JPH10151330A - Porous double-layer plastic filter and its production - Google Patents

Porous double-layer plastic filter and its production

Info

Publication number
JPH10151330A
JPH10151330A JP32593396A JP32593396A JPH10151330A JP H10151330 A JPH10151330 A JP H10151330A JP 32593396 A JP32593396 A JP 32593396A JP 32593396 A JP32593396 A JP 32593396A JP H10151330 A JPH10151330 A JP H10151330A
Authority
JP
Japan
Prior art keywords
porous
particles
plastic
layer
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32593396A
Other languages
Japanese (ja)
Other versions
JP3645051B2 (en
Inventor
Yosuke Egawa
洋介 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP32593396A priority Critical patent/JP3645051B2/en
Publication of JPH10151330A publication Critical patent/JPH10151330A/en
Application granted granted Critical
Publication of JP3645051B2 publication Critical patent/JP3645051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the filter grain from falling off and to provide high fine grain collecting efficiency and low pressure drop performance. SOLUTION: This filter has a porous plastic substrate and at least one porous layer integrated with the surface, and the substrate is obtained by sintering and compacting the grain of a thermoplastic material having a relatively large average diameter and has a large pore diameter. The porous layer is obtained by sintering and compacting the grain of a cross-linked polyolefin resin having a relatively small average diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体や気体等の流
体中に含まれる微粒子を分離濾過するための多孔質プラ
スチックフィルタおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous plastic filter for separating and filtering fine particles contained in a fluid such as a liquid and a gas, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、液体や気体等の流体中に含まれる
微粒子を分離濾過するための多孔質プラスチックフィル
タは多数知られている。中でも、流体の流入側と流出側
とで孔径の異なるフィルタ、例えば流入側あるいは流出
側のどちらか一方を、平均粒径が比較的大きなプラスチ
ック材料の粒子から成形して大きな孔径とし、他方を平
均粒径が比較的小さなプラスチック材料の粒子から成形
して小さな孔径とした多孔質複層フイルタは、濾過精度
の向上、微粒子の高捕集効率および低圧力損失の点から
望ましく、このようなものとして、平均粒径が比較的大
きな熱可塑性プラスチック材料、例えばポリエチレン、
ポリプロピレン、ポリサルホン、ポリエーテルスルホ
ン、ポリフェニレンサルフアイドなどを焼結成形した多
孔質プラスチック基材の表面に、そのプラスチック材料
よりも平均粒径が比較的小さなポリテトラフルオロエチ
レン(以下「PTFE」と記す)を、接着剤と共に、直
接的に被着することで、多孔質プラスチック基材の外表
面とその内面側とで、多孔層の孔径に差異を持たせた多
孔質複層フィルタが提案されいる。
2. Description of the Related Art Hitherto, a large number of porous plastic filters for separating and filtering fine particles contained in a fluid such as liquid or gas have been known. Among them, filters having different pore sizes on the inflow side and the outflow side of the fluid, for example, one of the inflow side and the outflow side is formed from particles of a plastic material having a relatively large average particle diameter to obtain a large pore diameter, and the other is averaged. A porous multilayer filter formed from particles of a plastic material having a relatively small particle size and having a small pore size is desirable in terms of improving filtration accuracy, high collection efficiency of fine particles, and low pressure loss. A thermoplastic material with a relatively large average particle size, for example polyethylene,
Polytetrafluoroethylene (hereinafter referred to as "PTFE") having an average particle size relatively smaller than the plastic material on the surface of a porous plastic substrate obtained by sintering polypropylene, polysulfone, polyether sulfone, polyphenylene sulfide, etc. A porous multi-layer filter has been proposed in which the pore size of the porous layer is made different between the outer surface of the porous plastic substrate and the inner surface thereof by directly applying the same together with an adhesive.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな多孔質複層フィルタでは、使用するPTFEが粘着
特性に劣るため、上記多孔質プラスチック基材とPTF
Eとの界面での接着性が不十分となり、濾過や逆洗の際
に多孔質プラスチック基材からPTFE粒子が脱落し、
結果として孔径に差異がなくなったり、あるいは部分的
に差異を生じ、フイルタの捕集性能の低下を招いたり、
あるいは脱落したPTFE粒子が捕集した微粒子中に混
入する等の問題があった。
However, in such a porous multilayer filter, since the PTFE used has poor adhesive properties, the porous plastic base material and the PTFE are not used.
The adhesion at the interface with E becomes insufficient, and PTFE particles fall off from the porous plastic substrate during filtration or backwashing,
As a result, there is no difference in the hole diameter, or there is a partial difference, leading to a decrease in the filtering performance of the filter,
Alternatively, there has been a problem that the dropped PTFE particles are mixed into the collected fine particles.

【0004】また、多孔質プラスチック基材の表面をそ
の多孔質プラスチック基材よりも孔径の小さなPTFE
製多孔質フィルムで被覆する方法も提案されているが、
上記と同様に基材との接着性が不十分になるという問題
や、PTFE製多孔質フィルム自体が高価なために、製
造コストが高くなるという問題があった。さらには、焼
結成形した多孔質プラスチック基材の表面を加圧・圧縮
することで加圧・圧縮面部の孔径を他部より小さくする
方法も提案されているが、この方法では、加圧・圧縮の
コントロールが難しく、小さな孔径を表面に均一に形成
することは困難である。
In addition, the surface of a porous plastic substrate is made of PTFE having a pore size smaller than that of the porous plastic substrate.
Although a method of coating with a porous film made of has been proposed,
Similar to the above, there was a problem that the adhesion to the base material was insufficient, and there was a problem that the production cost was high because the porous PTFE film itself was expensive. Furthermore, a method has been proposed in which the surface of a sintered and molded porous plastic substrate is pressed and compressed so that the hole diameter of the pressed and compressed surface portion is smaller than that of the other portions. It is difficult to control the compression, and it is difficult to form a small pore size uniformly on the surface.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の問題点
を解消できるプラスチックフイルタおよびその製造方法
を見出したものであって、その要旨とするところは、 (1) 多孔質プラスチック基材およびその表面に一体
化された少なくとも1層の多孔質層を有し、該多孔質プ
ラスチック基材は、平均粒径が比較的大きな熱可塑性プ
ラスチック材料の粒子を焼結成形して得られる大きな孔
径を有するものであり、該多孔質層は、平均粒径が比較
的小さな架橋ポリオレフィン系樹脂材料の粒子を焼結成
形して得られる小さな孔径を有するものであることを特
徴とする多孔質複層プラスチックフィルタ および (2) 熱可塑性プラスチック材料の粒子を焼結成形し
て、多孔質プラスチック基材を形成し、好ましくは、こ
の多孔質プラスチック基材の表面が予め導電性を付与さ
れている状態で、該プラスチックと相溶性を有する、放
射線架橋ポリオレフィン系樹脂材料の粒子を、上記多孔
質プラスチック基材に導電性を付与させ後に、この基材
の表面に静電塗装し、次いで該塗着粒子および上記基材
の表面を加熱して焼結一体化し、少なくとも1層の多孔
質層を形成することを特徴とする多孔質複層プラスチッ
クフィルタの製造方法にある。
SUMMARY OF THE INVENTION The present invention has found a plastic filter and a method for producing the same, which can solve the above-mentioned problems. The gist of the present invention is as follows. It has at least one porous layer integrated on its surface, and the porous plastic substrate has a large pore size obtained by sintering and molding particles of a thermoplastic material having a relatively large average particle size. Wherein the porous layer has a small pore size obtained by sintering and molding particles of a crosslinked polyolefin-based resin material having a relatively small average particle size. And (2) sintering the particles of thermoplastic material to form a porous plastic substrate, preferably the porous plastic substrate In a state in which the surface is previously provided with conductivity, the particles of the radiation-crosslinked polyolefin-based resin material having compatibility with the plastic, after imparting conductivity to the porous plastic base material, the surface of the base material. A porous multi-layer plastic filter, characterized in that the coated particles and the surface of the base material are heated and sintered and integrated to form at least one porous layer. It is in.

【0006】[0006]

【発明の実施の形態】本発明の多孔質複層プラスチック
フィルタは、熱可塑性プラスチック材料の粒子を焼結成
形して形成した多孔質プラスチック基材の表面に、架橋
ポリオレフィン系樹脂材料の粒子を、好ましくは静電塗
装した後、焼結一体化して少なくとも1層の多孔質層を
形成することによって得られるもので、多孔質プラスチ
ック基材の表面に、これとは平均粒径が相違する熱可塑
性プラスチック材料の粒子を焼結成形して積層一体化し
た複層構造のものである。
BEST MODE FOR CARRYING OUT THE INVENTION The porous multi-layer plastic filter of the present invention is characterized in that particles of a crosslinked polyolefin-based resin material are coated on the surface of a porous plastic substrate formed by sintering particles of a thermoplastic material. It is preferably obtained by forming at least one porous layer by sintering and integrating after electrostatic coating, and a thermoplastic resin having a different average particle size from the surface of the porous plastic base material. It has a multi-layer structure in which particles of a plastic material are sintered and laminated and integrated.

【0007】本発明の多孔質複層フィルタを構成する多
孔質プラスチック基材は、低い圧力損失で、高い強度を
有するものであって、それを構成する熱可塑性プラスチ
ック材料は、超高分子量ポリエチレン、高密度ポリエチ
レンなどのポリエチレンやポリプロピレンなどのポリオ
レフィン系樹脂、ポリ塩化ビニル樹脂、ポリアリレート
などのポリエステル系樹脂、ポリアミド系樹脂、ポリス
チレン系樹脂、アクリル系樹脂、ポリサルホン樹脂、ポ
リエーテルサルホン樹脂、ポリエチレンサルファイド樹
脂などが使用でき、通常は、その平均粒径が100〜
1,000μm、好ましくは150〜600μmの範囲
の焼結により多孔質体を得られる熱可塑性プラスチック
材料であれば特に限定されるものではない。
The porous plastic substrate constituting the porous multilayer filter of the present invention has low pressure loss and high strength, and the thermoplastic plastic material constituting the substrate is made of ultra-high molecular weight polyethylene, Polyolefin resins such as polyethylene and polypropylene such as high-density polyethylene, polyester resins such as polyvinyl chloride resin and polyarylate, polyamide resins, polystyrene resins, acrylic resins, polysulfone resins, polyether sulfone resins, and polyethylene sulfide Resins and the like can be used, and usually, the average particle size is 100 to
The material is not particularly limited as long as it is a thermoplastic material from which a porous body can be obtained by sintering in a range of 1,000 μm, preferably 150 to 600 μm.

【0008】特に、メルトフローレイト(以下「MF
R」と記す)の小さなもの、具体的にはMFRが1.0
以下の材料を使用する方が均一な孔径を有する基材層を
得る上では好適であり、例えば平均粒径が100〜20
0μmで、かつ嵩密度が0.35〜0.45g/cm3
の、ぶどう房形状の超高分子量ポリエチレンが、機械的
強度などより好適である。なお、平均粒径が1.000
0μmを越えるものでは多孔質複層フイルタの機械的強
度が不十分となり好ましくなく、また、平均粒径が10
0μm未満では多孔質複層フイルタを複層にする意味合
いが薄弱となる。
In particular, the melt flow rate (hereinafter referred to as "MF
R ”), specifically, MFR of 1.0
It is preferable to use the following materials in order to obtain a base material layer having a uniform pore size. For example, the average particle size is 100 to 20.
0 μm and a bulk density of 0.35 to 0.45 g / cm 3
The grape cluster-shaped ultrahigh molecular weight polyethylene is more suitable for mechanical strength and the like. The average particle size is 1.000.
If it exceeds 0 μm, the mechanical strength of the porous multilayer filter becomes insufficient, which is not preferable.
If the thickness is less than 0 μm, the meaning of forming the porous multilayer filter into a multilayer becomes weak.

【0009】また、本発明の多孔質プラスチック基材の
表面に被覆溶着される多孔質層は、微粒子を分離濾過す
るためのものであって、それを構成する架橋ポリオレフ
ィン系樹脂材料は、低密度ポリエチレン、中密度ポリエ
チレン、高密度ポリエチレンなどのポリエチレン、ポリ
プロピレンなどのポリオレフィン系樹脂に、γ線、X線
などの電離性放射線を照射して、または、架橋剤として
塩化アルミニウム、フッ化窒素等の無機化合物や、t−
ブチル−クミル−パーオキサイド、ジクミル−パーオキ
サイド、2,5−ジメチル−2,5−ジ(t−ブチルパ
ーオキシ)ヘキサン、アセチレンパーオキサイド等の有
機過酸化物を用いて化学的に架橋させて、その架橋度を
10%以上としたものであり、通常は、その平均粒径が
5〜90μm、好ましくは10〜60μmの範囲の焼結
により多孔質層を得られる架橋ポリオレフィン系樹脂材
料であれば特に限定されるものではない。ポリオレフィ
ン系樹脂材料の架橋度が10%以下では、架橋ポリオレ
フィン系樹脂材料を加熱した際に起こす、溶融時の流動
性の低下現象が少なく架橋の効果が生じ難いものであ
る。なお、放射線架橋は、化学的架橋に比し、架橋剤の
残留がないこと、添加の手間が省けること、架橋の均一
性等の点では好ましいが、特殊な装置を必要とする点で
は不利がある。
The porous layer coated and welded on the surface of the porous plastic substrate of the present invention is for separating and filtering fine particles, and the crosslinked polyolefin resin material constituting the porous layer is low in density. Polyethylene resins such as polyethylene, medium-density polyethylene, and high-density polyethylene, and polyolefin resins such as polypropylene are irradiated with ionizing radiation such as γ-rays and X-rays, or as inorganic crosslinking agents such as aluminum chloride and nitrogen fluoride. Compounds, t-
Chemically cross-linked using an organic peroxide such as butyl-cumyl-peroxide, dicumyl-peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, and acetylene peroxide. The cross-linked polyolefin resin material whose cross-linking degree is 10% or more, and which can obtain a porous layer by sintering usually having an average particle size of 5 to 90 μm, preferably 10 to 60 μm. It is not particularly limited. When the degree of crosslinking of the polyolefin-based resin material is 10% or less, the cross-linking effect is unlikely to occur due to less decrease in the fluidity at the time of melting when the crosslinked polyolefin-based resin material is heated. In addition, radiation crosslinking is preferable in comparison with chemical crosslinking in that there is no residual cross-linking agent, that the time required for addition can be reduced, and that the crosslinking is uniform, but it is disadvantageous in that a special device is required. is there.

【0010】なお、多孔質プラスチック基材や、その表
面に被覆溶着される多孔質層を構成する熱可塑性プラス
チック材料や、架橋ポリオレフィン系樹脂材料には、多
孔質複層プラスチックフィルタに帯電防止性を付与させ
るために、例えば、カーボンブラックやカーボンファイ
バー、金属粉、表面に金属等が塗布してあるチタン酸カ
リウムなどの導電剤を、目的に合わせて1〜5重量%の
範囲、通常は1〜2重量%の範囲の量で添加してあって
もよい。
It is to be noted that a porous multi-layer plastic filter has an antistatic property to a porous plastic substrate, a thermoplastic plastic material constituting a porous layer coated and welded on the surface thereof, and a crosslinked polyolefin resin material. In order to apply, for example, a conductive agent such as carbon black, carbon fiber, metal powder, or potassium titanate having a surface coated with a metal or the like is added in an amount of 1 to 5% by weight according to the purpose, usually 1 to It may be added in an amount in the range of 2% by weight.

【0011】本発明の多孔質複層プラスチックフィルタ
は、熱可塑性プラスチック材料の粒子を焼結して形成し
た多孔質プラスチック基材の表面に、平均粒径がこの基
材とは相違し、かつ架橋ポリオレフィン系樹脂材料の粒
子の多孔質層を、少なくとも1層、被覆溶着、好ましく
は静電塗装し、これを焼結成形して積層一体化した複層
構造になっていることに特徴がある。しかして、多孔質
プラスチック基材は、前記したように平均粒径が比較的
大きな熱可塑性プラスチック材料を焼結して得られる大
きな孔径を有するものであって、また、多孔質プラスチ
ック基材の表面に被覆溶着される多孔質層は、前記した
ように平均粒径の比較的小さな架橋ポリオレフィン系樹
脂材料を、好ましくは静電塗装し、焼結成形して得られ
る小さな孔径を有するものである。
[0011] The porous multi-layer plastic filter of the present invention has a porous plastic substrate formed by sintering particles of a thermoplastic material, the average particle size of which is different from that of the substrate, and the surface of the porous plastic substrate is crosslinked. It is characterized in that it has a multilayer structure in which at least one porous layer of particles of a polyolefin-based resin material is coated and welded, preferably electrostatically coated, sintered and laminated and integrated. As described above, the porous plastic substrate has a large pore size obtained by sintering a thermoplastic material having a relatively large average particle size, as described above, and further has a surface of the porous plastic substrate. The porous layer to be coated and welded has a small pore diameter obtained by applying a crosslinked polyolefin resin material having a relatively small average particle diameter, preferably by electrostatic coating and sinter molding, as described above.

【0012】そして、この多孔質複層プラスチックフィ
ルタの厚み構成は、大きな孔径を有する多孔質プラスチ
ック基材の厚み比率が、多孔質複層フィルタの全厚みの
30%以上、100%未満の範囲とするのが好ましい。
多孔質プラスチック基材の厚み比率が、30%未満では
圧力損失が高くなりフィルタの性能上好ましくないもの
である。
The thickness composition of the porous multilayer plastic filter is such that the thickness ratio of the porous plastic substrate having a large pore diameter is in the range of 30% or more and less than 100% of the total thickness of the porous multilayer filter. Is preferred.
If the thickness ratio of the porous plastic substrate is less than 30%, the pressure loss increases, which is not preferable in terms of filter performance.

【0013】本発明の多孔質複層プラスチックフィルタ
は、大きな孔径を有する多孔質プラスチック基材と、そ
の表面に被覆溶着される小さな孔径を有する多孔質層と
の複層構造になっていれば、被覆溶着する層の位置や数
は限定されず、要求品質に応じて平均粒径を変化させ
た、被覆溶着された多孔質層を2層以上有するものにす
ることもできる。
The porous multi-layer plastic filter of the present invention has a multi-layer structure of a porous plastic substrate having a large pore size and a porous layer having a small pore size coated and welded to the surface thereof. The position and number of the layers to be coated and welded are not limited, and it is possible to have two or more coated and deposited porous layers whose average particle diameters are changed according to the required quality.

【0014】本発明の多孔質複層プラスチックフィルタ
の成形方法は、まず熱可塑性プラスチック材料の所定の
平均粒径を有する粒子を、焼結成形して多孔質プラスチ
ック基材を形成し、次いで、この基材の表面に、架橋ポ
リオレフィン系樹脂材料の粒子を被覆溶着し、焼結成形
して多孔質層を一体化するものである。
In the method for forming a porous multilayer plastic filter of the present invention, first, particles having a predetermined average particle diameter of a thermoplastic material are sintered and formed to form a porous plastic substrate. The particles of the crosslinked polyolefin-based resin material are coated and welded on the surface of the base material and sintered and formed to integrate the porous layer.

【0015】この多孔質プラスチック基材の成形は、静
的成形法や動的成形法によって行われる。前者の静的成
形法は、いわゆる型内焼結法であって、例えば筒状等の
内表面形状を有する外型とその内部に挿入した同様の外
表面形状を有する内型とよりなる成形金型を用い、外型
内表面と内型外表面の間隙部に形成されるキャビテイ内
にプラスチック材料を充填した後、成形金型共々これを
加熱する方法である。
The molding of the porous plastic substrate is performed by a static molding method or a dynamic molding method. The former static molding method is a so-called in-mold sintering method, for example, a molding metal comprising an outer mold having an inner surface shape such as a cylindrical shape and an inner mold having a similar outer surface shape inserted therein. In this method, a plastic material is filled into a cavity formed in a gap between an inner surface of an outer mold and an outer surface of an inner mold, and then the molding dies are heated together.

【0016】後者の動的成形法は、(1) 先端部に成形型
を有する温度調整が可能なシリンダ内に往復運動をする
ピストン(プランジャーともいう)を内蔵したラム式押
出機を用いて行うラム押出法、(2) 先端部に成形型を有
する温度調整が可能なシリンダ内にスクリュウを内蔵し
た射出成形機を用いて行う射出成形法、(3) 先端部に成
形型を有する温度調整が可能なシリンダ内にスクリュウ
を内蔵した押出成形機を用いて行う押出成形法、(4)雌
型とその内径部に挿人される雄型よりなる成形金型を用
い、雌型の内部に形成されるキャビテイ内に原料を充填
した後、成形金型を加熱する圧縮成形機を用いて行う圧
縮成形法、(5) 先端部に上下方一対の移動式ベルトある
いは下方の移動式ベルトで構成される成形型を有する温
度調整が可能なシリンダでこの成形型内に原料を押出し
する連続式プレス機を用いて行う連続式プレス法などで
ある。
The latter dynamic molding method uses (1) a ram-type extruder that incorporates a piston (also called a plunger) that reciprocates in a temperature-adjustable cylinder having a molding die at the tip. Ram extrusion method, (2) injection molding method using an injection molding machine with a screw built in a temperature-adjustable cylinder with a mold at the tip, (3) temperature adjustment with a mold at the tip Extrusion molding method using an extruder that incorporates a screw in a cylinder that can be used. (4) Using a molding die consisting of a female die and a male die inserted in the inner diameter of the female die, Compression molding method using a compression molding machine that heats the molding die after filling the raw material into the formed cavity, (5) Composed of a pair of upper and lower movable belts or lower movable belt at the tip Temperature-adjustable cylinder with a shaped mold And the like continuous pressing method carried out using a continuous press for extruding the raw material into the mold.

【0017】これら静的成形法や動的成形法などの方法
から、本発明の多孔質複層プラスチックフィルタの最終
的な形状などの要求品質に応じて、適宜選択することが
できる。また、多孔質複層フィルタの最終的な形状は、
断面が円形、楕円形、長方形、多角形、星形などの中空
筒状体、板状体、棒状体、有底筒状体あるいは皿状体な
ど、その用途によって適宜選択される。
[0017] From the methods such as the static molding method and the dynamic molding method, it can be appropriately selected according to the required quality such as the final shape of the porous multilayer plastic filter of the present invention. Also, the final shape of the porous multilayer filter is
The cross-section is appropriately selected depending on the use, such as a hollow cylindrical body such as a circle, an ellipse, a rectangle, a polygon, and a star, a plate-like body, a rod-like body, a bottomed cylindrical body, or a dish-like body.

【0018】次いで、この多孔質プラスチック基材に、
架橋ポリオレフィン系樹脂材料、具体的には、その基材
を構成している熱可塑性プラスチック材料の平均粒径よ
り小径の、架橋ポリオレフィン系樹脂材料の粒子を被覆
溶着した多孔質層を焼結成形する。
Next, on this porous plastic substrate,
A porous layer coated and welded with particles of the crosslinked polyolefin resin material, which is smaller than the average particle size of the thermoplastic resin material constituting the base material of the crosslinked polyolefin resin material, is sintered and formed. .

【0019】被覆溶着する方法は、前記した型内焼結
法、静電塗装法などであり、型内焼結法は、予め成形し
てある多孔質プラスチック基材を、その基材の外径より
所定量だけ大径の内径を有する筒状外型内に間隙を設け
て装填し、続いて、その間隙内に架橋ポリオレフィン系
樹脂材料の粒子を充填し、その状態でこれらを所定温度
で所定時間だけ加熱して焼結成形する方法である。な
お、多孔質プラスチック基材を型内焼結法で成形した場
合には、これに連続して架橋ポリオレフィン系樹脂材料
の粒子を前記と同様にして焼結成形し、多孔質プラスチ
ック基材に多孔質層を被覆溶着して一体化することもで
きる。
The method of coating welding includes the above-described in-mold sintering method, electrostatic coating method, and the like. A gap is provided in a cylindrical outer mold having an inner diameter of a larger diameter by a predetermined amount, and then the space is filled with particles of a crosslinked polyolefin-based resin material. This is a method in which sinter molding is performed by heating only for a certain time. When the porous plastic substrate is molded by the in-mold sintering method, the particles of the crosslinked polyolefin-based resin material are successively sintered and molded in the same manner as described above, and the porous plastic substrate is porous. The material layer can also be integrated by coating and welding.

【0020】また、静電塗装法は、高電圧を印加したノ
ズルから、架橋ポリオレフィン系樹脂材料の粒子を噴出
させて、これを静電気的に塗着する方法であって、先
ず、所定孔径を有する多孔質プラスチック基材の表面に
導電性を付与する。なお、導電性の付与は、多孔質プラ
スチック基材の成形時に、前記した導電剤、例えばカー
ボンブラックやカーボンファイバー、金属粉等を基材中
に混入させる方法や、成形後の多孔質プラスチック基材
の表面に、界面活性剤等を塗布する方法などであるが、
多孔質プラスチック基材の少なくとも表面に導電性を付
与できるものであれば、特に限定されない。
The electrostatic coating method is a method in which particles of a crosslinked polyolefin resin material are ejected from a nozzle to which a high voltage is applied, and the particles are electrostatically applied. It imparts conductivity to the surface of the porous plastic substrate. The conductivity may be imparted by, for example, mixing the above-described conductive agent, for example, carbon black, carbon fiber, or metal powder into the substrate when molding the porous plastic substrate, or forming the porous plastic substrate after molding. On the surface of the surface, such as a method of applying a surfactant,
There is no particular limitation as long as it can impart conductivity to at least the surface of the porous plastic substrate.

【0021】続いて、高電圧を印加したノズルから、そ
の多孔質プラスチック基材の表面と相溶性を有し、かつ
その多孔質プラスチック基材を構成するプラスチック材
料の粒子よりも、平均粒径が小径である架橋ポリオレフ
ィン系樹脂材料の粒子を噴出させて、これを静電気的に
塗着して、多孔質プラスチック基材の表面に被覆積層す
る。次いで、この架橋ポリオレフィン系樹脂材料の粒子
が被着積層してある多孔質プラスチック基材を、所定温
度に設定した加熱炉などに入れて加熱し、これを焼結成
形すると共に、多孔質プラスチック基材の表面に被覆溶
着して一体化するものである。
Subsequently, from the nozzle to which the high voltage is applied, the average particle diameter is larger than the particles of the plastic material which is compatible with the surface of the porous plastic substrate and constitutes the porous plastic substrate. Particles of a crosslinked polyolefin resin material having a small diameter are ejected, electrostatically applied, and coated and laminated on the surface of a porous plastic substrate. Next, the porous plastic substrate on which the particles of the crosslinked polyolefin-based resin material are adhered and laminated is heated in a heating furnace or the like set at a predetermined temperature, and is heated and sintered. The coating is welded to the surface of the material and integrated.

【0022】ここで、ポリオレフィン系樹脂材料を架橋
するための放射線照射方法は、被照射材料を所定の放射
線照射装置内に封入し、被照射材料に対して大気圧中・
室温状態でコバルト60を線源として、所定の線量(G
y)を所定の時間照射するもので、これにより、所望の
架橋度を有する放射線架橋ポリオレフィン系樹脂材料を
得る。また、多孔質複層プラスチックフィルタの各層
は、同種のプラスチック材料で構成されている方が、成
形する際には好都合であり、また各層の層間接着力の面
からも好ましい。
Here, in the radiation irradiation method for crosslinking the polyolefin resin material, the irradiation target material is sealed in a predetermined radiation irradiation device, and the irradiation target material is exposed to the atmosphere under atmospheric pressure.
At room temperature, a predetermined dose (G
y) is irradiated for a predetermined time, whereby a radiation-crosslinked polyolefin-based resin material having a desired degree of crosslinking is obtained. Further, it is more convenient for each layer of the porous multilayer plastic filter to be formed of the same kind of plastic material when molding, and it is also preferable from the viewpoint of the interlayer adhesion of each layer.

【0023】[0023]

【実施例】以下、本発明を実施例により詳細に説明す
る。なお、以下の実施例および比較例で得られた、多孔
質複層プラスチックフィルタの性能は、次の方法により
評価または測定し、その結果を表示した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. In addition, the performance of the porous multilayer plastic filter obtained in the following Examples and Comparative Examples was evaluated or measured by the following method, and the results were displayed.

【0024】「粒子脱落の有無」逆洗による払い落しの
際に、フィルタ粒子の脱落の有無を目視により評価し
た。すなわち、フィルタ粒子の脱落がなく良好なものを
(○)、フィルタ粒子の脱落が多少認められるものを
(Δ)、フィルタ粒子の脱落が相当認められるものを
(×)とした。ただし、ここでフィルタ粒子には、脱落
源が多孔質プラスチック基材であるか、その表面に一体
化された多孔質層であるかを問わず、フィルタを構成す
る粒子を、全て含めた。
"Presence / absence of particle detachment" At the time of wiping by backwashing, the presence / absence of filter particle detachment was visually evaluated. That is, a sample having good filter particles without dropping was rated as (○), a sample with some filter particle dropping was identified as (Δ), and a sample with considerable filter particle dropping was rated as (x). Here, the filter particles included all particles constituting the filter, regardless of whether the falling source was a porous plastic substrate or a porous layer integrated on the surface thereof.

【0025】「微粒子捕集性能」逆洗による払い落しの
際に、払い落された微粒子の流体流出側への混入の有無
を目視により評価した。すなわち、微粒子の混入が認め
られないものを(○)、微粒子の混入が多少認められる
ものを(Δ)、微粒子の混入が相当認められるものを
(×)とした。
"Particle collection performance" At the time of washing off by backwashing, the presence or absence of mixing of the washed out fine particles into the fluid outflow side was visually evaluated. That is, a sample in which fine particles were not mixed was evaluated as (○), a sample in which fine particles were slightly mixed was evaluated as (Δ), and a sample in which fine particles were substantially mixed was evaluated as (x).

【0026】「粉体払い落し性」逆洗による払い落しの
際に、流体流入側のフィルタ表面に付着した微粒子(粉
体)の払い落しの良否を目視により評価した。すなわ
ち、微粒子(粉体)の払い落しが極めて良好なものを
(◎)、微粒子(粉体)の払い落しが良好なものを
(○)、微粒子(粉体)の払い落しが多少悪いものを
(Δ)、微粒子(粉体)の払い落しが相当悪いものを
(×)とした。
"Powder wiping property" At the time of wiping by backwashing, the quality of the wiping of fine particles (powder) adhering to the filter surface on the fluid inflow side was visually evaluated. In other words, the fine particles (powder) with very good removal (◎), the fine particles (powder) with good removal (○), and the fine particle (powder) with some poor removal (Δ), and those with considerably poor removal of fine particles (powder) were rated (x).

【0027】「圧力損失/mmAq」微粒子を含まない
空気を1m/minで吸引した時の、流入側と流出側の
圧力損失を測定し、水柱mmで表示した値である。 「対水接触角/度」ゴニオメーター式接触角測定器(エ
ルマ社製G−1型)により、流入側焼結プラスチックの
対水接触角を測定し、度で表示した値である。
[Pressure loss / mmAq] This is a value obtained by measuring the pressure loss on the inflow side and the outflow side when air containing no fine particles is sucked at 1 m / min, and expressed in mm of water. "Contact angle / degree of water / degree" This is a value obtained by measuring the contact angle of water on the inflow side sintered plastic with a goniometer type contact angle measuring instrument (G-1 type manufactured by Elma) and expressing the angle in degrees.

【0028】<実施例1>成形用金型として、円筒状の
外表面を有する内型1個と、円筒状の内表面を有する外
型1個を準備する。その内型の外径は、外型の内径より
3mm小さいものとする。先ず、内型を外型内に挿入
し、外型と内型との間に均一に3mmの間隙が形成され
るように設置する。次いで、その間隙内に、平均粒径が
170μmで、分子量400万の超高分子量ポリエチレ
ン粒子(MFR=0.01以下)を充填し、これを15
0〜200℃の温度の加熱炉内で60分間加熱して焼結
成形して、比較的大きな孔径を有する、肉厚3mmの中
空円筒体形の多孔質プラスチック基材を得た。続いて、
この多孔質プラスチック基材の表面に界面活性剤を塗布
して、その基材の表面に導電性を付与した後、別途、平
均粒径が26μmの低密度ポリエチレンに200KGy
のγ線を照射して得た、架橋度77%の架橋ポリエチレ
ン粒子(MFR=0.01以下)を、自動静電塗装機を
用いて、使用電圧60KV、霧化空気圧1.5Kg/c
m2 にて静電塗装して、その基材の表面に厚さ70μm
の架橋低密度ポリエチレン粒子を被着積層した。これを
さらに150〜200℃の温度の加熱炉内で30分間加
熱し、焼結成形して、その基材の外層側すなわち、流体
の流入側に比較的小さな孔径の多孔質層が形成された、
全肉厚3mmの中空円筒体形の多孔質2層プラスチック
フイルタを得た。
<Example 1> As a molding die, one inner die having a cylindrical outer surface and one outer die having a cylindrical inner surface are prepared. The outer diameter of the inner mold is 3 mm smaller than the inner diameter of the outer mold. First, the inner mold is inserted into the outer mold, and the inner mold is set so that a gap of 3 mm is uniformly formed between the outer mold and the inner mold. Next, ultra-high molecular weight polyethylene particles having an average particle diameter of 170 μm and a molecular weight of 4,000,000 (MFR = 0.01 or less) are filled in the gaps,
Heating was performed in a heating furnace at a temperature of 0 to 200 ° C. for 60 minutes for sinter molding to obtain a hollow cylindrical porous plastic substrate having a relatively large pore diameter and a thickness of 3 mm. continue,
After applying a surfactant to the surface of the porous plastic substrate to impart conductivity to the surface of the substrate, 200 KGy is separately added to low-density polyethylene having an average particle size of 26 μm.
Irradiated with γ-rays, crosslinked polyethylene particles having a degree of crosslinking of 77% (MFR = 0.01 or less) were used with an automatic electrostatic coating machine at a working voltage of 60 KV and an atomizing air pressure of 1.5 kg / c.
Electrostatic coating with a thickness of 70 μm on the surface of the substrate
And crosslinked low density polyethylene particles were laminated. This was further heated in a heating furnace at a temperature of 150 to 200 ° C. for 30 minutes, and sintered and molded to form a porous layer having a relatively small pore diameter on the outer layer side of the base material, that is, on the fluid inflow side. ,
A hollow cylindrical porous two-layer plastic filter having a total thickness of 3 mm was obtained.

【0029】<実施例2>成形金型として、円筒状外表
面を有する内型1個と、円筒状の内表面を有する外型2
個を準備する。その外型の内径は、内型の外径よりもそ
れぞれ2mmおよび3mm大きいものとする。先ず、内
型を内径の小さい方の外型内に挿入し、外型と内型の間
に均一に2mmの間隙が形成されるように設置する。次
いで、その間隙内に、平均粒径が160μmで、分子量
400万の超高分子量ポリエチレン粒子(MFR=0.
01以下)を充填し、これを160〜220℃の温度の
加熱炉内で30分間加熱し、焼結成形して、比較的大き
な孔径を有する多孔質プラスチック基材を得た。続い
て、この多孔質プラスチック基材を外面に残したまま内
型をその外型より離脱させ、これを内径の大きい方の外
型内に挿入し、基材表面とその外型の間に均一に1mm
の間隙が形成されるように設置する。次いで、この二次
間隙内に、実施例1と同様に、平均粒径が26μmの低
密度ポリエチレンに200KGyのγ線を照射して得
た、架橋度77%(MFR=0.01以下)の架橋ポリ
エチレン粒子を充填し、これらを再度160〜220℃
の温度の加熱炉内で30分間加熱し、焼結成形して、そ
の基材の外層側すなわち、流体の流入側に比較的孔径の
小さな孔径の多孔質層が形成された、全肉厚3mmの中
空円筒体形の多孔質2層プラスチックフイルタを得た。
<Example 2> As an injection mold, one inner die having a cylindrical outer surface and an outer die 2 having a cylindrical inner surface were used.
Prepare the pieces. The inner diameter of the outer mold is 2 mm and 3 mm larger than the outer diameter of the inner mold, respectively. First, the inner mold is inserted into the outer mold having the smaller inner diameter, and is installed so that a gap of 2 mm is uniformly formed between the outer mold and the inner mold. Then, ultra high molecular weight polyethylene particles having an average particle diameter of 160 μm and a molecular weight of 4,000,000 (MFR = 0.
01 or less), heated in a heating furnace at a temperature of 160 to 220 ° C. for 30 minutes, and sintered and molded to obtain a porous plastic substrate having a relatively large pore diameter. Subsequently, the inner mold is detached from the outer mold while leaving the porous plastic base material on the outer surface, and is inserted into the outer mold having a larger inner diameter, and the uniform is formed between the substrate surface and the outer mold. 1mm
It is installed so that a gap is formed. Next, as in Example 1, a low-density polyethylene having an average particle size of 26 μm was irradiated with 200 KGy γ-ray in the secondary gap, and had a degree of crosslinking of 77% (MFR = 0.01 or less). Fill the cross-linked polyethylene particles and bring them again to 160-220 ° C.
Is heated in a heating furnace at a temperature of 30 minutes, sintered and molded, and a porous layer having a relatively small pore diameter is formed on the outer layer side of the base material, that is, on the fluid inflow side. A hollow cylindrical porous two-layer plastic filter was obtained.

【0030】<比較例1>実施例1と全く同様に成形し
て得られた、比較的大きな孔径を有する、肉厚3mmの
中空円筒体形の多孔質プラスチック基材の表面に、平均
粒径が0.1μmのPTFE微粒子をバインダーと共
に、スプレーで吹付けて10〜20μmの厚さに被着積
層し、全肉厚3mmの中空円筒体形の多孔質2層プラス
チックフイルタを得た。
Comparative Example 1 The surface of a hollow cylindrical porous plastic base material having a relatively large pore diameter and a thickness of 3 mm, which was obtained by molding in exactly the same manner as in Example 1, had an average particle size of PTFE fine particles of 0.1 μm together with a binder were sprayed and sprayed to be applied and laminated to a thickness of 10 to 20 μm to obtain a hollow cylindrical porous two-layer plastic filter having a total thickness of 3 mm.

【0031】<比較例2>実施例1において、架橋ポリ
エチレン粒子に代えて、架橋前の平均粒径が26μmの
低密度ポリエチレン粒子を使用した以外は、実施例1と
全く同様にして、全肉厚3mmの中空円筒体を得た。
<Comparative Example 2> Whole meat was prepared in the same manner as in Example 1, except that low-density polyethylene particles having an average particle size of 26 μm before crosslinking were used instead of the crosslinked polyethylene particles. A hollow cylindrical body having a thickness of 3 mm was obtained.

【0032】[0032]

【表1】 実施例1 実施例2 比較例1 比較例2 粒子脱落の有無 ○ ○ △ 所 定 微粒子捕集性能 ○ ○ △ の フ 粉体払い落し性 ○ ○ ◎ にィ なル 圧力損失/mmAq 13 45 25 らタ な 対水接触角/度 94 93 115 い 参考 粒径比 170/26 160/26 170/10〜20 170/26 肉厚 3mm 3mm 3mm 3mm 形状 円形 円形 円形 円形 成形法 金型/静電 金型/型内 金型/スプレ 金型/静電[Table 1] Example 1 Example 2 Comparative Example 1 Comparative Example 2 Presence or Absence of Particle Falling Out ○ ○ △ Predetermined Particle Collection Performance ○ ○ △ フ Powder Removal Property ○ ○ ◎ Pressure Pressure / mmAq 13 45 25 Other water contact angle / degree 94 93 115 Reference particle size ratio 170/26 160/26 170/10 to 20 170/26 Wall thickness 3mm 3mm 3mm 3mm Shape Round Round Round Round Molding method Mold / Electrostatic mold / in-mold mold / spray mold / electrostatic

【0033】表1に示したように、実施例1、2におい
ては、粒子の脱落や流体流出側への微粒子の混入、さら
には粉体払い落し性についても問題なく良好である。ま
た圧力損失も小さく問題はない。しかし、比較例1は、
粉体払い落し性能を評価する上で1つの目安となる対水
接触角は大きな値となったが、PTFE粒子の脱落があ
り、性能上の欠点が認められた。比較例2においては、
多孔質プラスチック基材の表面に被着積層した低密度ポ
リエチレンが薄膜状となり、所定の多孔質フィルタにな
らなかった。
As shown in Table 1, in Examples 1 and 2, dropping of particles, mixing of fine particles into the fluid outflow side, and powder removing property are satisfactory without any problem. The pressure loss is small and there is no problem. However, Comparative Example 1
Although the contact angle with water, which is one measure for evaluating the powder removal performance, was a large value, the PTFE particles fell off, and a performance defect was recognized. In Comparative Example 2,
The low-density polyethylene deposited and laminated on the surface of the porous plastic substrate became a thin film, and could not be a predetermined porous filter.

【0034】<実施例3>平均粒径が340μmで、分
子量330万の超高分子量ポリエチレン粒子(MFR=
0.01以下)を、先端部に、最終の多孔質プラスチッ
クフィルタ厚み3mmを得るに必要な幅の、円筒状開口
を有する口金を設けたラム式押出機で焼結成形して、比
較的大きな孔径を有する肉厚3mmの中空円筒体形の多
孔質プラスチック基材を得た。以後は、実施例1の架橋
低密度ポリエチレン粒子の被着積層厚み70μmを20
0μmに代えた外は、全く実施例1と同様にして、全肉
厚3mmの中空円筒体形の多孔質2層プラスチックフイ
ルタを得た。
Example 3 Ultra-high molecular weight polyethylene particles having an average particle diameter of 340 μm and a molecular weight of 3.3 million (MFR =
0.01 or less) by a ram-type extruder provided with a die having a cylindrical opening having a width necessary for obtaining a final porous plastic filter thickness of 3 mm at the tip end, and forming a relatively large A hollow cylindrical porous plastic substrate having a hole diameter of 3 mm and a thickness of 3 mm was obtained. Thereafter, the applied lamination thickness of the crosslinked low-density polyethylene particles of
Except that the thickness was changed to 0 μm, a hollow cylindrical porous two-layer plastic filter having a total thickness of 3 mm was obtained in exactly the same manner as in Example 1.

【0035】<実施例4>実施例1において、超高分子
量ポリエチレンの平均粒径を170μmから160μm
に、低密度ポリエチレンの平均粒径を26μmから10
μmに、これに照射したγ線の強度を200KGyから
100KGyに、架橋度を77%から54%に、また架
橋低密度ポリエチレン粒子の被着積層厚み70μmを1
00μmに代えた外は、実施例1と全く同様にして、全
肉厚3mmの中空円筒体形の多孔質2層プラスチックフ
イルタを得た。
Example 4 In Example 1, the average particle size of the ultra-high molecular weight polyethylene was from 170 μm to 160 μm.
The average particle size of the low-density polyethylene is
μm, the intensity of γ-rays irradiated from 200 KGy to 100 KGy, the degree of cross-linking from 77% to 54%, and the lamination thickness of cross-linked low-density polyethylene particles of 70 μm to 1 μm.
Except that the thickness was changed to 00 μm, a hollow cylindrical porous two-layer plastic filter having a total thickness of 3 mm was obtained in exactly the same manner as in Example 1.

【0036】<実施例5>実施例1において、超高分子
量ポリエチレンの平均粒径を170μmから160μm
に、低密度ポリエチレンの平均粒径を26μmから10
μmに、これに照射したγ線の強度を200KGyから
50KGyに、架橋度を77%から43%に、また架橋
低密度ポリエチレン粒子の被着積層厚み70μmを90
μmに代えた外は、実施例1と全く同様にして、全肉厚
3mmの中空円筒体形の多孔質2層プラスチックフイル
タを得た。
<Example 5> In Example 1, the average particle size of the ultrahigh molecular weight polyethylene was from 170 μm to 160 μm.
The average particle size of the low-density polyethylene is
μm, the intensity of γ-rays irradiated from 200 KGy to 50 KGy, the degree of crosslinking from 77% to 43%, and the
A hollow cylindrical porous two-layer plastic filter having a total thickness of 3 mm was obtained in exactly the same manner as in Example 1 except that the thickness was changed to μm.

【0037】<実施例6>実施例1において、成形用金
型を、円筒状の外表面を有する内型1個と、円筒状の内
表面を有する外型1個から、断面星形の角柱状の外表面
を有する内型1個と、断面星形の角柱状の内表面を有す
る外型1個に、加熱炉内の温度を150〜200℃から
160〜220℃に、加熱時間を60分から30分に、
また架橋低密度ポリエチレン粒子の被着積層厚み70μ
mを200μmに代えた外は、実施例1と全く同様にし
て、全肉厚3mmの断面星形で中空角柱体形の多孔質2
層プラスチックフイルタを得た。
<Embodiment 6> In Embodiment 1, the molding die was changed from one inner mold having a cylindrical outer surface and one outer mold having a cylindrical inner surface to a star-shaped corner. The inner temperature of the heating furnace was increased from 150 to 200 ° C to 160 to 220 ° C, and the heating time was increased to 60 times for one inner die having a columnar outer surface and one outer die having a prismatic inner surface having a star-shaped cross section. From 30 minutes to 30 minutes
In addition, the thickness of the cross-linked low-density polyethylene particles is 70 μm.
Except that m was changed to 200 μm, the same procedure as in Example 1 was repeated, except that a hollow prismatic porous 2
A layer plastic filter was obtained.

【0038】[0038]

【表2】 実施例3 実施例4 実施例5 実施例6 粒子脱落の有無 ○ ○ ○ ○ 微粒子捕集性能 ○ ○ ○ ○ 粉体払い落し性 ○ ○ ○ ○ 圧力損失/mmAq 9 20 21 11 対水接触角/度 95 93 93 94 参考 粒径比 340/26 160/10 160/10 170/26 肉厚 3mm 3mm 3mm 3mm 形状 円形 円形 円形 星形 成形法 金型/静電 金型/静電 金型/静電 金型/静電[Table 2] Example 3 Example 4 Example 5 Example 6 Presence or absence of falling off of particles ○ ○ ○ ○ Performance of collecting fine particles ○ ○ ○ ○ Powder removing property ○ ○ ○ ○ Pressure loss / mmAq 920 21 11 pairs Water contact angle / degree 95 93 93 94 Reference Particle size ratio 340/26 160/10 160/10 170/26 Wall thickness 3mm 3mm 3mm 3mm Shape Round Round Round Star Molding method Mold / electrostatic mold / electrostatic metal Mold / Electrostatic Mold / Electrostatic

【0039】表2に示したように、多孔質プラスチック
基材および多孔質層となるプラスチック材料の平均粒径
や静電塗装の条件を変化させた実施例3、4、5および
6においては、粒子の脱落や流体流出側への微粒子の混
入、さらには粉体払い落し性についても問題なく良好で
ある。また、圧力損失、粉体払い落し性能を評価する上
で1つの目安となる対水接触角も小さく問題はない。
As shown in Table 2, in Examples 3, 4, 5, and 6 in which the average particle size of the porous plastic substrate and the plastic material to be the porous layer and the conditions of electrostatic coating were changed. It is also satisfactory without any problem regarding dropping of particles, mixing of fine particles into the fluid outflow side, and powder removal property. In addition, there is no problem in that the contact angle with water, which is one criterion for evaluating the pressure loss and the powder removing performance, is small.

【0040】[0040]

【発明の効果】本発明は、多孔質プラスチック基材の表
面に、架橋ポリオレフィン系樹脂材料の多孔質層を被覆
溶着して一体化した、多孔質複層プラスチックフィルタ
であるから、容易に流体の流入側と流出側で孔径が異な
る多孔質フィルタとすることができると共に、従来のよ
うなPTFE粒子が脱落し、捕集された微粒子中に混入
することを防止することができる。しかも、多孔質プラ
スチック基材の表面に、架橋ポリオレフィン系樹脂材料
を静電塗装し、これを焼結成形して多孔層を一体化する
ことにより、良好な通気性を発現する大きな孔径を有す
る多孔質プラスチック基材の表面に、良好な微粒子捕集
性能を発現する小さな孔径を有する多孔質層が容易に形
成し得ると共に、微粒子の高捕集効率およぴ低圧力損失
性能を兼備した微粒子分離用多孔質フィルタとすること
ができる。
The present invention is a porous multi-layer plastic filter in which a porous layer of a cross-linked polyolefin resin material is coated and welded on the surface of a porous plastic base material to be integrated, so that a fluid can be easily formed. A porous filter having a different pore size between the inflow side and the outflow side can be provided, and the conventional PTFE particles can be prevented from falling off and being mixed into the collected fine particles. In addition, a crosslinked polyolefin-based resin material is electrostatically coated on the surface of a porous plastic base material, which is sintered and formed into a porous layer to form a porous layer having a large pore size that exhibits good air permeability. A porous layer with a small pore size that exhibits good fine particle collection performance can be easily formed on the surface of a porous plastic substrate, and the fine particle separation combines high fine particle collection efficiency and low pressure loss performance Porous filter for use.

【0041】多孔質プラスチック基材の表面に、架橋ポ
リオレフィン系樹脂材料が多孔質層を形成するに適する
理由は、ポリオレフィン系樹脂材料を架橋させること
で、融点(Tm)以上の溶融状態での流動性が架橋個所
の存在により低下することにより、材料の粒子面融着の
過程で発現する”粒子表面のみの融着”状態で焼結を完
了させることが比較的容易に行えることによるものであ
る。そのために、平均粒径の小さな超高分子量ポリエチ
レンに代えて、入手が比較的容易な平均粒径の小さなポ
リオレフィン系樹脂材料を使用することが可能と成り、
生産性やコストの面からも有利である。
The reason why the crosslinked polyolefin-based resin material is suitable for forming a porous layer on the surface of the porous plastic substrate is that the crosslinked polyolefin-based resin material is capable of forming a flow in a molten state having a melting point (Tm) or higher. This is because the sintering can be completed relatively easily in the state of “fusion of only the particle surface” which occurs during the process of fusion of the particle surface of the material due to the decrease in the property due to the presence of the cross-linking portion. . Therefore, instead of the ultra high molecular weight polyethylene having a small average particle size, it is possible to use a polyolefin resin material having a small average particle size, which is relatively easily available,
It is also advantageous in terms of productivity and cost.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】多孔質プラスチック基材およびその表面に
一体化された少なくとも1層の多孔質層を有し、該多孔
質プラスチック基材は、平均粒径が比較的大きな熱可塑
性プラスチック材料の粒子を焼結成形して得られる大き
な孔径を有するものであり、該多孔質層は、平均粒径が
比較的小さな架橋ポリオレフィン系樹脂材料の粒子を焼
結成形して得られる小さな孔径を有するものであること
を特徴とする多孔質複層プラスチックフィルタ。
1. A porous plastic substrate having at least one porous layer integrated on its surface, said porous plastic substrate comprising particles of a thermoplastic material having a relatively large average particle size. The porous layer has a small pore size obtained by sintering particles of a crosslinked polyolefin-based resin material having a relatively small average particle size. A porous multi-layer plastic filter characterized by the following.
【請求項2】上記架橋ポリオレフィン系樹脂材料が、放
射線架橋ポリオレフィン系樹脂材料であることを特徴と
する請求項1記載の多孔質複層プラスチックフィルタ。
2. The porous multilayer plastic filter according to claim 1, wherein the crosslinked polyolefin resin material is a radiation crosslinked polyolefin resin material.
【請求項3】熱可塑性プラスチック材料の粒子を焼結成
形して、多孔質プラスチック基材を形成し、該プラスチ
ックと相溶性を有する、放射線架橋ポリオレフィン系樹
脂材料の粒子を、上記多孔質プラスチック基材に導電性
を付与させ後に、この基材の表面に静電塗装し、次いで
該塗着粒子および上記基材の表面を加熱して焼結一体化
し、少なくとも1層の多孔質層を形成することを特徴と
する多孔質複層プラスチックフィルタの製造方法。
3. A porous plastic base material is formed by sintering and molding particles of a thermoplastic plastic material, and particles of a radiation-crosslinked polyolefin resin material compatible with the plastic are formed on the porous plastic base material. After imparting conductivity to the material, the surface of the substrate is electrostatically coated, and then the coated particles and the surface of the substrate are heated and sintered and integrated to form at least one porous layer. A method for producing a porous multi-layer plastic filter.
JP32593396A 1996-11-22 1996-11-22 Porous multilayer plastic filter and manufacturing method thereof Expired - Fee Related JP3645051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32593396A JP3645051B2 (en) 1996-11-22 1996-11-22 Porous multilayer plastic filter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32593396A JP3645051B2 (en) 1996-11-22 1996-11-22 Porous multilayer plastic filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10151330A true JPH10151330A (en) 1998-06-09
JP3645051B2 JP3645051B2 (en) 2005-05-11

Family

ID=18182227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32593396A Expired - Fee Related JP3645051B2 (en) 1996-11-22 1996-11-22 Porous multilayer plastic filter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3645051B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000177040A (en) * 1998-12-14 2000-06-27 Asahi Chem Ind Co Ltd Porous composite form
WO2001097957A1 (en) * 2000-06-23 2001-12-27 Lg Chemical Co. Ltd. Multi-component composite membrane and method for preparing the same
EP1153969A4 (en) * 1998-10-01 2002-06-19 Tonen Sekiyukagaku Kk Microporous polyolefin film and process for producing the same
JP2013537924A (en) * 2010-09-10 2013-10-07 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Porous products containing fused thermoplastic particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1153969A4 (en) * 1998-10-01 2002-06-19 Tonen Sekiyukagaku Kk Microporous polyolefin film and process for producing the same
US7479243B2 (en) 1998-10-01 2009-01-20 Tonen Chemical Corporation Microporous polyolefin membrane, and method of producing the same
US7815825B2 (en) 1998-10-01 2010-10-19 Tonen Chemical Corporation Microporous polyolefin membrane, and method of producing the same
JP2000177040A (en) * 1998-12-14 2000-06-27 Asahi Chem Ind Co Ltd Porous composite form
WO2001097957A1 (en) * 2000-06-23 2001-12-27 Lg Chemical Co. Ltd. Multi-component composite membrane and method for preparing the same
US7087269B2 (en) 2000-06-23 2006-08-08 Lg Chemical Co., Ltd. Multi-component composite membrane and method for preparing the same
JP2013537924A (en) * 2010-09-10 2013-10-07 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Porous products containing fused thermoplastic particles

Also Published As

Publication number Publication date
JP3645051B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
KR100423586B1 (en) Porous plastic filter and process for its production
KR100245912B1 (en) Filter element with a dimensionally stable, permeable and porous plastic moulded body
CN1700965B (en) Open-porous molded body, method for production and use thereof
JP2001504398A (en) Porous structure and method for producing the same
US6793866B2 (en) Process for producing bonded activated carbon structures and articles
JPH10151330A (en) Porous double-layer plastic filter and its production
JP3727729B2 (en) Porous multilayer plastic filter and manufacturing method thereof
JPH10230113A (en) Porous plastic filter
JPH09313834A (en) Porous plastic filter for separating fine particle
JP4151879B2 (en) Chip filter and manufacturing method thereof
CN102806663B (en) Method for manufacturing plastic filter with polytetrafluoroethylene surface layer
US5583551A (en) Deflection electrode
JP2002239321A (en) Highly corrosion-resistant metal sintered filter
JPH10151311A (en) Porous plastic filter and filter unit
US20070096372A1 (en) Method of manufacturing melt blown carbon fiber filter element and apparatus used therein
US20210316240A1 (en) Laser-sintered filter, method for producing the filter, and method for ensuring fluid flow
JPH1190136A (en) Combined porous plastics filter
JP3312863B2 (en) Porous plastic filter for fine particle separation
JP3638794B2 (en) Porous plastic filter
JPH093236A (en) Porous article of ultrahigh molecular weight polyethylene
EP1488840B1 (en) Method for making a composite filter material
JPH091633A (en) Manufacture of ultra-high-molecular-weight polyethylene porous material
DE102017207997A1 (en) MODIFIED MOLDING AND / OR LIMITING SURFACES AND METHOD FOR THE PRODUCTION THEREOF
JPH0929813A (en) Manufacture of ultra-high-molecular-weight polyethylene porous material
WO2024081341A1 (en) Porous sintered bodies and methods of preparing porous sintered bodies

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050202

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees