JPH10117048A - Printed circuit board - Google Patents

Printed circuit board

Info

Publication number
JPH10117048A
JPH10117048A JP26896296A JP26896296A JPH10117048A JP H10117048 A JPH10117048 A JP H10117048A JP 26896296 A JP26896296 A JP 26896296A JP 26896296 A JP26896296 A JP 26896296A JP H10117048 A JPH10117048 A JP H10117048A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
substrate
conductor
circuit board
printed circuit
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26896296A
Other languages
Japanese (ja)
Inventor
Sadatoshi Oishi
禎利 大石
Original Assignee
Tec Corp
株式会社テック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive printed circuit board with easy manufacture, allowing a stable characteristic of a microstrip line.
SOLUTION: A plurality of glass fibers 2 are arranged in a molding box at prescribed intervals W1. Epoxy resin 3 is filled in the molding box for being cured and formed in a plate-shaped elementary plate with an approximately 1m square. On the plane of the elementary plate, a band-shaped conductor 6 constituting a microstrip line is formed by printing or the like positioned almost in parallel to the periphery of a substrate unit every substrate unit. As to the substrate unit, the periphery is in a state slanted by 45° with respect to the longitudinal direction of the glass fibers 2. The printed circuit board 1 is cut out at every substrate unit in order to be formed. Inspite of different arrangement positions to the substrate 4 of the conductor 6, positional relations between the conductor 6 to the glass fibers 2 do not change, thus allowing absorption of variations in a relative dielectric constant. With no regards to arrangement positions of the conductor 6 to the substrate the whole stray capacitance is constant, thus obtaining a stable characteristic.
COPYRIGHT: (C)1998,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、略格子状の誘電性の繊維を有した誘電性の基板の表面に帯状の導体を設けてマイクロストリップラインを構成するプリント基板に関する。 The present invention relates to relates to a printed circuit board which constitutes a microstrip line provided with a strip-shaped conductors in a substantially grid-like dielectric surface of the dielectric substrate having a fiber.

【0002】 [0002]

【従来の技術】従来、この種のプリント基板としては、 Conventionally, as this kind of printed circuit board,
例えば実開平5−15462号公報に記載の構成が知られている。 Construction is known according to e.g. real-Open 5-15462 JP. この実開平5−15462号公報に記載のプリント基板は、単位片毎に回路を印刷形成したガラス繊維をエポキシ樹脂にて1m角寸法の板状に形成した誘電性の素板から、端面をガラス繊維の延在方向である長手方向に対して約45°傾斜して単位片毎に切り出して、 The printed circuit board according to the actual Hei 5-15462 publication is that the glass fibers formed by printing a circuit on each unit pieces from the material plate of dielectric formed on a plate-shaped 1m square dimension with an epoxy resin, glass end face cut into each unit pieces were about 45 ° inclined relative to the longitudinal direction is the extending direction of the fibers,
端面にガラス繊維の毛羽立ちを防止して形成する構成が採られている。 Configured to form to prevent fluffing of glass fibers are employed on the end face.

【0003】 [0003]

【発明が解決しようとする課題】ところで、ガラス繊維が網目状に配置されこのガラス繊維間にエポキシ樹脂が充填されて平板状に形成されるガラス繊維・エポキシ樹脂製の基板は、製造が容易で安価に提供できることから広く利用されている。 [SUMMARY OF THE INVENTION Incidentally, the substrate made of glass fiber-epoxy resin glass fiber is formed epoxy resin is filled in a plate shape between the arranged glass fibers in a mesh shape, it is easy to manufacture It has been widely used since it can be provided at a low cost.

【0004】また、高周波回路のプリント基板では、伝送線路、フィルタ、共振回路、インピーダンス整合回路などにマイクロストリップラインが使用されている。 [0004] In the printed circuit board of a high frequency circuit, the transmission line, a filter, a resonant circuit, such as the impedance matching circuit microstrip line is used. このマイクロストリップラインには、再現性がある、製造が容易で安価である、調整が不要、高周波になるほど回路がコンパクトになるといった特徴があるため、高周波回路ではマイクロストリップラインが広く使われている。 The microstrip line, reproducible, easy to manufacture and inexpensive, adjustment is not necessary, because of the characteristics such circuits higher frequencies becomes compact, high-frequency circuits are widely used microstrip line . そして、このマイクロストリップラインの構造は、 The structure of the microstrip line,
グランド面、誘電体層、薄い導体の帯で構成され、このマイクロストリップラインの特性は、使用する基板の比誘電率ε r 、誘電体の厚さ寸法H、マイクロストリップラインの導体の幅寸法で決定され、厳密には導体の厚さ寸法hも加味されるが、通常は無視しても問題ない。 Ground plane, a dielectric layer formed of a thin conductive band, characteristic of the microstrip line, the dielectric constant epsilon r of the substrate used, the thickness H of the dielectric, the width dimension of the conductor of the microstrip line It is determined, although strictly are also taken into consideration the thickness h of the conductor, usually no problem to ignore.

【0005】そして、このマイクロストリップラインを有するプリント基板には、数GHz帯で安定した特性を得るために、比誘電率ε rの局所的なばらつきのないセラミックス製の基板が広く使用されている。 [0005] Then, the printed circuit board having a microstrip line, in order to obtain stable characteristics in a few GHz band, the local variations without ceramic substrate having a relative dielectric constant epsilon r is widely used .

【0006】しかしながら、このセラミックス製の基板は高価であるため、上述したように、製造が容易で安価に提供できるガラス繊維・エポキシ樹脂製の基板を用いることが考えられが、このガラス繊維・エポキシ樹脂製の基板の比誘電率ε rは、一般に約4.8とされているが、ガラス繊維の比誘電率ε rは約6でエポキシ樹脂の比誘電率ε rは約3.5であり、基板の比誘電率ε rは微視的には均一ではない。 However, since this ceramic substrate is expensive, as mentioned above, is easy to manufacture at low cost it is considered to use a substrate made of glass fiber-epoxy resin can provide, but the glass fiber-epoxy the relative dielectric constant epsilon r of the resin substrate has been generally about 4.8, the dielectric constant epsilon r of the glass fibers relative dielectric constant epsilon r of the epoxy resin at about 6 is about 3.5 , the dielectric constant epsilon r of the substrate is not uniform microscopically. すなわちガラス繊維に近い位置では比誘電率ε rが高く浮遊容量が大きくなり、離れた位置では比誘電率ε rが低く浮遊容量が小さい状態となる。 That position is increased is high stray capacitance relative dielectric constant epsilon r is close to the glass fiber, is at a remote location relative permittivity epsilon r in a state floating capacity is small low.

【0007】このため、高周波回路のマイクロストリップラインの導体の幅寸法W2がガラス繊維の間隔W1に対して十分に広ければ、導体の基板への配置位置を問わず導体に対する比誘電率ε rが平均化されて浮遊容量の分布が略一定になり、高周波特性に対して一定になるが、導体の幅寸法W2がガラス繊維の間隔W1以下になる場合においては、図7に示すように、導体21の長手方向とガラス繊維22の長手方向が略平行となるように位置する場合、 [0007] Therefore, if the conductor width W2 of the microstrip line of the RF circuit is sufficiently wider with respect to the spacing W1 of the glass fiber, the dielectric constant for the conductor regardless of position on the substrate of the conductor epsilon r is distribution of the stray capacitance are averaged becomes substantially constant, becomes constant with respect to high-frequency characteristics, when the width W2 of the conductor is less distance W1 of the glass fibers, as shown in FIG. 7, the conductor If the longitudinal direction of the longitudinal and glass fibers 22 of the 21 are positioned to be substantially parallel,
導体21の基板への配置位置により、導体21の直下のガラス繊維22の状態が異なる。 The position of the substrate of the conductor 21, the different states of the glass fiber 22 directly under the conductor 21. このため、導体21とガラス繊維22との位置関係により、導体21の直下の比誘電率ε r Therefore, the positional relationship between the conductor 21 and the glass fiber 22, the dielectric constant of just below the conductor 21 epsilon r
がばらつき、浮遊容量が大きく異なるので、導体の配置位置により周波数が高くなればなるほどマイクロストリップラインの特性にばらつきを生じる。 But variation, stray capacitance are significantly different, resulting in variations in the characteristics of the more microstrip line the higher the frequency the positions of the conductors.

【0008】すなわち、例えば波長が約10cmの周波数が3GHzの高周波や、波長が約5cmの周波数が6GHzの波長の短い高周波では、基板の比誘電率ε rによる浮遊容量の影響が無視できなくなり、マイクロストリップラインは局部的にインピーダンスの位相が異なって、分布定数回路を構成することになる。 Namely, and for example, the frequency of 3GHz wavelength of approximately 10cm high frequency, the short high frequency frequency wavelength of 6GHz wavelength of about 5 cm, can not be ignored the influence of the stray capacitance due to the dielectric constant epsilon r of the substrate, microstrip line is different locally impedance phase, it constitutes the distributed constant circuit. そして、この影響は、 And, this effect is,
ωを角周波数、fを周波数、Cをキャパシタンスとすると、ωC=2πfCに示すように減衰が周波数により変化し、周波数が高くなればなるほどキャパシタンス成分による影響が大きくなってインピーダンスの位相により、その影響が大きくなる問題がある。 Angular frequency omega, frequency f, when the capacitance of C, varies with frequency attenuation as shown in .omega.C = 2.pi.fC, the impedance of the phase effects of the more capacitance components higher the frequency is increased, the influence there is a problem that becomes larger.

【0009】本発明は、上記問題点に鑑みなされたもので、高周波に用いてもマイクロストリップラインの安定した特性が得られる製造が容易で安価なプリント基板を提供することを目的とする。 [0009] The present invention has been made in view of the above problems, and an object thereof is prepared to be used in high-frequency stable characteristics of the microstrip line is obtained to provide an easy and inexpensive printed circuit board.

【0010】 [0010]

【課題を解決するための手段】請求項1記載のプリント基板は、略格子状の誘電性の繊維を有する誘電性の基板と、この基板の表面に幅寸法が前記繊維の間隔の1.5 Means for Solving the Problems] A printed circuit board according to a first aspect, 1.5 and dielectric substrate, the width dimension on the surface of the substrate spacing of the fibers having a substantially lattice-like dielectric fibers
倍以下で長手方向が前記繊維の長手方向に対して傾斜して設けられた帯状の導体を有するマイクロストリップラインとを具備したもので、基板の略格子状の誘電性の繊維の間隔の1.5倍以下の幅寸法のマイクロストリップラインを構成する帯状の導体を長手方向が繊維の長手方向に対して傾斜されて誘電性の基板の表面に設けたため、幅寸法が基板の略格子状の繊維間隔の1.5倍以下の導体でも、製造が容易で安価な基板の導体の位置する誘電性の繊維を平均して分布的な比誘電率が均等化することにより、導体の基板に対する配置位置における微視的な比誘電率のばらつきが吸収され、高周波に用いても浮遊容量のばらつきがなくなって一定化して、安定した特性が得られる。 In which longitudinally fold less has and a microstrip line having a conductor strip which is provided to be inclined relative to the longitudinal direction of the fibers, the first substantially spacing of the grid-shaped dielectric fibers of the substrate. since the strip conductors constituting the microstrip line 5 times the width dimension longitudinally disposed longitudinally tilted with dielectric surface of the substrate with respect to the fiber, the fiber width is shaped substantially lattice of the substrate at 1.5 times or less of the conductor spacing, by producing easily the position of the conductors of inexpensive substrate to average the dielectric fiber distribution relative dielectric constant is equalized, position relative to the substrate conductor variations in the microscopic dielectric constant is absorbed in, be used in high-frequency and a constant reduction gone variation in stray capacitance, stable characteristics can be obtained.

【0011】請求項2記載のプリント基板は、略格子状の誘電性の繊維を有する誘電性の略平板状の素板から端部縁が前記繊維の長手方向に対して傾斜して切り出し形成される基板と、前記素板の表面に幅寸法が前記繊維の間隔の1.5倍以下で長手方向が前記基板の端部縁に略平行に設けられた帯状の導体を有するマイクロストリップラインとを具備したもので、素板を構成する繊維の間隔の1.5倍以下の幅寸法のマイクロストリップラインを構成する帯状の導体を、誘電性の素板から端部縁が誘電性の繊維の長手方向に対して傾斜して切り出し形成される基板の端部縁に略平行に素板の表面に設けたため、 [0011] printed circuit board according to claim 2 is formed cutout end edges from substantially flat workpiece of dielectric having a substantially lattice-like dielectric fibers inclined relative to the longitudinal direction of the fibers a substrate that, a microstrip line width on the surface of the workpiece has a strip-like conductor which is provided substantially parallel to the longitudinal direction of the end edge of the substrate at 1.5 times or less of the interval of the fiber which was equipped, a strip conductor forming a microstrip line 1.5 times the width of the spacing of the fibers constituting the material plate, longitudinal dielectric properties of the material plate the end edge of the fibrous dielectric because provided substantially parallel to the surface of the workpiece to the end edges of the substrate to be formed cut to be inclined with respect to the direction,
基板に設けられる導体の長手方向が繊維の長手方向に対して傾斜した状態となるので、幅寸法が基板の略格子状の繊維間隔の1.5倍以下の導線でも、製造が容易で安価な基板の導体の位置する誘電性の繊維を平均して分布的な比誘電率が均等化することにより、導体の基板に対する配置位置における微視的な比誘電率のばらつきが吸収され、浮遊容量のばらつきがなくなって一定化して、 Since the longitudinal direction of the conductor provided on the substrate in a state of being inclined with respect to the longitudinal direction of the fiber, even 1.5 times or less of lead in a substantially lattice-like fiber substrate spacing width dimension, easy to manufacture and inexpensive by position dielectric fibers with average distribution relative dielectric constant of the substrate conductor to equalize, variations in microscopic dielectric constant at the arrangement position relative to the substrate of the conductor is absorbed, the stray capacitance variations in certain of gone,
高周波でも安定した特性が得られるとともに、回路パターンの設計が容易で製造性が向上する。 With stable characteristics can be obtained even at a high frequency, it improves the easy manufacturability design of the circuit pattern.

【0012】 [0012]

【発明の実施の形態】以下、本発明のプリント基板の実施の一形態を図面を参照して説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the printed circuit board of the present invention with reference to the drawings.

【0013】図1および図2において、1はプリント基板で、このプリント基板1は、略格子状である網目状に誘電性の繊維であるガラス繊維2が所定の繊維間隔W1で配置されて誘電性のエポキシ樹脂3にて覆われて平板状の誘電体となる基板4を有している。 [0013] In Figures 1 and 2, 1 denotes a printed circuit board, the printed circuit board 1, the glass fiber 2 is reticulated to the dielectric of the fibers is substantially lattice shape are arranged at a predetermined fiber distance W1 dielectric is covered with sexual epoxy resin 3 has a substrate 4 made of a plate-shaped dielectric. そして、この基板4の一面にはグランド面5が設けられ、他面には例えば銅箔により、基板4およびグランド面5とにてマイクロストリップラインを構成する所定の幅寸法W2の帯状の導体6が設けられて、プリント基板1が形成されている。 And this on one surface of the substrate 4 is ground plane 5 is provided by the other surface, for example, copper foil, a strip of predetermined width W2 that constitutes a microstrip line in the substrate 4 and the ground plane 5 which conductors 6 provided with the printed circuit board 1 is formed.
なお、導体6の幅寸法W2は、ガラス繊維2の繊維間隔W1 The width dimension of the conductor 6 W2 is glass fiber 2 Fibers interval W1
の1.5倍以下で、厚さ寸法hは幅寸法W2に対して十分小さい。 1.5 times less, the thickness h is sufficiently small relative to the width dimension W2. また、導体6は、長手方向がガラス繊維2の長手方向に対して傾斜、例えば45°傾斜した状態で設けられている。 The conductor 6 has a longitudinal direction are provided in an inclined, for example 45 ° inclined relative to the longitudinal direction of the glass fiber 2.

【0014】ところで、基板4のガラス繊維2の比誘電率ε rは約6でエポキシ樹脂3の比誘電率ε rは約3. By the way, the relative dielectric constant epsilon r of the dielectric constant epsilon r of the glass fibers 2 of the substrate 4 is the epoxy resin 3 at about 6 to about 3.
5と異なるので、基板4の比誘電率は全体的には約4. Since 5 differs, on the whole dielectric constant of the substrate 4 is about 4.
8であるが微視的には均一ではない。 8 is not uniform microscopically. そして、導体6をガラス繊維2の長手方向に対して長手方向が例えば45 The longitudinal direction is, for example, 45 conductors 6 to the longitudinal direction of the glass fiber 2
°傾斜させて設けているため、図1に示すように、配設する位置がずれても導体6とこの導体6の直下のガラス繊維2との位置関係が変わらない、すなわち導体6の基板4への配置位置を問わず、導体6の直下における導体6を横切る状態で位置するガラス繊維2の長さ寸法が変わらず、微視的な比誘電率ε rのばらつきが吸収されて一定となり、高周波に用いても浮遊容量のばらつきがなくなって全体としては浮遊容量が一定化することにより、誘電体となる基板4の比誘電率ε r 、基板4の厚さ寸法および導体6の幅寸法W2にて決定されるマイクロストリップラインの特性が、導体6の基板4への配置位置を問わず安定し、信頼性の高いマイクロストリップラインを有したプリント基板1が得られる。 ° since the provided is inclined, as shown in FIG. 1, does not change the positional relationship between the conductor 6 and the glass fiber 2 just below the conductor 6 be misaligned to arrange, or substrate 4 of the conductor 6 regardless of location of the unchanged length of the glass fibers 2 located in a state of crossing the conductor 6 immediately below the conductor 6 becomes a constant variation of microscopic dielectric constant epsilon r is absorbed, by constant of stray capacitance as a whole variation gone stray capacitance be used in high frequency, the dielectric constant epsilon r of the substrate 4 made of a dielectric, the width dimension of the thickness of the substrate 4 and the conductor 6 W2 characteristics of micro-strip line which is determined by the stable regardless of position on the substrate 4 of the conductor 6, the printed board 1 is obtained having a highly reliable micro-strip line.

【0015】なお、導体6とガラス繊維2との関係は、 [0015] The relationship between the conductor 6 and the glass fiber 2,
傾斜した状態であればよいが、この傾斜した状態が45 It may be a state tilted, this inclined state 45
°において、導体6の長手方向に沿って長手方向が沿うガラス繊維2が位置せず、浮遊容量の積算を招くことが防止され、導体6を横切る状態のガラス繊維2が、基板4のいずれの配置位置でも変化せず、45°前後であれば特に安定した特性が得られる。 In °, not located glass fibers 2 along the longitudinal direction along the longitudinal direction of the conductor 6, is prevented from causing the integration of the stray capacitance, the state across the conductor 6 glass fibers 2, any of the substrate 4 unchanged in position, particularly stable characteristics if 45 ° before and after is obtained.

【0016】次に、上記プリント基板の製造工程について説明する。 Next, description will be given of a manufacturing process of the printed circuit board.

【0017】まず、複数のガラス繊維2を所定の繊維間隔W1で図示しない型枠に配置し、これらガラス繊維2, Firstly, place a plurality of glass fibers 2 into a mold (not shown) at a predetermined fiber spacing W1, these glass fibers 2,
2間を充填するようにエポキシ樹脂3を型枠内に充填して硬化させ、図3に示すように例えば約1m角の平板状の素板7を形成する。 2 while filling the epoxy resin 3 into the mold frame and cured to fill the form a flat material plate 7 of for example about 1m square as shown in FIG. そして、この素板7の平面に、基板単位4a毎に、基板単位4aの周縁に対して略平行にマイクロストリップラインを構成する帯状の導体6が位置するように回路パターンを印刷などにて形成する。 Then, formed on the plane of the material plate 7 at each substrate unit 4a, a circuit pattern as the strip conductor 6 is positioned which constitutes the substantially parallel to the microstrip line with respect to the periphery of the substrate unit 4a printing etc. to. なお、 It should be noted that,
基板単位4aは、周縁がガラス繊維2の長手方向に対して傾斜、例えば45°傾斜した状態となるようになっている。 Substrate units 4a have their respective peripheral edge is adapted to the state of being inclined with respect to the longitudinal direction of the glass fiber 2, for example, 45 ° tilt. この後、基板単位4a毎にプリント基板1を切り出し形成する。 Thereafter, to form cut out the printed board 1 for each substrate unit 4a.

【0018】この切り出されたプリント基板1は、周縁に略平行となるように長手方向を有する導体6を有するが、プリント基板1の周縁と素板7のガラス繊維2の長手方向とが傾斜しているため、導体6の長手方向もガラス繊維2の長手方向に対して45°傾斜した状態となる。 The printed circuit board 1 this to cut out has the conductor 6 having a longitudinal direction so as to be substantially parallel to the periphery, the longitudinal direction of the glass fibers 2 of the peripheral and workpiece 7 of the printed circuit board 1 is tilted and for which, in a state longitudinal direction inclined by 45 ° relative to the longitudinal direction of the glass fibers 2 of the conductor 6.

【0019】このため、上述したように、マイクロストリップラインの特性が導体6の基板4への配置位置を問わず浮遊容量が全体として略一定となって安定し、信頼性の高いプリント基板1が得られる。 [0019] Therefore, as described above, stable in a substantially constant overall stray capacitance characteristic of the microstrip lines regardless of position on the substrate 4 of the conductors 6, a reliable printed circuit board 1 can get. さらに、基板4の周縁に沿って長手方向が略平行となるようにマイクロストリップラインを構成する帯状の導体6を設けたため、 Furthermore, due to the provision of a strip conductor 6 constituting the microstrip line so as to be substantially parallel to the longitudinal direction along the periphery of the substrate 4,
回路パターンの設計が容易で、製造性が向上する。 Is easy to design the circuit patterns, manufacturability is improved.

【0020】なお、上記実施の形態において、基板として略格子状にガラス繊維2を有するガラス繊維・エポキシ樹脂製の基板4を用いて説明したが、ガラス繊維2に限らず、誘電性を有する繊維であればいずれのものでもよく、エポキシ樹脂3の代わりに誘電性を有するいずれのものでもよい。 [0020] In the above embodiment has been described using the substrate 4 made of glass fiber-epoxy resin having a glass fiber 2 in a substantially grid shape as the substrate is not limited to glass fibers 2, the fiber having a dielectric it may be any as long, may be any of those having a dielectric instead of the epoxy resin 3. なお、繊維と充填する物質との比誘電率ε rが同一であれば、導体6に対する基板4の配置位置における局所的な比誘電率ε rのばらつきがないため、比誘電率ε rが異なる組み合わせの場合に繊維に対してマイクロストリップラインを構成する導体6を傾斜させて設ける。 Note that if the same dielectric constant epsilon r of the material to be filled with the fiber, because there is no localized variation in the relative dielectric constant epsilon r in the arrangement position of the substrate 4 with respect to the conductor 6, different dielectric constant epsilon r tilting the conductor 6 constituting the microstrip line to the fiber in the case of a combination provided by.

【0021】すなわち、比誘電率ε rが異なることによる特性のばらつきを防止する構成であるため、基板として樹脂などの物質を充填せずに繊維のみにて形成したものでもよい。 [0021] That is, since the specific dielectric constant epsilon r is a configuration for preventing variations in characteristics due different, it may be made by forming at only fibers without filling material such as resin as the substrate. この場合には、空気が繊維間を充填する繊維の比誘電率ε rと異なる比誘電率ε rの物質となる。 In this case, the material of the dielectric constant epsilon r different dielectric constant epsilon r of the fiber air filled between the fibers.

【0022】 [0022]

【実施例】次に、基板4のガラス繊維2およびマイクロストリップラインの導体6の位置関係と電気的特性との関係について図面を参照して説明する。 EXAMPLES Next, will be described with reference to the drawings relationship between the positional relationship and the electrical properties of the glass fiber 2 and the microstrip line conductor 6 of the substrate 4.

【0023】まず、試料としては、図4および図5に示すように、厚さ寸法Hが0.33mmで比誘電率εが4. [0023] First, as the samples, as shown in FIGS. 4 and 5, the thickness H is relative dielectric constant ε at 0.33 mm 4.
8の基板4上に、長さ寸法が16.83mmで尖鋭度Qを高くするために幅寸法が0.2mmの帯状の導体6,21の一端が50Ωのライン10に接続され他端がグランド面となるグランドパターン11に接続された回路パターンであるマイクロストリップラインを構成するトラップ回路12 8 on the substrate 4, ground and the other end is connected one end of a belt-like conductor 6, 21 width is 0.2mm in to length to increase the sharpness Q in 16.83mm within 50Ω line 10 trap circuit 12 which constitutes the microstrip line is connected to the circuit pattern to the ground pattern 11 as a surface
を設けたプリント基板1,23を用いる。 The printed circuit board 1, 23 which is provided is used. なお、このトラップ回路12は、4968MHz で約21dBの減衰が得られるものである。 Incidentally, the trap circuit 12 is one in which attenuation of about 21dB is obtained at 4968MHz.

【0024】そして、図5に示すように、マイクロストリップラインを構成する帯状の導体21をガラス繊維23の長手方向と略平行に設けた場合、導体21の幅寸法W2が繊維間隔W1の1.5倍以下となると、上述したように局所的に比誘電率ε rがばらつき、全体としての浮遊容量が異なり、特に周波数が高い場合には、ωを角周波数、f [0024] Then, as shown in FIG. 5, if the strip-shaped conductor 21 constituting a microstrip line provided in parallel to the longitudinal direction substantially of glass fiber 23, the width W2 of the conductor 21 of the fiber spacing W1 1. when the 5 times or less, locally variation relative permittivity epsilon r as described above, different stray capacitance as a whole, particularly when the frequency is high, angular and ω frequency, f
を周波数、Cをキャパシタンスとすると、ωC=2πf The frequency, and the capacitance of the C, ωC = 2πf
Cとなるため、ばらつきが大きくなる。 To become as C, the variation is increased.

【0025】ところで、図6に示すように、比誘電率ε By the way, as shown in FIG. 6, the relative dielectric constant ε
rが設計値より低くなると浮遊容量が小さくなってトラップ周波数が高くなり、比誘電率ε rが設計値より高くなると浮遊容量が大きくなってトラップ周波数が低くなることが分かる。 r is higher trap frequency becomes small and the stray capacitance is lower than the design value, the ratio and the stray capacitance dielectric constant epsilon r is higher than the design value is large is to trap frequency becomes It can be seen low. このため、導体21の基板への配置位置により、導体21に対する比誘電率ε rのばらつきによって全体の浮遊容量が変化してトラップ周波数のばらつきとなり、特性が不安定となることが分かる。 Therefore, the position of the substrate of the conductor 21 becomes a variation of the trap frequency stray capacitance of the overall due to variations in the dielectric constant epsilon r for the conductor 21 is changed, it can be seen that the characteristics become unstable.

【0026】一方、同様な条件で、図4に示すように帯状の導体6をガラス繊維2の長手方向に対して45°傾斜させて設けた場合には、4968MHz で約21dBの減衰が安定して得られた。 On the other hand, under the same conditions, the band-like conductor 6 as shown in FIG. 4 in the case of providing by 45 ° inclined relative to the longitudinal direction of the glass fiber 2, the attenuation of about 21dB is stable at 4968MHz It was collected using. すなわち、マイクロストリップラインを構成する導体6の基板4への配置位置による導体6とガラス繊維2との位置関係により、比誘電率ε r That is, the positional relationship between the conductor 6 and the glass fiber 2 by position on the substrate 4 of the conductor 6 constituting the microstrip line, the dielectric constant epsilon r
のばらつきがないことから、全体の浮遊容量が一定化してトラップ周波数が安定し、特性がばらつくことなく安定することがわかる。 Since there is no variation in the trap frequency is stabilized by the stray capacitance of the whole is kept constant, it can be seen that stable without characteristic variation.

【0027】 [0027]

【発明の効果】請求項1記載のプリント基板によれば、 Effects of the Invention] According to the printed circuit board according to claim 1,
基板の繊維間隔の1.5倍以下の幅寸法のマイクロストリップラインを構成する帯状の導体を長手方向が繊維の長手方向に対して傾斜されて誘電性の基板の表面に設けたため、幅寸法が基板の繊維間隔の1.5倍以下の導体でも、基板の導体の位置する誘電性の繊維を平均して分布的な比誘電率が均等化することにより、導体の基板に対する配置位置における微視的な比誘電率のばらつきを吸収でき、全体の浮遊容量が一定化して、製造が容易で安価な基板を用いて高周波に使用しても安定した特性にできる。 Since the strip conductors constituting the microstrip line 1.5 times the width of the fiber spacing of the substrate longitudinally provided on the tilted with dielectric surface of the substrate with respect to the longitudinal direction of the fiber, the width dimension at 1.5 times or less of the conductive fiber spacing of the substrate, by on average dielectric fiber distribution relative dielectric constant of the position of the conductors of the substrate to equalize, microscopic in position relative to the substrate conductor specific can absorb variations in the dielectric constant, the stray capacitance of the whole is kept constant, can the stable characteristics even when used in high frequency by using an easy and inexpensive substrate is manufactured.

【0028】請求項2記載のプリント基板によれば、素板の繊維間隔の1.5倍以下の幅寸法のマイクロストリップラインを構成する帯状の導体を、誘電性の素板から端部縁が誘電性の繊維の長手方向に対して傾斜して切り出し形成される基板の端部縁に略平行に素板の表面に設けたため、幅寸法が基板の繊維間隔の1.5倍以下の導体でも、基板の導体の位置する誘電性の繊維を平均して分布的な比誘電率が均等化することにより、導体の基板に対する配置位置における微視的な比誘電率のばらつきを吸収でき、浮遊容量が一定化して、製造が容易で安価な基板を用いて高周波に使用しても安定した特性にできるとともに、回路パターンの設計が容易で製造性も向上できる。 According to the printed circuit board according to claim 2, a strip conductor forming a microstrip line 1.5 times the width of the fiber spacing of the material plate, the end edges of dielectric material plate because provided substantially parallel to the surface of the workpiece to the end edges of the substrate to be formed cut to be inclined relative to the longitudinal direction of dielectric fibers, at 1.5 times the conductor width of the substrate fiber spacing by position dielectric fibers on average, distributed relative dielectric constant of the conductor of the substrate to equalize, can absorb variations in the microscopic relative dielectric constant at positions relative to the substrate of the conductor, the stray capacitance There was kept constant, it is possible to stable characteristics even when used in high frequency by using an easy and inexpensive substrate to manufacture, can be improved also is easy manufacturability design of the circuit pattern.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施の一形態のプリント基板を示す説明図である。 FIG. 1 is an explanatory view showing a printed circuit board of an embodiment of the present invention.

【図2】同上一部を切り欠いた斜視図である。 FIG. 2 is a perspective view, with parts cut away Same as above.

【図3】同上素板を示す基板の切り出し状況を説明する説明図である。 3 is an explanatory view for explaining the cut condition of the substrate showing the same workpiece.

【図4】同上トラップ回路を設けたプリント基板の一部を示す説明図である。 4 is an explanatory view showing a part of a printed circuit board provided with a supra trap circuit.

【図5】従来例のトラップ回路を設けたプリント基板の一部を示す説明図である。 5 is an explanatory diagram showing a part of a printed circuit board provided with a trap circuit in the conventional example.

【図6】誘電率の変化によるトラップ周波数の変化を示すグラフである。 6 is a graph showing the change in trap frequency due to a change in dielectric constant.

【図7】従来例のマイクロストリップラインとガラス繊維との関係を示す説明図である。 7 is an explanatory diagram showing the relationship between the microstrip line and the glass fibers of the prior art.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 プリント基板 2 繊維であるガラス繊維 4 基板 6 マイクロストリップラインを構成する導体 7 素板 Conductor 7 workpieces constituting the glass fiber 4 substrate 6 microstrip lines is one printed circuit board 2 fibers

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 略格子状の誘電性の繊維を有する誘電性の基板と、 この基板の表面に幅寸法が前記繊維の間隔の1.5倍以下で長手方向が前記繊維の長手方向に対して傾斜して設けられた帯状の導体を有するマイクロストリップラインとを具備したことを特徴とするプリント基板。 And dielectric substrate having 1. A substantially lattice-like dielectric fiber, longitudinally 1.5 times or less the interval of width on the surface of the substrate wherein the fibers relative to the longitudinal direction of the fibers printed circuit board, characterized by comprising a micro-strip line having a strip conductor provided inclined Te.
  2. 【請求項2】 略格子状の誘電性の繊維を有する誘電性の略平板状の素板から端部縁が前記繊維の長手方向に対して傾斜して切り出し形成される基板と、 前記素板の表面に幅寸法が前記繊維の間隔の1.5倍以下で長手方向が前記基板の端部縁に略平行に設けられた帯状の導体を有するマイクロストリップラインとを具備したことを特徴とするプリント基板。 Wherein the substrate substantially end edges from substantially flat workpiece of dielectric having a grid-like dielectric fibers are formed cut to be inclined relative to the longitudinal direction of the fibers, the element plate characterized by comprising a micro-strip line having a strip of width on the surface of the longitudinal direction 1.5 times or less of the interval of the fiber is provided substantially parallel to the end edges of the substrate conductor Printed board.
JP26896296A 1996-10-09 1996-10-09 Printed circuit board Pending JPH10117048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26896296A JPH10117048A (en) 1996-10-09 1996-10-09 Printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26896296A JPH10117048A (en) 1996-10-09 1996-10-09 Printed circuit board

Publications (1)

Publication Number Publication Date
JPH10117048A true true JPH10117048A (en) 1998-05-06

Family

ID=17465725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26896296A Pending JPH10117048A (en) 1996-10-09 1996-10-09 Printed circuit board

Country Status (1)

Country Link
JP (1) JPH10117048A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063237A1 (en) * 2002-01-25 2003-07-31 Sony Corporation Substrate for high-frequency module and high-frequency module
WO2003063238A1 (en) * 2002-01-25 2003-07-31 Sony Corporation High-frequency module and its manufacturing method
WO2005018293A2 (en) 2003-08-15 2005-02-24 Intel Corporation (A Delware Corporation) Circuit board design
JP2008193073A (en) * 2007-02-07 2008-08-21 Hon Hai Precision Industry Co Ltd Printed circuit board and method of designing printed circuit board
EP2079289A2 (en) 2008-01-08 2009-07-15 Fujitsu Limited Printed wiring board and printed substrate unit
JP2009253132A (en) * 2008-04-09 2009-10-29 Denso Corp Wiring board
JP2011077237A (en) * 2009-09-30 2011-04-14 Fujitsu Ltd Printed board and method of manufacturing the same
JP2012004351A (en) * 2010-06-17 2012-01-05 Fujitsu Ltd Wiring board
WO2013140812A1 (en) * 2012-03-22 2013-09-26 パナソニック株式会社 Glass cloth and method for manufacturing same, prepreg and method for manufacturing same, laminate board, and printed wiring board
KR101355733B1 (en) * 2010-10-22 2014-01-27 후지쯔 가부시끼가이샤 Printed circuit board, method of manufacturing the same, and electronic apparatus
JP2014130860A (en) * 2012-12-28 2014-07-10 Fujitsu Ltd Multilayer circuit board and electronic device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7599190B2 (en) 2002-01-25 2009-10-06 Sony Corporation High-frequency module, and method of producing same
WO2003063238A1 (en) * 2002-01-25 2003-07-31 Sony Corporation High-frequency module and its manufacturing method
WO2003063237A1 (en) * 2002-01-25 2003-07-31 Sony Corporation Substrate for high-frequency module and high-frequency module
WO2005018293A2 (en) 2003-08-15 2005-02-24 Intel Corporation (A Delware Corporation) Circuit board design
WO2005018293A3 (en) * 2003-08-15 2007-01-11 Intel Corp A Delware Corp Circuit board design
EP2480056A3 (en) * 2003-08-15 2012-12-05 Intel Corporation Circuit board design
CN102595780A (en) * 2003-08-15 2012-07-18 英特尔公司 Board Design
EP2480055A3 (en) * 2003-08-15 2012-12-05 Intel Corporation Circuit board design
EP2480053A3 (en) * 2003-08-15 2012-12-05 Intel Corporation Circuit board design
EP2480057A3 (en) * 2003-08-15 2012-12-05 Intel Corporation Circuit board design
US8415002B2 (en) 2003-08-15 2013-04-09 Intel Corporation Method of manufacturing a circuit board
EP2480054A3 (en) * 2003-08-15 2012-12-05 Intel Corporation Circuit board design
US9596766B2 (en) 2003-08-15 2017-03-14 Intel Corporation Method of manufacturing a circuit board
JP2008193073A (en) * 2007-02-07 2008-08-21 Hon Hai Precision Industry Co Ltd Printed circuit board and method of designing printed circuit board
EP2079289A3 (en) * 2008-01-08 2010-05-19 Fujitsu Limited Printed wiring board and printed substrate unit
EP2079289A2 (en) 2008-01-08 2009-07-15 Fujitsu Limited Printed wiring board and printed substrate unit
JP2009253132A (en) * 2008-04-09 2009-10-29 Denso Corp Wiring board
JP2011077237A (en) * 2009-09-30 2011-04-14 Fujitsu Ltd Printed board and method of manufacturing the same
JP2012004351A (en) * 2010-06-17 2012-01-05 Fujitsu Ltd Wiring board
KR101355733B1 (en) * 2010-10-22 2014-01-27 후지쯔 가부시끼가이샤 Printed circuit board, method of manufacturing the same, and electronic apparatus
US8754333B2 (en) 2010-10-22 2014-06-17 Fujitsu Limited Printed circuit board incorporating fibers
WO2013140812A1 (en) * 2012-03-22 2013-09-26 パナソニック株式会社 Glass cloth and method for manufacturing same, prepreg and method for manufacturing same, laminate board, and printed wiring board
JPWO2013140812A1 (en) * 2012-03-22 2015-08-03 パナソニックIpマネジメント株式会社 Glass cloth and a manufacturing method thereof, a prepreg and a manufacturing method thereof, laminates, printed circuit boards
JP2014130860A (en) * 2012-12-28 2014-07-10 Fujitsu Ltd Multilayer circuit board and electronic device

Similar Documents

Publication Publication Date Title
US6225959B1 (en) Dual frequency cavity backed slot antenna
US5461393A (en) Dual frequency cavity backed slot antenna
US5917388A (en) Compact microwave module
US6054953A (en) Dual band antenna
US6313798B1 (en) Broadband microstrip antenna having a microstrip feedline trough formed in a radiating element
US20080278378A1 (en) Wideband dielectric resonator antenna
US5160905A (en) High dielectric micro-trough line filter
US20080088511A1 (en) Antenna component and methods
US20080204347A1 (en) Increasing isolation between multiple antennas with a grounded meander line structure
US6005519A (en) Tunable microstrip antenna and method for tuning the same
US6927653B2 (en) Dielectric waveguide type filter and branching filter
US6686815B1 (en) Microwave filter
US5703544A (en) RF printed circuit module and method of making same
US20040145426A1 (en) Waveguide to laminated waveguide transition and methodology
JPH05327331A (en) Printed antenna
GB2147744A (en) A radiating device with an improved microstrip structure and its application to an adaptable antenna
US5162760A (en) Dielectric block filter with isolated input/output contacts
JP2008294491A (en) Antenna system
JPH10303618A (en) Lamination type resonator and lamination filter
US20080218418A1 (en) Patch antenna including septa for bandwidth conrol
JPH11284409A (en) Waveguide-type band pass filter
US5770981A (en) Composite microwave circuit module having a pseudo-waveguide structure
US20070085626A1 (en) Millimeter-wave band broadband microstrip-waveguide transition apparatus
JP2005051331A (en) Coupling structure between microstrip line and dielectric waveguide
JP2004022587A (en) Cabinet