JPH0983343A - Signal level conversion circuit - Google Patents

Signal level conversion circuit

Info

Publication number
JPH0983343A
JPH0983343A JP7255547A JP25554795A JPH0983343A JP H0983343 A JPH0983343 A JP H0983343A JP 7255547 A JP7255547 A JP 7255547A JP 25554795 A JP25554795 A JP 25554795A JP H0983343 A JPH0983343 A JP H0983343A
Authority
JP
Japan
Prior art keywords
power supply
potential
supply line
line
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7255547A
Other languages
Japanese (ja)
Other versions
JP2871551B2 (en
Inventor
Masayuki Mizuno
正之 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7255547A priority Critical patent/JP2871551B2/en
Priority to KR1019960038807A priority patent/KR100221757B1/en
Priority to US08/711,111 priority patent/US5789942A/en
Publication of JPH0983343A publication Critical patent/JPH0983343A/en
Application granted granted Critical
Publication of JP2871551B2 publication Critical patent/JP2871551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a signal level conversion circuit consisting of an inverter circuit and a level conversion circuit which can increase the signal level conversion speed and also can reduce the power consumption by eliminating a long time when the potential of an output signal line shifts after the potential of an input signal line shifts and also eliminating occurrence of a through current. SOLUTION: An inverter circuit (transistors TR P1 and N1) outputs the potential level of a 2nd power line 102 when the input signal of an input signal line 105 is equal to the potential of a 3rd power line 103 and then outputs the potential level of a 1st internal power line 107 when the input signal of the line 105 is equal to the potential of the line 103 respectively. Then a switch circuit (TR P2, P3, P4 and N5) outputs the potential of the line 103 to the line 107 when the input signal of the line 105 is equal to the potential of the power line 103 and then outputs the potential of a 1st power line 101 to the line 107 when the input signal of the line 105 is equal to the potential of the line 102 respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置で構成さ
れる信号レベル変換回路に関し、特に消費電力を低減し
た高速な信号レベル変換回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal level conversion circuit composed of a semiconductor device, and more particularly to a high speed signal level conversion circuit with reduced power consumption.

【0002】[0002]

【従来の技術】従来のこの種のレベル変換回路の一例を
図4に示す。高電位の第1の電源線101と、低電位の
第2の電源線102と、前記第1の電源線101の電位
よりも若干低電位の第3の電源線103を備え、第1の
電源線101と第2の電源線102の間に、互いにクロ
ス接続したpMOSトランジスタP11,P12と、こ
れらトランジスタの各ドレインに縦続接続されたnMO
SトランジスタN11,N12を接続している。また、
第3の電源線103と第2の電源線103との間にpM
OSトランジスタP13とnMOSトランジスタN13
とで構成されるインバータ回路を接続している。そし
て、これらトランジスタP13,N13の各ゲートに入
力信号線105を接続し、前記トランジスタP12,N
12の接続点に出力信号線106を接続している。
2. Description of the Related Art An example of a conventional level conversion circuit of this type is shown in FIG. The first power supply 101 includes a first power supply line 101 having a high potential, a second power supply line 102 having a low potential, and a third power supply line 103 having a potential slightly lower than the potential of the first power supply line 101. Between the line 101 and the second power supply line 102, cross-connected pMOS transistors P11 and P12, and nMOs cascade-connected to the drains of these transistors.
The S transistors N11 and N12 are connected. Also,
PM between the third power line 103 and the second power line 103
OS transistor P13 and nMOS transistor N13
The inverter circuit composed of is connected. The input signal line 105 is connected to the gates of the transistors P13 and N13, and the transistors P12 and N13 are connected to each other.
The output signal line 106 is connected to the 12 connection points.

【0003】この構成において、いま、入力信号線10
3の電位レベルが第2の電源線102の電位と同じと
き、すなわちローレベルのとき、nMOSトランジスタ
N11のゲート端子の電位は第3の電源線103の電位
と同じとなり、nMOSトランジスタN12のゲート端
子の電位は第2の電源線102の電位と同じとなる。し
たがって、nMOSトランジスタN11はオン状態とな
り、nMOSトランジスタN12はオフ状態となり、p
MOSトランジスタP11のドレイン端子が第2の電源
線102の電位レベルと等しくなる。したがって、pM
OSトランジスタN12はオン状態となり、そのドレイ
ン端子の電位は第1の電源線101の電位と同じとな
る。すなわち、入力信号線105の電位が第2の電源線
102の電位と同じとき、出力信号線106の電位は第
1の電源線101の電位と同じとなり、ハイレベルとな
る。
In this configuration, the input signal line 10 is now
When the potential level of 3 is the same as the potential of the second power supply line 102, that is, at the low level, the potential of the gate terminal of the nMOS transistor N11 becomes the same as the potential of the third power supply line 103, and the gate terminal of the nMOS transistor N12. Is the same as the potential of the second power supply line 102. Therefore, the nMOS transistor N11 is turned on, the nMOS transistor N12 is turned off, and p
The drain terminal of the MOS transistor P11 becomes equal to the potential level of the second power supply line 102. Therefore, pM
The OS transistor N12 is turned on, and the potential of its drain terminal becomes the same as the potential of the first power supply line 101. That is, when the potential of the input signal line 105 is the same as the potential of the second power supply line 102, the potential of the output signal line 106 is the same as the potential of the first power supply line 101, which is a high level.

【0004】一方、入力信号線105の電位レベルが第
3の電源線105の電位と同じとき、すなわちハイレベ
ルのとき、nMOSトランジスタN11のゲート端子の
電位は第2の電源線102の電位と同じとなり、nMO
SトランジスタN12のゲート端子の電位は第3の電源
線103の電位と同じとなる。したがって、nMOSト
ランジスタN12はオン状態となりnMOSトランジス
タN11はオフ状態となり、pMOSトランジスタP1
1のドレイン端子が第2の電源線102の電位レベルと
等しくなる。したがって、pMOSトランジスタP11
はオン状態となり、そのドレイン端子の電位は第1の電
源線101の電位と同じとなる。すなわち、入力信号線
105の電位が第3の電源線105の電位と同じとき、
出力信号線106の電位は第2の電源線の電位と同じと
なり、ローレベルとなる。
On the other hand, when the potential level of the input signal line 105 is the same as the potential of the third power supply line 105, that is, at the high level, the potential of the gate terminal of the nMOS transistor N11 is the same as the potential of the second power supply line 102. And nMO
The potential of the gate terminal of the S transistor N12 becomes the same as the potential of the third power supply line 103. Therefore, the nMOS transistor N12 is turned on, the nMOS transistor N11 is turned off, and the pMOS transistor P1 is turned on.
The drain terminal of 1 becomes equal to the potential level of the second power supply line 102. Therefore, the pMOS transistor P11
Is turned on, and the potential of its drain terminal becomes the same as the potential of the first power supply line 101. That is, when the potential of the input signal line 105 is the same as the potential of the third power supply line 105,
The potential of the output signal line 106 becomes the same as the potential of the second power supply line, and becomes low level.

【0005】[0005]

【発明が解決しようとする課題】この従来の信号レベル
変換回路では、入力信号線105が第2の電源線102
の電位レベルから第3の電源線103の電位レベルの間
を遷移してから出力信号線106が第1の電源線101
の電位レベルから第2の電源線102の電位レベルの間
を遷移すると、nMOSトランジスタN12はオンとな
るが、pMOS,nMOSの各トランジスタP13,N
13からなるインバータ回路の遅延時間を経てnMOS
トランジスタN11がオフとなる。一方、入力信号線1
05が第3の電源線103の電位レベルから第2の電源
線102の電位レベルの間を遷移してから出力信号線1
06が第2の電源線102の電位レベルから第1の電源
線101の電位レベルの間を遷移するとすると、nMO
SトランジスタN12はオフとなるが、pMOS,nM
OSの各トランジスタP13,N13からなるインバー
タ回路の遅延時間を経てnMOSトランジスタN11が
オンとなる。
In this conventional signal level conversion circuit, the input signal line 105 is the second power supply line 102.
Of the first power supply line 101 after the transition from the potential level of the first power supply line 103 to the potential level of the third power supply line 103.
The nMOS transistor N12 is turned on when a transition is made between the potential level of PMOS and the potential level of the second power supply line 102, but the transistors P13 and N of the pMOS and nMOS are turned on.
After the delay time of the inverter circuit composed of 13 nMOS
The transistor N11 is turned off. On the other hand, the input signal line 1
05 transits between the potential level of the third power supply line 103 and the potential level of the second power supply line 102, and then the output signal line 1
If 06 transits between the potential level of the second power supply line 102 and the potential level of the first power supply line 101, nMO
S-transistor N12 turns off, but pMOS, nM
The nMOS transistor N11 is turned on after the delay time of the inverter circuit including the transistors P13 and N13 of the OS.

【0006】nMOSトランジスタN12がオン、N1
1がオフのとき、pMOSトランジスタP11のドレイ
ン端子とP12のゲート端子は第1の電源線101の電
位レベルで、P11のゲート端子とP12のドレイン端
子は第2の電源線102の電位レベルとなっている。一
方、nMOSトランジスタN12がオフ、N11がオン
のとき、pMOSトランジスタP11のドレイン端子と
P12のゲート端子は第2の電源線102の電位レベル
で、P11のゲート端子とP12のドレイン端子は第1
の電源線101の電位レベルとなっている。
The nMOS transistor N12 is turned on, N1
When 1 is off, the drain terminal of the pMOS transistor P11 and the gate terminal of P12 are at the potential level of the first power supply line 101, and the gate terminal of P11 and the drain terminal of P12 are at the potential level of the second power supply line 102. ing. On the other hand, when the nMOS transistor N12 is off and N11 is on, the drain terminal of the pMOS transistor P11 and the gate terminal of P12 are at the potential level of the second power supply line 102, and the gate terminal of P11 and the drain terminal of P12 are the first.
Of the power supply line 101.

【0007】pMOSトランジスタP11とP12はゲ
ート端子とドレイン端子が相互にクロス接続された構造
となっているため、帰還ループが存在し、pMOSトラ
ンジスタP11のドレイン端子とP12のゲート端子が
第1の電源線101の電位レベルのときから、P11の
ゲート端子とP12のドレイン端子が第2の電源線10
2の電位レベルに遷移する時間、およびP11のドレイ
ン端子とP12のゲート端子が第2の電源線102の電
位レベルのときから、P11のゲート端子とP12のド
レイン端子が第1の電源線101の電位レベルに遷移す
る時間が長くなる。
Since the pMOS transistors P11 and P12 have a structure in which the gate terminal and the drain terminal are cross-connected to each other, there is a feedback loop, and the drain terminal of the pMOS transistor P11 and the gate terminal of P12 are the first power source. Since the potential level of the line 101, the gate terminal of P11 and the drain terminal of P12 are the second power supply line 10
From the time of transition to the potential level of 2 and when the drain terminal of P11 and the gate terminal of P12 are at the potential level of the second power supply line 102, the gate terminal of P11 and the drain terminal of P12 are connected to the first power supply line 101. It takes a long time to transit to the potential level.

【0008】したがって、従来の信号レベル変換回路で
は、入力信号線105の電位が遷移してから出力信号線
106の電位が遷移するまでの時間が長いという問題が
生じる。また、第3の電源線103の電位が第1の電源
線101に比べて低くなるに従ってpMOSトランジス
タP11とP12のオン電流に比べてnMOSトランジ
スタN11とN12のオン電流を大きくする必要が生
じ、それは出力信号線106の駆動電流を減少させてい
る。さらに、出力信号線106の電位の変化する時間が
入力信号線105の電位の遷移する方向によって異なる
ため、入力信号線105にデューティ比50%の信号を
入力しても、出力信号線106にはデューティ比50%
の信号が得られないという問題がある。本発明の目的
は、このように従来の問題を解消し、低消費電力で高速
な信号レベル変換回路を提供することにある。
Therefore, the conventional signal level conversion circuit has a problem that it takes a long time from the transition of the potential of the input signal line 105 to the transition of the potential of the output signal line 106. Further, as the potential of the third power supply line 103 becomes lower than that of the first power supply line 101, it becomes necessary to increase the on-currents of the nMOS transistors N11 and N12 as compared with the on-currents of the pMOS transistors P11 and P12. The drive current of the output signal line 106 is reduced. Further, since the time for which the potential of the output signal line 106 changes depends on the direction in which the potential of the input signal line 105 changes, even if a signal with a duty ratio of 50% is input to the input signal line 105, Duty ratio 50%
There is a problem that the signal of cannot be obtained. SUMMARY OF THE INVENTION An object of the present invention is to solve the conventional problems as described above and to provide a high-speed signal level conversion circuit with low power consumption.

【0009】[0009]

【課題を解決するための手段】本発明の信号レベル変換
回路は、高電位の第1の電源と、低電位の第2の電源
と、前記第1の電源よりも低電位の第3の電源と、第1
の内部電源線とを備え、入力信号が第3の電源の電位に
等しいときに第2の電源の電位レベルが出力され、入力
信号が第3の電源の電位に等しいときに第1の内部電源
線の電位レベルが出力されるインバータ回路と、入力信
号が第3の電源の電位に等しいときに第1の内部電源線
に第3の電源の電位が出力され、入力信号が第2の電源
の電位に等しいときに第1の内部電源線に第1の電源の
電位が出力される第1のスイッチ回路とを備え、インバ
ータ回路の入出力間の遅延時間が短いことを利用して高
速の信号レベル変換を可能とし、かつ第1の内部電源線
を第1または第3の電源線の電位とすることでインバー
タ回路のトランジスタを完全にオフとし、貫通電流を無
くして消費電力を低減する。
A signal level conversion circuit according to the present invention includes a first power source having a high potential, a second power source having a low potential, and a third power source having a potential lower than the first power source. And the first
The internal power supply line of the second power supply is output when the input signal is equal to the potential of the third power supply, and the first internal power supply is output when the input signal is equal to the potential of the third power supply. When the input signal is equal to the potential of the third power supply, the potential of the third power supply is output to the first internal power supply line and the input signal of the second power supply is output. A high-speed signal utilizing the fact that a first switch circuit that outputs the potential of the first power supply to the first internal power supply line when it is equal to the potential is used, and the delay time between the input and output of the inverter circuit is short. The level conversion is enabled, and the potential of the first internal power supply line is set to the potential of the first or third power supply line, whereby the transistor of the inverter circuit is completely turned off, the through current is eliminated, and the power consumption is reduced.

【0010】また、本発明の信号レベル変換回路は、高
電位の第1の電源と、低電位の第2の電源と、前記第2
の電源よりも高電位の第4の電源と、第2の内部電源線
とを備え、入力信号が第1の電源の電位に等しいときに
第2の内部電源線の電位レベルが出力され、入力信号が
第4の電源の電位に等しいときに第1の電源線の電位レ
ベルが出力されるインバータ回路と、入力信号が第4の
電源の電位に等しいときに第2の内部電源線に第4の電
源の電位が出力され、入力信号が第1の電源の電位に等
しいときに第2の内部電源線に第2の電源の電位が出力
される第2のスイッチ回路とを備え、同様にインバータ
回路での入出力間の遅延時間が短いことにより高速の信
号レベル変換を可能とし、かつ第2の内部電源線を利用
することで、貫通電流を無くして消費電力を低減する。
Also, the signal level conversion circuit of the present invention comprises a first power source having a high potential, a second power source having a low potential, and the second power source.
And a second internal power supply line having a potential higher than that of the second power supply, the potential level of the second internal power supply line is output when the input signal is equal to the potential of the first power supply, An inverter circuit that outputs the potential level of the first power supply line when the signal is equal to the potential of the fourth power supply, and a fourth internal line to the second internal power supply line when the input signal is equal to the potential of the fourth power supply. And a second switch circuit that outputs the potential of the second power source to the second internal power source line when the potential of the power source is output and the input signal is equal to the potential of the first power source. The short delay time between input and output in the circuit enables high-speed signal level conversion, and the use of the second internal power supply line eliminates shoot-through current and reduces power consumption.

【0011】[0011]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。図1は本発明の第1実施形
態の回路図である。同図において、高電位の第1の電源
線101と、低電位の第2の電源線102と、前記第1
の電源線101よりも若干低電位の第3の電源線103
と、第1の内部電源線107とを備えている。さらに、
入力信号線105に入力される入力信号が第3の電源線
103の電位に等しいときに第2の電源線102の電位
レベルが出力され、入力信号が第3の電源線103の電
位に等しいときに第1の内部電源線107の電位レベル
が出力されるインバータ回路と、入力信号が第3の電源
線103の電位に等しいときに第1の内部電源線107
に第3の電源線103の電位が出力され、入力信号が第
2の電源線102の電位に等しいときに第1の内部電源
線107に第1の電源線101の電位が出力される第1
のスイッチ回路とを備えている。る信号レベル変換回
路。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of a first embodiment of the present invention. In the figure, a first power supply line 101 having a high potential, a second power supply line 102 having a low potential, and the first power supply line 102
Third power supply line 103 having a potential slightly lower than the power supply line 101 of
And a first internal power supply line 107. further,
When the input signal input to the input signal line 105 is equal to the potential of the third power supply line 103, the potential level of the second power supply line 102 is output, and when the input signal is equal to the potential of the third power supply line 103. To the inverter circuit for outputting the potential level of the first internal power supply line 107, and when the input signal is equal to the potential of the third power supply line 103.
The potential of the third power supply line 103 is output to the first power supply line 103, and the potential of the first power supply line 101 is output to the first internal power supply line 107 when the input signal is equal to the potential of the second power supply line 102.
And a switch circuit. Signal level conversion circuit.

【0012】前記インバータ回路は、第1のpMOSト
ランジスタP1と第1のnMOSトランジスタN1のソ
ース・ドレインを縦続接続し、その接続点を出力信号線
106に接続し、各ゲートを接続して入力信号線105
に接続している。
In the inverter circuit, the source and drain of the first pMOS transistor P1 and the first nMOS transistor N1 are connected in cascade, the connection point is connected to the output signal line 106, and the gates are connected to each other to input the input signal. Line 105
Connected to

【0013】また、前記第1のスイッチ回路は、ソース
が第1の電源線101に、ドレインが第1の内部電源線
107に、ゲートが第1の内部信号線108にそれぞれ
接続された第2のpMOSトランジスタP2と、ソース
が第1の電源線101に、ドレインが第1の内部信号線
108に、ゲートが第1の内部電源線107にそれぞれ
接続された第3のpMOSトランジスタP3と、ソース
が第1の内部信号線108に、ドレインが入力信号線1
05に、ゲートが第3の電源線103にそれぞれ接続さ
れた第5のnMOSトランジスタN5と、ソースが入力
信号線105に、ドレインが第1の内部電源線107
に、ゲートが第2の電源線102にそれぞれ接続された
第4のpMOSトランジスタP4とで構成される。
In the first switch circuit, the source is connected to the first power supply line 101, the drain is connected to the first internal power supply line 107, and the gate is connected to the first internal signal line 108. PMOS transistor P2, the source thereof is connected to the first power supply line 101, the drain thereof is connected to the first internal signal line 108, and the gate thereof is connected to the first internal power supply line 107, and the source thereof. Is the first internal signal line 108, and the drain is the input signal line 1
05, a fifth nMOS transistor N5 having a gate connected to the third power supply line 103, a source for the input signal line 105, and a drain for the first internal power supply line 107.
And a fourth pMOS transistor P4 whose gate is connected to the second power supply line 102, respectively.

【0014】この構成によれば、入力信号線105がハ
イレベル、すなわち第1の電源線101の電位より低い
第3の電源線103の電位のとき、第1のpMOSトラ
ンジスタP1とnMOSトランジスタN1のインバータ
回路において、nMOSトランジスタN1がオン、pM
OSトランジスタP1がオフとなるため、出力信号線1
06にはローレベル、すなわち第2の電源線102の電
位の信号が出力される。また、このとき、入力信号線1
05がハイレベルであるため第4のpMOSトランジス
タP4がオン、第5のnMOSトランジスタN5がオフ
となり、第1の内部電源線107の電位は入力信号線1
05の電位である第3の電源線103の電位と等しくな
る。したがって、第3のpMOSトランジスタP3がオ
ンし、第2のpMOSトランジスタP2がオフとなり、
さらに第1のpMOSトランジスタP1は完全にオフと
なり、第1の電源線101から第2の電源線102の間
に定常的に流れる貫通電流が無く、低消費電力となる。
According to this configuration, when the input signal line 105 is at a high level, that is, the potential of the third power supply line 103 which is lower than the potential of the first power supply line 101, the first pMOS transistor P1 and the nMOS transistor N1 are connected. In the inverter circuit, the nMOS transistor N1 is turned on and pM
Since the OS transistor P1 is turned off, the output signal line 1
A low level signal, that is, a signal of the potential of the second power supply line 102 is output to 06. At this time, the input signal line 1
Since 05 is at a high level, the fourth pMOS transistor P4 is turned on and the fifth nMOS transistor N5 is turned off, so that the potential of the first internal power supply line 107 becomes the input signal line 1
This is equal to the potential of the third power supply line 103, which is the potential of 05. Therefore, the third pMOS transistor P3 is turned on and the second pMOS transistor P2 is turned off,
Furthermore, the first pMOS transistor P1 is completely turned off, there is no through current that constantly flows between the first power supply line 101 and the second power supply line 102, and low power consumption is achieved.

【0015】入力信号線105がローレベルになると、
第4のpMOSトランジスタP4がオフ、第5のnMO
SトランジスタN5がオン、第2のpMOSトランジス
タP2がオンとなるため、第3のpMOSトランジスタ
P3がオフとなり、第1の内部電源線107は第1の電
源線101の電位と等しくなる。また、インバータ回路
の第1のnMOSトランジスタN1はオフ、第1のpM
OSトランジスタP1がオンであるため、出力信号線1
06にはハイレベル、即ち第1の電源線101の電位が
出力される。このとき、第1のnMOSトランジスタN
1がオフであるため、第1の電源線101から第2の電
源線102の間に定常的に流れる貫通電流が無く、低消
費電力化が可能となる。
When the input signal line 105 becomes low level,
The fourth pMOS transistor P4 is turned off and the fifth nMO
Since the S transistor N5 is turned on and the second pMOS transistor P2 is turned on, the third pMOS transistor P3 is turned off and the potential of the first internal power supply line 107 becomes equal to that of the first power supply line 101. In addition, the first nMOS transistor N1 of the inverter circuit is off, and the first pM
Since the OS transistor P1 is on, the output signal line 1
A high level, that is, the potential of the first power supply line 101 is output to 06. At this time, the first nMOS transistor N
Since 1 is off, there is no through current that constantly flows between the first power supply line 101 and the second power supply line 102, and it is possible to reduce power consumption.

【0016】また、入力信号線105がハイレベルから
ローレベルに変わったとき、あるいはローレベルからハ
イレベルに変わったとき、出力信号線106の電位は従
来回路のように信号の帰還がないため第1のpMOS、
nMOSの各トランジスタP1,N1を通してすぐ変化
するため、高速の信号レベル変換が可能となる。
When the input signal line 105 changes from the high level to the low level, or when the input signal line 105 changes from the low level to the high level, the potential of the output signal line 106 has no signal feedback unlike the conventional circuit. 1 pMOS,
Since it changes immediately through the nMOS transistors P1 and N1, high-speed signal level conversion is possible.

【0017】すなわち、この第1の実施形態では、pM
OSトランジスタP1とnMOSトランジスタN1とで
構成されるインバータ回路の入出力間の置換時間が短い
ことを利用することで、高速の信号レベル変換が可能と
なる。また、第1の電源線101の電位よりも低電圧の
第3の電源線103の電位を利用しているが、このこと
でインバータ回路を構成するトランジスタのいずれか一
方が完全にオフにならない状態が生じるが、第1の内部
電源線107の電位を第1または第2の電源線の電位に
することで、トランジスタを完全にオフとし、貫通電流
を無くして消費電力を低減する。
That is, in this first embodiment, pM
By utilizing the fact that the replacement time between the input and output of the inverter circuit composed of the OS transistor P1 and the nMOS transistor N1 is short, high-speed signal level conversion is possible. Further, the potential of the third power supply line 103, which is lower than the potential of the first power supply line 101, is used, but this does not completely turn off one of the transistors forming the inverter circuit. However, by setting the potential of the first internal power supply line 107 to the potential of the first or second power supply line, the transistor is completely turned off, a through current is eliminated, and power consumption is reduced.

【0018】図2は本発明の第2の実施形態の回路図で
ある。同図において、高電位の第1の電源線101と、
低電位の第2の電源線102と、前記第2の電源線10
2の電位よりも若干高電位の第4の電源線104と、第
2の内部電源線109とを備えている。さらに、入力信
号線105に入力される入力信号が第1の電源線101
の電位に等しいときに第2の内部電源線109の電位レ
ベルが出力され、入力信号が第4の電源線104の電位
に等しいときに第1の電源線101の電位レベルが出力
されるインバータ回路と、入力信号が第4の電源線10
4の電位に等しいときに第2の内部電源線109に第4
の電源線104の電位が出力され、入力信号が第1の電
源線101の電位に等しいときに第2の内部電源線10
9に第2の電源線102の電位が出力される第2のスイ
ッチ回路とを備えている。
FIG. 2 is a circuit diagram of the second embodiment of the present invention. In the figure, a high-potential first power supply line 101,
The second power supply line 102 of low potential and the second power supply line 10
It has a fourth power supply line 104 having a potential slightly higher than the second potential and a second internal power supply line 109. Further, the input signal input to the input signal line 105 is the first power line 101.
An inverter circuit that outputs the potential level of the second internal power supply line 109 when the input signal is equal to the potential of the first power supply line 104 and outputs the potential level of the first power supply line 101 when the input signal is equal to the potential of the fourth power supply line 104. And the input signal is the fourth power line 10
When the potential of the second internal power supply line 109 is equal to
Of the second internal power supply line 10 when the potential of the power supply line 104 is output and the input signal is equal to the potential of the first power supply line 101.
9 is provided with a second switch circuit for outputting the potential of the second power supply line 102.

【0019】前記インバータ回路は第1の実施形態と同
じ構成である。また、前記第2のスイッチ回路は、ソー
スが第2の電源線102に、ドレインが第2の内部電源
線109に、ゲートが第2の内部信号線110にそれぞ
れ接続された第2のnMOSトランジスタN2と、ソー
スが第2の電源線102に、ドレインが第2の内部信号
線110に、ゲートが第2の内部電源線109にそれぞ
れ接続された第3のnMOSトランジスタN3と、ソー
スが入力信号線105に、ドレインが第2の内部信号線
110に、ゲートが第4の電源線104にそれぞれ接続
された第5のpMOSトランジスタN5と、ソースが第
2の内部電源線109に、ドレインが入力信号線105
に、ゲートが第1の電源線101にそれぞれ接続された
第4のnMOSトランジスタN4とで構成されている。
The inverter circuit has the same structure as that of the first embodiment. In the second switch circuit, the source is connected to the second power supply line 102, the drain is connected to the second internal power supply line 109, and the gate is connected to the second internal signal line 110. N2, a third nMOS transistor N3 having a source connected to the second power supply line 102, a drain connected to the second internal signal line 110, and a gate connected to the second internal power supply line 109, and a source input signal. The drain is input to the line 105, the drain is input to the second internal signal line 110, the gate is connected to the fourth power supply line 104, and the fifth pMOS transistor N5 is connected to the source; and the source is input to the second internal power supply line 109. Signal line 105
And a fourth nMOS transistor N4 whose gate is connected to the first power supply line 101, respectively.

【0020】この構成によれば、入力信号線105がハ
イレベル、すなわち第1の電源線101の電位のとき、
インバータ回路の第1のpMOSトランジスタP1がオ
フとなり、第1のnMOSトランジスタN1がオンとな
るため、出力信号線106にはローレベル、すなわち第
2の電源線102の電位の信号が出力される。このと
き、第4のnMOSトランジスタN4がオフし、第5の
pMOSトランジスタP5がオンし、第2及び第3のp
MOSトランジスタP2,P3がオンするため、第2の
内部電源線109の電位は第2の電源線102の電位と
等しくなる。また、第1のpMOSトランジスタP1は
完全にオフとなり、第1の電源線101から第2の電源
線102の間に定常的に流れる貫通電流が無く、低消費
電力となる。
According to this structure, when the input signal line 105 is at the high level, that is, the potential of the first power supply line 101,
Since the first pMOS transistor P1 of the inverter circuit is turned off and the first nMOS transistor N1 is turned on, a low level signal, that is, a potential signal of the second power supply line 102 is output to the output signal line 106. At this time, the fourth nMOS transistor N4 is turned off, the fifth pMOS transistor P5 is turned on, and the second and third pMOS transistors P5 and P5 are turned on.
Since the MOS transistors P2 and P3 are turned on, the potential of the second internal power supply line 109 becomes equal to the potential of the second power supply line 102. Further, the first pMOS transistor P1 is completely turned off, there is no through current that constantly flows between the first power supply line 101 and the second power supply line 102, and low power consumption is achieved.

【0021】一方、入力信号線105がローレベル、す
なわち第2の電源線102の電位より高い第4の電源線
104の電位のとき、第1のpMOSトランジスタP1
がオンし、第1のnMOSトランジスタN1がオフとな
るため、出力信号線106にはハイレベル、すなわち第
1の電源線101の電位の信号が出力される。すなわ
ち、このとき、第4のnMOSトランジスタN4がオ
ン、第5のpMOSトランジスタP5がオフとなるた
め、第2の内部電源線108は入力信号線105の電位
レベルである第4の電源線104の電位と等しくなる。
このとき、第2及び第3のpMOSトランジスタP2,
P3はオフとなる。また、第1のnMOSトランジスタ
N1が完全にオフとなり、第1の電源線101から第2
の電源線102の間に定常的に流れる貫通電流が無く、
低消費電力化が可能となる。
On the other hand, when the input signal line 105 is at the low level, that is, the potential of the fourth power supply line 104 which is higher than the potential of the second power supply line 102, the first pMOS transistor P1.
Is turned on and the first nMOS transistor N1 is turned off, so that a high level signal of the potential of the first power supply line 101 is output to the output signal line 106. That is, at this time, since the fourth nMOS transistor N4 is turned on and the fifth pMOS transistor P5 is turned off, the second internal power supply line 108 is connected to the fourth power supply line 104 which is the potential level of the input signal line 105. It becomes equal to the electric potential.
At this time, the second and third pMOS transistors P2,
P3 is turned off. Further, the first nMOS transistor N1 is completely turned off, and the first power line 101 to the second
There is no through current that constantly flows between the power lines 102 of
Low power consumption can be achieved.

【0022】また、入力信号線105の電位がハイレベ
ルからローレベルに変わったとき、あるいはローレベル
からハイレベルに変わったとき、出力信号線106の電
位は従来回路のように信号の帰還がないためインバータ
回路の第1のpMOS,nMOSの各トランジスタP
1,N1を通してすぐ変化するため、高速の信号レベル
変換が可能となる。
When the potential of the input signal line 105 changes from the high level to the low level or from the low level to the high level, the potential of the output signal line 106 does not have a signal feedback unlike the conventional circuit. Therefore, each of the first pMOS and nMOS transistors P of the inverter circuit
Since it changes immediately through 1 and N1, high-speed signal level conversion is possible.

【0023】すなわち、この第2の実施形態において
も、pMOSトランジスタP1とnMOSトランジスタ
N1とで構成されるインバータ回路の入出力間の置換時
間が短いことを利用することで、高速の信号レベル変換
が可能となる。また、第2の電源線102の電位よりも
高電圧の第4の電源線104の電位を利用しているが、
このことでインバータ回路を構成する前記トランジスタ
のいずれか一方が完全にオフにならない状態が生じる
が、第2の内部電源線109の電位を第1または第2の
電源線の電位にすることで、トランジスタを完全にオフ
とし、貫通電流を無くして消費電力を低減する。
That is, also in the second embodiment, high-speed signal level conversion can be performed by utilizing the fact that the replacement time between the input and output of the inverter circuit composed of the pMOS transistor P1 and the nMOS transistor N1 is short. It will be possible. Further, although the potential of the fourth power supply line 104, which is higher than the potential of the second power supply line 102, is used,
This causes a state in which one of the transistors forming the inverter circuit is not completely turned off. However, by setting the potential of the second internal power supply line 109 to the potential of the first or second power supply line, The transistor is completely turned off to eliminate the through current and reduce the power consumption.

【0024】図3は本発明の第3の実施形態の回路図で
あり、前記第1及び第2の各実施形態を一体化した構成
としたものである。すなわち、高電位の第1の電源線1
01と、低電位の第2の電源線102と、前記第1の電
源線101の電位よりも若干低電位の第3の電源線10
3と、第2の電源線102の電位よりも若干高電位の第
4の電源線104と、第1及び第2の各内部電源線10
7,109とを備えている。さらに、入力信号線105
に入力される入力信号の電位が第3の電源線103の電
位に等しいときに第2の内部電源線109の電位レベル
が出力され、入力信号が第4の電源線104の電位に等
しいときに第1の内部電源線107の電位レベルが出力
されるインバータ回路を備えている。
FIG. 3 is a circuit diagram of a third embodiment of the present invention in which the first and second embodiments are integrated. That is, the high-potential first power line 1
01, a second power supply line 102 having a low potential, and a third power supply line 10 having a potential slightly lower than the potentials of the first power supply line 101.
3, the fourth power supply line 104 having a potential slightly higher than the potential of the second power supply line 102, and each of the first and second internal power supply lines 10
7,109. Further, the input signal line 105
When the potential of the input signal input to is equal to the potential of the third power supply line 103, the potential level of the second internal power supply line 109 is output, and when the input signal is equal to the potential of the fourth power supply line 104. An inverter circuit is provided which outputs the potential level of the first internal power supply line 107.

【0025】また、入力信号が第3の電源線103の電
位に等しいときに第1の内部電源線107に第3の電源
線103の電位が出力され、入力信号が第4の電源線1
04の電位に等しいときに第1の内部電源線107に第
1の電源線101の電位が出力される第1のスイッチ回
路と、入力信号が第4の電源線104の電位に等しいと
きに第2の内部電源線109に第4の電源線104の電
位が出力され、入力信号が第3の電源線103の電位に
等しいときに第2の内部電源線109に第2の電源線1
02の電位が出力される第2のスイッチ回路とを備えて
いる。
When the input signal is equal to the potential of the third power supply line 103, the potential of the third power supply line 103 is output to the first internal power supply line 107, and the input signal is the fourth power supply line 1.
When the input signal is equal to the potential of the fourth power supply line 104, the first switch circuit which outputs the potential of the first power supply line 101 to the first internal power supply line 107 when the potential of the input signal is equal to the potential of 04. The potential of the fourth power supply line 104 is output to the second internal power supply line 109, and when the input signal is equal to the potential of the third power supply line 103, the second power supply line 1 is connected to the second internal power supply line 109.
And a second switch circuit that outputs the potential of 02.

【0026】ここで、前記インバータ回路は前記第1及
び第2の実施形態のものと同じである。また、第1のス
イッチ回路は第1の実施形態のものと、第2のスイッチ
回路は第2の実施形態のものと同様な構成とされてい
る。
Here, the inverter circuit is the same as that of the first and second embodiments. Further, the first switch circuit has the same configuration as that of the first embodiment, and the second switch circuit has the same configuration as that of the second embodiment.

【0027】この構成によれば、入力信号線105がハ
イレベル、すなわち第1の電源線101の電位より低い
第3の電源線103の電位のとき、インバータ回路によ
り出力信号線106にはローレベル、すなわち第2の電
源線102の電位の信号が出力される。このとき、第5
のnMOSトランジスタN5,第4のnMOSトランジ
スタN4がオフ、第4のpMOSトランジスタP4,第
5のpMOSトランジスタP5がオンであるため、第1
の内部電源線107の電位は第3の電源線105の電位
と等しくなり、第2の内部電源線109の電位は第2の
電源線102の電位と等しくなる。そして、第1のnM
OSトランジスタN1がオンのため出力信号線106に
は第2の電源線102の電位が出力され、第1のpMO
SトランジスタP1は完全にオフとなり、第1の電源線
101から第2の電源線102の間に定常的に流れる貫
通電流が無い。
According to this structure, when the input signal line 105 is at the high level, that is, the potential of the third power supply line 103 which is lower than the potential of the first power supply line 101, the output signal line 106 is set to the low level by the inverter circuit. That is, the signal of the potential of the second power supply line 102 is output. At this time, the fifth
Since the nMOS transistor N5 and the fourth nMOS transistor N4 are off and the fourth pMOS transistor P4 and the fifth pMOS transistor P5 are on,
The potential of the internal power supply line 107 becomes equal to the potential of the third power supply line 105, and the potential of the second internal power supply line 109 becomes equal to the potential of the second power supply line 102. And the first nM
Since the OS transistor N1 is on, the potential of the second power supply line 102 is output to the output signal line 106, and the first pMO
The S transistor P1 is completely turned off, and there is no through current that constantly flows between the first power supply line 101 and the second power supply line 102.

【0028】一方、入力信号線105がローレベル、す
なわち第2の電源線102の電位より高い第4の電源線
104の電位のとき、インバータ回路により出力信号線
106にはハイレベル、すなわち第1の電源線101の
電位の信号が出力される。このとき、第5のnMOSト
ランジスタN5,第4のnMOSトランジスタN4がオ
ン、第4のpMOSトランジスタP4,第5のpMOS
トランジスタP5がオフであるため、第1の内部電源線
107は第1の電源線101の電位と等しくなり、第2
の内部電源線109の電位は第4の電源線104の電位
と等しくなる。このとき、第1のnMOSトランジスタ
N1は完全にオフとなり、第1の電源線101から第2
の電源線102の間に定常的に流れる貫通電流が無く、
低消費電力化が可能となる。
On the other hand, when the input signal line 105 is at the low level, that is, the potential of the fourth power supply line 104 which is higher than the potential of the second power supply line 102, the inverter circuit causes the output signal line 106 to be at the high level, that is, the first potential. The signal of the potential of the power supply line 101 is output. At this time, the fifth nMOS transistor N5 and the fourth nMOS transistor N4 are turned on, the fourth pMOS transistor P4 and the fifth pMOS transistor N4 are turned on.
Since the transistor P5 is off, the potential of the first internal power supply line 107 becomes equal to the potential of the first power supply line 101,
The potential of the internal power supply line 109 becomes equal to the potential of the fourth power supply line 104. At this time, the first nMOS transistor N1 is completely turned off, and the first power line 101 to the second
There is no through current that constantly flows between the power lines 102 of
Low power consumption can be achieved.

【0029】入力信号線103がハイレベルからローレ
ベルに変わったとき、あるいはローレベルからハイレベ
ルに変わったとき、出力信号線104の電位は従来回路
のように信号の帰還がないためP10,N11を通して
すぐ変化するため、高速の信号レベル変換が可能とな
る。
When the input signal line 103 changes from the high level to the low level or from the low level to the high level, the potential of the output signal line 104 has no signal feedback unlike the conventional circuit, so that P10, N11. Since it changes immediately through, high speed signal level conversion is possible.

【0030】すなわち、この第3の実施形態において
も、pMOSトランジスタP1とnMOSトランジスタ
N1とで構成されるインバータ回路の入出力間の置換時
間が短いことを利用することで、高速の信号レベル変換
が可能となることは前記各実施形態と同様である。ま
た、第1の電源線101の電位よりも低電圧の第3の電
源線103の電位と、第2の電源線102の電位よりも
高電圧の第4の電源線104の電位を利用しているが、
このことでインバータ回路を構成する前記トランジスタ
のいずれか一方が完全にオフにならない状態が生じる
が、第1及び2の内部電源線107,109の電位を第
1または第2の電源線の電位にすることで、トランジス
タを完全にオフとし、貫通電流を無くして消費電力を低
減する。
That is, also in the third embodiment, high-speed signal level conversion can be performed by utilizing the short replacement time between the input and output of the inverter circuit composed of the pMOS transistor P1 and the nMOS transistor N1. What is possible is similar to each of the above-described embodiments. Further, the potential of the third power supply line 103, which is lower than the potential of the first power supply line 101, and the potential of the fourth power supply line 104, which is higher than the potential of the second power supply line 102, are used. But
This causes a state in which one of the transistors forming the inverter circuit is not completely turned off, but the potential of the first and second internal power supply lines 107 and 109 is set to the potential of the first or second power supply line. By doing so, the transistor is completely turned off, a through current is eliminated, and power consumption is reduced.

【0031】[0031]

【発明の効果】以上説明したように本発明は、基本的に
はインバータ回路を利用して信号レベル変換を行うた
め、インバータ回路が有する入出力間の遅延時間が短い
ことを利用して高速の信号レベル変換が実現できる。ま
た、回路内に第1及び第2の内部電源線を設け、この内
部電源線の電位を入力信号の電位により第1または第2
の電源線の電位に制御することで、インバータ回路を構
成するトランジスタを完全にオフの状態とし、貫通電流
を無くして消費電力を低減することが可能となる。
As described above, according to the present invention, basically, the signal level conversion is performed by using the inverter circuit. Therefore, the fact that the delay time between the input and the output of the inverter circuit is short is used to realize the high speed operation. Signal level conversion can be realized. In addition, the first and second internal power supply lines are provided in the circuit, and the potential of the internal power supply line is set to the first or the second depending on the potential of the input signal.
By controlling to the potential of the power supply line, it is possible to completely turn off the transistor forming the inverter circuit, eliminate the through current, and reduce the power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の信号レベル変換回路の第1の実施形態
の回路図である。
FIG. 1 is a circuit diagram of a first embodiment of a signal level conversion circuit of the present invention.

【図2】本発明の第2の実施形態の回路図である。FIG. 2 is a circuit diagram according to a second embodiment of the present invention.

【図3】本発明の第3の実施形態の回路図である。FIG. 3 is a circuit diagram of a third embodiment of the present invention.

【図4】従来の信号レベル変換回路の一例の回路図であ
る。
FIG. 4 is a circuit diagram of an example of a conventional signal level conversion circuit.

【符号の説明】[Explanation of symbols]

P1〜P5 p型MOSトランジスタ N1〜N5 n型MOSトランジスタ 101〜104 電源線 105 入力信号線 106 出力信号線 107 第1の内部電源線 108 第1の内部信号線 109 第2の内部電源線 110 第2の内部信号線 P1 to P5 p-type MOS transistor N1 to N5 n-type MOS transistor 101 to 104 power supply line 105 input signal line 106 output signal line 107 first internal power supply line 108 first internal signal line 109 second internal power supply line 110 2 internal signal lines

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高電位の第1の電源と、低電位の第2の
電源と、前記第1の電源よりも低電位の第3の電源と、
第1の内部電源線とを備え、入力信号が第3の電源の電
位に等しいときに第2の電源の電位レベルが出力され、
入力信号が第3の電源の電位に等しいときに第1の内部
電源線の電位レベルが出力されるインバータ回路と、入
力信号が第3の電源の電位に等しいときに第1の内部電
源線に第3の電源の電位が出力され、入力信号が第2の
電源の電位に等しいときに第1の内部電源線に第1の電
源の電位が出力される第1のスイッチ回路とを備えるこ
とを特徴とする信号レベル変換回路。
1. A high-potential first power source, a low-potential second power source, and a lower-potential third power source than the first power source,
A first internal power supply line, the potential level of the second power supply is output when the input signal is equal to the potential of the third power supply,
An inverter circuit that outputs the potential level of the first internal power supply line when the input signal is equal to the potential of the third power supply, and a first internal power supply line when the input signal is equal to the potential of the third power supply. A first switch circuit that outputs the potential of the third power supply and outputs the potential of the first power supply to the first internal power supply line when the input signal is equal to the potential of the second power supply. Characteristic signal level conversion circuit.
【請求項2】 高電位の第1の電源と、低電位の第2の
電源と、前記第2の電源よりも高電位の第4の電源と、
第2の内部電源線とを備え、入力信号が第1の電源の電
位に等しいときに第2の内部電源線の電位レベルが出力
され、入力信号が第4の電源の電位に等しいときに第1
の電源線の電位レベルが出力されるインバータ回路と、
入力信号が第4の電源の電位に等しいときに第2の内部
電源線に第4の電源の電位が出力され、入力信号が第1
の電源の電位に等しいときに第2の内部電源線に第2の
電源の電位が出力される第2のスイッチ回路とを備える
ことを特徴とする信号レベル変換回路。
2. A high-potential first power source, a low-potential second power source, and a fourth power source having a higher potential than the second power source.
A second internal power supply line, the potential level of the second internal power supply line is output when the input signal is equal to the potential of the first power supply, and the second internal power supply line is output when the input signal is equal to the potential of the fourth power supply. 1
An inverter circuit that outputs the potential level of the power supply line of
When the input signal is equal to the potential of the fourth power supply, the potential of the fourth power supply is output to the second internal power supply line, and the input signal is the first potential.
And a second switch circuit that outputs the potential of the second power supply to the second internal power supply line when the potential of the power supply is equal to the potential of the power supply.
【請求項3】 高電位の第1の電源と、低電位の第2の
電源と、前記第1の電源よりも低電位の第3の電源と、
第2の電源よりも高電位の第4の電源と、第1及び第2
の内部電源線とを備え、入力信号が第3の電源の電位に
等しいときに第2の内部電源線の電位レベルが出力さ
れ、入力信号が第4の電源の電位に等しいときに第1の
内部電源線の電位レベルが出力されるインバータ回路
と、入力信号が第3の電源の電位に等しいときに第1の
内部電源線に第3の電源の電位が出力され、入力信号が
第4の電源の電位に等しいときに第1の内部電源線に第
1の電源の電位が出力される第1のスイッチ回路と、入
力信号が第4の電源の電位に等しいときに第2の内部電
源線に第4の電源の電位が出力され、入力信号が第3の
電源の電位に等しいときに第2の内部電源線に第2の電
源の電位が出力される第2のスイッチ回路とを備えるこ
とを特徴とする信号レベル変換回路。
3. A high-potential first power source, a low-potential second power source, and a third power source having a lower potential than the first power source,
A fourth power source having a higher potential than the second power source, and the first and second power sources.
And an internal power supply line, the potential level of the second internal power supply line is output when the input signal is equal to the potential of the third power supply, and the first power supply line is output when the input signal is equal to the potential of the fourth power supply. When the input signal is equal to the potential of the third power supply, the potential of the third power supply is output to the first internal power supply line, and the input signal of the inverter circuit outputs the potential level of the internal power supply line. A first switch circuit that outputs the potential of the first power supply to the first internal power supply line when it is equal to the potential of the power supply; and a second internal power supply line when the input signal is equal to the potential of the fourth power supply. And a second switch circuit that outputs the potential of the second power supply to the second internal power supply line when the potential of the fourth power supply is output to the second internal power supply line and the input signal is equal to the potential of the third power supply. A signal level conversion circuit characterized by.
【請求項4】 インバータ回路は第1のpMOSトラン
ジスタと第1のnMOSトランジスタのソース・ドレイ
ンを縦続接続し、その接続点を出力信号線に接続し、各
ゲートを接続して入力信号線に接続してなる請求項1な
いし3のいずれかの信号レベル変換回路。
4. An inverter circuit, wherein the source and drain of a first pMOS transistor and a first nMOS transistor are cascade-connected, the connection point is connected to an output signal line, and each gate is connected to an input signal line. The signal level conversion circuit according to any one of claims 1 to 3,
【請求項5】 第1のスイッチ回路は、ソースが第1の
電源に、ドレインが第1の内部電源線に、ゲートが第1
の内部信号線にそれぞれ接続された第2のpMOSトラ
ンジスタと、ソースが第1の電源に、ドレインが第1の
内部信号線に、ゲートが第1の内部電源線にそれぞれ接
続された第3のpMOSトランジスタと、ソースが第1
の内部信号線に、ドレインが入力信号線に、ゲートが第
3の電源線にそれぞれ接続された第5のnMOSトラン
ジスタと、ソースが入力信号線に、ドレインが第1の内
部電源線に、ゲートが第2の電源にそれぞれ接続された
第4のpMOSトランジスタとで構成される請求項1,
3,4のいずれかの信号レベル変換回路。
5. The first switch circuit has a source for the first power supply, a drain for the first internal power supply line, and a gate for the first power supply.
And a second pMOS transistor connected to the internal signal line of the third source, a source connected to the first power supply, a drain connected to the first internal signal line, and a third gate connected to the first internal power supply line for the gate. pMOS transistor and source is first
A fifth nMOS transistor having a drain connected to the input signal line, a gate connected to the third power supply line, a source connected to the input signal line, a drain connected to the first internal power supply line, and a gate And a fourth pMOS transistor connected to the second power supply, respectively.
A signal level conversion circuit according to any one of 3 and 4.
【請求項6】 第2のスイッチ回路は、ソースが第2の
電源に、ドレインが第2の内部電源線に、ゲートが第2
の内部信号線にそれぞれ接続された第2のnMOSトラ
ンジスタと、ソースが第2の電源に、ドレインが第2の
内部信号線に、ゲートが第2の内部電源線にそれぞれ接
続された第3のnMOSトランジスタと、ソースが入力
信号線に、ドレインが第2の内部信号線に、ゲートが第
4の電源にそれぞれ接続された第5のpMOSトランジ
スタと、ソースが第2の内部電源線に、ドレインが入力
信号線に、ゲートが第1の電源にそれぞれ接続された第
4のnMOSトランジスタとで構成される請求項2ない
し4のいずれかの信号レベル変換回路。
6. The second switch circuit has a source for the second power supply, a drain for the second internal power supply line, and a gate for the second power supply line.
And a second nMOS transistor connected to the internal signal line of the third source, a source connected to the second power supply, a drain connected to the second internal signal line, and a third gate connected to the second internal power supply line for the gate. An nMOS transistor, a source is connected to the input signal line, a drain is connected to the second internal signal line, a gate is connected to the fourth power supply, and a fifth pMOS transistor is connected to the source and the second internal power supply line is connected to the drain. 5. The signal level conversion circuit according to any one of claims 2 to 4, wherein the signal level conversion circuit comprises an input signal line and a fourth nMOS transistor having a gate connected to the first power supply.
【請求項7】 第1のスイッチ回路は、ソースが第1の
電源に、ドレインが第1の内部電源線に、ゲートが第1
の内部信号線にそれぞれ接続された第2のpMOSトラ
ンジスタと、ソースが第1の電源に、ドレインが第1の
内部信号線に、ゲートが第1の内部電源線にそれぞれ接
続された第3のpMOSトランジスタと、ソースが第1
の内部信号線に、ドレインが入力信号線に、ゲートが第
3の電源線にそれぞれ接続された第5のnMOSトラン
ジスタと、ソースが入力信号線に、ドレインが第1の内
部電源に、ゲートが第2の電源にそれぞれ接続された第
4のpMOSトランジスタとで構成され、第2のスイッ
チ回路は、ソースが第2の電源に、ドレインが第2の内
部電源線に、ゲートが第2の内部信号線にそれぞれ接続
された第2のnMOSトランジスタと、ソースが第2の
電源に、ドレインが第2の内部信号線に、ゲートが第2
の内部電源線にそれぞれ接続された第3のnMOSトラ
ンジスタと、ソースが入力信号線に、ドレインが第2の
内部信号線に、ゲートが第4の電源にそれぞれ接続され
た第5のpMOSトランジスタと、ソースが第2の内部
電源線に、ドレインが入力信号線に、ゲートが第1の電
源にそれぞれ接続された第4のnMOSトランジスタと
で構成される請求項3または4の信号レベル変換回路。
7. The first switch circuit has a source for the first power supply, a drain for the first internal power supply line, and a gate for the first power supply line.
And a second pMOS transistor connected to the internal signal line of the third source, a source connected to the first power supply, a drain connected to the first internal signal line, and a third gate connected to the first internal power supply line for the gate. pMOS transistor and source is first
A fifth nMOS transistor whose drain is connected to the input signal line, whose gate is connected to the third power supply line, and whose source is the input signal line, whose drain is the first internal power supply, and whose gate is The second switch circuit has a source for the second power supply, a drain for the second internal power supply line, and a gate for the second internal power supply circuit. A second nMOS transistor respectively connected to the signal line, a source for the second power supply, a drain for the second internal signal line, and a gate for the second
A third nMOS transistor connected to the internal power supply line, a source connected to the input signal line, a drain connected to the second internal signal line, and a gate connected to the fourth power supply for a fifth pMOS transistor. 5. The signal level conversion circuit according to claim 3, wherein the source is a second internal power supply line, the drain is an input signal line, and the gate is a fourth nMOS transistor connected to the first power supply.
JP7255547A 1995-09-07 1995-09-07 Signal level conversion circuit Expired - Fee Related JP2871551B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7255547A JP2871551B2 (en) 1995-09-07 1995-09-07 Signal level conversion circuit
KR1019960038807A KR100221757B1 (en) 1995-09-07 1996-09-07 Signal level conversion circuit
US08/711,111 US5789942A (en) 1995-09-07 1996-09-09 High speed signal level converting circuit having a reduced consumed electric power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7255547A JP2871551B2 (en) 1995-09-07 1995-09-07 Signal level conversion circuit

Publications (2)

Publication Number Publication Date
JPH0983343A true JPH0983343A (en) 1997-03-28
JP2871551B2 JP2871551B2 (en) 1999-03-17

Family

ID=17280248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7255547A Expired - Fee Related JP2871551B2 (en) 1995-09-07 1995-09-07 Signal level conversion circuit

Country Status (2)

Country Link
JP (1) JP2871551B2 (en)
KR (1) KR100221757B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308130B1 (en) * 1999-09-27 2001-11-02 김영환 Data Transfer Circuit
JP2006140928A (en) * 2004-11-15 2006-06-01 Toshiba Corp Semiconductor device
KR100948327B1 (en) * 2007-05-31 2010-03-17 후지쯔 가부시끼가이샤 Semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101745749B1 (en) * 2010-01-20 2017-06-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8269552B2 (en) * 2010-02-25 2012-09-18 Fairchild Semiconductor Corporation Control pin powered analog switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308130B1 (en) * 1999-09-27 2001-11-02 김영환 Data Transfer Circuit
JP2006140928A (en) * 2004-11-15 2006-06-01 Toshiba Corp Semiconductor device
KR100948327B1 (en) * 2007-05-31 2010-03-17 후지쯔 가부시끼가이샤 Semiconductor device

Also Published As

Publication number Publication date
JP2871551B2 (en) 1999-03-17
KR970019032A (en) 1997-04-30
KR100221757B1 (en) 1999-09-15

Similar Documents

Publication Publication Date Title
US20040178828A1 (en) Circuit for transforming a differential mode signal into a single ended signal with reduced standby current consumption
JPH10190438A (en) Level shifter
US11295789B2 (en) Latching sense amplifier
JP2793116B2 (en) Output buffer circuit for integrated circuits
US5789942A (en) High speed signal level converting circuit having a reduced consumed electric power
JP2004260242A (en) Voltage level shifter
US6344761B2 (en) Current comparison type latch
JP2003017996A (en) Level shift circuit
JP2871551B2 (en) Signal level conversion circuit
US6426658B1 (en) Buffers with reduced voltage input/output signals
JP2001308694A (en) Low noise buffer circuit
JPH02237309A (en) Output buffer
JP2001044820A (en) Level shifter circuit
JPH0779150A (en) Semiconductor integrated circuit
JPH11122092A (en) Signal level conversion circuit
US7224187B2 (en) CMOS buffer circuits and integrated circuits using the same
JP3378824B2 (en) Semiconductor integrated circuit
KR940005875Y1 (en) Cmos output buffer circuit
JP2770453B2 (en) Level conversion circuit
JPH05145385A (en) Cmos output buffer circuit
JP2002050955A (en) Signal level converting circuit
JPH05160706A (en) Cmos output buffer circuit
JPH05206832A (en) Output buffer circuit
JP2000196437A (en) Semiconductor integrated circuit
JPH11214981A (en) Level shift circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees