JPH10163525A - Light-emitting device - Google Patents

Light-emitting device

Info

Publication number
JPH10163525A
JPH10163525A JP32037296A JP32037296A JPH10163525A JP H10163525 A JPH10163525 A JP H10163525A JP 32037296 A JP32037296 A JP 32037296A JP 32037296 A JP32037296 A JP 32037296A JP H10163525 A JPH10163525 A JP H10163525A
Authority
JP
Japan
Prior art keywords
light
emitting device
light emitting
layer
scattering layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32037296A
Other languages
Japanese (ja)
Other versions
JP3448441B2 (en
Inventor
Masayuki Hata
雅幸 畑
Kunio Takeuchi
邦生 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32037296A priority Critical patent/JP3448441B2/en
Publication of JPH10163525A publication Critical patent/JPH10163525A/en
Application granted granted Critical
Publication of JP3448441B2 publication Critical patent/JP3448441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Abstract

PROBLEM TO BE SOLVED: To improve the light extraction efficiency of a light-emitting device which radiates the light emitted from a light-emitting layer to the outside and to easily manufacture the element by providing a light-scattering layer on the light-extracting surface of the light-emitting device. SOLUTION: An n-type GaN layer 2, a p-type GaN layer 3, an n-type side- electrode forming region 4, and a p-type side-electrode forming region 5 are formed on a sapphire substrate 1, and n- and p-type side electrodes 7 and 8 are respectively formed on the n- and p-type side-electrode forming regions 4 and 5. The n- and p-type GaN layers 2 and 3 become light-emitting layers and the section from the region 5 to the region 4 becomes a light-extracting surface 6. A light-scattering layer 9, which is composed of silicon dioxide and has an uneven surface, is formed into a nearly entire region of the surface 6. Since the uneven surface is formed not only on the surface of the GaN layer, but also on the surface of the light-scattering layer 9, the machining damages to the GaN layers 2 and 3 can be prevented, and the deterioration in the light- emitting efficiency of a light-emitting device is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光層で発生した
光を光取り出し面を通して外部へ放射させる発光装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device for emitting light generated in a light emitting layer to the outside through a light extraction surface.

【0002】[0002]

【従来の技術】発光素子の代表的なものとしては、半導
体を用いた半導体レーザ(LD)や発光ダイオード(L
ED)が知られている。LDは、位相の揃った光が得ら
れることから、光通信用の光源やコンパクトディスク等
の記録再生装置用の光源として応用されている。
2. Description of the Related Art A typical light emitting device is a semiconductor laser (LD) using a semiconductor or a light emitting diode (L).
ED) is known. The LD is used as a light source for optical communication and a light source for a recording / reproducing apparatus such as a compact disk, since light with a uniform phase can be obtained.

【0003】一方、LEDは、低消費電力、長寿命とい
う特徴を有し、表示用光源、例えば駅構内の表示板や屋
外広告板等に使用されている。このような応用上、特に
屋外での使用のためには、高輝度LEDが必要である。
On the other hand, LEDs are characterized by low power consumption and long service life, and are used for display light sources, for example, display boards in station premises and outdoor advertising boards. For such applications, particularly for outdoor use, high-brightness LEDs are required.

【0004】近年、高輝度青色LEDが開発されるに至
って、LEDのフルカラー大型ディスプレイへの応用が
期待されている。しかしながら、既存のCRT方式等を
用いたフルカラー大型ディスプレイと競合するために、
LEDの更なる高輝度、低消費電力化が望まれる。
In recent years, with the development of high-brightness blue LEDs, application of the LEDs to full-color large displays is expected. However, in order to compete with existing full-color large displays using the CRT method, etc.,
It is desired that LEDs have higher luminance and lower power consumption.

【0005】これを実現するための一つの技術的手段
は、LEDの外部への光取り出し効率を高めることであ
る。この例として、特開平6−291368(H01L
33/00)号には、サファイア基板上にガリウム(G
a)と窒素(N)を含む窒化ガリウム(GaN)系半導
体層を形成してなるLED装置において、GaN系半導
体各層を結晶成長後に表面をエッチングするか、あるい
は、サファイア基板のC面からのオフ基板上にGaN系
半導体各層を結晶成長することにより、光取り出し面側
の半導体層表面に凹凸を形成する方法が提案されてい
る。
[0005] One technical means for achieving this is to enhance the efficiency of extracting light to the outside of the LED. An example of this is disclosed in Japanese Unexamined Patent Publication No. 6-291368 (H01L).
No. 33/00) discloses gallium (G) on a sapphire substrate.
a) In an LED device formed by forming a gallium nitride (GaN) -based semiconductor layer containing nitrogen (N), the surface of the GaN-based semiconductor layer is etched after crystal growth, or off from the C-plane of the sapphire substrate. A method has been proposed in which each layer of a GaN-based semiconductor is crystal-grown on a substrate to form irregularities on the surface of the semiconductor layer on the light extraction surface side.

【0006】このような凹凸を設けることにより、光取
り出し効率が高まるメカニズムを、図7に示したLED
装置の模式断面図を用いて説明する。尚、図7(a)は
半導体表面が平坦な従来のLED装置を、また同図
(b)は半導体表面に凹凸面が設けられたLED装置を
それぞれ示している。
The mechanism by which the light extraction efficiency is increased by providing such irregularities is shown in FIG.
This will be described with reference to a schematic sectional view of the apparatus. FIG. 7A shows a conventional LED device having a flat semiconductor surface, and FIG. 7B shows an LED device having an uneven surface on the semiconductor surface.

【0007】同図中、101は基板、102は基板10
1上に形成されたn型GaN系半導体層、103はn型
半導体層102上に形成されたp型GaN系半導体層で
ある。また、104はn型GaN系半導体層102の側
面上に形成されたn型側電極、105はp型GaN系半
導体層103上に形成されたp型側電極である。
In the figure, 101 is a substrate, 102 is a substrate 10
Reference numeral 103 denotes an n-type GaN-based semiconductor layer formed on the n-type semiconductor layer 102. Reference numeral 104 denotes an n-side electrode formed on the side surface of the n-type GaN-based semiconductor layer 102, and reference numeral 105 denotes a p-side electrode formed on the p-type GaN-based semiconductor layer 103.

【0008】これらの電極104、105間の順方向に
電圧を印加することにより、このLED装置は動作し、
n型半導体層102とp型半導体103との界面(pn
接合界面)近傍で発生した光が光取り出し面103aを
通して外部に取り出されるが、外部と半導体層103の
屈折率が異なるために、前記光取り出し面103a表面
上で光が屈折あるいは反射するため、一部の光は外部に
取り出すことができない。
By applying a voltage in the forward direction between these electrodes 104 and 105, this LED device operates,
The interface between the n-type semiconductor layer 102 and the p-type semiconductor 103 (pn
Light generated in the vicinity of the junction interface is extracted to the outside through the light extraction surface 103a. However, since the refractive index of the semiconductor layer 103 is different from that of the outside, light is refracted or reflected on the surface of the light extraction surface 103a. Part of the light cannot be extracted outside.

【0009】また、図7(a)中、106はn型半導体
層102とp型半導体103との界面近傍で発生した光
が光取り出し面103a表面上で屈折し、該表面に沿っ
て進行する光であり、この時の光取り出し面103a表
面に対する光の入射角を臨界角と呼ぶ。
In FIG. 7A, reference numeral 106 denotes light generated near the interface between the n-type semiconductor layer 102 and the p-type semiconductor 103, which is refracted on the surface of the light extraction surface 103a and travels along the surface. At this time, the angle of incidence of light on the surface of the light extraction surface 103a is called a critical angle.

【0010】図7(a)に示した従来のLED装置の場
合には、この臨界角より深い角度で光取り出し面103
aに入射した光107は、光取り出し面103a表面で
屈折し、外部へ取り出される。一方、臨界角より浅い角
度で入射した光108は光取り出し面103a表面で反
射され、前記光取り出し面103a表面、基板101と
半導体層102との界面、あるいは、基板101の裏面
で多重反射し、半導体層102、103、あるいは、基
板101により吸収されてしまうために外部に取り出す
ことができなかった。
In the case of the conventional LED device shown in FIG. 7A, the light extraction surface 103 is formed at an angle deeper than the critical angle.
The light 107 incident on a is refracted on the surface of the light extraction surface 103a and is extracted outside. On the other hand, light 108 incident at an angle smaller than the critical angle is reflected on the surface of the light extraction surface 103a, and is multiple-reflected on the surface of the light extraction surface 103a, the interface between the substrate 101 and the semiconductor layer 102, or the back surface of the substrate 101, Since it was absorbed by the semiconductor layers 102 and 103 or the substrate 101, it could not be taken out.

【0011】これに対し、図7(b)に示した光取り出
し面103aが凹凸を有する場合には、図7(a)に示
した光108とほぼ同じ角度で光取り出し面103aに
向かって進行する光109は、光取り出し面103aが
凹凸を有するために、該表面103aに対する光109
の入射角が前記臨界角より深くなり、外部に取り出され
ることとなる。
On the other hand, when the light extraction surface 103a shown in FIG. 7B has irregularities, the light traveling toward the light extraction surface 103a at substantially the same angle as the light 108 shown in FIG. 7A. Since the light extraction surface 103a has irregularities, the light 109
Becomes deeper than the critical angle, and is taken out.

【0012】即ち、光取り出し面103a表面が平坦で
あれば取り出すことができない光108を、光取り出し
面103a表面に凹凸を設けることにより取り出すこと
ができる、従ってLED装置の外部への光取り出し効率
を高めることができるのである。
That is, light 108 that cannot be extracted if the surface of the light extraction surface 103a is flat can be extracted by providing irregularities on the surface of the light extraction surface 103a. Therefore, the efficiency of light extraction to the outside of the LED device can be improved. It can be enhanced.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、GaN
系半導体各層102、103を結晶成長後に光取り出し
面であるp型GaN系半導体層表面103aをエッチン
グする方法では、GaN系半導体のエッチング速度が遅
く、精密な加工が困難である、あるいは、エッチングに
よる結晶への加工損傷がLED装置の表面略全域(10
3a)に渡って導入されるため発光効率の低下を招く恐
れがある、等の課題があった。
SUMMARY OF THE INVENTION However, GaN
In the method of etching the p-type GaN-based semiconductor layer surface 103a, which is a light extraction surface, after crystal growth of each of the system-based semiconductor layers 102 and 103, the etching rate of the GaN-based semiconductor is low and precise processing is difficult, or Processing damage to the crystal is almost all over the surface of the LED device (10
There is a problem that the luminous efficiency may be reduced due to the introduction over 3a).

【0014】また、サファイア基板のC面からのオフ基
板上にGaN系半導体各層を結晶成長することにより、
光取り出し面103aに凹凸を形成する方法では、該凹
凸は結晶成長により自然に形成されるが、通常のLED
にはμmオーダーの結晶成長が必要であり、該結晶成長
過程のいかなる時点で凹凸が形成されるかが明らかでな
いので、その寸法を制御することが困難である。この結
果、外部への光取り出し効率が十分に向上できない可能
性があった。
Further, by growing each GaN-based semiconductor crystal on the off-substrate from the C-plane of the sapphire substrate,
In the method of forming irregularities on the light extraction surface 103a, the irregularities are naturally formed by crystal growth.
Requires crystal growth on the order of μm, and it is difficult to control the size of the crystal growth because it is not clear at which point in the crystal growth process the irregularities are formed. As a result, there is a possibility that the light extraction efficiency to the outside cannot be sufficiently improved.

【0015】本発明は、上述の問題点を鑑み成されたも
のであり、外部への光取り出し効率が高く、且つ、制御
性良く容易に製造可能な発光装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a light emitting device which has high light extraction efficiency to the outside and can be easily manufactured with good controllability.

【0016】[0016]

【課題を解決するための手段】本発明の発光装置は、発
光層で発生した光を光取り出し面を通して外部へ放射さ
せる発光装置であって、前記光取り出し面上に、光散乱
層を備えることを特徴としており、前記光散乱層が絶縁
性を有することを特徴としている。
A light-emitting device according to the present invention is a light-emitting device for emitting light generated in a light-emitting layer to the outside through a light-extraction surface, comprising a light-scattering layer on the light-extraction surface. And the light scattering layer has an insulating property.

【0017】また、前記光散乱層が凹凸表面を有するこ
とを特徴としている。
Further, the light scattering layer has an uneven surface.

【0018】この時、本発明は前記光散乱層の凹凸表面
の凸部が、球状の粒子の一部から構成されたことを、或
いは前記光散乱層は、前記光取り出し面上に島状に設け
られた複数個の凸領域と、該複数個の凸領域の表面を覆
って前記光取り出し面上に備えられた薄膜層と、からな
ること、前記凸領域がMgAl24からなることを特徴
としている。
At this time, according to the present invention, the projections on the uneven surface of the light scattering layer are constituted by a part of spherical particles, or the light scattering layer is formed in an island shape on the light extraction surface. A plurality of provided convex regions, a thin film layer provided on the light extraction surface covering the surfaces of the plurality of convex regions, and the convex regions are formed of MgAl 2 O 4. Features.

【0019】さらには、前記凹凸の幅及び段差が、前記
発光層で発生する光の波長を前記光散乱層の屈折率の平
方根で除した値に等しいか、あるいは大きいことを特徴
としている。
Further, the width and the level difference of the unevenness are equal to or larger than a value obtained by dividing a wavelength of light generated in the light emitting layer by a square root of a refractive index of the light scattering layer.

【0020】また、本発明は、前記光散乱層が、薄膜層
と、該薄膜層中に設けられた、当該薄膜層と異なる屈折
率を有する複数の屈折領域と、からなることを特徴とし
ており、前記屈折領域が略球状であることを、さらには
前記屈折領域の直径は、前記発光層で発生する光の波長
を前記屈折領域の屈折率の平方根で除した値に等しい
か、あるいは大きいことを特徴としている。
Further, the present invention is characterized in that the light scattering layer comprises a thin film layer and a plurality of refraction regions provided in the thin film layer and having a different refractive index from the thin film layer. That the refraction region is substantially spherical, and the diameter of the refraction region is equal to or greater than a value obtained by dividing the wavelength of light generated in the light emitting layer by the square root of the refractive index of the refraction region. It is characterized by.

【0021】また、本発明は、前記光散乱層が、内部に
複数の反射領域が設けられた薄膜層からなることを特徴
としており、前記反射領域が金属からなることを、前記
反射領域が略球状であることを、さらには前記反射領域
の直径は、前記発光層で発生する光の波長を前記屈折領
域の屈折率の平方根で除した値に等しいか、あるいは大
きいことを特徴としている。
Further, the present invention is characterized in that the light scattering layer is formed of a thin film layer having a plurality of reflection regions provided therein, and that the reflection region is made of metal, and the reflection region is substantially formed. It is characterized in that it is spherical, and the diameter of the reflection region is equal to or larger than a value obtained by dividing the wavelength of light generated in the light emitting layer by the square root of the refractive index of the refraction region.

【0022】加えて,本発明は、前記発光層が、ガリウ
ム(Ga)と窒素(N)を含む窒化ガリウム(GaN)
系半導体からなることを特徴としている。
In addition, according to the present invention, the light-emitting layer may include gallium nitride (GaN) containing gallium (Ga) and nitrogen (N).
It is characterized by being composed of a system semiconductor.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[実施形態1]図1は、第1の実施形態に係わるGaN
系半導体からなるLED発光装置の模式断面図である。
[Embodiment 1] FIG. 1 shows GaN according to the first embodiment.
It is a schematic cross section of the LED light emitting device which consists of a system semiconductor.

【0024】図1中、1はサファイア基板、2は基板1
上に形成された層厚3μmのn型GaN層、3はn型G
aN層2上に形成された層厚0.2μmのp型GaN
層、4はn型GaN層2が露出するように、p型GaN
層3からn型GaN層2の層中の所定位置に至って除去
されてなるn型側電極形成領域、及び、5は前記除去に
より同時に形成されるp型電極形成領域である。
In FIG. 1, 1 is a sapphire substrate, 2 is a substrate 1
An n-type GaN layer having a thickness of 3 μm formed on the
p-type GaN having a thickness of 0.2 μm formed on the aN layer 2
The layers 4 and 4 are p-type GaN so that the n-type GaN layer 2 is exposed.
An n-side electrode forming region removed from the layer 3 to a predetermined position in the n-type GaN layer 2 and a p-type electrode forming region 5 formed at the same time by the removal.

【0025】ここで、n型及びp型GaN層2及び3が
本発光装置の発光層に対応し、p型側電極形成領域5か
らn型電極形成領域4に至る領域が光取り出し面6とな
る。
Here, the n-type and p-type GaN layers 2 and 3 correspond to the light-emitting layers of the present light-emitting device, and the region from the p-type electrode formation region 5 to the n-type electrode formation region 4 corresponds to the light extraction surface 6. Become.

【0026】7はn型側電極形成領域4上に形成された
Tiからなるn型側電極、8はp型側電極形成領域5上
に形成されたAuとNiからなるp型側電極である。
Reference numeral 7 denotes an n-type electrode made of Ti formed on the n-type electrode forming region 4, and reference numeral 8 denotes a p-type electrode formed of Au and Ni formed on the p-type electrode forming region 5. .

【0027】9は光取り出し面6の略全域に形成された
二酸化珪素(SiO2)からなる光散乱層であり、本実
施形態にあっては該光散乱層が、幅及び段差がそれぞれ
約0.3μmの凹凸表面を有している。
Reference numeral 9 denotes a light scattering layer made of silicon dioxide (SiO 2 ) formed substantially over the entire area of the light extraction surface 6. In the present embodiment, the light scattering layer has a width and a step of about 0. .3 μm.

【0028】尚、本実施形態にあっては上記光散乱層9
をn型側電極7及びp型側電極8に跨って形成している
ので、これら両電極7及び8間の短絡を防止するために
光散乱層9をSiO2の絶縁膜から構成しているが、片
側の電極上にのみ形成する場合にあっては光散乱層9を
特に絶縁膜から構成する必要はなく、透光性を有する材
料から構成すればよい。
In the present embodiment, the light scattering layer 9
Is formed over the n-type side electrode 7 and the p-type side electrode 8, so that the light scattering layer 9 is made of an insulating film of SiO 2 in order to prevent a short circuit between the electrodes 7 and 8. However, when the light scattering layer 9 is formed only on one electrode, the light scattering layer 9 does not need to be formed of an insulating film, and may be formed of a light-transmitting material.

【0029】斯る発光装置の一製造工程を図2を用いて
簡単に説明する。尚、図1と同じ部分は、同一の符号を
付す。
One manufacturing process of such a light emitting device will be briefly described with reference to FIG. The same parts as those in FIG. 1 are denoted by the same reference numerals.

【0030】まず、図2(a)に示す第1工程では、サ
ファイア基板1上全面に成長温度1000℃にてMOC
VD(有機金属気相堆積)法により、層厚3μmのn型
GaN層2、層厚0.2μmのp型GaN層3をこの順
序で結晶成長する。ここで、n型及びp型ド−パントに
は、それぞれ、Si及びMgを用いる。
First, in the first step shown in FIG. 2A, the MOC is grown on the entire surface of the sapphire substrate 1 at a growth temperature of 1000 ° C.
By a VD (metal organic chemical vapor deposition) method, an n-type GaN layer 2 having a thickness of 3 μm and a p-type GaN layer 3 having a thickness of 0.2 μm are grown in this order. Here, Si and Mg are used for the n-type and p-type dopants, respectively.

【0031】次に、図2(b)に示す第2工程では、フ
ォトリソグラフィ−によりp型GaN層3上の所望の領
域をp型側電極形成領域5として残して、Cl2(塩
素)を反応性ガスとして用いて、RIBE(反応性イオ
ンビ−ムエッチング)法により、前記p型GaN層3と
n型GaN層2の層厚約2μmを除去し、n型側電極形
成領域4を形成し、続いて、p型GaN層16のキャリ
アを活性化するために、窒素ガス雰囲気中700℃にて
熱処理を行う。
Next, in a second step shown in FIG. 2B, Cl 2 (chlorine) is left by photolithography while leaving a desired region on the p-type GaN layer 3 as the p-side electrode forming region 5. Using the reactive gas as a reactive gas, the p-type GaN layer 3 and the n-type GaN layer 2 are removed by about 2 μm in thickness by RIBE (Reactive Ion Beam Etching) to form an n-type electrode forming region 4. Subsequently, heat treatment is performed at 700 ° C. in a nitrogen gas atmosphere in order to activate the carriers of the p-type GaN layer 16.

【0032】次に、図2(c)に示す第3工程では、n
型側電極形成領域4上にTiからなるn型側電極7、p
型側電極形成領域5上にAuとNiからなるp型側電極
8を真空蒸着にて形成する。
Next, in a third step shown in FIG.
An n-type electrode 7 made of Ti, p
A p-side electrode 8 made of Au and Ni is formed on the mold-side electrode formation region 5 by vacuum deposition.

【0033】更に、図2(d)に示す第4工程では、前
記構造の表面全域に層厚0.6μmのSiO2からなる
絶縁膜9aを真空蒸着する。
Further, in a fourth step shown in FIG. 2D, an insulating film 9a made of SiO 2 having a thickness of 0.6 μm is vacuum-deposited over the entire surface of the structure.

【0034】その後、図2(e)に示す第5工程では、
前記絶縁膜9a表面に、干渉露光法を用いたフォトリソ
グラフィ−と、フッ酸系のエッチャントを用いたウェッ
トエッチングにより、幅及び段差がそれぞれ約0.3μ
mの凹凸を形成することにより、凹凸表面を有する光散
乱層9を作製する。
Thereafter, in a fifth step shown in FIG.
On the surface of the insulating film 9a, photolithography using an interference exposure method and wet etching using a hydrofluoric acid-based etchant have a width and a step of about 0.3 μm each.
The light scattering layer 9 having the uneven surface is formed by forming the unevenness of m.

【0035】最後に、第6工程では、n型側、p型側電
極7、8上方の前記光散乱層9の一部を、フォトリソグ
ラフィ−とフッ酸系のエッチャントを用いたウェットエ
ッチングにより、電極へのコンタクト用に除去して、図
1に示すLED発光装置が得られる。
Finally, in the sixth step, a part of the light scattering layer 9 above the n-type and p-type electrodes 7, 8 is partially etched by photolithography and wet etching using a hydrofluoric acid-based etchant. The LED light emitting device shown in FIG. 1 is obtained by being removed for contact with the electrode.

【0036】本実施形態の発光装置は、通常のLED装
置と全く同様にして、前記電極7、8間の順方向に電圧
を印加することにより、n型GaN層2とp型GaN層
3との界面(pn接合界面)近傍で光が発生する。
In the light emitting device of this embodiment, the n-type GaN layer 2 and the p-type GaN layer 3 are connected to each other by applying a voltage in the forward direction between the electrodes 7 and 8 in exactly the same manner as a normal LED device. Light is generated near the interface (pn junction interface).

【0037】ここで上述のように、光散乱層9を有さな
い通常の発光装置では、前記pn接合界面近傍で発生し
た光の内、光取り出し面6に対して臨界角より浅い角度
で入射した光は、光取り出し面6で発光装置内部方向へ
反射されるため、外部へ取り出すことができない。これ
に対し、本実施形態の発光装置は凹凸表面を有する光散
乱層9を備えるので、前記通常の発光装置では臨界角よ
り浅い角度で入射するはずの光が、臨界角より深い角度
で入射するようになり、外部へ取り出されることとな
る。この結果、本発光装置では、外部への光取り出し効
率を向上することができる。
Here, as described above, in a normal light emitting device having no light scattering layer 9, of the light generated near the pn junction interface, the light is incident on the light extraction surface 6 at an angle smaller than the critical angle. The emitted light is reflected toward the inside of the light emitting device by the light extraction surface 6 and cannot be extracted to the outside. On the other hand, since the light emitting device of the present embodiment includes the light scattering layer 9 having the uneven surface, light that should be incident at an angle smaller than the critical angle in the ordinary light emitting device is incident at an angle deeper than the critical angle. And it is taken out to the outside. As a result, in the present light emitting device, the light extraction efficiency to the outside can be improved.

【0038】また、本実施形態の発光装置が備える光散
乱層9は、SiO2からなるのでGaN系半導体に比し
て、エッチング加工が容易であり、凹凸表面を短時間で
制御性良く形成できる。従って、本発明により、寸法精
度の優れた凹凸表面を有する光散乱層9を備えた発光装
置を容易に製造できる。
Further, since the light scattering layer 9 provided in the light emitting device of the present embodiment is made of SiO 2 , the light scattering layer 9 can be easily etched and the uneven surface can be formed in a short time with good controllability as compared with the GaN-based semiconductor. . Therefore, according to the present invention, a light emitting device including the light scattering layer 9 having the uneven surface with excellent dimensional accuracy can be easily manufactured.

【0039】更に、前記凹凸表面は、GaN半導体層3
の表面ではなく、光散乱層9表面に形成するので、Ga
N層2、3に加工損傷を導入することがなく、従って、
本発光装置の発光効率が低下することがない。
Further, the uneven surface is formed on the GaN semiconductor layer 3.
Formed on the surface of the light scattering layer 9 instead of the surface of
No processing damage is introduced into the N layers 2, 3, and
The luminous efficiency of the light emitting device does not decrease.

【0040】加えて、本実施形態の発光装置は、GaN
層2、3表面が、n型側、p型側電極7、8、及び光散
乱層9により完全に覆われているので、大気にされるこ
とに因る酸化を防止でき、発光装置の特性が安定化され
る効果も得られる。
In addition, the light emitting device of the present embodiment has a GaN
Since the surfaces of the layers 2 and 3 are completely covered with the n-type side, the p-type side electrodes 7 and 8 and the light scattering layer 9, oxidation caused by exposure to the atmosphere can be prevented, and the characteristics of the light emitting device can be prevented. Is also obtained.

【0041】尚、前記光散乱層9による外部への光取り
出し効率向上効果をより高めるためには、前記光散乱層
9が有する凹凸の幅(t1)及び段差(t2)が、LED
装置の発光波長λ及び光散乱層9の屈折率nに対して、
数1を満足することが好ましい。
Incidentally, in order to further enhance the effect of improving the light extraction efficiency to the outside by the light scattering layer 9, the width (t 1 ) and the level difference (t 2 ) of the unevenness of the light scattering layer 9 are determined by the LED.
For the emission wavelength λ of the device and the refractive index n of the light scattering layer 9,
It is preferable that Equation 1 is satisfied.

【0042】[0042]

【数1】 (Equation 1)

【0043】本実施形態においては、λが0.36μ
m、nが1.45であるので、t1及びt2は前記式より
0.3μmと算出されるので、前記光散乱層9が有する
凹凸の幅及び段差を0.3μmとした。
In this embodiment, λ is 0.36 μm.
Since m and n are 1.45, t 1 and t 2 are calculated to be 0.3 μm from the above formula, so that the width and step of the unevenness of the light scattering layer 9 are set to 0.3 μm.

【0044】また、本実施形態では光散乱層9に、Si
2を用いたが、窒化珪素等の他の絶縁物を用いても良
い。
In this embodiment, the light scattering layer 9 is made of Si.
Although O 2 is used, another insulator such as silicon nitride may be used.

【0045】更に、上述では、LED発光装置について
説明したが、面発光レーザ等の他の発光装置においても
適宜用いることができ、また、GaN系半導体以外の材
料からなるものに限らず、発光装置全般に用いることが
できる。
Further, although the LED light emitting device has been described above, the light emitting device can be appropriately used in other light emitting devices such as a surface emitting laser, and is not limited to those made of materials other than GaN-based semiconductors. Can be used in general.

【0046】[実施形態2]図3は、第2の実施形態に
係わるGaN系半導体からなるLED発光装置の模式断
面図である。尚、本実施形態が図1に示した実施形態1
と異なるのは、光散乱層の形状、及びその形成方法のみ
であるので、図1と同じ部分には同一の符号を付して説
明を割愛する。
[Second Embodiment] FIG. 3 is a schematic sectional view of an LED light emitting device comprising a GaN-based semiconductor according to a second embodiment. Note that this embodiment corresponds to the first embodiment shown in FIG.
The only difference is the shape of the light scattering layer and the method of forming the same. Therefore, the same parts as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.

【0047】図3中、11がSiO2からなる光散乱層
であり、該光散乱層11は光取り出し面6上に形成され
た直径約0.3μmの略球状をした球状部11aと膜厚
約0.15μmの薄膜部11bにより構成されており、
上記球状部11aの一部が光散乱層11の凸部を構成し
ている。
In FIG. 3, reference numeral 11 denotes a light-scattering layer made of SiO 2. The light-scattering layer 11 has a substantially spherical part 11 a having a diameter of about 0.3 μm formed on the light extraction surface 6. It is constituted by a thin film portion 11b of about 0.15 μm,
Part of the spherical portion 11a constitutes a convex portion of the light scattering layer 11.

【0048】欺る発光装置の一製造工程を簡単に説明す
る。
One manufacturing process of the deceptive light emitting device will be briefly described.

【0049】本実施形態の発光装置の第1〜3工程で
は、実施形態1で説明した一製造工程の第1〜3工程
(図2(a)〜(c))と同様の工程を行う。
In the first to third steps of the light emitting device of this embodiment, the same steps as the first to third steps (FIGS. 2A to 2C) of the manufacturing process described in the first embodiment are performed.

【0050】次に、第4工程では、光取り出し面6上、
及び、該面6上の一部に形成されたn型側、p型側電極
7、8の表面全域に、SiO2系被膜形成用塗布液(東
京応化工業社製OCD)中に粒径が約0.3μmのSi
2からなる粒子を混合した溶液を、スピンコ−ト法に
て塗布する。
Next, in a fourth step, on the light extraction surface 6,
In addition, the particle size in a coating solution for forming a SiO 2 -based film (OCD manufactured by Tokyo Ohka Kogyo Co., Ltd.) is spread over the entire surface of the n-type and p-type electrodes 7 and 8 formed on a part of the surface 6. About 0.3 μm of Si
A solution in which particles made of O 2 are mixed is applied by a spin coating method.

【0051】その後、第5工程では、窒素ガス雰囲気中
450℃にて30分間ベーキングを行い、前記溶液中の
溶媒を蒸発させることにより、直径約0.3μmの略球
状をした球状部11aの略半分を凸部として有する光散
乱層11を形成する。
Thereafter, in a fifth step, baking is performed at 450 ° C. for 30 minutes in a nitrogen gas atmosphere, and the solvent in the solution is evaporated to form a substantially spherical part 11 a having a diameter of about 0.3 μm. The light scattering layer 11 having a half as a projection is formed.

【0052】最後に、第6工程では、n型側、p型側電
極7、8上方の前記光散乱層11の一部を、フォトリソ
グラフィ−とフッ酸系のエッチャントを用いたウェット
エッチングにより、電極へのコンタクト用に除去して、
図3に示す発光装置が得られる。
Finally, in the sixth step, a part of the light scattering layer 11 above the n-type and p-type electrodes 7 and 8 is subjected to photolithography and wet etching using a hydrofluoric acid-based etchant. Removed for contact to the electrode,
The light emitting device shown in FIG. 3 is obtained.

【0053】本実施形態の発光装置は、表面に凹凸表面
を有する光散乱層11を備えるので、実施形態1の発光
装置と同様に、外部への光取り出し効率を向上すること
ができる。
Since the light emitting device of the present embodiment includes the light scattering layer 11 having the uneven surface, the light extraction efficiency to the outside can be improved as in the light emitting device of the first embodiment.

【0054】また、GaN層2、3に加工損傷を導入す
ることがなく、本発光装置の発光効率を低下させること
がない。
Further, no processing damage is introduced into the GaN layers 2 and 3, and the luminous efficiency of the light emitting device is not reduced.

【0055】更に、GaN層2、3表面の酸化が防止さ
れるので、発光装置の特性が安定化される効果がある。
Furthermore, since the oxidation of the surfaces of the GaN layers 2 and 3 is prevented, there is an effect that the characteristics of the light emitting device are stabilized.

【0056】また、本実施形態においては、粒径の揃っ
た粒子を含有する溶媒をスピンコート法により塗布し、
これをベーキングすることで光散乱層11を形成するの
で、凹凸の寸法精度は良好である。これに加えて、凹凸
を形成するためにフォトリソグラフィ−とエッチング工
程を必要としないので、実施形態1の発光装置より更に
製造が簡略化される。
In this embodiment, a solvent containing particles having a uniform particle diameter is applied by spin coating.
Since the light scattering layer 11 is formed by baking this, the dimensional accuracy of the unevenness is good. In addition, since no photolithography and etching steps are required to form the unevenness, the manufacturing is further simplified as compared with the light emitting device of the first embodiment.

【0057】尚、前記光散乱層11による外部への光取
り出し効率向上効果をより高めるためには、前記光散乱
層11が有する凹凸の幅(t1)及び段差(t2)が、L
ED装置の発光波長λ及び光散乱層9の屈折率nに対し
て、前述の実施形態1と同様数1を満足することが好ま
しい。
In order to further enhance the effect of improving the light extraction efficiency by the light scattering layer 11, the width (t 1 ) and the step (t 2 ) of the unevenness of the light scattering layer 11 must be L.
It is preferable that the emission wavelength λ of the ED device and the refractive index n of the light scattering layer 9 satisfy Expression 1 as in the first embodiment.

【0058】また、本実施形態では光散乱層11の形成
にSiO2系被膜形成用塗布液を用いたが、ポリイミド
系樹脂等の他の材料からなる被膜形成用塗布液を用いて
も良い。加えて、光散乱層11の球状部11aを、Si
2からなる粒子としたが、例えば炭素(C)等の他の
材料からなる粒子を用いても良い。
In this embodiment, a coating solution for forming a SiO 2 film is used for forming the light scattering layer 11, but a coating solution for forming a film made of another material such as a polyimide resin may be used. In addition, the spherical portion 11a of the light scattering layer 11 is
Although the particles are made of O 2 , particles made of another material such as carbon (C) may be used.

【0059】更に、上述では、LED発光装置について
説明したが、面発光レーザ等の他の発光装置に適宜用い
ることができる。
Furthermore, although the LED light emitting device has been described above, the present invention can be appropriately applied to other light emitting devices such as a surface emitting laser.

【0060】加えて、本発明は、GaN系半導体以外の
材料からなるものに限らず、他の発光装置に対しても用
いることができる。
In addition, the present invention is not limited to those made of materials other than GaN-based semiconductors, and can be used for other light emitting devices.

【0061】[実施形態3]図4は、第3の実施形態に
係わるGaN系半導体からなるLED発光装置の模式断
面図である。尚、同図において、図3に示した実施形態
2と同じ部分には同一の符号を付して説明を割愛する。
[Embodiment 3] FIG. 4 is a schematic sectional view of an LED light-emitting device comprising a GaN-based semiconductor according to a third embodiment. In the figure, the same parts as those of the second embodiment shown in FIG.

【0062】図4中、21aはSiO2からなる薄膜
層、21b…は該薄膜層21a中に設けられた、当該薄
膜層21aとと異なる屈折率を有する複数の屈折領域で
あり、本実施形態にあってはダイヤモンドから構成され
ている。そして、前記絶縁層21a及び屈折領域21b
…から光散乱層21が構成されている。
In FIG. 4, 21a is a thin film layer made of SiO 2 , 21b... Are a plurality of refraction regions provided in the thin film layer 21a and having a different refractive index from the thin film layer 21a. Is composed of diamond. Then, the insulating layer 21a and the refraction region 21b
.. Constitute a light scattering layer 21.

【0063】ここで、本実施形態にあっては前記屈折領
域21b…を略球状とし、その直径を約0.3μm、ま
た薄膜層21aの膜厚を約0.6μmとしたので、屈折
領域21b…は薄膜層21aに埋没した形態となってい
る。
In this embodiment, since the refraction regions 21b are approximately spherical, the diameter thereof is about 0.3 μm, and the thickness of the thin film layer 21a is about 0.6 μm, ... are buried in the thin film layer 21a.

【0064】欺る発光装置は、上述の実施形態2の一製
造工程の第4工程において、スピンコートを行う際のス
ピンナ−の回転速度を小さくする以外は、上記製造工程
と同様にして製造される。
The deceptive light emitting device is manufactured in the same manner as the above manufacturing process, except that the rotation speed of the spinner during spin coating is reduced in the fourth process of the manufacturing process of the second embodiment. You.

【0065】次に、本実施形態の光散乱層21により光
取り出し効率が向上するメカニズムを図5(a)を用い
て簡単に説明する。
Next, a mechanism for improving the light extraction efficiency by the light scattering layer 21 of the present embodiment will be briefly described with reference to FIG.

【0066】薄膜層21aを構成するSiO2の屈折率
は1.45であり、屈折領域21b…を構成するダイヤ
モンドの屈折率は約2.5とSiO2のそれより大き
い。従って、n型GaN層2とp型GaN層3との界面
近傍で発生した光の内、光散乱層21が無い場合には臨
界角より浅い角度で光取り出し面6に入射し、外部に取
り出すことができない光が、図5(a)に示すように屈
折領域21b…で屈折され光の進行方向が変わるため
に、外部へ取り出すことができるようになる。この結
果、LED装置の光取り出し効率が高まる。
The refractive index of SiO 2 constituting the thin film layer 21a is 1.45, and the refractive index of diamond constituting the refraction regions 21b is about 2.5, which is larger than that of SiO 2 . Therefore, of the light generated near the interface between the n-type GaN layer 2 and the p-type GaN layer 3, when the light scattering layer 21 is not provided, the light is incident on the light extraction surface 6 at an angle smaller than the critical angle and is extracted to the outside. As shown in FIG. 5A, the light that cannot be emitted is refracted by the refraction areas 21b and the traveling direction of the light changes, so that the light can be extracted to the outside. As a result, the light extraction efficiency of the LED device increases.

【0067】また、前記屈折領域21b…の代わりにA
l等の金属材料からなる複数の反射領域21b…を設け
てもよく、この場合には、図5(b)に示すように、反
射領域21b…表面で光が反射することにより、光の進
行方向が変わる。この結果、光散乱層21が無い場合に
は外部に取り出すことができない光が、光散乱層21を
設けることにより外部へ取り出されるようになるので、
発光装置の光取り出し効率を向上することができる。
Also, instead of the refraction areas 21b, A
.. may be provided. In this case, as shown in FIG. 5B, the light is reflected on the surface of the reflective areas 21b so that the light travels. The direction changes. As a result, light that cannot be extracted to the outside without the light scattering layer 21 is extracted to the outside by providing the light scattering layer 21.
The light extraction efficiency of the light emitting device can be improved.

【0068】以上のように、本発光装置では光取り出し
効率向上効果が得られる他に、GaN層2、3に加工損
傷を導入することがなく、発光装置の発光効率を低下さ
せることがない。
As described above, in the present light emitting device, in addition to the effect of improving the light extraction efficiency, no processing damage is introduced into the GaN layers 2 and 3, and the light emitting efficiency of the light emitting device does not decrease.

【0069】更に、GaN層2、3表面の酸化が防止さ
れるので、発光装置の特性が安定化される効果がある。
Further, since the oxidation of the surfaces of the GaN layers 2 and 3 is prevented, there is an effect that the characteristics of the light emitting device are stabilized.

【0070】また、本実施形態においては、粒径の揃っ
た粒子を含有する溶媒をスピンコート法により塗布し、
これをベーキングすることで屈折領域或いは反射領域2
1b…を有する光散乱層21を形成するので、前記光取
り出し効率向上効果の再現性は良好である。これに加え
て、凹凸を形成するためにフォトリソグラフィ−とエッ
チング工程を必要としないので、実施形態1の発光装置
より更に製造が簡略化される。
In this embodiment, a solvent containing particles having a uniform particle diameter is applied by spin coating.
By baking this, the refraction area or reflection area 2
Since the light scattering layer 21 having 1b... Is formed, reproducibility of the light extraction efficiency improving effect is good. In addition, since no photolithography and etching steps are required to form the unevenness, the manufacturing is further simplified as compared with the light emitting device of the first embodiment.

【0071】尚、前記光散乱層21による外部への光取
り出し効率向上効果をより高めるためには、前記光散乱
層21の屈折領域或いは反射領域21b…の直径tが、
発光装置の発光波長λ及び前記屈折領域21bを構成す
る材料の屈折率nに対して前述の数1を満足することが
好ましいことは、上述と同様である。また、本実施形態
では光散乱層21の形成にSiO2系被膜形成用塗布液
を用いたが、ポリイミド系樹脂等の他の材料からなる被
膜形成用塗布液を用いても良い。
In order to further enhance the effect of improving the light extraction efficiency by the light scattering layer 21, the diameter t of the refraction region or reflection region 21b of the light scattering layer 21 must be
As described above, it is preferable that the above-mentioned Expression 1 be satisfied with respect to the light emission wavelength λ of the light emitting device and the refractive index n of the material forming the refraction region 21b. Further, in the present embodiment, the coating solution for forming a SiO 2 -based film is used for forming the light scattering layer 21, but a coating solution for forming a film made of another material such as a polyimide-based resin may be used.

【0072】加えて、光散乱層21の屈折領域21b…
を、ダイヤモンドからなる粒子としたが、サファイア
(Al23)等の他の材料からなる粒子を用いても良
い。但し、屈折領域21b…を構成する材料と薄膜層2
1aを構成する材料との屈折率差は大きい方が好まし
い。また、屈折領域21b…は、固体材料ではなく空気
等の気体、或いは、真空であっても良い。
In addition, the refraction area 21b of the light scattering layer 21
Is a particle made of diamond, but a particle made of another material such as sapphire (Al 2 O 3 ) may be used. However, the material constituting the refraction regions 21b and the thin film layer 2
It is preferable that the difference in the refractive index from the material constituting 1a is large. The refraction areas 21b may be made of a gas such as air or a vacuum instead of a solid material.

【0073】また、薄膜層21aの表面は、平坦面であ
っても良いが、凹凸表面を有するものであっても構わな
い。
The surface of the thin film layer 21a may be a flat surface, but may have an uneven surface.

【0074】更に、本発明における薄膜層21aは、前
述した通りn型側電極7とp型側電極8との短絡を生じ
させる恐れがなければ特に絶縁膜から構成する必要はな
く、透光性を有する材料から構成すれば良い。
Further, the thin film layer 21a in the present invention does not need to be formed of an insulating film unless there is a possibility of causing a short circuit between the n-type electrode 7 and the p-type electrode 8, as described above. What is necessary is just to comprise from the material which has.

【0075】加えて、上述では、LED発光装置につい
て説明したが、面発光レーザ等の他の発光装置に適宜用
いることができる。加えて、本発明は、GaN系半導体
を用いたものに限らず、他の発光装置に対しても用いる
ことができる。
In addition, although the LED light emitting device has been described above, the present invention can be appropriately applied to other light emitting devices such as a surface emitting laser. In addition, the present invention is not limited to one using a GaN-based semiconductor, but can be used for other light emitting devices.

【0076】[実施形態4]図6は、第4の実施形態に
係わるGaN系半導体からなるLED発光装置の模式断
面図である。尚、同図において、図1に示した実施形態
1と同じ部分には同一の符号を付して説明を割愛する。
[Embodiment 4] FIG. 6 is a schematic sectional view of an LED light emitting device comprising a GaN-based semiconductor according to a fourth embodiment. In the figure, the same parts as those of the first embodiment shown in FIG.

【0077】図6中、31が表面に凹凸を有する光散乱
層であり、該光散乱層31は光取り出し面6上に島状に
形成されたスピネル(MgAl24)からなる底面積約
0.1μm2、高さ約0.2μmの複数の凸領域32…
と、該凸領域32…が埋め込まれるように該凸領域32
…と光取り出し面6上全域に形成された膜厚0.3μm
のSiO2からなる薄膜層33により構成されている。
In FIG. 6, reference numeral 31 denotes a light-scattering layer having an uneven surface, and the light-scattering layer 31 has a bottom area of a spinel (MgAl 2 O 4 ) formed in an island shape on the light extraction surface 6. A plurality of convex regions 32 having a height of 0.1 μm 2 and a height of about 0.2 μm.
And the convex regions 32 so that the convex regions 32 are embedded.
... and a film thickness of 0.3 μm formed over the entire area on the light extraction surface 6.
Of a thin film layer 33 made of SiO 2 .

【0078】欺るLED発光装置の一製造工程を簡単に
説明する。
One manufacturing process of the LED light emitting device to be deceived will be briefly described.

【0079】本LED装置の第1〜3工程では、実施形
態1で説明した一製造工程の第1〜3工程(図2(a)
〜(c))と同様の工程を行う。
The first to third steps of the present LED device are the first to third steps of the manufacturing process described in the first embodiment (FIG. 2A).
(C)).

【0080】次に、第4工程では、光取り出し面6上、
及び、該面6上の一部に形成されたn型側、p型側電極
7、8の表面全域に、成長温度900℃にて、原料とし
て塩化水素(HCl)ガス輸送のアルミニウム(A
l)、水素(H2)ガス輸送の塩化マグネシウム(Mg
Cl2)、及び二酸化炭素(CO2)を用いた気相エピタ
キシャル法により、MgAl24を成長する。この方法
では、MgAl24が島状に成長し、底面積約0.1μ
2、高さ約0.2μmのMgAl24からなる複数の
凸領域32…が形成される。
Next, in the fourth step, on the light extraction surface 6,
And, at a growth temperature of 900 ° C., aluminum (A) of hydrogen chloride (HCl) gas transport as a raw material is applied to the entire surface of the n-type and p-type electrodes 7 and 8 formed on a part of the surface 6.
l) Hydrogen (H 2 ) gas transported magnesium chloride (Mg)
MgAl 2 O 4 is grown by a vapor phase epitaxial method using Cl 2 ) and carbon dioxide (CO 2 ). In this method, MgAl 2 O 4 grows in an island shape and has a bottom area of about 0.1 μm.
A plurality of convex regions 32 of m 2 and a height of about 0.2 μm made of MgAl 2 O 4 are formed.

【0081】その後、第5工程では、前記凸領域32…
が埋め込まれるように、光取り出し面6上、及び、該面
6上の一部に形成されたn型側、p型側電極7、8、更
には前記複数の凸領域32…の表面全域に、膜厚0.3
μmのSiO2からなる薄膜層33を真空蒸着すること
によって、表面に凹凸を有する光散乱層31を形成す
る。
Thereafter, in a fifth step, the convex regions 32.
Are embedded on the light extraction surface 6 and on the entire surface of the n-type and p-type electrodes 7 and 8 formed on a part of the surface 6 and the plurality of convex regions 32. , Film thickness 0.3
The light scattering layer 31 having an uneven surface is formed by vacuum-depositing a thin film layer 33 made of μm SiO 2 .

【0082】最後に、第6工程では、n型側、p型側電
極7、8上方の前記光散乱層31の一部を、フォトリソ
グラフィ−とフッ酸系及び燐酸系のエッチャントを用い
たウェットエッチングにより、電極へのコンタクト用に
除去して、図6に示す発光装置が得られる。
Finally, in the sixth step, a part of the light scattering layer 31 above the n-type and p-type side electrodes 7 and 8 is subjected to photolithography and wet etching using hydrofluoric acid-based and phosphoric acid-based etchants. The light-emitting device shown in FIG. 6 is obtained by being removed by etching for contact with the electrode.

【0083】本実施形態の発光装置は、表面に凹凸を有
する光散乱層31を備えるので、実施形態1、2、及び
3と同様に、外部への光取り出し効率を向上することが
できる。
Since the light emitting device of this embodiment includes the light scattering layer 31 having unevenness on the surface, the efficiency of extracting light to the outside can be improved as in the first, second, and third embodiments.

【0084】また、GaN層2、3に加工損傷を導入す
ることがなく、本発光装置の発光効率を低下させること
がない。
Further, no processing damage is introduced into the GaN layers 2 and 3, and the luminous efficiency of the light emitting device is not reduced.

【0085】更に、GaN層2、3表面の酸化が防止さ
れるので、発光装置の特性が安定化される効果がある。
Further, since oxidation of the surfaces of the GaN layers 2 and 3 is prevented, there is an effect that the characteristics of the light emitting device are stabilized.

【0086】また、本実施形態においては、MgAl2
4からなる複数の凸領域32…の寸法を成長温度と成
長時間で制御できるので、寸法の揃った凸領域32…を
形成できる。更に、これらの凸領域32…形成後に、光
取り出し面6上、該面6上の一部に形成されたn型側、
p型側電極7、8、及び前記複数の凸領域32…の表面
全域に、薄膜層33を形成して、表面に凹凸を有する光
散乱層31が得られるが、薄膜層33は真空蒸着により
形成するので、その膜厚制御性は良好である。従って、
前記凹凸の寸法精度は良好である。
In the present embodiment, MgAl 2
Since the dimensions of the plurality of convex regions 32 made of O 4 can be controlled by the growth temperature and the growth time, the convex regions 32 having uniform dimensions can be formed. Further, after these convex regions 32 are formed, on the light extraction surface 6, the n-type side formed on a part of the surface 6,
By forming a thin film layer 33 over the entire surface of the p-side electrodes 7, 8 and the plurality of convex regions 32, a light scattering layer 31 having irregularities on the surface is obtained. The thin film layer 33 is formed by vacuum evaporation. Since it is formed, its film thickness controllability is good. Therefore,
The dimensional accuracy of the irregularities is good.

【0087】但し、前記凹凸の寸法精度に関しては、実
施形態1がより高い。一方、LED発光装置製造の容易
さに関しては、本実施形態では凹凸を形成するためにフ
ォトリソグラフィ−とエッチング工程を必要としないの
で、実施形態1の発光装置より更に製造が簡略化され
る。
However, the dimensional accuracy of the irregularities is higher in the first embodiment. On the other hand, with respect to the ease of manufacturing the LED light emitting device, the present embodiment does not require photolithography and an etching process to form the unevenness, and thus the manufacturing is further simplified than the light emitting device of the first embodiment.

【0088】尚、前記光散乱層31による外部への光取
り出し効率向上効果をより高めるためには、実施形態
1、2、及び3と同様数1関係を満足することが好まし
い。
In order to further enhance the effect of improving the efficiency of light extraction to the outside by the light scattering layer 31, it is preferable to satisfy the following expression (1) as in the first, second and third embodiments.

【0089】また、本実施形態では光散乱層31の表面
に凹凸を設けるために、MgAl24の島状成長を利用
したが、前記凸領域32…には他の材料を用いても良
い。加えて、前記凸領域32…を覆う膜33にはSiO
2を用いたが、窒化珪素等の他の絶縁物を用いても良い
し、或いは絶縁物に限らず他の透光性材料を用いてもよ
い。
Further, in the present embodiment, in order to provide irregularities on the surface of the light scattering layer 31, island-like growth of MgAl 2 O 4 is used, but other materials may be used for the convex regions 32. . In addition, the film 33 covering the convex regions 32.
Although 2 is used, other insulators such as silicon nitride may be used, or other translucent materials may be used without being limited to the insulator.

【0090】更に、上述では、LED発光装置について
説明したが、面発光レーザ等の他の発光装置に適宜用い
ることができる。
Furthermore, although the LED light emitting device has been described above, the present invention can be appropriately applied to other light emitting devices such as a surface emitting laser.

【0091】加えて、本発明は、GaN系半導体以外の
材料からなる、或いは半導体材料を用いない発光装置に
ついても用いることができる。
In addition, the present invention can be applied to a light emitting device made of a material other than a GaN-based semiconductor or using no semiconductor material.

【0092】[0092]

【発明の効果】本発明の発光装置は、発光層で発生した
光を光取り出し面を通して外部へ放射させる発光装置で
あって、前記光取り出し面上に光散乱層を備えているの
で、従来は光取り出し面で発光装置内部方向へ反射さ
れ、外部へ取り出すことができなかった光を有効に外部
に取り出すことが可能となり、外部への光取り出し効率
が向上した発光装置を提供できる。
The light-emitting device of the present invention is a light-emitting device that emits light generated in the light-emitting layer to the outside through the light extraction surface, and has a light scattering layer on the light extraction surface. Light that is reflected on the light extraction surface toward the inside of the light emitting device and cannot be extracted to the outside can be effectively extracted to the outside, and a light emitting device with improved light extraction efficiency to the outside can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係わる発光装置の模
式断面図である。
FIG. 1 is a schematic sectional view of a light emitting device according to a first embodiment of the present invention.

【図2】上記第1の実施形態に係わる発光装置の一製造
工程を示す工程別模式断面図である。
FIG. 2 is a schematic cross-sectional view illustrating each manufacturing process of the light emitting device according to the first embodiment.

【図3】本発明の第2の実施形態に係わる発光装置の模
式断面図である。
FIG. 3 is a schematic sectional view of a light emitting device according to a second embodiment of the present invention.

【図4】本発明の第3の実施形態に係わる発光装置の模
式断面図である。
FIG. 4 is a schematic sectional view of a light emitting device according to a third embodiment of the present invention.

【図5】本発明の第3の実施形態において光取り出し効
率が高まるメカニズムを説明するための発光装置の模式
断面図である。
FIG. 5 is a schematic cross-sectional view of a light-emitting device for explaining a mechanism for increasing light extraction efficiency in a third embodiment of the present invention.

【図6】本発明の第4の実施形態に係わる発光装置の模
式断面図である。
FIG. 6 is a schematic sectional view of a light emitting device according to a fourth embodiment of the present invention.

【図7】光取り出し面における光の屈折、反射の様子を
示す装置動作時のLED発光装置の模式断面図である。
FIG. 7 is a schematic cross-sectional view of the LED light emitting device during operation of the device, showing how light is refracted and reflected on the light extraction surface.

【符号の説明】[Explanation of symbols]

2 n型GaN層(発光層) 3 p型GaN層(発光層) 4 n型側電極形成領域 5 p型側電極形成領域 6 光取り出し面 9 光散乱層 2 n-type GaN layer (light-emitting layer) 3 p-type GaN layer (light-emitting layer) 4 n-type side electrode formation region 5 p-type side electrode formation region 6 light extraction surface 9 light scattering layer

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 発光層で発生した光を光取り出し面を通
して外部へ放射させる発光装置であって、前記光取り出
し面上に、光散乱層を備えることを特徴とする発光装
置。
1. A light-emitting device for emitting light generated in a light-emitting layer to the outside through a light extraction surface, comprising a light-scattering layer on the light extraction surface.
【請求項2】 前記光散乱層が絶縁性を有することを特
徴とする請求項1記載の発光装置。
2. The light emitting device according to claim 1, wherein the light scattering layer has an insulating property.
【請求項3】 前記光散乱層が凹凸表面を有することを
特徴とする請求項1または2記載の発光装置。
3. The light emitting device according to claim 1, wherein the light scattering layer has an uneven surface.
【請求項4】 前記光散乱層の凹凸表面の凸部が、球状
の粒子の一部から構成されたことを特徴とする請求項3
記載の発光装置。
4. The light-scattering layer according to claim 3, wherein the projections on the surface of the projections and depressions are composed of a part of spherical particles.
A light-emitting device according to claim 1.
【請求項5】 前記光散乱層は、前記光取り出し面上に
島状に設けられた複数個の凸領域と、該複数個の凸領域
の表面を覆って前記光取り出し面上に備えられた薄膜層
と、からなることを特徴とする請求項3記載の発光装
置。
5. The light-scattering layer is provided on the light extraction surface so as to cover a plurality of convex regions provided in an island shape on the light extraction surface and the surfaces of the plurality of convex regions. 4. The light emitting device according to claim 3, comprising a thin film layer.
【請求項6】 前記凸領域がMgAl24からなること
を特徴とする請求項5記載の発光装置。
6. The light emitting device according to claim 5, wherein said convex region is made of MgAl 2 O 4 .
【請求項7】 前記凹凸の幅及び段差が、前記発光層で
発生する光の波長を前記光散乱層の屈折率の平方根で除
した値に等しいか、あるいは大きいことを特徴とする請
求項3乃至6記載の発光装置。
7. The light emitting device according to claim 3, wherein the width and step of the unevenness are equal to or larger than a value obtained by dividing a wavelength of light generated in the light emitting layer by a square root of a refractive index of the light scattering layer. The light emitting device according to any one of claims 6 to 7.
【請求項8】 前記光散乱層が、薄膜層と、該薄膜層中
に設けられた、当該薄膜層と異なる屈折率を有する複数
の屈折領域と、からなることを特徴とする請求項1また
は2記載の発光装置。
8. The light-scattering layer comprises a thin-film layer and a plurality of refraction regions provided in the thin-film layer and having a different refractive index from the thin-film layer. 3. The light emitting device according to 2.
【請求項9】 前記屈折領域が略球状であることを特徴
とする請求項8記載の発光装置。
9. The light emitting device according to claim 8, wherein said refraction region is substantially spherical.
【請求項10】 前記屈折領域の直径は、前記発光層で
発生する光の波長を前記屈折領域の屈折率の平方根で除
した値に等しいか、あるいは大きいことを特徴とする請
求項9記載の発光装置。
10. The refraction region according to claim 9, wherein the diameter of the refraction region is equal to or greater than a value obtained by dividing a wavelength of light generated in the light emitting layer by a square root of a refractive index of the refraction region. Light emitting device.
【請求項11】 前記光散乱層が、内部に複数の反射領
域が設けられた薄膜層からなることを特徴とする請求項
1または2記載の発光装置。
11. The light emitting device according to claim 1, wherein the light scattering layer is formed of a thin film layer having a plurality of reflection regions provided therein.
【請求項12】 前記反射領域が金属からなることを特
徴とする請求項11記載の発光装置。
12. The light emitting device according to claim 11, wherein said reflection region is made of metal.
【請求項13】 前記反射領域が略球状であることを特
徴とする請求項11または12記載の発光装置。
13. The light emitting device according to claim 11, wherein the reflection area is substantially spherical.
【請求項14】 前記反射領域の直径は、前記発光層で
発生する光の波長を前記屈折領域の屈折率の平方根で除
した値に等しいか、あるいは大きいことを特徴とする請
求項13記載の発光装置。
14. The reflection region according to claim 13, wherein a diameter of the reflection region is equal to or larger than a value obtained by dividing a wavelength of light generated in the light emitting layer by a square root of a refractive index of the refraction region. Light emitting device.
【請求項15】 前記発光層は、ガリウム(Ga)と窒
素(N)を含む窒化ガリウム(GaN)系半導体からな
ることを特徴とする請求項1乃至14記載の発光装置。
15. The light emitting device according to claim 1, wherein the light emitting layer is made of a gallium nitride (GaN) based semiconductor containing gallium (Ga) and nitrogen (N).
JP32037296A 1996-11-29 1996-11-29 Light emitting device Expired - Fee Related JP3448441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32037296A JP3448441B2 (en) 1996-11-29 1996-11-29 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32037296A JP3448441B2 (en) 1996-11-29 1996-11-29 Light emitting device

Publications (2)

Publication Number Publication Date
JPH10163525A true JPH10163525A (en) 1998-06-19
JP3448441B2 JP3448441B2 (en) 2003-09-22

Family

ID=18120745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32037296A Expired - Fee Related JP3448441B2 (en) 1996-11-29 1996-11-29 Light emitting device

Country Status (1)

Country Link
JP (1) JP3448441B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6657236B1 (en) * 1999-12-03 2003-12-02 Cree Lighting Company Enhanced light extraction in LEDs through the use of internal and external optical elements
US6861270B2 (en) 2000-06-01 2005-03-01 Shiro Sakai Method for manufacturing gallium nitride compound semiconductor and light emitting element
US6884647B2 (en) 2000-09-22 2005-04-26 Shiro Sakai Method for roughening semiconductor surface
JP2005191219A (en) * 2003-12-25 2005-07-14 Sanken Electric Co Ltd Semiconductor light emitting element and its manufacturing method
JP2005223329A (en) * 2004-02-05 2005-08-18 Lg Electron Inc Light-emitting diode
JP2005535143A (en) * 2002-07-31 2005-11-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング GaN-based light-emitting thin-film semiconductor devices
US7005685B2 (en) 2002-02-28 2006-02-28 Shiro Sakai Gallium-nitride-based compound semiconductor device
US7015511B2 (en) 2001-06-29 2006-03-21 Nitride Semiconductors Co., Ltd. Gallium nitride-based light emitting device and method for manufacturing the same
JP2006191103A (en) * 2005-01-03 2006-07-20 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting device
JP2006519481A (en) * 2003-02-28 2006-08-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Illumination module and method of manufacturing the illumination module
US7105857B2 (en) 2002-07-08 2006-09-12 Nichia Corporation Nitride semiconductor device comprising bonded substrate and fabrication method of the same
JP2006324685A (en) * 2002-07-08 2006-11-30 Nichia Chem Ind Ltd Nitride semiconductor element and manufacturing method thereof
JP2006324672A (en) * 2005-05-19 2006-11-30 Samsung Electro Mech Co Ltd Perpendicular structure nitride semiconductor light emitting device with improved optical extraction efficiency
KR100683447B1 (en) 2005-08-11 2007-02-20 서울옵토디바이스주식회사 Light emitting diodde having mesh-type insulating layer and method for fabricating the same
JP2007504640A (en) * 2003-08-29 2007-03-01 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Thin film light emitting diode and method for manufacturing the same
JP2007123381A (en) * 2005-10-26 2007-05-17 Toyota Central Res & Dev Lab Inc Semiconductor light emitting device
WO2007066716A1 (en) * 2005-12-09 2007-06-14 Rohm Co., Ltd. Semiconductor light emitting element and method for manufacturing semiconductor light emitting element
KR100743468B1 (en) * 2006-03-31 2007-07-30 에피밸리 주식회사 Iii-nitride semiconductor light emitting device
US7301175B2 (en) 2001-10-12 2007-11-27 Nichia Corporation Light emitting apparatus and method of manufacturing the same
JP2008300580A (en) * 2007-05-30 2008-12-11 Nichia Corp Light emitting element and light emitting device
WO2009031618A1 (en) * 2007-09-06 2009-03-12 Nikon Corporation Light-emitting diode device and method for manufacturing the same
JP2009060142A (en) * 2008-12-01 2009-03-19 Sanyo Electric Co Ltd Nitride semiconductor light emitting device
WO2009039811A2 (en) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor chip
US7560737B2 (en) 2004-09-29 2009-07-14 Sanken Electric Co., Ltd. Semiconductor light emitting element and fabrication method thereof
KR100926319B1 (en) * 2005-07-12 2009-11-12 한빔 주식회사 Light emitting diode device having advanced light extraction efficiency and preparation method thereof
JP2010517290A (en) * 2007-01-22 2010-05-20 クリー インコーポレイテッド Wafer level phosphor coating method and apparatus fabricated using the method
JP2010517289A (en) * 2007-01-22 2010-05-20 クリー インコーポレイテッド Wafer level phosphor coating method and apparatus fabricated using the method
US7968897B2 (en) 2004-03-09 2011-06-28 Sanyo Electric Co., Ltd. Light-emitting device having a support substrate and inclined sides
JP2012134452A (en) * 2010-12-20 2012-07-12 Lg Innotek Co Ltd Light-emitting element and illuminating device
EP2579343A2 (en) 2011-10-04 2013-04-10 Sharp Kabushiki Kaisha Light-emitting element including light-emitting layer sandwiched between two semiconductor layers
US8604497B2 (en) 2003-09-26 2013-12-10 Osram Opto Semiconductors Gmbh Radiation-emitting thin-film semiconductor chip
WO2014020901A1 (en) * 2012-08-01 2014-02-06 パナソニック株式会社 Optical sheet, light-emitting device, method for manufacturing optical sheet, and method for manufacturing light-emitting device
US8778601B2 (en) 2010-03-05 2014-07-15 Rohm and Haas Electronic Materials Methods of forming photolithographic patterns
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US9093616B2 (en) 2003-09-18 2015-07-28 Cree, Inc. Molded chip fabrication method and apparatus
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US9196799B2 (en) 2007-01-22 2015-11-24 Cree, Inc. LED chips having fluorescent substrates with microholes and methods for fabricating
US9203054B2 (en) 2013-12-16 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Optical sheet and light emitting apparatus
US10546846B2 (en) 2010-07-23 2020-01-28 Cree, Inc. Light transmission control for masking appearance of solid state light sources

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210091895A (en) 2020-01-15 2021-07-23 삼성전자주식회사 Light emitting device

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511080A (en) * 1999-12-03 2004-04-08 クリー インコーポレイテッド Light-emitting diodes with improved light extraction by internal and external optical elements
US6821804B2 (en) 1999-12-03 2004-11-23 Cree, Inc. Enhanced light extraction in LEDs through the use of internal and external optical elements
JP2013012781A (en) * 1999-12-03 2013-01-17 Cree Inc Light-emitting diodes with enhanced light extraction through use of internal and external optical elements
US6657236B1 (en) * 1999-12-03 2003-12-02 Cree Lighting Company Enhanced light extraction in LEDs through the use of internal and external optical elements
US6861270B2 (en) 2000-06-01 2005-03-01 Shiro Sakai Method for manufacturing gallium nitride compound semiconductor and light emitting element
US6884647B2 (en) 2000-09-22 2005-04-26 Shiro Sakai Method for roughening semiconductor surface
US7015511B2 (en) 2001-06-29 2006-03-21 Nitride Semiconductors Co., Ltd. Gallium nitride-based light emitting device and method for manufacturing the same
US7390684B2 (en) 2001-10-12 2008-06-24 Nichia Corporation Light emitting apparatus and method of manufacturing the same
US7301175B2 (en) 2001-10-12 2007-11-27 Nichia Corporation Light emitting apparatus and method of manufacturing the same
US7005685B2 (en) 2002-02-28 2006-02-28 Shiro Sakai Gallium-nitride-based compound semiconductor device
US7105857B2 (en) 2002-07-08 2006-09-12 Nichia Corporation Nitride semiconductor device comprising bonded substrate and fabrication method of the same
JP2006324685A (en) * 2002-07-08 2006-11-30 Nichia Chem Ind Ltd Nitride semiconductor element and manufacturing method thereof
US7378334B2 (en) 2002-07-08 2008-05-27 Nichia Corporation Nitride semiconductor device comprising bonded substrate and fabrication method of the same
JP2005535143A (en) * 2002-07-31 2005-11-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング GaN-based light-emitting thin-film semiconductor devices
US7943944B2 (en) 2002-07-31 2011-05-17 Osram Opto Semiconductors Gmbh GaN-based radiation-emitting thin-layered semiconductor component
JP2006519481A (en) * 2003-02-28 2006-08-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Illumination module and method of manufacturing the illumination module
JP4791951B2 (en) * 2003-02-28 2011-10-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Illumination module and method of manufacturing the illumination module
JP2007504640A (en) * 2003-08-29 2007-03-01 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Thin film light emitting diode and method for manufacturing the same
US9093616B2 (en) 2003-09-18 2015-07-28 Cree, Inc. Molded chip fabrication method and apparatus
US10546978B2 (en) 2003-09-18 2020-01-28 Cree, Inc. Molded chip fabrication method and apparatus
US10164158B2 (en) 2003-09-18 2018-12-25 Cree, Inc. Molded chip fabrication method and apparatus
US9105817B2 (en) 2003-09-18 2015-08-11 Cree, Inc. Molded chip fabrication method and apparatus
US8604497B2 (en) 2003-09-26 2013-12-10 Osram Opto Semiconductors Gmbh Radiation-emitting thin-film semiconductor chip
JP2005191219A (en) * 2003-12-25 2005-07-14 Sanken Electric Co Ltd Semiconductor light emitting element and its manufacturing method
JP2005223329A (en) * 2004-02-05 2005-08-18 Lg Electron Inc Light-emitting diode
JP4605370B2 (en) * 2004-02-05 2011-01-05 エルジー エレクトロニクス インコーポレイティド Light emitting diode
US7968897B2 (en) 2004-03-09 2011-06-28 Sanyo Electric Co., Ltd. Light-emitting device having a support substrate and inclined sides
US7560737B2 (en) 2004-09-29 2009-07-14 Sanken Electric Co., Ltd. Semiconductor light emitting element and fabrication method thereof
JP2006191103A (en) * 2005-01-03 2006-07-20 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting device
JP2006324672A (en) * 2005-05-19 2006-11-30 Samsung Electro Mech Co Ltd Perpendicular structure nitride semiconductor light emitting device with improved optical extraction efficiency
US8373184B2 (en) 2005-05-19 2013-02-12 Samsung Electronics Co. Ltd. Vertical nitride based semiconductor light emitting device having improved light extraction efficiency
KR100926319B1 (en) * 2005-07-12 2009-11-12 한빔 주식회사 Light emitting diode device having advanced light extraction efficiency and preparation method thereof
KR100683447B1 (en) 2005-08-11 2007-02-20 서울옵토디바이스주식회사 Light emitting diodde having mesh-type insulating layer and method for fabricating the same
JP2007123381A (en) * 2005-10-26 2007-05-17 Toyota Central Res & Dev Lab Inc Semiconductor light emitting device
JP2007165409A (en) * 2005-12-09 2007-06-28 Rohm Co Ltd Semiconductor light emitting element and method of manufacturing same
WO2007066716A1 (en) * 2005-12-09 2007-06-14 Rohm Co., Ltd. Semiconductor light emitting element and method for manufacturing semiconductor light emitting element
US8198645B2 (en) 2005-12-09 2012-06-12 Rohm Co., Ltd. Semiconductor light emitting device and method for manufacturing the same
KR100743468B1 (en) * 2006-03-31 2007-07-30 에피밸리 주식회사 Iii-nitride semiconductor light emitting device
JP2010517290A (en) * 2007-01-22 2010-05-20 クリー インコーポレイテッド Wafer level phosphor coating method and apparatus fabricated using the method
KR101398655B1 (en) * 2007-01-22 2014-06-19 크리, 인코포레이티드 Wafer level phosphor coating method and devices fabricated utilizing method
JP2010517289A (en) * 2007-01-22 2010-05-20 クリー インコーポレイテッド Wafer level phosphor coating method and apparatus fabricated using the method
US9196799B2 (en) 2007-01-22 2015-11-24 Cree, Inc. LED chips having fluorescent substrates with microholes and methods for fabricating
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
JP2008300580A (en) * 2007-05-30 2008-12-11 Nichia Corp Light emitting element and light emitting device
JP5392084B2 (en) * 2007-09-06 2014-01-22 株式会社ニコン Light emitting diode element and method for manufacturing the same
WO2009031618A1 (en) * 2007-09-06 2009-03-12 Nikon Corporation Light-emitting diode device and method for manufacturing the same
EP3206239A1 (en) * 2007-09-28 2017-08-16 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor chip
US8340146B2 (en) 2007-09-28 2012-12-25 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor chip
WO2009039811A2 (en) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor chip
WO2009039811A3 (en) * 2007-09-28 2009-09-03 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor chip
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
JP2009060142A (en) * 2008-12-01 2009-03-19 Sanyo Electric Co Ltd Nitride semiconductor light emitting device
US8778601B2 (en) 2010-03-05 2014-07-15 Rohm and Haas Electronic Materials Methods of forming photolithographic patterns
US10546846B2 (en) 2010-07-23 2020-01-28 Cree, Inc. Light transmission control for masking appearance of solid state light sources
JP2012134452A (en) * 2010-12-20 2012-07-12 Lg Innotek Co Ltd Light-emitting element and illuminating device
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
EP2579343A2 (en) 2011-10-04 2013-04-10 Sharp Kabushiki Kaisha Light-emitting element including light-emitting layer sandwiched between two semiconductor layers
US9851579B2 (en) 2012-08-01 2017-12-26 Panasonic Intellectual Property Management Co., Ltd. Optical sheet, light-emitting device, method for manufacturing optical sheet, and method for manufacturing light-emitting device
WO2014020901A1 (en) * 2012-08-01 2014-02-06 パナソニック株式会社 Optical sheet, light-emitting device, method for manufacturing optical sheet, and method for manufacturing light-emitting device
US9203054B2 (en) 2013-12-16 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Optical sheet and light emitting apparatus

Also Published As

Publication number Publication date
JP3448441B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
JP3448441B2 (en) Light emitting device
US8034647B2 (en) LED with substrate modifications for enhanced light extraction and method of making same
JP5054366B2 (en) MANUFACTURING METHOD FOR SUBSTRATE WITH NANOSTRUCTURE, LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD
JP4755901B2 (en) High brightness nitride micro light emitting diode and method for manufacturing the same
US7687811B2 (en) Vertical light emitting device having a photonic crystal structure
US8709845B2 (en) Solid state lighting devices with cellular arrays and associated methods of manufacturing
TWI727360B (en) Monolithic led array and a precursor thereto
US7358537B2 (en) Light emitting diode and fabrication method thereof
US20110215290A1 (en) Anti-reflected high efficiency light emitting diode device
TWI424586B (en) Luminescence element
JP2002237618A (en) Display device and it manufacturing method
JP2003332618A (en) Semiconductor light emitting element
US20230223421A1 (en) Monolithic led array and a precursor thereto
US20160225942A1 (en) Substrate and method for manufacturing same, light-emitting element and method for manufacturing same, and device having substrate or light-emitting element
JP2009105088A (en) Semiconductor light-emitting device, luminaire using the same, and method of manufacturing semiconductor light-emitting device
JP2008053385A (en) Nitride semiconductor light emitting diode element
JP2002026387A (en) Semiconductor element and its manufacturing method
JP2009500872A (en) Laser lift-off LED with improved light extraction
WO2012040978A1 (en) Light emitting device and manufacturing method thereof
JP2023528194A (en) Optical device and method of manufacturing optical device
Kim et al. Enhanced light output power of GaN-based light emitting diodes with overcut sideholes formed by wet etching
TWI425656B (en) Light emitting diode chip and fabricating method thereof
JP2008047854A (en) Nitride semiconductor light emitting diode
JP2004158778A (en) Semiconductor light-emitting device
JP2003282938A (en) Light-emitting diode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees