温を測定する浴槽温度測定手
段を備え、前記浴槽への給湯中に、前記流路別給湯温度
測定手段で測定する前記往路及び前記復路の2系統に分
流した湯の給湯温度と、給湯後に前記浴槽温度測定手段
で測定する前記浴槽内の湯温に基づいて、前記流量比を
学習する流量比学習手段を備え、前記流量比学習手段が
学習した流量比を記憶する流量比記憶手段を備え、前記
浴槽温度算出手段が前記流量比記憶手段に記憶されてい
る流量比を使用して前記浴槽温度を算出する点にある。
According to a second feature of the present invention, as described in claim 2 of the claims, in addition to the first feature of the present invention, hot water in the bathtub is supplied to at least the outgoing path and the return path. A bathtub temperature measuring means is provided for inviting one side to measure the hot water temperature, and during hot water supply to the bathtub, the hot water divided into two systems of the forward path and the return path measured by the hot water temperature measuring means for each flow path is provided. A flow ratio learning unit that learns the flow ratio based on a hot water supply temperature and a hot water temperature in the bath tub measured by the bath tub temperature measurement unit after the hot water supply, and stores a flow ratio learned by the flow ratio learning unit; The present invention is characterized in that a flow rate ratio storage means is provided, and the bathtub temperature calculation means calculates the bathtub temperature using the flow rate ratio stored in the flow rate storage means.

【0008】同第三の特徴構成は、特許請求の範囲の欄
の請求項3に記載した通り、上述の第一の特徴構成に加
えて、前記浴槽の前記往路または前記復路に流量センサ
を備え、前記浴槽温度算出手段が前記流量センサからの
流量に基づいて前記流量比を算出する流量比算出手段を
備えている点にある。
[0008] According to a third feature of the present invention, as described in claim 3 of the claims, in addition to the above-mentioned first feature, a flow sensor is provided on the outward or return path of the bathtub. The bathtub temperature calculating means includes a flow rate ratio calculating means for calculating the flow rate ratio based on the flow rate from the flow rate sensor.

【0009】同第四の特徴構成は、特許請求の範囲の欄
の請求項4に記載した通り、単一のバーナからなる燃焼
部で共通に加熱される第1熱交換部と第2熱交換部を備
えてなる給湯装置を用いて、前記第1熱交換部で加熱さ
れた湯を2系統に分流し、分流された一方の湯を所定の
被給湯容器に第1給湯路を介して直接出湯し、分流され
た他方の湯を前記第2熱交換部で再加熱した後、前記被
給湯容器に第2給湯路を介して出湯して、前記2系統に
分流された湯を前記被給湯容器に混合給湯する場合の温
度調整方法において、前記第1熱交換部で加熱され、前
記第1給湯路と前記第2熱交換部に供給される湯の目標
温度Tmを、前記被給湯容器に混合給湯する湯の設定温
度Tsに基づく所定の初期値に暫定的に設定して、前記
被給湯容器への混合給湯を開始し、前記第1給湯路中ま
たは前記第1給湯路に供給される湯の温度T1を測定
し、前記湯温T1が前記目標温度Tmに等しくなるよう
に、前記湯温T1の温度制御を行う温度制御工程S1を
前記混合給湯運転中継続的に実行し、前記温度制御工程
S1と並行して、前記湯温T1と前記第2給湯路の湯の
温度T2を測定し、二つの湯温T1、T2を前記2系統
に分流された湯の流量比Rで案分して前記湯温T1、T
2の混合湯温Tcを演算する混合湯温演算工程S2と、
前記混合湯温Tcと前記設定温度Tsを比較し、前記混
合湯温Tcが前記設定温度Tsより高い場合は、前記目
標温度Tmを低く修正し、前記混合湯温Tcが前記設定
温度Tsより低い場合は、前記目標温度Tmを高く修正
する目標温度補正工程S3を順次繰り返し実行する点に
ある。
The fourth feature is that the first heat exchange section and the second heat exchange section which are commonly heated by the combustion section comprising a single burner as described in claim 4 of the claims. The hot water heated by the first heat exchanging unit is divided into two systems by using a hot water supply device provided with a hot water supply unit, and one of the split hot water is directly supplied to a predetermined hot water supply container via the first hot water supply passage. After the other hot water that has been discharged and diverted is reheated in the second heat exchange unit, the hot water is discharged to the hot water supply container through a second hot water supply path, and the hot water diverted to the two systems is supplied to the hot water supply destination. In the temperature adjusting method for mixing and supplying hot water to a container, a target temperature Tm of hot water heated in the first heat exchange unit and supplied to the first hot water supply path and the second heat exchange unit is supplied to the hot water supply container. Temporarily set to a predetermined initial value based on the set temperature Ts of the hot water to be mixed and supplied, and mixed with the hot water supply container. The hot water supply is started, and the temperature T1 of the hot water in the first hot water supply path or supplied to the first hot water supply path is measured, and the temperature of the hot water temperature T1 is set so that the hot water temperature T1 becomes equal to the target temperature Tm. The temperature control step S1 for performing the control is continuously performed during the mixed hot water supply operation. In parallel with the temperature control step S1, the hot water temperature T1 and the hot water temperature T2 of the second hot water supply path are measured. The hot water temperatures T1 and T2 are divided by the flow ratio R of the hot water divided into the two systems, and the hot water temperatures T1 and T2 are divided.
A mixed hot water temperature calculating step S2 for calculating the mixed hot water temperature Tc of No. 2;
The mixed hot water temperature Tc is compared with the set temperature Ts. If the mixed hot water temperature Tc is higher than the set temperature Ts, the target temperature Tm is corrected to be lower, and the mixed hot water temperature Tc is lower than the set temperature Ts. In this case, the point is that the target temperature correction step S3 for correcting the target temperature Tm to be higher is sequentially and repeatedly executed.

【0010】同第五の特徴構成は、特許請求の範囲の欄
の請求項5に記載した通り、上述の第四の特徴構成に加
えて、前記混合湯温演算工程S2と前記目標温度補正工
程S3を順次繰り返し実行中に、前記混合湯温Tcと前
記設定温度Tsが所定の誤差範囲内で等しくなった場合
に、前記目標温度Tmをその時の前記湯温T1に固定し
て、前記混合湯温演算工程S2と前記目標温度補正工程
S3の実行を中止する点にある。
The fifth characteristic configuration is, as described in claim 5 in the claims section, in addition to the fourth characteristic configuration, the mixed hot water temperature calculating step S2 and the target temperature correcting step. If the mixed hot water temperature Tc and the set temperature Ts become equal within a predetermined error range during the repeated execution of S3, the target temperature Tm is fixed to the hot water temperature T1 at that time, and the mixed hot water is fixed. The point is that the execution of the temperature calculation step S2 and the target temperature correction step S3 is stopped.

【0011】同第六の特徴構成は、特許請求の範囲の欄
の請求項6に記載した通り、上述の第四または第五の特
徴構成に加えて、前記混合湯温演算工程S2の実行前
に、前記第1給湯路または前記第2給湯路の流量を測定
して、前記流量比Rを演算する点にある。
The sixth characteristic configuration is, as described in claim 6 of the claims section, in addition to the fourth or fifth characteristic configuration, before the mixed hot water temperature calculation step S2 is performed. The point is that the flow rate R is calculated by measuring the flow rate of the first hot water supply path or the second hot water supply path.

【0012】同第七の特徴構成は、特許請求の範囲の欄
の請求項7に記載した通り、上述の第四または第五の特
徴構成に加えて、前記被給湯容器への前記混合給湯を開
始する前に、前記2系統に分流された湯の流量比Rを学
習する流量比学習工程S4を予め少なくとも一回実行し
た状態において、前記被給湯容器への混合給湯を開始
し、前記混合湯温演算工程S2において、前記流量比学
習工程S4で学習した流量比Rを使用する点にある。
The seventh aspect of the present invention is directed to a seventh aspect of the present invention, in addition to the fourth or fifth aspect, in which the mixed hot water supply to the hot water supply container is performed in addition to the fourth or fifth aspect. Before the start, the mixed hot water supply to the hot water supply container is started in a state where the flow ratio learning step S4 for learning the flow ratio R of the hot water divided into the two systems is performed at least once in advance. In the temperature calculation step S2, the flow rate ratio R learned in the flow rate ratio learning step S4 is used.

【0013】同第八の特徴構成は、特許請求の範囲の欄
の請求項8に記載した通り、上述の第七の特徴構成に加
えて、前記流量比学習工程S4において、前記第1熱交
換部で加熱された湯を2系統に分流し、分流された一方
の湯を一定温度で前記被給湯容器に前記第1給湯路を介
して直接出湯し、分流された他方の湯を前記第2熱交換
部で再加熱した後、前記被給湯容器に前記第2給湯路を
介して出湯して行う前記被給湯容器への混合給湯を、前
記被給湯容器内の水位が前記第1給湯路及び前記第2給
湯路の出湯口より上位になるまで継続し、前記混合給湯
中に、前記第1給湯路及び前記第2給湯路の夫々の給湯
温度T1、T2を測定し、前記混合給湯停止後、前記被
給湯容器内の混合された湯を前記第1給湯路、前記第2
給湯路、またはその両方に誘引して混合湯温T3を測定
し、測定した前記湯温T1、T2及び前記混合湯温T3
に基づいて、前記2系統に分流された湯の流量比Rを演
算し、前記流量比Rの既学習値または初期設定値を更新
する点にある。
The eighth feature of the present invention is the same as the eighth feature of the present invention, except that, in the flow rate ratio learning step S4, the first heat exchange is performed. The hot water heated in the section is divided into two systems, one of the divided hot water is directly discharged to the hot water supply container via the first hot water supply path at a constant temperature, and the other of the divided hot water is discharged into the second hot water container in the second system. After reheating in the heat exchange section, the mixed hot water supply to the hot water supply container is performed by tapping the hot water supply container through the second hot water supply path, and the water level in the hot water supply container is set to the first hot water supply path and The hot water supply temperature of the first hot water supply path and the second hot water supply path is measured during the mixed hot water supply until the temperature becomes higher than the outlet of the second hot water supply path. Mixing the hot water in the hot water supply container with the first hot water supply path and the second hot water supply path;
The mixed hot water temperature T3 is measured by inviting the mixed hot water to the hot water supply path or both, and the measured hot water temperatures T1, T2 and the mixed hot water temperature T3 are measured.
, The flow ratio R of the hot water diverted into the two systems is calculated, and the learned value or the initial setting value of the flow ratio R is updated.

【0014】同第九の特徴構成は、特許請求の範囲の欄
の請求項9に記載した通り、上述の第八の特徴構成に加
えて、前記流量比学習工程S4において、前記混合湯温
T3を測定する前に、前記被給湯容器内の湯を前記第1
給湯路及び前記第2給湯路を介して循環させる点にあ
る。
According to a ninth feature of the present invention, in addition to the eighth feature of the present invention, in the flow rate ratio learning step S4, the mixed hot water temperature T3 Before measuring the hot water in the hot-water supply container,
The point is to circulate through the hot water supply path and the second hot water supply path.

