JPH10128856A - Method and apparatus for processing optically shaped data - Google Patents

Method and apparatus for processing optically shaped data

Info

Publication number
JPH10128856A
JPH10128856A JP8286393A JP28639396A JPH10128856A JP H10128856 A JPH10128856 A JP H10128856A JP 8286393 A JP8286393 A JP 8286393A JP 28639396 A JP28639396 A JP 28639396A JP H10128856 A JPH10128856 A JP H10128856A
Authority
JP
Japan
Prior art keywords
data
contour
time
resin
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8286393A
Other languages
Japanese (ja)
Inventor
Masahiko Ozawa
雅彦 小澤
Toshiro Endo
敏朗 遠藤
Norio Goto
典雄 後藤
Kiyoshi Wada
清 和田
Masayuki Muranaka
昌幸 村中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8286393A priority Critical patent/JPH10128856A/en
Publication of JPH10128856A publication Critical patent/JPH10128856A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for processing data in order to shape data optically and precisely at a high speed by optical shaping. SOLUTION: When a region S(n+1) enclosed with respective contour lines of the (n+1)th contour data and the n th contour data for a contour data group of a model shape is projected on Sn, in the case where a process wherein a difference S sef between Sn and a logical product of Sn and S(n+1) (Sn AND S(n+1)) is compared with a specific value C1, a process wherein an area of a region obtained by offsetting the contour of Sn by a specific value C2 inside is compared with the specific value, and a process for discrimination of truth or falsehood of logical products of both processes are executed and when the discrimination judge result is true, the judged result that liquid surface stabilizing time from application of uncured resin for shaping a part of the n th contour data to start of exposure is made longer than a first set time, is outputted. In the case of falsehood, the judge result that the liquid surface stabilizing time is set at the first setting time, is outputted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレーザ照射により紫
外線硬化樹脂を硬化させ立体樹脂モデルを作成する光造
形方法およびその装置に係り、特に寸法精度に優れた光
造形物を短時間で造形するための方法およびその装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereolithography method and an apparatus for producing a three-dimensional resin model by curing an ultraviolet-curable resin by laser irradiation, and more particularly to a stereolithography product having excellent dimensional accuracy in a short time. And a device therefor.

【0002】[0002]

【従来の技術】三次元CADデータから形状モデルを短
期に作成する技術として光造形技術が知られている。特
公平6−69726号公報、特公平6−69724号公
報に示されているように、CADの形状データを輪切り
にして変換された等高線データにしたがって、UV硬化
樹脂にUVレーザを照射して、一層一層硬化積層を繰り
返して造形する。
2. Description of the Related Art An optical molding technique is known as a technique for creating a shape model from three-dimensional CAD data in a short time. As shown in Japanese Patent Publication No. 6-69726 and Japanese Patent Publication No. 6-69724, the UV curing resin is irradiated with a UV laser in accordance with the contour data converted by cutting the CAD shape data into a circle. The molding is performed by repeating the hardening and lamination.

【0003】[0003]

【発明が解決しようとする課題】光造形では所定のピッ
チで光硬化樹脂を硬化積層する。この所定のピッチで積
層するために、一層硬化させる毎に、積層ピッチ分未硬
化樹脂中に沈め、その硬化した層の上に未硬化の樹脂を
一定厚さで塗布することが必要である。このため、未硬
化樹脂を一旦厚く塗布しスキージで余剰分をかき取るこ
とが行われる。しかし、光硬化樹脂には粘性があり、ス
キージにより規定すべき所望の未硬化層の厚さが得られ
ない。特に、広い面積の既硬化層の上では、周りの未硬
化樹脂の液面と塗布した面の高さに差が出る問題があ
る。このまま露光硬化をすると液面の高さの差が固定さ
れて、造形面の端部が傾いたり、丸みをもったものとな
り、高精度な造形ができない。このため、スキージでか
きとったあと、液面の高さが一様になるように液面安定
化時間として所定の待ち時間を設けることが必要になっ
ている。しかし、樹脂の粘度が高いため、この時間は一
層当たり20〜60秒必要であり、数百〜数千の層数を
積層する光造形では、造形に多大な無駄時間を発生させ
る問題がある。
In stereolithography, a photocurable resin is cured and laminated at a predetermined pitch. In order to laminate at a predetermined pitch, it is necessary that every time the layer is further cured, it is submerged in the uncured resin by the lamination pitch, and the uncured resin is applied on the cured layer at a constant thickness. For this reason, the uncured resin is once thickly applied and the excess is scraped off with a squeegee. However, the photocurable resin is viscous and does not provide a desired uncured layer thickness to be defined by a squeegee. In particular, there is a problem that a difference occurs between the liquid level of the surrounding uncured resin and the height of the applied surface on the hardened layer having a large area. If exposure curing is performed in this state, the difference in liquid level is fixed, and the end of the molding surface is inclined or rounded, so that high-precision molding cannot be performed. For this reason, after scraping with a squeegee, it is necessary to provide a predetermined waiting time as a liquid level stabilization time so that the liquid level becomes uniform. However, since the viscosity of the resin is high, this time is required for 20 to 60 seconds per layer, and there is a problem that a lot of dead time is generated in the optical molding in which several hundreds to thousands of layers are stacked.

【0004】従来技術では高精度造形と短時間での造形
の両立をはかることができない。
In the prior art, it is impossible to achieve both high-precision molding and molding in a short time.

【0005】また、いづれの層の液面安定化時間を長く
設定するかを、形状を考えながら人手で判定し、設定す
ることはできるが、多大な手間が掛かり、またミス等が
避けられない問題がある。データから第n番目の層を露
光硬化するときの液面安定化時間の長短の設定を自動的
に判別して、判定結果を出力するデータ処理方法、また
その判定結果から自動的に液面安定化時間の長短を設定
制御できる光造形装置を提供することが課題である。
In addition, it is possible to manually determine which layer is to be set to have a longer liquid surface stabilization time while considering the shape, but it takes a great deal of time and mistakes are inevitable. There's a problem. A data processing method that automatically determines the setting of the liquid level stabilization time when exposing and curing the n-th layer from the data and outputs a determination result, and automatically performs the liquid level stabilization based on the determination result. An object of the present invention is to provide an optical shaping apparatus capable of setting and controlling the length of the lithography time.

【0006】[0006]

【課題を解決するための手段】未硬化樹脂を塗布し、露
光硬化して、逐次積層しているとき、その層が広い面積
であっても、その層がモデルの上面でなけれは、その層
を硬化させたときに生じる端部の丸み、傾きは次の層を
塗布・硬化させるときに埋もれるため精度上の問題はな
い。端部の丸みや傾きが残り、精度上の問題となるの
は、その層がモデルの上面となる層の場合である。
When an uncured resin is applied, cured by exposure, and sequentially laminated, even if the layer has a large area, if the layer is not the upper surface of the model, the When the next layer is applied and cured, there is no problem in accuracy because the roundness and the inclination of the end portion generated when the layer is cured are buried when the next layer is applied and cured. The roundness or inclination of the end remains, which causes a problem in accuracy when the layer is the upper layer of the model.

【0007】従って、まずモデルの形状データから上面
となる面を検出する手段により上面を検出する。検出さ
れた上面の中には面積が狭く、未硬化樹脂を塗布したと
きに短時間で周りの液面と高さが平衡する上面もあるの
で、そのような上面については液面安定化時間を長く設
定する必要はない。上面の形状識別手段により、面積が
広く、その面内に端部から所定値以上離れた点が存在す
るかを識別することにより達成できる。
Therefore, the upper surface is first detected by means for detecting the upper surface from the model shape data. Among the detected upper surfaces, the surface area is small, and when the uncured resin is applied, there is also an upper surface in which the height of the liquid level equilibrates with the surrounding liquid surface in a short time. There is no need to set it long. This can be achieved by identifying whether or not a point having a large area and being separated from the end by a predetermined value or more exists in the surface by the shape identification means on the upper surface.

【0008】そのため、モデル形状データから所定ピッ
チPで変換された等高線データ群について、等高線デー
タ群の第n番目の等高線データと第(n+1)番目の等
高線データを比較し、両等高線データの輪郭線が囲む領
域をそれぞれSn、S(n+1)とし、S(n+1)を
Snの上に投影したとき、SnからSnとS(n+1)
の論理積(Sn AND S(n+1))との差分が所
定値Aより大きく(広い面積が上面に現れる)、かつS
nの輪郭線を所定値Cだけ内側にオフセットしてできる
領域の面積が正(反転しない:輪郭線から所定値離れた
点が存在する)ことを自動的に判定するデータ処理を行
うことにより達成できる。その判定結果に基づいて、判
定結果が真(端部の外側である周りの液面とその上面に
塗布された樹脂の液面との平衡には時間が掛かるので液
面安定化に長い時間を要す)のとき、第n番目の等高線
データの部分を造形するための未硬化樹脂の塗布後の露
光開始までの間の液面安定化時間を第1の設定時間より
長くする判定結果を出力し、その他の場合に液面安定化
時間を第1の設定時間に設定する判定結果を出力する。
For this reason, for the contour data group converted at a predetermined pitch P from the model shape data, the nth contour data and the (n + 1) th contour data in the contour data group are compared, and the contour lines of both contour data are compared. Are defined as Sn and S (n + 1), respectively, and when S (n + 1) is projected on Sn, Sn to Sn and S (n + 1)
AND (Sn AND S (n + 1)) is larger than a predetermined value A (a large area appears on the upper surface), and S
Achieved by performing data processing for automatically determining that the area of a region formed by offsetting the outline of n by a predetermined value C inward is positive (no inversion: a point separated from the outline by a predetermined value exists). it can. Based on the judgment result, the judgment result is true (it takes a long time to stabilize the liquid surface because it takes time to equilibrate the liquid surface around the outside of the end and the liquid surface of the resin applied on the upper surface. Required), a determination result is output in which the liquid surface stabilization time from the application of the uncured resin for forming the part of the n-th contour data to the start of exposure is longer than the first set time. In other cases, a determination result for setting the liquid level stabilization time to the first set time is output.

【0009】光造形装置では、上記データ処理とその結
果により制御される液面安定化時間可変制御手段を具備
することにより、液面安定化待ち時間制御手段を制御
し、上面ではない層を造形するとき、また上面ではあっ
ても面積が小さく液面安定化が早くできる層を造形する
ときには、液面安定化時間を短い第1の設定時間に設定
制御して造形する。一方識別結果が上面であり、かつ面
積が広く液面安定化に時間を要す結果の場合には、液面
安定化待ち時間制御手段を制御し、液面安定化時間を長
い第2の設定時間に設定制御して造形する。
The stereolithography apparatus is provided with a liquid level stabilization time variable control means controlled by the data processing and the result, thereby controlling the liquid level stabilization waiting time control means to form a layer other than the upper surface. When forming a layer that has a small area even on the upper surface and can quickly stabilize the liquid level, the liquid level stabilization time is set and controlled to a short first set time, and then formed. On the other hand, if the discrimination result is the top surface and the result is that the surface area is large and the liquid surface stabilization requires time, the liquid level stabilization wait time control means is controlled to set the liquid surface stabilization time to a long second setting. The model is controlled by setting the time.

【0010】これにより、寸法精度にかかわる上面では
寸法精度良く、その他の部位では液面安定化時間を短く
でき、高精度と短時間での造形の両立をはかることがで
きる。
As a result, the dimensional accuracy can be improved on the upper surface related to the dimensional accuracy, and the liquid surface stabilization time can be shortened in other portions, and both high accuracy and modeling in a short time can be achieved.

【0011】[0011]

【発明の実施の形態】本発明の実施例を図面を用いて説
明する。図1は本発明の一実施例のデータ処理方法のP
AT図である。処理をスタートし、形状データファイル
の指定、等高線変換のための積層ピッチ設定等の初期設
定を行う。ついで形状を表す全てのパッチデータを読み
込み、ピッチPの等高線データ群に変換する。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a P of the data processing method according to an embodiment of the present invention.
FIG. The process is started, and initial settings such as specification of a shape data file and setting of a lamination pitch for contour line conversion are performed. Next, all the patch data representing the shape are read and converted into a contour data group having a pitch P.

【0012】これらの等高線データ群について、図2に
示すように第n番目の等高線データと第(n+1)番目
の等高線データを比較し、両等高線データの輪郭線が囲
む領域をそれぞれSn、S(n+1)とし、S(n+
1)をSnの上に投影したとき、SnからSnとS(n
+1)の論理積(Sn AND S(n+1))との差
分S defが所定値C1より大きいとき、第n番目の層は
モデルの上面として造形されることがわかる。さらに図
3に示すように、Snの輪郭線を所定値C2だけ内側に
オフセットしてできる領域の面積が正(反転しない)で
あることを判定することにより、その面が広く、モデル
の外側の液面とモデルの上部の液面との間の液面安定化
に時間を要すことが識別できる。この識別判定結果を、
第n番目の等高線データの部分を造形するための未硬化
樹脂の塗布後の露光開始までの間の液面安定化時間を第
1の設定時間より長くする判定結果として出力し、その
他の場合に液面安定化時間を第1の設定時間に設定する
判定結果として出力する。
For these contour data groups, as shown in FIG. 2, the n-th contour data and the (n + 1) -th contour data are compared, and the regions surrounded by the contour lines of both contour data are Sn and S ( n + 1) and S (n +
When 1) is projected onto Sn, from Sn to Sn and S (n
When the difference S def from the logical product (Sn AND S (n + 1)) of (+1) is larger than the predetermined value C1, it can be understood that the n-th layer is formed as the upper surface of the model. Furthermore, as shown in FIG. 3, by determining that the area of the region formed by offsetting the contour line of Sn inward by the predetermined value C2 is positive (not inverted), the surface is wide and the area outside the model is determined. It can be identified that it takes time to stabilize the liquid level between the liquid level and the liquid level above the model. This identification determination result is
The liquid level stabilization time until the start of exposure after the application of the uncured resin for forming the part of the n-th contour data is output as a determination result that is longer than the first set time, and in other cases, This is output as a determination result of setting the liquid level stabilization time to the first set time.

【0013】この出力に基づき、光造形装置の液面安定
化時間を設定することにより、高精度かつ高速にモデル
の造形が可能となる。
By setting the liquid surface stabilization time of the optical shaping apparatus based on this output, it is possible to form a model with high accuracy and high speed.

【0014】図4は本発明の一実施例の光造形装置の説
明図である。UV硬化樹脂1はUV硬化樹脂タンク2の
中に注入されている。スキージ3はUV硬化樹脂1の液
面に平行に設けられたスライドレール4上に載せられて
おり、スキージ駆動手段5によりスライドレール上をU
V硬化樹脂1の液表面に接して移動できる構成となって
いる。光造形用ワークテーブル7はワークテーブルZ軸
移動手段8により、UV硬化樹脂タンク2の中でUV硬
化樹脂1の液面に平行を保ちつつZ軸(深さ)方向に移
動制御される。UVレーザ光9はレーザ発振器10に発
し、ガルバノミラー(X軸、Y軸)11を経てUV硬化
樹脂1の液面に照射される。ガルバノミラー11はガル
バノミラー制御回路12により制御され、レーザ光9が
UV硬化樹脂1の液面を走査できる構成になっている。
スキージ駆動手段5、ガルバノミラー制御回路12、ワ
ークテーブル移動手段8は光造形システム制御回路13
により制御されている。光造形システム制御回路13は
等高線描画データ14に従ってガルバノミラー制御回路
12を介してX、Y軸のガルバノミラー11を作動さ
せ、レーザビーム光9がUV硬化樹脂1の液面を走査す
る。UV硬化樹脂1のレーザ光9を照射された部位は直
ちに硬化する。一層分の走査が完了すると、光造形シス
テム制御回路13は次の層の等高線描画データ14’を
読み込むとともに、ワークテーブルZ軸移動手段8を介
してワークテーブル7を積層ピッチPだけさらに深くU
V硬化樹脂1の液面より沈める。
FIG. 4 is an explanatory view of an optical shaping apparatus according to an embodiment of the present invention. UV curable resin 1 is injected into UV curable resin tank 2. The squeegee 3 is mounted on a slide rail 4 provided in parallel with the liquid surface of the UV curable resin 1.
It is configured to be able to move in contact with the liquid surface of the V-cured resin 1. The work table 7 for stereolithography is controlled by the work table Z-axis moving means 8 to move in the Z-axis (depth) direction in the UV-curable resin tank 2 while keeping the liquid level of the UV-curable resin 1 parallel. The UV laser light 9 is emitted to a laser oscillator 10 and irradiates the liquid surface of the UV curable resin 1 via a galvanometer mirror (X axis, Y axis) 11. The galvanomirror 11 is controlled by a galvanomirror control circuit 12 so that the laser beam 9 can scan the liquid surface of the UV curable resin 1.
The squeegee driving means 5, the galvanomirror control circuit 12, and the worktable moving means 8 are a stereolithography system control circuit 13.
Is controlled by The stereolithography system control circuit 13 operates the galvanomirrors 11 of the X and Y axes via the galvanomirror control circuit 12 according to the contour drawing data 14, and the laser beam 9 scans the liquid surface of the UV curable resin 1. The portion of the UV curable resin 1 irradiated with the laser beam 9 is immediately cured. When the scanning for one layer is completed, the optical shaping system control circuit 13 reads the contour drawing data 14 'of the next layer, and moves the work table 7 through the work table Z-axis moving means 8 further deeper by the stacking pitch P.
Submerge from the liquid surface of V-cured resin 1.

【0015】既硬化層の上に新たに未硬化のUV硬化樹
脂の層をかぶせる。その後、スキージ3を移動させるこ
とにより、規定液面より厚く塗布された未硬化樹脂部は
除去される。図7は第n番目の層を硬化させた後、ワー
クテーブル7をPだけ沈め、その上に、未硬化樹脂層1
5を塗布した状態を示している。塗布底面の既硬化層の
幅が広い部分では塗布不足が生じ、狭い部18あるいは
端部19では未硬化樹脂が厚く塗布される。この結果、
図8に示すように、所定厚さ(基準線21)で硬化すべ
きところが、薄すぎる部、厚すぎる部が生じ、寸法精度
の低下の問題となっている。
A new layer of uncured UV curable resin is placed on the already cured layer. Thereafter, by moving the squeegee 3, the uncured resin portion applied thicker than the prescribed liquid level is removed. FIG. 7 shows that after the n-th layer is cured, the work table 7 is sunk by P, and the uncured resin layer 1 is placed thereon.
5 has been applied. Insufficiency of application occurs in a portion where the width of the hardened layer on the application bottom surface is wide, and an uncured resin is applied thickly in the narrow portion 18 or the end portion 19. As a result,
As shown in FIG. 8, portions to be cured with a predetermined thickness (reference line 21) have portions that are too thin and portions that are too thick, which causes a problem of reduction in dimensional accuracy.

【0016】図5は造形処理のPAT図であり、液面安
定化時間を形状データから長短判定して、造形面がモデ
ル上面であり、面積が広いときには設定時間を長い第2
の液面安定化時間に設定し、他の場合には短い第1の液
面安定化時間に設定し、露光硬化、積層を逐次繰り返し
て造形している。
FIG. 5 is a PAT diagram of the shaping process, in which the liquid surface stabilization time is determined from the shape data to determine whether the shaping surface is the model upper surface and the set time is long when the area is large.
The liquid surface stabilization time is set, and in other cases, the first liquid surface stabilization time is set short, and the exposure, curing, and lamination are sequentially repeated to form the object.

【0017】図6のPAT図は図5のように各層毎に判
定するのではなく、一括判定し、一括判定した後逐次、
塗布、液面安定化、露光硬化を繰り返して造形するもの
であり、判定は造形前に一括処理しておくこともでき
る。
The PAT diagram of FIG. 6 does not make a judgment for each layer as shown in FIG.
The molding is performed by repeating the application, the liquid surface stabilization, and the exposure and curing, and the judgment can be performed collectively before the molding.

【0018】図9は図5、図6の処理により造形上面に
広い面積があることを自動検出して、液面安定化時間を
第1の液面安定化時間(5秒)より長い第2の液面安定
化時間(60秒)に安定化時間を自動切換したときの液
面の状態を示した図である。既硬化部の上の樹脂と周り
の樹脂との液面の差をなくすことができた。露光硬化ご
でも図10に示すようにその硬化表面は平坦であり、寸
法精度が良く、高精度に形状モデルを造形できる。
FIG. 9 automatically detects that there is a large area on the molding upper surface by the processing of FIGS. 5 and 6, and sets the liquid level stabilization time longer than the first liquid level stabilization time (5 seconds). FIG. 8 is a diagram showing a state of the liquid surface when the stabilization time is automatically switched to the liquid surface stabilization time (60 seconds). The difference in liquid level between the resin on the cured portion and the surrounding resin could be eliminated. As shown in FIG. 10, even when exposed to light, the cured surface is flat, has good dimensional accuracy, and can form a shape model with high accuracy.

【0019】上面ではない場合は図11に示すように上
面にて液面安定化時間を十分に長く設定することにより
平坦化され、上面でない部分は高速に、上面については
高精度に造形することにより高精度高速造形が出来た。
If it is not the upper surface, as shown in FIG. 11, the surface is flattened by setting the liquid surface stabilization time sufficiently long, and the non-upper surface is formed at high speed, and the upper surface is formed with high precision. High precision high speed molding was achieved.

【0020】[0020]

【発明の効果】本発明によれば、積層を繰り返すとき
に、各層についての未硬化樹脂塗布後の液面安定化時間
の長短制御について、寸法精度にかかわり、長い液面安
定化時間が必要な層を造形データから自動的に検出しで
きる。この検出データに基づいて液面安定化時間を自動
的に設定制御できる。
According to the present invention, when the lamination is repeated, the liquid level stabilization time after application of the uncured resin for each layer is controlled for a longer or shorter time regardless of the dimensional accuracy. Layers can be automatically detected from the build data. The liquid level stabilization time can be automatically set and controlled based on this detection data.

【0021】このために、不要に長い液面安定化時間を
繰り返すことなく、必要なときにのみ液面安定化時間を
長くして高精度をはかることにより、高精度と高速造形
の両立をはかることが出来る。また、液面安定化時間の
長短識別判定、制御は自動的にすることが可能なので、
人間が判定する手間も不要であり、ミス等の間違えがな
い。
For this reason, the liquid level stabilization time is lengthened only when necessary and high precision is achieved without repeating an unnecessarily long liquid level stabilization time, thereby achieving both high precision and high speed molding. I can do it. In addition, since the determination of the length of the liquid level stabilization time and the control can be automatically performed,
There is no need for human judgment, and there is no mistake or mistake.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のデータの説明図。FIG. 1 is an explanatory diagram of data according to an embodiment of the present invention.

【図2】処理の説明図。FIG. 2 is an explanatory diagram of processing.

【図3】処理の説明図。FIG. 3 is an explanatory diagram of a process.

【図4】本発明の実施例の光造形装置の説明図。FIG. 4 is an explanatory view of an optical shaping apparatus according to an embodiment of the present invention.

【図5】本発明の光造形装置の処理の説明図。FIG. 5 is an explanatory diagram of a process of the optical shaping apparatus of the present invention.

【図6】本発明の光造形装置の処理の説明図。FIG. 6 is an explanatory diagram of a process of the optical shaping apparatus of the present invention.

【図7】本発明の動作の説明図。FIG. 7 is an explanatory diagram of the operation of the present invention.

【図8】本発明の動作の説明図。FIG. 8 is an explanatory diagram of the operation of the present invention.

【図9】本発明の動作の説明図。FIG. 9 is an explanatory diagram of the operation of the present invention.

【図10】本発明の動作の説明図。FIG. 10 is an explanatory diagram of the operation of the present invention.

【符号の説明】[Explanation of symbols]

1…UV硬化樹脂、 2…UV硬化樹脂タンク、 3…スキージ、 4…スライドレール、 5…スキージ駆動手段、 7…ワークテーブル、 8…Z軸移動手段、 9…UVレーザ光、 10…レーザ発振器、 11…ガルバノミラー、 12…ガルバノミラー制御回路、 13…光造形システム制御回路、 14…等高線描画データ。 DESCRIPTION OF SYMBOLS 1 ... UV curable resin, 2 ... UV curable resin tank, 3 ... Squeegee, 4 ... Slide rail, 5 ... Squeegee drive means, 7 ... Work table, 8 ... Z axis moving means, 9 ... UV laser light, 10 ... Laser oscillator Reference numeral 11: Galvanometer mirror; 12, Galvo mirror control circuit; 13, Stereolithography system control circuit; 14, Contour line drawing data.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 典雄 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 和田 清 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 村中 昌幸 東京都千代田区神田駿河台四丁目6番地株 式会社日立製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Norio Goto, Inventor 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Pref. Multimedia Systems Development Headquarters, Hitachi, Ltd. (72) Inventor Kiyoshi Wada Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa (292) Inventor Masayuki Muranaka 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo, Japan Hitachi, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】既硬化の光硬化樹脂層の上に、未硬化のU
V硬化樹脂を所定厚さ塗布し、その未硬化樹脂を等高線
化された形状データに従って露光硬化し、既硬化層の上
にあらたな硬化層を積層することを繰り返して、逐次積
層して形状モデルを造形する光造形において、形状モデ
ルデータを所定ピッチPの等高線データ群に変換し、前
記等高線データ群の第n番目の等高線データと第(n+
1)番目の等高線データを比較し、両等高線データの輪
郭線が囲む領域をそれぞれSn、S(n+1)とし、S
(n+1)をSnの上に投影したとき、SnからSnと
S(n+1)の論理積(Sn AND S(n+1))
との差分が所定値Aより大きく、かつSnの輪郭線を所
定値Cだけ内側にオフセットしてできる領域の面積が正
のときに、第n番目の等高線データの部分を造形するた
めの未硬化樹脂と塗布後に樹脂の液面安定化時間を第1
の設定時間より長くする判定結果を出力し、その他の場
合に液面安定化時間を第1の設定時間に設定する判定結
果を出力することを特徴とする光造形データ処理方法。
1. An uncured U layer is formed on a cured photocurable resin layer.
A V-cured resin is applied to a predetermined thickness, the uncured resin is exposed and cured according to contoured shape data, and a new cured layer is repeatedly laminated on the already-cured layer. In stereolithography, the shape model data is converted into a contour data group having a predetermined pitch P, and the n-th contour data and (n +
The 1) -th contour data is compared, and the areas surrounded by the contour lines of both contour data are defined as Sn and S (n + 1), respectively, and S
When (n + 1) is projected onto Sn, the logical product of Sn and S (n + 1) from Sn (Sn AND S (n + 1))
Is larger than the predetermined value A and the area of the region formed by offsetting the contour line of Sn inward by the predetermined value C is positive, the uncured portion for forming the part of the n-th contour data First time to stabilize the liquid surface of resin after coating with resin
A stereolithography data processing method, comprising: outputting a determination result that is longer than the set time, and outputting a determination result that sets the liquid level stabilization time to the first set time in other cases.
【請求項2】請求項1において、液面安定化時間の可変
制御手段を有し、液面安定化時間の制御設定値をデータ
処理手段の判定結果から長短の時間に設定制御する光造
形装置。
2. An optical shaping apparatus according to claim 1, further comprising variable control means for the liquid surface stabilization time, wherein the control setting value of the liquid surface stabilization time is set and controlled to a longer or shorter time based on the judgment result of the data processing means. .
JP8286393A 1996-10-29 1996-10-29 Method and apparatus for processing optically shaped data Pending JPH10128856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8286393A JPH10128856A (en) 1996-10-29 1996-10-29 Method and apparatus for processing optically shaped data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8286393A JPH10128856A (en) 1996-10-29 1996-10-29 Method and apparatus for processing optically shaped data

Publications (1)

Publication Number Publication Date
JPH10128856A true JPH10128856A (en) 1998-05-19

Family

ID=17703827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8286393A Pending JPH10128856A (en) 1996-10-29 1996-10-29 Method and apparatus for processing optically shaped data

Country Status (1)

Country Link
JP (1) JPH10128856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071602A (en) * 2010-09-27 2012-04-12 Materialise Nv Method for reducing differential shrinkage in stereolithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071602A (en) * 2010-09-27 2012-04-12 Materialise Nv Method for reducing differential shrinkage in stereolithography

Similar Documents

Publication Publication Date Title
JP2715527B2 (en) 3D shape forming method
US5780070A (en) Apparatus for solidifying and shaping optically cured fluid by carrying out scanning simultaneously with recoating
EP0429196B1 (en) Improved stereolithographic construction techniques
US6777104B2 (en) Subsurface engraving of three-dimensional sculpture
KR20000070084A (en) Optical formation device and method
US5496683A (en) Method of and apparatus for optically shaping photo-setting resin
JPS61114818A (en) Apparatus for forming solid configuration
JPS61114817A (en) Apparatus for forming solid configuration
JP2676838B2 (en) 3D image formation method
JPS61225012A (en) Formation of three-dimensional configuration
JPH10128856A (en) Method and apparatus for processing optically shaped data
JPS63141725A (en) Apparatus for forming three dimensional shape
JPH10249943A (en) Apparatus for stereo lithography
KR20040102531A (en) Micro-stereolithography method and apparatus
JPH0224121A (en) Optical shaping method
JPS61116320A (en) Three-dimensional shape forming device
JPS61217219A (en) Three-dimensional configuration forming device
Yamazawa et al. High Speed UV Laser Beam Scanning by Polygon Mirror
EP0681906B1 (en) Stereolithographic construction techniques
JP3412278B2 (en) Stereolithography device and method
KR100236566B1 (en) Multi photosolidification method and apparatus
JPH07329190A (en) Manufacture of 3-dimensional object and manufacturing equipment
JPH08238678A (en) Optically molding machine
JPH05169551A (en) Method of forming three-dimensional image
JPH05269864A (en) Three dimensional optical shaping device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080705

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090705

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100705

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110705

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120705

LAPS Cancellation because of no payment of annual fees