JPH10160883A - Cooling mechanism of rector vessel wall - Google Patents

Cooling mechanism of rector vessel wall

Info

Publication number
JPH10160883A
JPH10160883A JP8316136A JP31613696A JPH10160883A JP H10160883 A JPH10160883 A JP H10160883A JP 8316136 A JP8316136 A JP 8316136A JP 31613696 A JP31613696 A JP 31613696A JP H10160883 A JPH10160883 A JP H10160883A
Authority
JP
Japan
Prior art keywords
reactor vessel
liner plate
inner liner
vessel wall
plenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8316136A
Other languages
Japanese (ja)
Inventor
Kenichiro Sato
健一郎 佐藤
Hiroshi Kanzaki
寛 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8316136A priority Critical patent/JPH10160883A/en
Publication of JPH10160883A publication Critical patent/JPH10160883A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling mechanism of a reactor vessel wall capable of mitigating the thermal stress generating in the reactor vessel wall. SOLUTION: In the cooling mechanism of reactor vessel wall in which a reactor vessel 5 placing a core 1 inside is separated in an upper plenum 2 and an intermediate plenum 3, an inner liner plate 7 and an outer liner plate 6 are placed in the inner and outer positions of the reactor vessel 5 along the reactor vessel 5 wall, an upflow path 9 for making the low temperature primary coolant from the intermediate plenum 2 contact the reactor vessel 5 wall and rise is formed in between the outer liner plate 6 and the reactor vessel 5 wall, and a downflow path 10 for making the primary coolant from the upflow path 9 flow down and flow out to the upper plenum from inside liner flow holes 8 provided in the inner liner plate 7 is formed in between the outer liner plate 6 and the inner liner plate 7, flowrate passing the inner liner flow holes 8 provided in the inner liner plate 7 is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉、例えば1
次冷却材に液体金属を使用した高速炉の原子炉容器壁の
冷却機構に関するものである。
TECHNICAL FIELD The present invention relates to a nuclear reactor, for example,
The present invention relates to a cooling mechanism for a reactor vessel wall of a fast reactor using liquid metal as a secondary coolant.

【0002】[0002]

【従来の技術】従来の原子炉容器壁の冷却機構を図2、
図3により説明する。図2は高速炉の概略を示す縦断側
面図、図3は原子炉容器壁の冷却機構を示す縦断側面図
である。図2において、1が炉心、2が上部プレナム、
5が原子炉容器、13が下部プレナム、14がルーフデ
ッキ、15が入口配管、16が出口配管、17が炉心上
部機構、18が炉心支持構造物で、原子炉容器5内が1
次冷却材の液体金属ナトリウム(以下、1次冷却材とい
う)19で満たされており、運転時には、入口配管15
から炉心支持構造物18へ流入した低温1次冷却材を炉
心1から上部プレナム2へ高温1次冷却材として流出さ
せ、さらに上部プレナム2から出口配管16を経て外部
の熱交換器(図示せず)へ取り出して、ここで冷却し、
低温1次冷却材にしてポンプ(図示せず)から入口配管
15へ再び導く。
2. Description of the Related Art A conventional reactor vessel wall cooling mechanism is shown in FIG.
This will be described with reference to FIG. FIG. 2 is a vertical side view schematically showing a fast reactor, and FIG. 3 is a vertical side view showing a cooling mechanism of a reactor vessel wall. In FIG. 2, 1 is a core, 2 is an upper plenum,
5 is a reactor vessel, 13 is a lower plenum, 14 is a roof deck, 15 is an inlet pipe, 16 is an outlet pipe, 17 is a core upper mechanism, 18 is a core support structure, and 1 is the inside of the reactor vessel 5.
It is filled with liquid metal sodium (hereinafter referred to as a primary coolant) 19 as a secondary coolant, and is operated at an inlet pipe 15 during operation.
From the core 1 to the upper plenum 2 as high-temperature primary coolant, and from the upper plenum 2 via an outlet pipe 16 to an external heat exchanger (not shown). ), Cool it down here,
A low-temperature primary coolant is introduced again from a pump (not shown) to the inlet pipe 15.

【0003】原子炉容器5壁の内側には、上部プレナム
2の高温1次冷却材から原子炉容器5壁を保護するため
に、原子炉容器壁の冷却機構が設けられている。この原
子炉容器壁の冷却機構を図3により説明すると、1が炉
心、2が上部プレナム、3が中間プレナム、4が仕切
板、5が原子炉容器、6が外側ライナ板、7が内側ライ
ナ板、8が内側ライナ板7に設けた内側ライナフローホ
ール、9が外側ライナ板6と原子炉容器5壁との間に形
成した上昇流路、10が外側ライナ板6と内側ライナ板
7との間に形成した下降流路、11が上部プレナム2の
自由液面、12が上昇流路9及び下降流路10の上方の
自由液面で、図1の炉心支持構造物18から中間プレナ
ム3へ流入した低温1次冷却材を上昇流路9へ導き、原
子炉容器5壁に接触させながら上昇させて、原子炉容器
5を冷却し、上昇流路9の上部に達したら、外側ライナ
板6の途中から下降流路10へ流入する1次冷却材と混
合し、下降流路10を下降させて、内側ライナフローホ
ール8から上部プレナム2へ導く。このとき、上昇流路
9及び下降流路10の上方には、冷却機構の自由液面1
2が形成される。
[0003] Inside the reactor vessel 5 wall, a cooling mechanism for the reactor vessel wall is provided to protect the reactor vessel 5 wall from the high temperature primary coolant of the upper plenum 2. The cooling mechanism of the reactor vessel wall will be described with reference to FIG. 3. 1 is a reactor core, 2 is an upper plenum, 3 is an intermediate plenum, 4 is a partition plate, 5 is a reactor vessel, 6 is an outer liner plate, and 7 is an inner liner. Plate, 8 is an inner liner flow hole provided in the inner liner plate 7, 9 is an ascending flow path formed between the outer liner plate 6 and the wall of the reactor vessel 5, 10 is the outer liner plate 6 and the inner liner plate 7 1 is a free liquid level of the upper plenum 2, 12 is a free liquid level above the ascending flow path 9 and the descending flow path 10, and from the core support structure 18 in FIG. The low-temperature primary coolant that has flowed into the reactor vessel 5 is guided to the ascending flow path 9 and is raised while being in contact with the walls of the reactor vessel 5 to cool the reactor vessel 5. 6 and mixed with the primary coolant flowing into the descending flow path 10 10 lowers the leads from the inner liner flow hole 8 to the upper plenum 2. At this time, the free liquid level 1 of the cooling mechanism is located above the ascending flow path 9 and the descending flow path 10.
2 are formed.

【0004】[0004]

【発明が解決しようとする課題】前記図3に示す原子炉
容器壁の冷却機構は、原子炉容器5壁の高温化を抑制し
且つ冷却機構の自由液面12の流れを緩やかにすること
を目的としているが、上部プレナム2の自由液面11の
高さと上昇流路9及び下降流路10の上方に形成される
自由液面12の高さとが同じなので、上部プレナム2の
高温1次冷却材19の熱が自由液面12直下の領域20
に伝わって、原子炉容器5壁の一部が上部プレナム2の
高温1次冷却材19の温度近くまで上昇する。この場
合、原子炉容器5壁の自由液面12部に発生する熱応
力、即ち、高さ方向の温度勾配による熱応力が冷却機構
を設けない場合と略同じ状態になって、冷却機構を設置
する目的に反することになる。
The cooling mechanism of the reactor vessel wall shown in FIG. 3 suppresses the temperature rise of the wall of the reactor vessel 5 and moderates the flow of the free liquid level 12 of the cooling mechanism. Since the height of the free liquid surface 11 of the upper plenum 2 and the height of the free liquid surface 12 formed above the ascending flow passage 9 and the descending flow passage 10 are the same, high-temperature primary cooling of the upper plenum 2 is intended. The area 20 immediately below the free liquid level 12
, A portion of the wall of the reactor vessel 5 rises to near the temperature of the high-temperature primary coolant 19 in the upper plenum 2. In this case, the thermal stress generated on the free liquid surface 12 of the reactor vessel 5 wall, that is, the thermal stress due to the temperature gradient in the height direction is almost the same as when the cooling mechanism is not provided, and the cooling mechanism is installed. Would defeat the purpose of doing so.

【0005】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、原子炉容器壁を低温の状
態に保つことができて、原子炉容器壁に発生する熱応力
を緩和することができる原子炉容器壁の冷却機構を提供
しようとする点にある。
The present invention has been made in view of the above problems, and has as its object to maintain the reactor vessel wall at a low temperature and reduce the thermal stress generated on the reactor vessel wall. It is an object of the present invention to provide a reactor vessel cooling mechanism that can be mitigated.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、炉心を設置した原子炉容器内を上部プ
レナムと中間プレナムとに分離し、内側ライナ板と外側
ライナ板とを原子炉容器内の内外位置に原子炉容器壁に
沿い設けて、外側ライナ板と原子炉容器壁との間に中間
プレナムからの低温1次冷却材を原子炉容器壁に接触さ
せながら上昇させる上昇流路を形成し、外側ライナ板と
内側ライナ板との間に上昇流路からの1次冷却材を下降
させて内側ライナ板に設けた内側ライナフローホールか
ら上部プレナムへ流出させる下降流路を形成した原子炉
容器壁の冷却機構において、前記内側ライナ板に設けた
内側ライナフローホールの通過流量を調節して、上昇流
路及び下降流路の上方に形成される自由液面の高さを上
部プレナムの自由液面の高さよりも高くしている(請求
項1)。
In order to achieve the above object, the present invention separates the interior of a reactor vessel, in which a reactor core is installed, into an upper plenum and an intermediate plenum, and separates an inner liner plate and an outer liner plate. Elevation installed inside and outside the reactor vessel along the reactor vessel wall to raise the low temperature primary coolant from the intermediate plenum between the outer liner plate and the reactor vessel wall while making contact with the reactor vessel wall A down flow path is formed, which forms a flow path and lowers the primary coolant from the ascending flow path between the outer liner plate and the inner liner plate to flow out from the inner liner flow hole provided in the inner liner plate to the upper plenum. In the cooling mechanism of the formed reactor vessel wall, the flow rate of the inner liner flow hole provided in the inner liner plate is adjusted to adjust the height of the free liquid surface formed above the ascending flow path and the descending flow path. Upper plenum freedom It is higher than the height of the surface (claim 1).

【0007】また本発明は、炉心を設置した原子炉容器
内を上部プレナムと中間プレナムとに分離し、内側ライ
ナ板と外側ライナ板とを原子炉容器内の内外位置に原子
炉容器壁に沿い設けて、外側ライナ板と原子炉容器壁と
の間に中間プレナムからの低温1次冷却材を原子炉容器
壁に接触させながら上昇させる上昇流路を形成し、外側
ライナ板と内側ライナ板との間に上昇流路からの1次冷
却材を下降させて内側ライナ板に設けた内側ライナフロ
ーホールから上部プレナムへ流出させる下降流路を形成
した原子炉容器壁の冷却機構において、前記外側ライナ
板の上端部の高さを前記上部プレナムの自由液面の高さ
と同じにするかそれ以上にして、上昇流路及び下降流路
の上方に形成される自由液面の高さを上部プレナムの自
由液面の高さよりも高くしている(請求項2)。
Further, according to the present invention, the inside of a reactor vessel in which a reactor core is installed is divided into an upper plenum and an intermediate plenum, and an inner liner plate and an outer liner plate are located at positions inside and outside the reactor vessel along a wall of the reactor vessel. A rising flow path between the outer liner plate and the reactor vessel wall for raising the low-temperature primary coolant from the intermediate plenum while contacting the reactor vessel wall, and forming the outer liner plate and the inner liner plate with each other. A cooling system for a reactor vessel wall having a descending passage for lowering a primary coolant from an ascending passage and flowing out from an inner liner flow hole provided in an inner liner plate to an upper plenum. The height of the upper end of the plate is equal to or higher than the height of the free liquid surface of the upper plenum, and the height of the free liquid surface formed above the ascending flow passage and the descending flow passage is adjusted to the height of the upper plenum. From the free liquid level It is high (claim 2).

【0008】[0008]

【発明の実施の形態】次に本発明の原子炉容器壁の冷却
機構を図1に示す一実施例により説明すると、1が炉
心、2が上部プレナム、3が中間プレナム、4が仕切
板、5が原子炉容器、6が外側ライナ板、7が内側ライ
ナ板、8が内側ライナ板7に設けた内側ライナフローホ
ール、9が外側ライナ板6と原子炉容器5壁との間に形
成した上昇流路、10が外側ライナ板6と内側ライナ板
7との間に形成した下降流路、11が上部プレナム2の
自由液面、12が上昇流路9及び下降流路10の上方の
自由液面で、内側ライナ板7に設けた内側ライナフロー
ホール8の通過流量を調節して、即ち、内側ライナフロ
ーホール8の流路断面積を変えて、上昇流路9及び下降
流路10の上方に形成される自由液面12の高さを上部
プレナム2の自由液面11の高さよりも高くしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a cooling mechanism for a reactor vessel wall according to the present invention will be described with reference to an embodiment shown in FIG. 1; 1 is a core, 2 is an upper plenum, 3 is an intermediate plenum, 4 is a partition plate, 5 is a reactor vessel, 6 is an outer liner plate, 7 is an inner liner plate, 8 is an inner liner flow hole provided in the inner liner plate 7, and 9 is formed between the outer liner plate 6 and the reactor vessel 5 wall. Ascending flow path, 10 is a descending flow path formed between the outer liner plate 6 and the inner liner plate 7, 11 is a free liquid level of the upper plenum 2, and 12 is a free level above the ascending flow path 9 and the descending flow path 10. At the liquid level, the flow rate of the flow through the inner liner flow hole 8 provided in the inner liner plate 7 is adjusted, that is, the flow path cross-sectional area of the inner liner flow hole 8 is changed, and The height of the free liquid surface 12 formed above is adjusted to the free liquid surface of the upper plenum 2. It is higher than the first height.

【0009】上記外側ライナ板6の上端部の高さを上部
プレナム2の自由液面11の高さと同じにするか、それ
より高くしてもよい。以上の図1に示す原子炉容器壁の
冷却機構では、内側ライナ板7に設けた内側ライナフロ
ーホール8の通過流量を調節することにより、上昇流路
9及び下降流路10の上方に形成される自由液面12の
高さを上部プレナム2の自由液面11の高さよりも高く
しており、上部プレナム2の高温1次冷却材の熱が自由
液面12直下の領域20に直接伝わらないので、原子炉
容器5壁が低温の状態に保たれて、原子炉容器5壁に発
生する熱応力が緩和される。
The height of the upper end of the outer liner plate 6 may be equal to or higher than the height of the free liquid surface 11 of the upper plenum 2. In the cooling mechanism for the reactor vessel wall shown in FIG. 1 described above, by adjusting the flow rate through the inner liner flow hole 8 provided in the inner liner plate 7, the cooling mechanism is formed above the ascending flow path 9 and the descending flow path 10. The height of the free liquid surface 12 is higher than the height of the free liquid surface 11 of the upper plenum 2, and the heat of the high-temperature primary coolant in the upper plenum 2 is not directly transmitted to the region 20 directly below the free liquid surface 12. Therefore, the wall of the reactor vessel 5 is kept at a low temperature, and the thermal stress generated on the wall of the reactor vessel 5 is reduced.

【0010】外側ライナ板6の上端部の高さを上部プレ
ナム2の自由液面11の高さと同じにするかそれ以上に
して、上昇流路9及び下降流路10の上方に形成される
自由液面12の高さを上部プレナム2の自由液面11の
高さより高くしてもよい。この場合にも、上部プレナム
2の高温1次冷却材の熱が自由液面12直下の領域20
に直接伝わらないので、原子炉容器5壁が低温の状態に
保たれて、原子炉容器5壁に発生する熱応力が緩和され
る。
The height of the upper end of the outer liner plate 6 is set to be equal to or higher than the height of the free liquid surface 11 of the upper plenum 2, and a free space formed above the upflow channel 9 and the downflow channel 10 is formed. The height of the liquid level 12 may be higher than the height of the free liquid level 11 of the upper plenum 2. Also in this case, the heat of the high-temperature primary coolant in the upper plenum 2 is transferred to the region 20 directly below the free liquid level 12.
, The wall of the reactor vessel 5 is kept at a low temperature, and the thermal stress generated on the wall of the reactor vessel 5 is reduced.

【0011】[0011]

【発明の効果】本発明の原子炉容器壁の冷却機構は前記
のように(1)内側ライナ板に設けた内側ライナフロー
ホールの通過流量を調節して、上昇流路及び下降流路の
上方に形成される自由液面の高さを上部プレナムの自由
液面の高さよりも高くするか、(2)外側ライナ板の上
端部の高さを上部プレナムの自由液面の高さと同じにす
るかそれ以上にして、上昇流路及び下降流路の上方に形
成される自由液面の高さを上部プレナムの自由液面の高
さよりも高くしており、上部プレナムの高温1次冷却材
の熱を上昇流路及び下降流路上方の自由液面直下の領域
に直接伝えないので、原子炉容器壁を低温の状態に保つ
ことができて、原子炉容器壁に発生する熱応力を緩和す
ることができる。
As described above, the cooling mechanism for the reactor vessel wall according to the present invention (1) adjusts the flow rate through the inner liner flow hole provided in the inner liner plate to increase the flow rate above the ascending flow path and the descending flow path. The height of the free liquid surface formed in the upper plenum is higher than the height of the free liquid surface of the upper plenum, or (2) the height of the upper end of the outer liner plate is the same as the height of the free liquid surface of the upper plenum. Or more, the height of the free liquid surface formed above the ascending flow passage and the descending flow passage is made higher than the height of the free liquid surface of the upper plenum, and the temperature of the high-temperature primary coolant in the upper plenum is increased. Heat is not transmitted directly to the area just below the free liquid level above the ascending flow path and the descending flow path, so that the reactor vessel wall can be kept at a low temperature and the thermal stress generated on the reactor vessel wall can be reduced. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原子炉容器壁の冷却機構の一実施例を
示す縦断側面図である。
FIG. 1 is a longitudinal sectional side view showing an embodiment of a cooling mechanism for a reactor vessel wall of the present invention.

【図2】従来の高速炉の概略を示す縦断側面図である。FIG. 2 is a vertical sectional side view schematically showing a conventional fast reactor.

【図3】同高速炉に設けた原子炉容器壁の冷却機構を示
す縦断側面図である。
FIG. 3 is a vertical sectional side view showing a cooling mechanism of a reactor vessel wall provided in the fast reactor.

【符号の説明】[Explanation of symbols]

1 炉心 2 上部プレナム 3 中間プレナム 4 仕切板 5 原子炉容器 6 外側ライナ板 7 内側ライナ板 8 内側ライナフローホール 9 上昇流路 10 下降流路 11 上部プレナム2の自由液面 12 上昇流路9及び下降流路10の上方の自由液面 19 1次冷却材 20 自由液面12直下の領域 DESCRIPTION OF SYMBOLS 1 Core 2 Upper plenum 3 Intermediate plenum 4 Partition plate 5 Reactor vessel 6 Outer liner plate 7 Inner liner plate 8 Inner liner flow hole 9 Up flow path 10 Down flow path 11 Free liquid level of upper plenum 2 12 Up flow path 9 and Free liquid level above the descending flow path 10 19 Primary coolant 20 Area just below the free liquid level 12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炉心を設置した原子炉容器内を上部プレ
ナムと中間プレナムとに分離し、内側ライナ板と外側ラ
イナ板とを原子炉容器内の内外位置に原子炉容器壁に沿
い設けて、外側ライナ板と原子炉容器壁との間に中間プ
レナムからの低温1次冷却材を原子炉容器壁に接触させ
ながら上昇させる上昇流路を形成し、外側ライナ板と内
側ライナ板との間に上昇流路からの1次冷却材を下降さ
せて内側ライナ板に設けた内側ライナフローホールから
上部プレナムへ流出させる下降流路を形成した原子炉容
器壁の冷却機構において、前記内側ライナ板に設けた内
側ライナフローホールの通過流量を調節して、上昇流路
及び下降流路の上方に形成される自由液面の高さを上部
プレナムの自由液面の高さよりも高くしたことを特徴と
する原子炉容器壁の冷却機構。
1. A reactor vessel in which a reactor core is installed is divided into an upper plenum and an intermediate plenum, and an inner liner plate and an outer liner plate are provided at positions inside and outside the reactor vessel along the reactor vessel wall, An ascending flow path is formed between the outer liner plate and the reactor vessel wall to raise the low-temperature primary coolant from the intermediate plenum while contacting the reactor vessel wall, and between the outer liner plate and the inner liner plate. In a cooling mechanism for a reactor vessel wall having a descending flow passage for lowering primary coolant from an ascending flow passage and flowing out from an inner liner flow hole provided in the inner liner plate to an upper plenum, the cooling system is provided on the inner liner plate. The height of the free liquid surface formed above the ascending flow passage and the descending flow passage is adjusted to be higher than the height of the free liquid surface of the upper plenum by adjusting the passing flow rate of the inner liner flow hole. Reactor vessel wall Cooling mechanism.
【請求項2】 炉心を設置した原子炉容器内を上部プレ
ナムと中間プレナムとに分離し、内側ライナ板と外側ラ
イナ板とを原子炉容器内の内外位置に原子炉容器壁に沿
い設けて、外側ライナ板と原子炉容器壁との間に中間プ
レナムからの低温1次冷却材を原子炉容器壁に接触させ
ながら上昇させる上昇流路を形成し、外側ライナ板と内
側ライナ板との間に上昇流路からの1次冷却材を下降さ
せて内側ライナ板に設けた内側ライナフローホールから
上部プレナムへ流出させる下降流路を形成した原子炉容
器壁の冷却機構において、前記外側ライナ板の上端部の
高さを上部プレナムの自由液面の高さと同じにするかそ
れ以上にして、上昇流路及び下降流路の上方に形成され
る自由液面の高さを上部プレナムの自由液面の高さより
も高くしたことを特徴とする原子炉容器壁の冷却機構。
2. The reactor vessel in which a reactor core is installed is separated into an upper plenum and an intermediate plenum, and an inner liner plate and an outer liner plate are provided at positions inside and outside the reactor vessel along the reactor vessel wall, An ascending flow path is formed between the outer liner plate and the reactor vessel wall to raise the low-temperature primary coolant from the intermediate plenum while contacting the reactor vessel wall, and between the outer liner plate and the inner liner plate. In a cooling mechanism for a reactor vessel wall having a descending passage for lowering primary coolant from an ascending passage and flowing out from an inner liner flow hole provided in an inner liner plate to an upper plenum, an upper end of the outer liner plate The height of the free plenum is equal to or higher than the height of the free liquid level of the upper plenum, and the height of the free liquid level formed above the ascending and descending flow paths is adjusted to the level of the free liquid level of the upper plenum. Specially, it is higher than the height. Reactor vessel wall cooling mechanism.
JP8316136A 1996-11-27 1996-11-27 Cooling mechanism of rector vessel wall Pending JPH10160883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8316136A JPH10160883A (en) 1996-11-27 1996-11-27 Cooling mechanism of rector vessel wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8316136A JPH10160883A (en) 1996-11-27 1996-11-27 Cooling mechanism of rector vessel wall

Publications (1)

Publication Number Publication Date
JPH10160883A true JPH10160883A (en) 1998-06-19

Family

ID=18073664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8316136A Pending JPH10160883A (en) 1996-11-27 1996-11-27 Cooling mechanism of rector vessel wall

Country Status (1)

Country Link
JP (1) JPH10160883A (en)

Similar Documents

Publication Publication Date Title
KR100594840B1 (en) Passive safety-grade decay-heat removal method and decay-heat removal system for lmr with pool direct heat cooling process
US8670518B2 (en) Fully passive decay heat removal system for sodium-cooled fast reactors that utilizes partially immersed decay heat exchanger
KR100935089B1 (en) Passive safety-grade decay heat removal system from a sodium freezing issue at the intermediate heat removal sodium loop
US4762667A (en) Passive reactor auxiliary cooling system
US4167445A (en) Nuclear reactor
JPH07146392A (en) Baffle plate for air-cooling
JPH10160883A (en) Cooling mechanism of rector vessel wall
US4613478A (en) Plenum separator system for pool-type nuclear reactors
JPH07104091A (en) Vessel wall cooling structure for reactor vessel
JP3110901B2 (en) Fast breeder reactor
JPH02234097A (en) Tank type fast breeder reactor
JPH08136687A (en) Cooling structure for vessel wall of reactor vessel
JPH0746156B2 (en) Reactor with low core coolant intake
JPH0338558B2 (en)
JPS60108788A (en) Device for protecting component of fast neutron type reactorfrom heat
JPS5836079Y2 (en) Reactor
JPS6273197A (en) Fast breeder reactor
JPS60237395A (en) Cooling structure of reactor wall
JPS6131440B2 (en)
JPS60238788A (en) Liquid metal cooling type nuclear reactor
JPS60158388A (en) Fast breeder reactor
JPS6183994A (en) Fast breeder reactor
JPS58132694A (en) Reactor
JPH0862374A (en) Fast reactor
JPH04177199A (en) Reactor structure for fast breeder reactor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121