【0015】同第十の特徴構成は、特許請求の範囲の欄
の請求項10に記載した通り、上述の第八または第九の
特徴構成に加えて、前記流量比学習工程S4において、
前記混合給湯開始前に、前記被給湯容器内の湯を前記第
1給湯路及び前記第2給湯路を介して循環させるための
所定動作を開始し、その動作開始後に循環水流を検知し
た場合、前記流量比Rを更新せずに学習を中止する点に
ある。
According to a tenth feature of the present invention, as described in claim 10 of the claims, in addition to the eighth or ninth feature of the present invention, in the flow ratio learning step S4,
Before starting the mixed hot water supply, starting a predetermined operation for circulating the hot water in the hot water supply container through the first hot water supply path and the second hot water supply path, and detecting a circulating water flow after the start of the operation; The point is that learning is stopped without updating the flow rate ratio R.

【0016】同第十一の特徴構成は、特許請求の範囲の
欄の請求項11に記載した通り、上述の第八、第九また
は第十の特徴構成に加えて、前記流量比学習工程S4に
おいて、前記混合給湯を所定の給湯総量分行い停止した
後に、前記混合給湯停止後の実際の測定水位と予め記憶
してある前記所定の給湯給湯総量に相当する設定水位が
合致するかどうかを判定し、合致しない場合は、前記流
量比Rを更新せずに学習を中止する点にある。
According to an eleventh feature of the present invention, in addition to the eighth, ninth, or tenth feature of the present invention, the flow rate ratio learning step S4 In the above, after the mixed hot water supply is performed for a predetermined total amount of hot water supply and stopped, it is determined whether or not the actual measured water level after the stop of the mixed hot water supply and the set water level corresponding to the predetermined total amount of hot water supply hot water stored in advance match. However, if they do not match, the learning is stopped without updating the flow rate ratio R.

【0017】同第十二の特徴構成は、特許請求の範囲の
欄の請求項12に記載した通り、上述の第八、第九また
は第十の特徴構成に加えて、前記流量比学習工程S4に
おいて、前記混合給湯を所定の給湯停止水位まで行い停
止した後に、前記混合給湯の実給湯総量と予め記憶して
ある前記給湯停止水位に相当する給湯量が合致するかど
うかを判定し、合致しない場合は、前記流量比Rを更新
せずに学習を中止する点にある。
According to a twelfth feature, the flow rate learning step S4 is performed in addition to the eighth, ninth or tenth features described above. In the above, after the mixed hot water supply is performed to a predetermined hot water supply stop water level and stopped, it is determined whether or not the actual hot water supply total amount of the mixed hot water supply matches the hot water supply amount corresponding to the previously stored hot water supply stop water level, and does not match. In this case, the learning is stopped without updating the flow rate ratio R.

【0018】同第十三の特徴構成は、特許請求の範囲の
欄の請求項13に記載した通り、上述の第四または第五
の特徴構成に加えて、前記被給湯容器への混合給湯が終
了した後、前記被給湯容器内の湯を前記第1給湯路及び
前記第2給湯路を介して循環させ、前記被給湯容器内の
混合された湯の混合湯温T3を測定し、測定した前記混
合湯温T3と前記混合湯温演算工程S2で求めた前記混
合湯温Tcまたは前記設定温度Tsを比較し、比較した
結果、前記混合湯温T3と前記混合湯温Tcまたは前記
設定温度Tsが異なる場合に、前記混合湯温演算工程S
2で前記混合湯温Tcを演算するのと同じ方法で前記湯
温T1、T2から前記混合湯温T3を導出することので
きる流量比Rtを演算し、前記混合湯温演算工程S2で
使用した前記流量比Rを前記流量比Rtで更新する点に
ある。
According to a thirteenth characteristic configuration, as described in claim 13 of the claims, in addition to the above-described fourth or fifth characteristic configuration, mixed hot water supply to the hot water supply container is performed. After completion, the hot water in the hot water supply container was circulated through the first hot water supply channel and the second hot water supply channel, and the mixed hot water temperature T3 of the mixed hot water in the hot water supply container was measured and measured. The mixed hot water temperature T3 is compared with the mixed hot water temperature Tc or the set temperature Ts obtained in the mixed hot water temperature calculation step S2. As a result of the comparison, the mixed hot water temperature T3 and the mixed hot water temperature Tc or the set temperature Ts are compared. Are different, the mixed hot water temperature calculating step S
The flow rate ratio Rt at which the mixed hot water temperature T3 can be derived from the hot water temperatures T1 and T2 is calculated in the same manner as that for calculating the mixed hot water temperature Tc in Step 2, and used in the mixed hot water temperature calculating step S2. The point is that the flow ratio R is updated with the flow ratio Rt.

【0019】〔作用効果〕以下に、上記各特徴構成にお
ける作用効果を説明する。第一の特徴構成によれば、前
記給湯用加熱部で加熱されその一部が前記追焚用加熱部
で再加熱された湯と、前記給湯用加熱部だけで加熱され
た湯が、前記2経路で前記浴槽に供給されるため、前記
浴槽内の実際の給湯温度は直接温度制御可能な前記給湯
用加熱部の出湯温度と異なり高くなるが、前記浴槽温度
算出手段が、前記流路別給湯温度測定手段で測定した前
記往路と前記復路から供給される湯の給湯温度と前記往
路と前記復路から供給される湯の流量比から、前記2経
路から供給され前記浴槽内で混合する湯の温度である浴
槽温度を算出し、前記制御手段がその算出した算出浴槽
温度と予め設定され設定浴槽温度合致するように前記給
湯用加熱部の出湯温度を制御することで、最終的に前記
浴槽に供給される湯の温度が前記設定浴槽温度に等しく
できるのである。尚、前記給湯用加熱部の出湯温度制御
は、例えば、前記給湯用加熱部で加熱された高温の湯と
加熱前の水との混合比の調整、前記燃焼部の燃焼量の調
整、前記給湯用加熱部への給水量の調整、または、これ
らの組み合わせによって可能である。
[Functions and Effects] The functions and effects of each of the above-described features will be described below. According to the first characteristic configuration, the hot water heated by the hot water supply heating unit and a part thereof is reheated by the additional heating heating unit, and the hot water heated only by the hot water supply heating unit is the 2nd hot water. Since the hot water supply temperature in the bath tub is different from the tapping temperature of the hot water supply heating unit capable of directly controlling the temperature, the hot water supply temperature in the bath tub is increased by the path. The temperature of hot water supplied from the two paths and mixed in the bathtub from the hot water supply temperature of the hot water supplied from the forward path and the return path measured by the temperature measuring means and the flow rate ratio of the hot water supplied from the forward path and the return path. Is calculated, and the control means controls the tapping temperature of the heating unit for hot water supply so that the calculated calculated bathtub temperature matches the preset bathtub temperature, thereby finally supplying the bathtub to the bathtub. The temperature of the hot water is set to the bathtub temperature Than it can be equal to. The tapping temperature control of the heating unit for hot water supply includes, for example, adjustment of a mixing ratio of hot water heated by the heating unit for hot water supply and water before heating, adjustment of a combustion amount of the combustion unit, and control of the hot water supply. It is possible by adjusting the amount of water supplied to the heating unit or by combining these.

【0020】また、追い焚きのために前記浴槽と前記追
焚用加熱部間で湯水を循環させるために設けられた前記
往路と前記復路の両方を使用するので、前記浴槽へ短時
間に給湯できるのである。
In addition, since both the forward path and the return path provided for circulating hot water between the bathtub and the additional heating unit for reheating are used, hot water can be supplied to the bathtub in a short time. It is.

【0021】更に、共通の燃焼部によって前記給湯用交
換器と同時に加熱される前記追焚用熱交換器を使用して
給湯するため、熱効率を高めることができ、且つ、前記
追焚用熱交換器内に湯水が滞留することが避けられ、ス
ケール析出も抑制できるのである。
Further, since the hot water is supplied by using the additional heat exchanger which is heated simultaneously with the hot water exchanger by the common combustion section, the heat efficiency can be improved and the additional heat exchange can be performed. Hot water can be prevented from staying in the vessel, and scale precipitation can be suppressed.

【0022】以上の結果として、従来の給湯装置に比し
て、高性能化、高品質化、低コスト化、低ランニングコ
スト化を図ることできるのである。
As a result, higher performance, higher quality, lower cost, and lower running cost can be achieved as compared with the conventional hot water supply apparatus.

【0023】第二の特徴構成によれば、流量比の学習を
伴う、または、流量比の学習のための前記浴槽への給湯
時に、前記流路別給湯温度測定手段で前記往路及び前記
復路の2系統に分流した湯の給湯温度を測定し、所定の
給湯量を給湯後に給湯を停止し、前記浴槽温度測定手段
で前記浴槽内の湯を前記往路及び前記復路の少なくとも
一方に誘引してその湯温を測定し、各別に測定した前記
往路及び前記復路の2系統に分流した湯の給湯温度と前
記浴槽内の湯温に基づいて、前記流量比を学習すること
ができる。具体的には、前記往路及び前記復路の給湯温
度をその流量比で案分すれば前記浴槽温度が求まること
から、各温度が求まれば、前記流量比が逆算によって得
られ、得られた流量比で既存値を更新することで流量比
の学習ができるのである。尚、浴槽温度測定手段として
の水温計を前記浴槽内に設けることで従来技術の問題点
は解決するように思われるが、そのように浴槽自体に水
温計を設けることは浴槽自体の製造コストを大幅に高騰
させることになる。また、混合給湯中は、前記浴槽内の
湯を前記往路または前記復路に誘引できないため、前記
浴槽温度測定手段及び前記流路別給湯温度測定手段では
浴槽温度を測定できないことに注意を要する。
According to the second characteristic configuration, at the time of hot water supply to the bathtub with learning of the flow rate ratio or learning of the flow rate ratio, the hot water supply temperature measuring means for each flow path measures the forward path and the return path. The hot water temperature of the hot water diverted into the two systems is measured, the hot water supply is stopped after supplying a predetermined hot water supply amount, and the hot water in the bath tub is led to at least one of the outward route and the return route by the bath temperature measuring means. The hot water temperature is measured, and the flow rate ratio can be learned based on the hot water supply temperature of the hot water diverted to the two systems of the outward route and the homeward route and the hot water temperature in the bathtub. Specifically, if the hot water supply temperatures of the forward path and the return path are divided by the flow rate ratio, the bathtub temperature is determined, and if each temperature is determined, the flow rate ratio is obtained by back calculation, and the obtained flow rate is obtained. The flow ratio can be learned by updating the existing value with the ratio. In addition, it seems that the problem of the prior art is solved by providing a water thermometer as the bathtub temperature measuring means in the bathtub. However, providing the water thermometer in the bathtub itself as described above reduces the manufacturing cost of the bathtub itself. It will greatly increase. Also, it should be noted that the hot tub in the bath tub cannot be drawn to the outgoing path or the return path during the mixed hot water supply, so that the bath tub temperature measuring means and the hot water temperature measuring means for each flow path cannot measure the bath tub temperature.

【0024】更に、流量比の学習を伴わない通常の浴槽
給湯時に、前記流量比学習手段が学習した流量比を前記
流量比記憶手段から読み出して、前記浴槽温度算出手段
がその流量比に基づいて前記浴槽温度を算出することが
できる。つまり、前記浴槽へ給湯する毎に、毎回流量比
を求める必要がないため、前記浴槽温度を算出する手
順、それに基づく前記給湯用加熱部の給湯温度を制御す
る制御手順が簡略化できるのである。
Further, at the time of normal bath water supply without learning of the flow ratio, the flow ratio learned by the flow ratio learning means is read from the flow ratio storage means, and the bath tub temperature calculating means is based on the flow ratio. The bath temperature can be calculated. That is, since it is not necessary to calculate the flow rate every time the hot water is supplied to the bathtub, the procedure for calculating the bathtub temperature and the control procedure for controlling the hot water supply temperature of the hot water supply heating unit based thereon can be simplified.

【0025】一般に、前記往路及び前記復路の2系統に
分流した湯の流量比は、給湯装置の各構成部品の寸法バ
ラツキ等の装置バラツキ、給湯装置から浴槽までの配管
の長さ等の配管及び設置状態、及び、給水管の元水圧の
変動によって変動するので、給湯装置本体の製造時に予
め決定されるものではない。しかしながら、前記装置バ
ラツキや前記配管及び設置状態は、配管及び設置後は一
定状態であり、元水圧の変動も頻繁な変動ではなく、季
節的なゆるやかな変動が一般的である。よって、設置
後、始動前に少なくとも一回は流量比学習が必要であ
り、好ましくは年間に数回の定期的な学習を行う。この
ことより、第二の特徴構成によれば、季節や周辺環境の
変化に伴う長期的な元水圧の変動を的確に流量比の変動
に反映することができ、正確な給湯温度調整ができるの
である。
Generally, the flow ratio of the hot water diverted to the two systems, the outgoing route and the return route, is determined by the variation in the size of each component of the hot water supply device, the length of the pipe from the hot water supply device to the bathtub, and the like. The value varies depending on the installation state and the variation of the original water pressure of the water supply pipe, and is not determined in advance when the water heater main body is manufactured. However, the device variation and the piping and installation state are constant after the piping and installation, and the fluctuation of the original water pressure is not a frequent fluctuation but a seasonal gradual fluctuation. Therefore, after the installation, the flow ratio learning needs to be performed at least once before the start, and the periodic learning is preferably performed several times a year. From this, according to the second characteristic configuration, long-term fluctuations in the original water pressure due to changes in the season and surrounding environment can be accurately reflected in fluctuations in the flow rate ratio, and accurate hot water supply temperature adjustment can be performed. is there.

【0026】また、前記流量比は、後述する第三の特徴
構成のように、流量センサを用いて直接的に求めること
も可能であるが、第二の特徴構成によれば、別途流量セ
ンサを設ける必要がないため、低コスト化が図れるので
ある。
Further, the flow rate ratio can be directly obtained by using a flow rate sensor as in a third feature configuration described later, but according to the second feature configuration, a separate flow rate sensor is required. Since there is no need to provide them, cost reduction can be achieved.

【0027】第三の特徴構成によれば、前記流量センサ
からの流量に基づいて前記流量比を直接算出できるた
め、流量比の精度を高めることができる。特に、元水圧
の変動が頻繁に起こる場合に有効である。
According to the third characteristic configuration, the flow rate ratio can be directly calculated based on the flow rate from the flow rate sensor, so that the accuracy of the flow rate ratio can be improved. This is particularly effective when the original water pressure frequently fluctuates.

【0028】第四の特徴構成によれば、前記被給湯容器
への混合給湯において、前記温度制御工程S1が前記第
1給湯路と前記第2給湯路の内の前記第1給湯路だけを
対象として温度制御を実行することで、混合湯温が正確
に設定温度に調整できるのである。ここで、前記温度制
御工程S1において、制御対象を前記第1給湯路だけに
限定することで、制御手順の簡単化が図れると共に、安
定した制御が得られるのである。
According to the fourth characteristic configuration, in the mixed hot water supply to the hot water supply container, the temperature control step S1 targets only the first hot water supply path of the first hot water supply path and the second hot water supply path. By performing the temperature control as described above, the temperature of the mixed hot water can be accurately adjusted to the set temperature. Here, in the temperature control step S1, by limiting the control target to only the first hot water supply path, the control procedure can be simplified and stable control can be obtained.

【0029】また、前記第1給湯路と前記第2給湯路の
何れか一方だけを使用する場合は、直接給湯温度T1ま
たはT2を測定でき、前記被給湯容器への給湯温度を正
確に設定温度に調整できるが、本特徴構成であれば、正
確な給湯温度調整ができると同時に、前記第1給湯路と
前記第2給湯路の両方を使用するので、何れか一方だけ
を使用する場合に比べて前記被給湯容器への混合給湯が
短時間に終了できるのである。
When only one of the first hot water supply path and the second hot water supply path is used, the hot water supply temperature T1 or T2 can be measured directly, and the hot water supply temperature to the hot water supply container can be accurately set to the set temperature. However, according to this characteristic configuration, accurate hot water supply temperature adjustment can be performed, and at the same time, both the first hot water supply path and the second hot water supply path are used. Thus, the mixed hot water supply to the hot water supply container can be completed in a short time.

【0030】更に、共通の燃焼部によって前記第1熱交
換部が加熱給湯されるときは同時に前記第2熱交換部も
加熱給湯されるため、熱効率を高めることができ、且
つ、前記第2熱交換部内に湯水が滞留することが避けら
れ、スケール析出が抑制できるのである。
Further, when the first heat exchange section is heated and supplied by the common combustion section, the second heat exchange section is also heated and supplied at the same time, so that the thermal efficiency can be improved and the second heat exchange section can be provided. Hot water can be prevented from staying in the exchange section, and scale precipitation can be suppressed.

【0031】第五の特徴構成によれば、前記被給湯容器
への混合給湯運転が一旦定常状態に達した後は、前記目
標温度Tmが一定値に固定されるため、二つの湯温T
1、T2の測定値が外乱等によって擾乱を受けても、前
記温度制御工程S1は安定した温度制御を行うことがで
きるのである。また、湯温T2の測定、前記混合湯温演
算工程S2、及び、目標温度補正工程S3を継続する必
要がないため省電力化が図れるのである。
According to the fifth characteristic configuration, once the mixed hot water supply operation to the hot water supply container reaches a steady state, the target temperature Tm is fixed at a constant value.
1, even if the measured value of T2 is disturbed by disturbance or the like, the temperature control step S1 can perform stable temperature control. Further, since it is not necessary to continue the measurement of the hot water temperature T2, the mixed hot water temperature calculating step S2, and the target temperature correcting step S3, power saving can be achieved.

【0032】第六の特徴構成によれば、前記第1給湯路
または前記第2給湯路の流量と、前記第1熱交換部の燃
焼制御に使用する前記第1熱交換部の給水量または出湯
量から前記流量比Rを演算により求めることができる。
演算により得られた流量比Rは、実際の給湯時の元水圧
の状況を正確に反映した極めて正確な流量比Rを得るこ
とができるため、元水圧が頻繁に変動する状況下にあっ
ても、前記被給湯容器への給湯温度を正確に設定温度に
調整できるのである。
According to the sixth characteristic configuration, the flow rate of the first hot water supply passage or the second hot water supply passage, and the amount of water supply or discharge of the first heat exchange unit used for controlling the combustion of the first heat exchange unit. The flow rate ratio R can be obtained by calculation from the amount of hot water.
Since the flow rate ratio R obtained by the calculation can obtain an extremely accurate flow rate ratio R that accurately reflects the situation of the original water pressure at the time of actual hot water supply, even in a situation where the original water pressure frequently fluctuates. Therefore, the temperature of hot water supplied to the hot water supply container can be accurately adjusted to the set temperature.

【0033】第七の特徴構成によれば、第二の特徴構成
の作用の項で既述した前記装置バラツキや前記配管及び
設置状態、及び、季節や周辺環境の変化に伴う長期的な
元水圧の変動を的確に反映させた流量比を予め学習させ
ておくことで、給湯装置を実際に前記被給湯容器への混
合給湯に使用する時に、正確な流量比を使え、前記被給
湯容器への給湯温度を正確に設定温度に調整できるので
ある。また、一旦正確な流量比を学習しておけば、季節
や周辺環境の変化等によって前記流量比が変動しない限
り、前記被給湯容器への混合給湯運転毎に毎回流量比を
求める必要がないため、制御手順の簡略化が図れるので
ある。
[0033] According to the seventh characteristic configuration, the long-term original water pressure due to the variation of the apparatus, the piping and the installation state, and the season and the change of the surrounding environment as described in the section of the operation of the second characteristic configuration. By learning in advance the flow ratio that accurately reflects the fluctuations of the hot water supply device, when the hot water supply device is actually used for mixed hot water supply to the hot water supply container, an accurate flow rate ratio can be used, and the hot water supply The hot water supply temperature can be accurately adjusted to the set temperature. Further, once the accurate flow rate ratio is learned, it is not necessary to determine the flow rate every time the mixed hot water supply operation to the hot water supply container is performed, unless the flow rate ratio fluctuates due to a change in the season or the surrounding environment. Thus, the control procedure can be simplified.

【0034】第八の特徴構成によれば、前記被給湯容器
への混合給湯を、前記被給湯容器内の水位が前記第1給
湯路及び前記第2給湯路の出湯口より上位の給湯停止水
位になるまで行うので、その混合給湯停止後、前記被給
湯容器内の混合された湯を前記第1給湯路、前記第2給
湯路、またはその両方に誘引して混合湯温が測定でき、
更に、前記第1給湯路及び前記第2給湯路の給湯温度を
その流量比で案分すれば前記混合湯温が求まることか
ら、前記第1給湯路、前記第2給湯路の各給湯温度、及
び、前記被給湯容器内の混合湯温が求まれば、前記流量
比が簡単な演算によって逆算でき、得られた流量比で既
存値を更新することで流量比の学習ができるのである。
According to the eighth characteristic configuration, the mixed hot water supply to the hot water supply container is performed by changing the water level in the hot water supply container higher than the outlets of the first hot water supply passage and the second hot water supply passage. After the mixed hot water supply is stopped, the mixed hot water in the hot water supply container is drawn into the first hot water supply path, the second hot water supply path, or both, and the mixed hot water temperature can be measured.
Furthermore, if the hot water supply temperatures of the first hot water supply passage and the second hot water supply passage are divided by the flow rate ratio, the mixed hot water temperature is obtained, so that the hot water supply temperatures of the first hot water supply passage and the second hot water supply passage, When the temperature of the mixed hot water in the hot water supply container is obtained, the flow rate ratio can be calculated backward by a simple calculation, and the flow rate ratio can be learned by updating the existing value with the obtained flow rate ratio.

【0035】第九の特徴構成によれば、前記被給湯容器
内の湯を前記第1給湯路及び前記第2給湯路を介して循
環させることで、前記被給湯容器内の湯の混合を促進
し、短時間で正確な前記混合湯温の測定ができるのであ
る。
According to the ninth characteristic configuration, the hot water in the hot water supply container is circulated through the first hot water supply passage and the second hot water supply passage, so that mixing of the hot water in the hot water supply container is promoted. In addition, the temperature of the mixed hot water can be accurately measured in a short time.

【0036】第十の特徴構成によれば、前記流量比学習
工程開始時に前記被給湯容器内に残留している湯または
水の影響で流量比の学習が不正確になるのを防止できる
のである。
According to the tenth characteristic configuration, it is possible to prevent the learning of the flow rate ratio from becoming inaccurate due to the effect of hot water or water remaining in the hot water supply container at the start of the flow ratio learning step. .

【0037】第十一または第十二の特徴構成によれば、
前記流量比学習工程開始時に前記被給湯容器内に湯また
は水が残留していたと判断でき、流量比の学習が不正確
になるのを防止できるのである。
According to the eleventh or twelfth feature,
At the start of the flow rate ratio learning step, it can be determined that hot water or water remains in the hot water supply container, and learning of the flow rate ratio can be prevented from becoming inaccurate.

【0038】第十三の特徴構成によれば、前記流量比が
季節変動等に比べて頻繁に変動しても、変動が発生する
毎に前記流量比を学習することができ、前記流量比が変
動した後、不正確な流量比を長期間使用し続けることが
防止できるのである。
According to the thirteenth characteristic configuration, even if the flow ratio fluctuates more frequently than seasonal fluctuations or the like, the flow ratio can be learned each time a fluctuation occurs, and After fluctuating, it is possible to prevent an incorrect flow ratio from being used for a long time.

【0039】[0039]

【発明の実施の形態】以下に、本発明に係る給湯装置の
一実施の形態(以下、本発明装置という)を図面に基づ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a hot water supply apparatus according to the present invention (hereinafter referred to as the apparatus of the present invention) will be described below with reference to the drawings.

【0040】先ず、本発明装置を用いた風呂給湯システ
ムの各種配管及び装置類の接続関係等のシステム構成に
つき説明する。本発明装置は、図1に示すように、給水
路1から給水される水が給湯用熱交換器10で加熱され
給湯路2を介して出湯する給湯用加熱部11を備え、前
記給湯用加熱部11は前記給湯用熱交換器10が単一の
バーナ12の燃焼により加熱されるように構成され、前
記バーナ12の燃焼は、ガス供給路9からの燃料供給と
燃焼ファン(図示せず)からの燃焼用空気の供給を受け
て、燃焼制御手段40が前記燃料供給並びに燃焼用空気
の供給を適切に制御することで実行される。また、前記
ガス供給路9にはガス切替え電磁弁13、ガス流量調整
弁14、元ガス電磁弁15が設けられている。尚、前記
ガス供給路9は3系統に分岐して、分岐したガス供給路
9各別に前記ガス切替え電磁弁13が設けられ、前記バ
ーナ12に接続されて多段式バーナを形成している。
First, the system configuration of the bath water supply system using the apparatus of the present invention, such as the connection relationship between various pipes and devices, will be described. As shown in FIG. 1, the apparatus of the present invention includes a hot water supply heating unit 11 in which water supplied from a water supply passage 1 is heated by a hot water supply heat exchanger 10 and discharged through the hot water supply passage 2. The unit 11 is configured such that the hot water supply heat exchanger 10 is heated by the combustion of a single burner 12, and the combustion of the burner 12 is performed by fuel supply from the gas supply passage 9 and a combustion fan (not shown). When the combustion control means 40 receives the supply of combustion air from the fuel supply device, it appropriately executes the fuel supply and the supply of combustion air. The gas supply path 9 is provided with a gas switching solenoid valve 13, a gas flow regulating valve 14, and a source gas solenoid valve 15. The gas supply path 9 branches into three systems, and the gas switching electromagnetic valve 13 is provided for each of the branched gas supply paths 9 and connected to the burner 12 to form a multi-stage burner.

【0041】また、前記給水路1には、逆止弁16と給
水量計測用の水量センサ17と給水温度計測用の給水サ
ーミスタ18が設けられている。また、前記給水路1は
前記水量センサ17の下流側の分岐点Aで分岐し、その
分岐点Aに給水バイパス路3が接続している。前記給湯
路2には、前記給水バイパス路3に接続し、前記給水バ
イパス路3からの水と前記給湯用熱交換器10から出湯
する湯を混合して前記給湯路2の下流側に出湯するミキ
シングバルブ19が設けられている。更に、前記給湯路
2の前記ミキシングバルブ19の上流側に給湯サーミス
タ20が、また、その下流側に水比例弁21と出湯サー
ミスタ22が設けられている。前記給湯路2は、前記給
湯サーミスタ20の下流側の分岐点Bで2系統に分岐
し、その一方が浴槽23への給湯用の浴槽給湯路4を形
成している。
The water supply passage 1 is provided with a check valve 16, a water amount sensor 17 for measuring a water supply amount, and a water supply thermistor 18 for measuring a water supply temperature. Further, the water supply channel 1 branches at a branch point A on the downstream side of the water amount sensor 17, and the water supply bypass passage 3 is connected to the branch point A. The hot water supply path 2 is connected to the water supply bypass path 3, mixes water from the water supply bypass path 3 with hot water from the hot water supply heat exchanger 10, and discharges water downstream of the hot water supply path 2. A mixing valve 19 is provided. Further, a hot water supply thermistor 20 is provided on the upstream side of the mixing valve 19 of the hot water supply path 2, and a water proportional valve 21 and a hot water supply thermistor 22 are provided on the downstream side thereof. The hot water supply path 2 is branched into two systems at a branch point B on the downstream side of the hot water supply thermistor 20, one of which forms a bathtub hot water supply path 4 for supplying hot water to the bathtub 23.

【0042】また、前記燃焼制御手段40に設定給湯温
度等の指示を与えたり、また、前記燃焼制御手段40か
らの燃焼状況に関する情報を表示するリモコン操作部3
8が本発明装置とは別体で設けられている。前記燃焼制
御手段40は、前記水量センサ17、前記給水サーミス
タ18並びに前記給湯サーミスタ20からの各計測情報
と前記リモコン操作部38からの情報を基に設定される
設定給湯温度に基づいて前記給湯用加熱部11の必要燃
焼量を演算により設定し、その設定燃焼量に基づいて燃
料供給量と燃焼用空気の供給量の設定を行い、前記燃焼
ファンの回転数の制御を行う。
Further, a remote control operating unit 3 for giving an instruction such as a set hot water supply temperature to the combustion control means 40 and displaying information on a combustion state from the combustion control means 40.
8 is provided separately from the device of the present invention. The combustion control means 40 performs the hot water supply on the basis of a set hot water supply temperature set based on each measurement information from the water amount sensor 17, the water supply thermistor 18, and the hot water supply thermistor 20 and information from the remote control operation unit 38. The required combustion amount of the heating unit 11 is set by calculation, the fuel supply amount and the supply amount of combustion air are set based on the set combustion amount, and the rotation speed of the combustion fan is controlled.

【0043】前記浴槽23の復路5から給水される前記
浴槽23内の湯が追焚用熱交換器24で加熱され前記浴
槽23の往路6から前記浴槽23へ出湯する追焚用加熱
部25を備え、前記追焚用熱交換器24は前記給湯用熱
交換器10の上部に位置し、前記バーナ12によって前
記給湯用熱交換器10と同時に加熱されるように設けら
れている。前記復路5及び前記往路6夫々の一方端は前
記浴槽23の内壁面に設けられた開口部26に接続して
いる。
The hot water in the bath tub 23 supplied from the return path 5 of the bath tub 23 is heated by the additional heat exchanger 24, and the hot water is supplied to the bath tub 23 from the outward path 6 of the bath tub 23. The additional heat exchanger 24 is located above the hot water supply heat exchanger 10 and is provided so as to be heated by the burner 12 at the same time as the hot water supply heat exchanger 10. One end of each of the return path 5 and the outward path 6 is connected to an opening 26 provided on the inner wall surface of the bathtub 23.

【0044】前記浴槽給湯路4は、浴槽給湯弁27、逆
流ホッパ28、逆止弁29を介して、前記往路6と分岐
点Cで接続し、その分岐点Cより前記追焚用熱交換器2
4側の前記往路6には、三方弁30と前記往路6内の湯
温を検出する往路サーミスタ31(流路別給湯温度測定
手段の一部)が設けられている。前記復路5には、前記
復路5内の湯温を検出する復路サーミスタ32(流路別
給湯温度測定手段の一部)、浴槽23内の水位を検出す
る水位センサ33、二方弁34、前記浴槽23内の湯を
前記浴槽23と前記追焚用加熱部25間で循環させ追焚
きすることを主目的とした循環ポンプ35、設定量以上
の湯水が流通したことを検出する水流スイッチ36等が
前記浴槽23側からこの順序で設けられている。
The bathtub hot water supply path 4 is connected to the outgoing path 6 at a branch point C via a bathtub hot water supply valve 27, a backflow hopper 28, and a check valve 29, and from the branch point C, the reheating heat exchanger. 2
The four-way outgoing path 6 is provided with a three-way valve 30 and an outgoing-path thermistor 31 (a part of the hot water supply temperature measuring means for each flow path) for detecting the temperature of the hot water in the outgoing path 6. The return path 5 includes a return path thermistor 32 (a part of a hot water supply temperature measuring means for each flow path) for detecting a hot water temperature in the return path 5, a water level sensor 33 for detecting a water level in the bathtub 23, a two-way valve 34, A circulating pump 35 whose main purpose is to circulate the hot water in the bathtub 23 between the bathtub 23 and the additional heating unit 25 for additional heating, a water flow switch 36 for detecting that a set amount or more of hot and cold water flows, and the like. Are provided in this order from the bathtub 23 side.

【0045】また、前記三方弁30の一方口は、前記復
路5の前記二方弁34と前記循環ポンプ35の中間点D
と、循環短絡路7を介して接続し、更に、その中間点D
と前記逆流ホッパ28は排水バイパス路8を介して接続
し、その途中に排水弁37が設けられている。尚、前記
浴槽23内に湯が無く、前記給湯用加熱部11が浴槽給
湯以外の一般給湯用に使用される場合に、前記三方弁3
0は、前記追焚用加熱部25の湯を前記浴槽23を経由
せずに強制的に循環させるための短絡路を前記循環短絡
路7を経由して形成し、前記追焚用熱交換器24内でス
ケールが析出する等の品質劣化を防止する。
Further, one end of the three-way valve 30 is provided at an intermediate point D between the two-way valve 34 and the circulation pump 35 in the return path 5.
Through the circulation short-circuit path 7, and furthermore, the intermediate point D
And the backflow hopper 28 are connected via the drain bypass passage 8, and a drain valve 37 is provided in the middle thereof. When there is no hot water in the bathtub 23 and the hot water supply heating unit 11 is used for general hot water supply other than bathtub hot water supply, the three-way valve 3
0 forms a short-circuit path via the circulation short-circuit path 7 for forcibly circulating the hot water of the reheating heater 25 without passing through the bathtub 23, and the reheating heat exchanger. The quality deterioration such as the deposition of scale in the inside 24 is prevented.

【0046】以下、図1に示す本発明装置を使用して、
前記浴槽23に給湯(湯張り)する場合の各部の動作に
ついて説明する。
Hereinafter, using the apparatus of the present invention shown in FIG.
The operation of each part when hot water is supplied to the bathtub 23 will be described.

【0047】先ず、前記リモコン操作部38の湯張りス
イッチ38aを押し、前記浴槽23への湯張りモードに
設定する。尚、前記湯張りモードになったことはパイロ
ットランプの点灯等で確認する。前記燃焼制御手段40
は、前記リモコン操作部38からの浴槽給湯開始指令を
受信すると、前記燃焼ファンを回転させると共に、前記
ガス切替え電磁弁13、前記元ガス電磁弁15を開弁
し、前記ガス流量調整弁14で設定される点火時の所定
ガス量の燃料ガスを前記バーナ12に供給し、前記バー
ナ12への点火を行う。更に、前記バーナ12への点火
動作と同時に、前記水比例弁21、前記浴槽給湯弁2
7、前記二方弁34、及び、前記三方弁30の前記往路
6側流路を開弁し、前記排水弁37と前記三方弁30の
前記循環短絡路7側流路を閉弁し、前記給湯分岐路6か
ら前記分岐点Cと前記往路6を経由する前記浴槽23ま
での湯はり給湯路(図1中、太線及び実線矢印で示す)
が、前記分岐点Cから前記追焚用加熱部25を経由しな
い第1給湯路50と、経由する第2給湯路51の2系統
に分岐して形成され、前記給湯用加熱部11で加熱され
た湯が、前記浴槽23に供給される。
First, the bathing switch 38a of the remote control operation unit 38 is pressed to set the bathtub 23 in the bathing mode. It should be noted that the hot water filling mode is confirmed by lighting of a pilot lamp or the like. The combustion control means 40
When a bathtub hot water supply start command is received from the remote control operation unit 38, the combustion fan is rotated, the gas switching solenoid valve 13 and the original gas solenoid valve 15 are opened, and the gas flow control valve 14 A predetermined amount of fuel gas at the time of ignition set is supplied to the burner 12, and the burner 12 is ignited. Further, simultaneously with the operation of igniting the burner 12, the water proportional valve 21, the bathtub hot water valve 2
7, the two-way valve 34 and the three-way valve 30 are opened on the outward path 6 side flow path, and the drain valve 37 and the three-way valve 30 are closed on the circulation short circuit path 7 side flow path; A hot water supply path from the hot water supply branch 6 to the bathtub 23 via the branch point C and the forward path 6 (indicated by thick and solid arrows in FIG. 1).
Are formed from the branch point C into two systems, a first hot water supply path 50 that does not pass through the additional heating unit 25 and a second hot water supply path 51 that passes through, and is heated by the hot water supply heating unit 11. Hot water is supplied to the bathtub 23.

【0048】以下、上記のように、前記湯はり給湯路が
2系統に分岐して混合給湯する場合における、各部の制
御方法について説明する。
Hereinafter, a control method of each part in the case where the hot water supply channel branches into two systems and performs mixed hot water supply as described above will be described.

【0049】先ず、混合給湯運転中は、前記燃焼制御手
段40に並設された制御手段が温度制御工程S1を継続
的に実行する。詳しくは、前記第1給湯路50の湯温T
1が前記出湯サーミスタ22、または、前記往路サーミ
スタ31で測定され、前記給水サーミスタ18で測定さ
れる給水温度と前記給湯サーミスタ20で測定される前
記給湯用熱交換器10から出湯直後の給湯温度に基づい
て、前記ミキシングバルブ19のミキシング比、つまり
前記給水バイパス路3からの水と前記給湯用熱交換器1
0から出湯する湯の混合比を調整して、前記浴槽給湯路
4への湯温(前記湯温T1と略等しい)が目標温度Tm
に合致するように制御される。
First, during the mixed hot water supply operation, the control means provided in parallel with the combustion control means 40 continuously executes the temperature control step S1. Specifically, the hot water temperature T of the first hot water supply path 50
1 is measured by the tap water thermistor 22 or the outgoing path thermistor 31, the feed water temperature measured by the feed water thermistor 18 and the hot water temperature immediately after tapping from the hot water supply heat exchanger 10 measured by the hot water feed thermistor 20. Based on the mixing ratio of the mixing valve 19, that is, the water from the water supply bypass passage 3 and the hot water supply heat exchanger 1
The mixing ratio of the hot water to be discharged from 0 is adjusted so that the temperature of the hot water (substantially equal to the hot water temperature T1) to the bathtub hot water supply path 4 becomes the target temperature Tm.
Is controlled to match.

【0050】前記第2給湯路51の湯は前記追焚用加熱
部25で再加熱され、前記第1給湯路50の湯(湯温T
1)より高温になるため、前記第1給湯路50と前記第
2給湯路51から供給され前記浴槽23内で混合される
湯の混合湯温Tcは、式1に示すように、第1給湯路5
0の湯温T1及び第2給湯路51の湯温T2を夫々の流
量の流量比Rで案分した中間値となる。よって、前記リ
モコン操作部38で設定される前記浴槽23に混合給湯
する湯の設定温度Tsを、単純に前記目標温度Tmとす
ると、前記混合湯温Tcは常に前記設定温度Tsより高
温になってしまう。尚、流量比Rは前記浴槽給湯路4の
全流量に対する前記第1給湯路50の流量の比率であ
る。
The hot water in the second hot water supply path 51 is reheated by the additional heating unit 25, and the hot water in the first hot water supply path 50 (hot water temperature T
1) Since the temperature becomes higher, the mixed hot water temperature Tc of the hot water supplied from the first hot water supply passage 50 and the second hot water supply passage 51 and mixed in the bathtub 23 is, as shown in Expression 1, the first hot water supply Road 5
The hot water temperature T1 of 0 and the hot water temperature T2 of the second hot water supply path 51 are intermediate values obtained by dividing the respective flow rates by the flow ratio R. Therefore, assuming that the set temperature Ts of hot water mixed and supplied to the bathtub 23 set by the remote control operation unit 38 is simply the target temperature Tm, the mixed hot water temperature Tc is always higher than the set temperature Ts. I will. The flow ratio R is a ratio of the flow rate of the first hot water supply path 50 to the total flow rate of the bathtub hot water supply path 4.

【0051】[0051]

【数1】Tc=T1×R+T2×(1−R)Tc = T1 × R + T2 × (1-R)

【0052】前記混合湯温Tcは、前記第1給湯路50
及び前記第2給湯路51が夫々独自の異なる温度で給湯
しているために、前記往路サーミスタ31または前記復
路サーミスタ32では直接測定できないので、前記燃焼
制御手段40に並設された浴槽温度算出手段を用いて、
前記温度制御工程S1と並行して、混合湯温演算工程S
2を実行し、演算によって前記混合湯温Tcを求める。
詳しくは、前記湯温T1を前記出湯サーミスタ22、ま
たは、前記往路サーミスタ31で、前記湯温T2を前記
復路サーミスタ32で夫々測定し、後述するように学習
によって予め設定された流量比Rと共に、式1に代入し
て前記混合湯温Tcを求める。
The mixed hot water temperature Tc is determined by the first hot water supply path 50.
Since the second hot water supply path 51 supplies hot water at different temperatures, the outgoing thermistor 31 or the return thermistor 32 cannot directly measure the hot water, so the bath tub temperature calculating means provided in parallel with the combustion control means 40 Using,
In parallel with the temperature control step S1, the mixed hot water temperature calculation step S
2 is performed, and the mixed hot water temperature Tc is obtained by calculation.
Specifically, the hot water temperature T1 is measured by the tapping thermistor 22 or the outgoing thermistor 31, and the hot water temperature T2 is measured by the return thermistor 32, and together with the flow rate R preset by learning as described later, The mixed hot water temperature Tc is obtained by substituting into the equation (1).

【0053】続いて、前記制御手段が、前記温度制御工
程S1での前記目標温度Tmを適正に調整するための目
標温度補正工程S3を実行する。詳しくは、図2のフロ
ーチャートに示すように、前記混合湯温演算工程S2で
算出された混合湯温Tcと前記記設定温度Tsの大小比
較を行う。前記混合湯温Tcが前記設定温度Tsより高
い場合は、前記目標温度Tmを低く修正し、前記混合湯
温Tcが前記設定温度Tsより低い場合は、前記目標温
度Tmを高く修正する。修正された目標温度Tmを前記
温度制御工程S1に常時反映させながら、前記温度制御
工程S1を実行すると共に、並行して、前記混合湯温演
算工程S2と前記目標温度補正工程S3を、前記混合湯
温Tcと前記設定温度Tsが所定の誤差範囲内で等しく
なるまで繰り返し実行し、前記混合湯温Tcと前記設定
温度Tsが所定の誤差範囲内で等しくなった場合に、前
記目標温度Tmをその時の前記湯温T1に固定して、前
記混合湯温演算工程S2と前記目標温度補正工程S3の
実行を中止する。尚、前記温度制御工程S1は、前記浴
槽23へ所定量の湯が供給されたことを前記水位センサ
33が検知して、混合給湯運転が停止するまで継続され
る。
Subsequently, the control means executes a target temperature correction step S3 for properly adjusting the target temperature Tm in the temperature control step S1. More specifically, as shown in the flowchart of FIG. 2, a comparison is made between the mixed hot water temperature Tc calculated in the mixed hot water temperature calculating step S2 and the set temperature Ts. When the mixed hot water temperature Tc is higher than the set temperature Ts, the target temperature Tm is corrected to be lower, and when the mixed hot water temperature Tc is lower than the set temperature Ts, the target temperature Tm is corrected to be higher. The temperature control step S1 is executed while the corrected target temperature Tm is always reflected in the temperature control step S1, and in parallel, the mixed hot water temperature calculation step S2 and the target temperature correction step S3 are performed in the mixing step. The process is repeatedly performed until the hot water temperature Tc and the set temperature Ts become equal within a predetermined error range, and when the mixed hot water temperature Tc and the set temperature Ts become equal within the predetermined error range, the target temperature Tm is changed. At this time, the hot water temperature T1 is fixed, and the execution of the mixed hot water temperature calculating step S2 and the target temperature correcting step S3 are stopped. The temperature control step S1 is continued until the water level sensor 33 detects that a predetermined amount of hot water has been supplied to the bathtub 23, and the mixed hot water supply operation is stopped.

【0054】以下に、流量比Rの学習手順を説明する。
前記燃焼制御手段40に並設された流量比学習手段が流
量比学習工程S4を開始する。前記浴槽23に湯水が残
留していないかの初期チェックを、前記循環ポンプ35
を始動し、前記水流スイッチ36で行う。この時点で、
前記水流スイッチ36が水流を検知すると、前記浴槽2
3に湯水が残留していたと判断し、このままの状態で学
習を続行しても正確な流量比Rを求めることができない
ので、流量比学習工程S4を中止する。
The procedure for learning the flow ratio R will be described below.
The flow ratio learning means arranged in parallel with the combustion control means 40 starts the flow ratio learning step S4. The circulating pump 35 performs an initial check whether hot water remains in the bathtub 23.
Is started, and the water flow switch 36 is used. at this point,
When the water flow switch 36 detects a water flow, the bathtub 2
It is determined that hot and cold water has remained in 3 and even if learning is continued in this state, an accurate flow ratio R cannot be obtained, so the flow ratio learning step S4 is stopped.

【0055】前記初期チェックで問題なければ、前記流
量比学習手段が前記燃焼制御手段40及び前記制御手段
41と連携して、通常の混合給湯と同様に流量比学習用
の混合給湯運転を開始する。前記浴槽給湯路4への給湯
目標温度Tmを一定値に固定して、前記第1給湯路50
と前記第2給湯路51の各給湯温度T1、T2が一定状
態で混合給湯する。また、混合給湯中に各給湯温度T
1、T2の測定は同時に行う。
If there is no problem in the initial check, the flow ratio learning means starts the mixed hot water supply operation for learning the flow ratio in the same manner as the normal mixed hot water supply in cooperation with the combustion control means 40 and the control means 41. . The first hot water supply path 50 is fixed with a target hot water supply temperature Tm to the bath water supply path 4 fixed at a constant value.
And the respective hot water supply temperatures T1 and T2 of the second hot water supply passage 51 are mixed and supplied. Also, during the mixed hot water supply, each hot water supply temperature T
1. The measurement of T2 is performed simultaneously.

【0056】前記流量比学習手段よって、前記水量セン
サ17が給湯量を積算しながら実行し、給湯水位Lが前
記浴槽23の前記開口部26より上位になるのに必要な
予め設定された浴槽給湯量Qに到達した時点で、混合給
湯運転が停止するように制御される。前記水位センサ3
3が混合給湯運転停止時の給湯水位Lを測定し、前記浴
槽給湯量Qに相当する水位LQ とを大小比較して給湯水
位をチェックする。測定水位Lと設定水位LQ が等しく
なければ、前記浴槽23に湯水が残留していた可能性が
高く、このままの状態で学習を続行しても正確な流量比
Rを求めることができないので、前記流量比学習手段は
学習を中止する。
By the flow rate ratio learning means, the water amount sensor 17 executes while integrating the hot water supply amount, and a preset bath water supply necessary for the hot water level L to be higher than the opening 26 of the bath tub 23. Control is performed so that the mixed hot water supply operation is stopped when the amount Q is reached. The water level sensor 3
3 hot water supply water level L during mixing hot water supply operation is stopped is measured, and the water level L Q corresponding to the bathtub hot-water supply amount Q to compares wallpapers hot water level. If the measured water level L and the set water level LQ are not equal, there is a high possibility that hot water has remained in the bathtub 23, and even if learning is continued in this state, an accurate flow rate ratio R cannot be obtained. The flow ratio learning means stops learning.

【0057】測定水位Lと設定水位LQ が等しい場合
は、前記流量比学習手段は、前記給湯用加熱部11の一
般給湯を禁止して、前記追焚用加熱部25が不用意に加
熱されない状態で、前記循環ポンプ35を始動し、前記
浴槽23内の湯を、前記復路5及び前記往路6内を循環
させ(図1中、破線矢印で示す)、前記往路サーミスタ
31、前記復路サーミスタ32の少なくとも一方で前記
浴槽23の混合湯温T3を定常値になるまで測定し、前
記循環ポンプ35を停止する。
[0057] When measuring the water level L and the set water level L Q are equal, the flow rate ratio learning means prohibits the general hot water supply of the hot water supply heat unit 11, the add焚用heating unit 25 is not inadvertently heated In this state, the circulation pump 35 is started, and the hot water in the bathtub 23 is circulated in the return path 5 and the forward path 6 (indicated by a broken arrow in FIG. 1), and the forward path thermistor 31 and the return path thermistor 32 In at least one of the cases, the mixed hot water temperature T3 of the bathtub 23 is measured until it reaches a steady value, and the circulation pump 35 is stopped.

【0058】引き続き、前記流量比学習手段は、測定さ
れた湯温T1、T2と前記混合湯温T3を下記の式2に
代入して、流量比Rを演算する。尚、式2は式1のTc
をT3で置換して変形して導出される。
Subsequently, the flow ratio learning means calculates the flow ratio R by substituting the measured hot water temperatures T1 and T2 and the mixed hot water temperature T3 into the following equation (2). Equation 2 is the Tc of Equation 1.
Is replaced by T3, and is transformed and derived.

【0059】[0059]

【数2】R=(T3−T1)÷(T2−T1)R = (T3-T1) T (T2-T1)

【0060】前記流量比学習手段は、式2を演算して求
めた流量比Rで、前記流量比学習手段内に設けられた流
量比記憶手段に記憶されている既学習値または初期設定
値を上書きして、流量比Rを更新して、流量比Rの学習
を終了する。
The flow ratio learning means calculates the learned value or the initial set value stored in the flow ratio storage means provided in the flow ratio learning means with the flow ratio R obtained by calculating equation (2). Overwriting is performed to update the flow ratio R, and the learning of the flow ratio R ends.

【0061】(別実施形態)以下に他の実施形態を説明
する。
(Another Embodiment) Another embodiment will be described below.

【0062】(1)本発明に係る給湯装置は、図1に示
すシステム構成に限定されるものではない。前記バーナ
12は、前記給湯用熱交換器10と前記追焚用熱交換器
24を常に同時に加熱するという意味において単一であ
って、前記給湯用熱交換器10と前記追焚用熱交換器2
4を個別に独立して加熱可能でない限りにおいて、複数
設けてあっても構わない。前記給水バイパス路3及び前
記ミキシングバルブ19は必ずしも設ける必要はない。
前記給水バイパス路3及び前記ミキシングバルブ19を
設けない場合の前記給湯路2の給湯温度の調整は、前記
バーナ12の燃焼量の調整または前記給水路1からの給
水量の調整で可能である。前記浴槽給湯路4は、前記逆
止弁29を設けた下流側で、前記往路6と分岐点Cで接
続する代わりに、前記復路5に接続しても構わない。こ
の場合は、混合給湯中の前記追焚用加熱部25内の流通
方向は上記実施形態とは反転する。
(1) The hot water supply apparatus according to the present invention is not limited to the system configuration shown in FIG. The burner 12 is single in the sense that it always heats the hot water supply heat exchanger 10 and the additional heating heat exchanger 24 at the same time. 2
As long as it is not possible to individually and independently heat, a plurality of 4 may be provided. The water supply bypass 3 and the mixing valve 19 need not always be provided.
Adjustment of the hot water supply temperature of the hot water supply passage 2 when the water supply bypass passage 3 and the mixing valve 19 are not provided can be achieved by adjusting the combustion amount of the burner 12 or the water supply amount from the water supply passage 1. The bathtub hot water supply path 4 may be connected to the return path 5 instead of connecting to the outward path 6 at the branch point C on the downstream side where the check valve 29 is provided. In this case, the flow direction in the additional heating unit 25 during mixed hot water supply is reversed from that in the above embodiment.

【0063】(2)上記の流量比学習工程S4におい
て、残留水の初期チェックまたは給湯水位チェックを必
ず実行しなくても構わない。その場合、作業者が残留水
の初期チェックを目視によって行えば良い。前記給湯水
位チェックで、所定の浴槽給湯量Qを給湯してから測定
水位Lと設定水位LQ を大小比較する代わりに、設定水
位LQ まで給湯し、その時の実際の積算給湯量と設定水
位LQ に相当する浴槽給湯量Qを大小比較するのも好ま
しい実施の形態である。また、流量比学習工程S4で、
新たに演算で求められた流量比Rで、前記流量比学習手
段内に設けられた流量比記憶手段に記憶されている既学
習値または初期設定値を上書きして、流量比Rを更新す
る代わりに、各学習毎の流量比Rを前記流量比記憶手段
に各別に記憶して流量比Rの季節変動等の傾向調査を行
うようにするのも好ましい実施の形態である。また、前
記流量比記憶手段は停電時等に記憶データの消失しない
不揮発性の記憶装置であるのが望ましい。
(2) In the flow rate ratio learning step S4, it is not always necessary to execute the initial check of the residual water or the check of the hot water level. In that case, the operator may visually check the residual water. The hot water in the water level checking, after the hot water supply predetermined bathtub hot-water supply amount Q and the measured water level L of the set water level L Q instead of magnitude compared to hot water up to the set water level L Q, the actual cumulative hot water supply amount and the set water level at that time It is also a preferred embodiment to compare the hot water supply amount Q corresponding to L Q in magnitude. In the flow rate ratio learning step S4,
Instead of updating the flow ratio R by overwriting the learned value or the initial set value stored in the flow ratio storage unit provided in the flow ratio learning unit with the flow ratio R newly obtained by calculation. It is also a preferred embodiment that the flow ratio R for each learning is separately stored in the flow ratio storage means so as to conduct a trend investigation on the seasonal variation of the flow ratio R. Preferably, the flow ratio storage means is a non-volatile storage device that does not lose stored data at the time of a power failure or the like.

【0064】(3)上記の実施形態において、通常の前
記浴槽23への混合給湯が終了した後、前記流量比学習
手段が前記給湯用加熱部11の一般給湯を禁止して、前
記追焚用加熱部25が不用意に加熱されない状態で、前
記循環ポンプ35を始動し、前記浴槽23内の湯を、前
記復路5及び前記往路6内を循環させ、前記往路サーミ
スタ31、前記復路サーミスタ32の少なくとも一方で
前記浴槽23の混合湯温T3を定常値になるまで測定
し、前記通常の混合給湯運転時の前記設定温度Tsまた
は前記混合湯温演算工程S2で求めた前記目標温度Tm
(両者は等しいはずである)と前記測定混合湯温T3を
比較し、異なっていれば、前記混合湯温演算工程S2で
使用した流量比Rが不正確であると判断して、流量比R
の学習を開始するのも好ましい実施の形態である。この
場合、通常の流量比学習工程S4と同様に前記流量比学
習手段が、前記通常の混合給湯運転時の前記混合湯温演
算工程S2で使用した最終の湯温T1、T2と前記測定
混合湯温T3を式2に代入して、流量比Rを演算する。
(3) In the above embodiment, after the normal mixed hot water supply to the bathtub 23 is completed, the flow rate ratio learning means inhibits the general hot water supply of the hot water supply heating unit 11 and releases the additional hot water. In a state in which the heating unit 25 is not inadvertently heated, the circulation pump 35 is started to circulate the hot water in the bathtub 23 in the return path 5 and the forward path 6, and to control the forward path thermistor 31 and the return path thermistor 32. At least on one side, the mixed hot water temperature T3 of the bathtub 23 is measured until it reaches a steady value, and the set temperature Ts during the normal mixed hot water supply operation or the target temperature Tm obtained in the mixed hot water temperature calculating step S2.
(The two should be the same) and the measured mixed hot water temperature T3, and if they are different, it is determined that the flow rate ratio R used in the mixed hot water temperature calculation step S2 is incorrect, and the flow rate ratio R
Is also a preferred embodiment. In this case, similarly to the normal flow rate ratio learning step S4, the flow rate ratio learning means uses the final hot water temperatures T1, T2 used in the normal mixed hot water supply operation in the mixed hot water temperature calculation step S2 and the measured mixed hot water. The flow rate ratio R is calculated by substituting the temperature T3 into Equation 2.

【0065】(4)上記の実施の形態において、前記流
量比学習手段を設けて流量比Rを学習する代わりに、前
記浴槽23の前記往路6または前記復路5に流量センサ
を備え、前記浴槽温度算出手段が前記流量センサからの
流量と前記給水路1に設けた前記水量センサ17で測定
される総給湯量に基づいて前記流量比Rを算出するのも
好ましい実施の形態である。
(4) In the above embodiment, instead of providing the flow ratio learning means and learning the flow ratio R, a flow sensor is provided in the forward path 6 or the return path 5 of the bathtub 23, and the bathtub temperature is measured. It is also a preferred embodiment that the calculation means calculates the flow rate ratio R based on the flow rate from the flow rate sensor and the total hot water supply amount measured by the water flow rate sensor 17 provided in the water supply passage 1.

【0066】(5)前記燃焼制御手段40、前記制御手
段、前記浴槽温度算出手段、前記流量比学習手段、及
び、前記流量比記憶手段は、全てを単一のマイクロコン
ピュータと記憶装置で構成してソフトウェア制御しても
構わないし、各別に専用のプロセッサまたはハードウェ
アで構成されても構わないし、これらの組み合わせであ
ってもよい。
(5) The combustion control means 40, the control means, the bathtub temperature calculating means, the flow ratio learning means, and the flow ratio storage means are all constituted by a single microcomputer and a storage device. Software control, a dedicated processor or hardware, or a combination thereof.

【0067】[0067]

【発明の効果】以上説明したように、本発明によれば、
両搬送型の給湯方法で正確な給湯温度の湯を供給でき
る、構造が簡単な、スケール析出が少なく、燃料消費効
率の高い給湯装置、及び、その温度調整方法を提供でき
るようになった。
As described above, according to the present invention,
It has become possible to provide a hot water supply apparatus that can supply hot water at an accurate hot water supply temperature by a dual-conveyance type hot water supply method, has a simple structure, has little scale deposition, and has high fuel consumption efficiency, and a temperature adjustment method therefor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る給湯装置の一実施形態を示すシス
テム構成図
FIG. 1 is a system configuration diagram showing an embodiment of a hot water supply apparatus according to the present invention.

【図2】本発明に係る温度調整方法の一実施形態を示す
フローチャート
FIG. 2 is a flowchart illustrating an embodiment of a temperature adjusting method according to the present invention.

【図3】本発明に係る温度調整方法の流量比学習手順の
一実施形態を示すフローチャート
FIG. 3 is a flowchart showing one embodiment of a flow ratio learning procedure of the temperature adjustment method according to the present invention.

【符号の説明】[Explanation of symbols]

1 給水路 2 給湯路 4、50、51 湯はり給湯路 5 復路 6 往路 10 給湯用熱交換器 11 給湯用加熱部 12 バーナ 23 浴槽 24 追焚用熱交換器 25 追焚用加熱部 31、32 流路別給湯温度測定手段 REFERENCE SIGNS LIST 1 water supply path 2 hot water supply path 4, 50, 51 hot water supply water supply path 5 return path 6 forward path 10 hot water supply heat exchanger 11 hot water supply heating unit 12 burner 23 bathtub 24 additional heating heat exchanger 25 additional heating heating unit 31, 32 Hot water supply temperature measuring means for each channel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榎本 有 大阪府大阪市港区南市岡1丁目1番52号 株式会社ハーマン内 (72)発明者 田中 充 大阪府大阪市港区南市岡1丁目1番52号 株式会社ハーマン内 (72)発明者 今井田 洋尚 大阪府大阪市港区南市岡1丁目1番52号 株式会社ハーマン内 (72)発明者 中西 教温 大阪府大阪市港区南市岡1丁目1番52号 株式会社ハーマン内 (72)発明者 保川 雅由 大阪府大阪市港区南市岡1丁目1番52号 株式会社ハーマン内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yu Enomoto, 1-15-1 Oka, Minami-shi, Minato-ku, Osaka, Osaka Prefecture Inside Herman Co., Ltd. (72) Mitsuru Tanaka 1-1-52, Oka, Minami-shi, Minato-ku, Osaka, Osaka No. Harman Co., Ltd. (72) Inventor Hirosao Iida 1-152 Oka, Minami-ku, Minato-ku, Osaka-shi, Osaka No. 72 Inventor Noriyo Nakanishi 1-1-52 Oka, Minami-shi, Minato-ku, Osaka, Osaka No. Herman Co., Ltd. (72) Inventor Masayoshi Hokawa 1-152 Oka, Minami-shi, Minato-ku, Osaka-shi, Osaka

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 給水路からの水を給湯用熱交換器で加熱
して給湯路に供給する給湯用加熱部と、浴槽からの復路
の湯水を追焚用熱交換器で加熱して前記浴槽への往路に
循環供給する追焚用加熱部と、前記給湯用熱交換器と前
記追焚用熱交換器とを共通に加熱する単一のバーナから
なる燃焼部とを備えた給湯装置であって、 前記給湯路の湯を前記浴槽へ供給する場合、その湯が2
系統に分流し、その内の一系統の湯が前記往路から前記
浴槽へ出湯し、他系統の湯が前記復路から前記浴槽へ出
湯し、何れかの一方の系統の湯が途中で前記追焚用熱交
換器を経由して再加熱されて前記浴槽へ出湯するように
構成された湯はり給湯路と、前記往路及び前記復路の2
系統に分流した湯の給湯温度を各別に測定可能な流路別
給湯温度測定手段とを備え、 前記浴槽へ前記往路及び前記復路から供給された湯が前
記浴槽内で混合した結果の浴槽温度を、前記往路及び前
記復路の2系統に分流した湯の流量比と前記流路別給湯
温度測定手段で測定された前記往路及び前記復路から供
給される湯の給湯温度に基づいて算出する浴槽温度算出
手段とを備え、 前記給湯路の湯を前記浴槽へ供給する場合、前記浴槽温
度算出手段で算出した算出浴槽温度と予め設定された設
定浴槽温度とが合致するように、前記給湯用加熱部の給
湯温度を制御する制御手段を備えた給湯装置。
1. A hot water supply heating unit for heating water from a water supply channel with a hot water supply heat exchanger and supplying the same to the hot water supply channel, and heating the hot water from the bathtub on the return path from the bathtub with a supplementary heat exchanger. A hot water supply device comprising: a reheating heater for circulating and supplying a recirculating heat to the outward path to the hot water supply; and a combustion unit including a single burner for heating the heat exchanger for hot water supply and the heat exchanger for reheating in common. When the hot water in the hot water supply path is supplied to the bathtub,
One of the hot water flows out of the outgoing path to the bathtub, the other hot water flows out of the return path to the bathtub, and the hot water of one of the systems is reheated halfway. A hot water supply channel configured to be reheated via the heat exchanger for hot water and discharged to the bathtub;
Flow path hot water temperature measuring means capable of separately measuring hot water temperature of hot water diverted to the system, wherein the hot tub supplied from the forward pass and the return pass to the bath tub is mixed in the bath tub as a hot tub temperature. Bathtub temperature calculation based on the flow ratio of the hot water diverted to the two systems of the forward path and the return path and the hot water supply temperature of the hot water supplied from the forward path and the return path measured by the hot water supply temperature measuring means for each flow path Means for supplying hot water from the hot water supply path to the bathtub, so that the calculated bathtub temperature calculated by the bathtub temperature calculating means matches a preset bathtub temperature, A hot water supply device having control means for controlling hot water temperature.
【請求項2】 前記浴槽内の湯を前記往路及び前記復路
の少なくとも一方に誘引してその湯温を測定する浴槽温
度測定手段を備え、前記浴槽への給湯中に、前記流路別
給湯温度測定手段で測定する前記往路及び前記復路の2
系統に分流した湯の給湯温度と、給湯後に前記浴槽温度
測定手段で測定する前記浴槽内の湯温に基づいて、前記
流量比を学習する流量比学習手段を備え、前記流量比学
習手段が学習した流量比を記憶する流量比記憶手段を備
え、前記浴槽温度算出手段が前記流量比記憶手段に記憶
されている流量比を使用して前記浴槽温度を算出するこ
とを特徴とする請求項1記載の給湯装置。
2. A bath tub temperature measuring means for inviting hot water in the bath tub to at least one of the outward route and the return route and measuring the hot water temperature, wherein the hot water supply temperature for each flow path is supplied during hot water supply to the bath tub. 2 of the forward path and the return path measured by the measuring means
A flow rate learning unit that learns the flow ratio based on a hot water supply temperature of the hot water diverted into the system and a hot water temperature in the bath tub measured by the bath tub temperature measurement unit after the hot water supply; The flow rate ratio storage means for storing the flow rate ratio obtained, wherein the bathtub temperature calculating means calculates the bathtub temperature using the flow rate ratio stored in the flow rate storage means. Water heater.
【請求項3】 前記浴槽の前記往路または前記復路に流
量センサを備え、前記浴槽温度算出手段が前記流量セン
サからの流量に基づいて前記流量比を算出する流量比算
出手段を備えた請求項1記載の給湯装置。
3. The bathtub is provided with a flow rate sensor on the outward path or the return path, and the bathtub temperature calculating means includes a flow rate ratio calculating means for calculating the flow rate ratio based on a flow rate from the flow rate sensor. The hot water supply device as described.
【請求項4】 単一のバーナからなる燃焼部で共通に加
熱される第1熱交換部と第2熱交換部を備えてなる給湯
装置を用いて、前記第1熱交換部で加熱された湯を2系
統に分流し、分流された一方の湯を所定の被給湯容器に
第1給湯路を介して直接出湯し、分流された他方の湯を
前記第2熱交換部で再加熱した後、前記被給湯容器に第
2給湯路を介して出湯して、前記2系統に分流された湯
を前記被給湯容器に混合給湯する方法における温度調整
方法であって、 前記第1熱交換部で加熱され、前記第1給湯路と前記第
2熱交換部に供給される湯の目標温度Tmを、前記被給
湯容器に混合給湯する湯の設定温度Tsに基づく所定の
初期値に暫定的に設定して、前記被給湯容器への混合給
湯を開始し、 前記第1給湯路中または前記第1給湯路に供給される湯
の温度T1を測定し、前記湯温T1が前記目標温度Tm
に等しくなるように、前記湯温T1の温度制御を行う温
度制御工程S1を前記混合給湯運転中継続的に実行し、 前記温度制御工程S1と並行して、 前記湯温T1と前記第2給湯路の湯の温度T2を測定
し、二つの湯温T1、T2を前記2系統に分流された湯
の流量比Rで案分して前記湯温T1、T2の混合湯温T
cを演算する混合湯温演算工程S2と、 前記混合湯温Tcと前記設定温度Tsを比較し、前記混
合湯温Tcが前記設定温度Tsより高い場合は、前記目
標温度Tmを低く修正し、前記混合湯温Tcが前記設定
温度Tsより低い場合は、前記目標温度Tmを高く修正
する目標温度補正工程S3を順次繰り返し実行すること
を特徴とする温度調整方法。
4. A hot water supply apparatus comprising a first heat exchange section and a second heat exchange section which are heated in common by a combustion section comprising a single burner, and heated by the first heat exchange section. After splitting the hot water into two systems, directing one of the split hot water to a predetermined hot-water supply container via the first hot water supply path, and reheating the other split hot water in the second heat exchange unit A temperature adjusting method in a method in which hot water is supplied to the hot-water supply container via a second hot-water supply path, and the hot water diverted to the two systems is mixed and supplied to the hot-water supply container; The target temperature Tm of the hot water that is heated and supplied to the first hot water supply passage and the second heat exchange unit is provisionally set to a predetermined initial value based on the set temperature Ts of the hot water mixed and supplied to the hot water supply container. Then, the mixed hot water supply to the hot water supply container is started, and the hot water is supplied to the first hot water supply path or the first hot water supply path. Measuring the temperature T1 of the hot water to be, the hot water temperature T1 is the target temperature Tm
The temperature control step S1 for controlling the temperature of the hot water temperature T1 is continuously performed during the mixed hot water supply operation so as to be equal to the temperature T1 and the second hot water supply in parallel with the temperature control step S1. The temperature T2 of the hot water in the road is measured, and the two hot water temperatures T1 and T2 are divided by the flow rate ratio R of the hot water divided into the two systems, and the mixed hot water temperature T1 of the hot water temperatures T1 and T2 is measured.
a mixed hot water temperature calculating step S2 for calculating c; comparing the mixed hot water temperature Tc with the set temperature Ts; if the mixed hot water temperature Tc is higher than the set temperature Ts, the target temperature Tm is corrected to be lower; When the mixed hot water temperature Tc is lower than the set temperature Ts, a target temperature correcting step S3 for correcting the target temperature Tm to be higher is sequentially and repeatedly executed.
【請求項5】 前記混合湯温演算工程S2と前記目標温
度補正工程S3を順次繰り返し実行中に、前記混合湯温
Tcと前記設定温度Tsが所定の誤差範囲内で等しくな
った場合に、前記目標温度Tmをその時の前記湯温T1
に固定して、前記混合湯温演算工程S2と前記目標温度
補正工程S3の実行を中止する請求項4記載の温度調整
方法。
5. When the mixed hot water temperature Tc and the set temperature Ts become equal within a predetermined error range during the repeated execution of the mixed hot water temperature calculating step S2 and the target temperature correcting step S3, The target temperature Tm is set to the hot water temperature T1 at that time.
5. The temperature adjusting method according to claim 4, wherein the mixed hot water temperature calculating step S2 and the target temperature correcting step S3 are stopped.
【請求項6】 前記混合湯温演算工程S2の実行前に、
前記第1給湯路または前記第2給湯路の流量を測定し
て、前記流量比Rを演算することを特徴とする請求項4
または5記載の温度調整方法。
6. Before executing the mixed hot water temperature calculating step S2,
The flow rate R is calculated by measuring a flow rate of the first hot water supply path or the second hot water supply path.
Or the temperature adjustment method according to 5.
【請求項7】 前記被給湯容器への前記混合給湯を開始
する前に、前記2系統に分流された湯の流量比Rを学習
する流量比学習工程S4を予め少なくとも一回実行した
状態において、前記被給湯容器への混合給湯を開始し、
前記混合湯温演算工程S2において、前記流量比学習工
程S4で学習した流量比Rを使用することを特徴とする
請求項4または5記載の温度調整方法。
7. Before starting the mixed hot water supply to the hot water supply container, in a state where a flow ratio learning step S4 for learning a flow ratio R of the hot water divided into the two systems is performed at least once in advance, Start mixed hot water supply to the hot water supply container,
6. The temperature adjustment method according to claim 4, wherein the flow rate ratio R learned in the flow rate ratio learning step S4 is used in the mixed hot water temperature calculation step S2.
【請求項8】 前記流量比学習工程S4において、前記
第1熱交換部で加熱された湯を2系統に分流し、分流さ
れた一方の湯を一定温度で前記被給湯容器に前記第1給
湯路を介して直接出湯し、分流された他方の湯を前記第
2熱交換部で再加熱した後、前記被給湯容器に前記第2
給湯路を介して出湯して行う前記被給湯容器への混合給
湯を、前記被給湯容器内の水位が前記第1給湯路及び前
記第2給湯路の出湯口より上位になるまで継続し、 前記混合給湯中に、前記第1給湯路及び前記第2給湯路
の夫々の給湯温度T1、T2を測定し、前記混合給湯停
止後、前記被給湯容器内の混合された湯を前記第1給湯
路、前記第2給湯路、またはその両方に誘引して混合湯
温T3を測定し、測定した前記湯温T1、T2及び前記
混合湯温T3に基づいて、前記2系統に分流された湯の
流量比Rを演算し、前記流量比Rの既学習値または初期
設定値を更新することを特徴とする請求項7記載の温度
調整方法。
8. In the flow ratio learning step S4, the hot water heated by the first heat exchange unit is divided into two systems, and one of the divided hot water is supplied to the hot water supply container at a constant temperature. The hot water is directly discharged through a passage, and the other split hot water is reheated in the second heat exchange unit.
Continuing the mixed hot water supply to the hot water supply container by performing hot water supply through the hot water supply path until the water level in the hot water supply container becomes higher than the taps of the first hot water supply path and the second hot water supply path; During the mixed hot water supply, the hot water supply temperatures T1 and T2 of the first hot water supply passage and the second hot water supply passage are measured, and after the mixed hot water supply is stopped, the mixed hot water in the hot water supply container is discharged into the first hot water supply passage. The mixed hot water temperature T3 is measured by inviting the mixed hot water to the second hot water supply channel or both, and based on the measured hot water temperatures T1, T2 and the mixed hot water temperature T3, the flow rate of the hot water diverted to the two systems. The temperature adjustment method according to claim 7, wherein the ratio R is calculated, and a learned value or an initial setting value of the flow ratio R is updated.
【請求項9】 前記流量比学習工程S4において、前記
混合湯温T3を測定する前に、前記被給湯容器内の湯を
前記第1給湯路及び前記第2給湯路を介して循環させる
ことを特徴とする請求項8記載の温度調整方法。
9. In the flow ratio learning step S4, circulating hot water in the hot water supply container through the first hot water supply passage and the second hot water supply passage before measuring the mixed hot water temperature T3. The temperature adjustment method according to claim 8, wherein:
【請求項10】 前記流量比学習工程S4において、前
記混合給湯開始前に、前記被給湯容器内の湯を前記第1
給湯路及び前記第2給湯路を介して循環させるための所
定動作を開始し、その動作開始後に循環水流を検知した
場合、前記流量比Rを更新せずに学習を中止することを
特徴とする請求項8または9記載の温度調整方法。
10. In the flow rate ratio learning step S4, before the mixed hot water supply is started, the hot water in the hot water supply container is discharged to the first hot water supply container.
A predetermined operation for circulating through the hot water supply path and the second hot water supply path is started, and when a circulating water flow is detected after the start of the operation, learning is stopped without updating the flow rate ratio R. The temperature adjustment method according to claim 8.
【請求項11】 前記流量比学習工程S4において、前
記混合給湯を所定の給湯総量分行い停止した後に、前記
混合給湯停止後の実際の測定水位と予め記憶してある前
記所定の給湯総量に相当する設定水位が合致するかどう
かを判定し、合致しない場合は、前記流量比Rを更新せ
ずに学習を中止することを特徴とする請求項8、9また
は10記載の温度調整方法。
11. In the flow rate ratio learning step S4, after the mixed hot water supply is performed for a predetermined total hot water supply amount and stopped, the actual measured water level after the stop of the mixed hot water supply corresponds to the predetermined total hot water supply amount stored in advance. 11. The temperature adjustment method according to claim 8, wherein it is determined whether or not the set water levels to be set match, and if not, learning is stopped without updating the flow rate ratio R.
【請求項12】 前記流量比学習工程S4において、前
記混合給湯を所定の給湯停止水位まで行い停止した後
に、前記混合給湯の実給湯総量と予め記憶してある前記
給湯停止水位に相当する給湯量が合致するかどうかを判
定し、合致しない場合は、前記流量比Rを更新せずに学
習を中止することを特徴とする請求項8、9または10
記載の温度調整方法。
12. In the flow rate ratio learning step S4, after the mixed hot water supply is performed to a predetermined hot water supply stop water level and stopped, the actual hot water supply amount of the mixed hot water and the hot water supply amount corresponding to the hot water supply stop water level stored in advance. It is determined whether or not the values match, and if they do not match, the learning is stopped without updating the flow ratio R.
The temperature adjustment method described.
【請求項13】 前記被給湯容器への混合給湯が終了し
た後、前記被給湯容器内の湯を前記第1給湯路及び前記
第2給湯路を介して循環させ、前記被給湯容器内の混合
された湯の混合湯温T3を測定し、測定した前記混合湯
温T3と前記混合湯温演算工程S2で求めた前記混合湯
温Tcまたは前記設定温度Tsを比較し、比較した結
果、前記混合湯温T3と前記混合湯温Tcまたは前記設
定温度Tsが異なる場合に、前記混合湯温演算工程S2
で前記混合湯温Tcを演算するのと同じ方法で前記湯温
T1、T2から前記混合湯温T3を導出することのでき
る流量比Rtを演算し、前記混合湯温演算工程S2で使
用した前記流量比Rを前記流量比Rtで更新することを
特徴とする請求項4または5記載の温度調整方法。
13. After the mixed hot water supply to the hot water supply container is completed, the hot water in the hot water supply container is circulated through the first hot water supply path and the second hot water supply path to mix the hot water in the hot water supply container. The mixed hot water temperature T3 of the measured hot water was measured, and the measured mixed hot water temperature T3 was compared with the mixed hot water temperature Tc or the set temperature Ts obtained in the mixed hot water temperature calculating step S2. If the hot water temperature T3 is different from the mixed hot water temperature Tc or the set temperature Ts, the mixed hot water temperature calculating step S2
In the same manner as calculating the mixed hot water temperature Tc, a flow ratio Rt capable of deriving the mixed hot water temperature T3 from the hot water temperatures T1 and T2 is calculated, and the flow rate ratio Rt used in the mixed hot water temperature calculating step S2 is calculated. The temperature adjustment method according to claim 4, wherein the flow ratio R is updated with the flow ratio Rt.
JP33551496A 1996-12-16 1996-12-16 Temperature adjustment method Expired - Fee Related JP3167632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33551496A JP3167632B2 (en) 1996-12-16 1996-12-16 Temperature adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33551496A JP3167632B2 (en) 1996-12-16 1996-12-16 Temperature adjustment method

Publications (2)

Publication Number Publication Date
JPH10176863A true JPH10176863A (en) 1998-06-30
JP3167632B2 JP3167632B2 (en) 2001-05-21

Family

ID=18289432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33551496A Expired - Fee Related JP3167632B2 (en) 1996-12-16 1996-12-16 Temperature adjustment method

Country Status (1)

Country Link
JP (1) JP3167632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396508B1 (en) 1999-12-02 2002-05-28 Matsushita Electronics Corp. Dynamic low-level enhancement and reduction of moving picture disturbance for a digital display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396508B1 (en) 1999-12-02 2002-05-28 Matsushita Electronics Corp. Dynamic low-level enhancement and reduction of moving picture disturbance for a digital display

Also Published As

Publication number Publication date
JP3167632B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
AU2009202646B2 (en) Water heater
AU2009202645B2 (en) Water heater
US11149965B2 (en) Water heating system including multi-function heat source apparatus
CN112189118A (en) Boiler for both heating and hot water and control method thereof
JP3167632B2 (en) Temperature adjustment method
KR930010393B1 (en) Flow control method of hot-water supply apparatus
JP2015010805A (en) Hot water storage type hot water supply apparatus
JPH0268449A (en) Bypass mixing type hot water feeder
KR0171731B1 (en) Hot water feeder device
JP4040212B2 (en) Bath device with water heater
JP5598711B2 (en) Heat source machine
JP7068865B2 (en) Heat source machine, how to operate the heat source machine, heating system, how to operate the heating system
JP2000291944A (en) Orimulsion fuel supplying device
JPH1114145A (en) Hot-water supply
JP3822702B2 (en) Combustion device
JP3117593B2 (en) Bath kettle with water heater
JP2002156101A (en) Number of sets control method for fluid heater
JPH1183008A (en) Hot water heater
JPH10111012A (en) Method for measuring quantity of residual hot water in bathtub of unit bath with hot water supply function
JP3386575B2 (en) Water heater and combustion control method using the same
JP3091809B2 (en) Bath kettle with water heater
JP3822719B2 (en) One can two water channel bath hot water combustion equipment
JP3487905B2 (en) Water heater and combustion control method using the same
JPH08193750A (en) Hot water feeder with function to add hot water of high temperature
JPH11193957A (en) Single storage water heater body double water channel hot water supply apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees