JPH0978428A - Biodegradable nonwoven fabric and its production - Google Patents

Biodegradable nonwoven fabric and its production

Info

Publication number
JPH0978428A
JPH0978428A JP8051116A JP5111696A JPH0978428A JP H0978428 A JPH0978428 A JP H0978428A JP 8051116 A JP8051116 A JP 8051116A JP 5111696 A JP5111696 A JP 5111696A JP H0978428 A JPH0978428 A JP H0978428A
Authority
JP
Japan
Prior art keywords
melting point
fiber
point component
nonwoven fabric
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8051116A
Other languages
Japanese (ja)
Other versions
JP4117915B2 (en
Inventor
Koichi Nagaoka
孝一 長岡
Fumio Matsuoka
文夫 松岡
Naoji Ichinose
直次 一瀬
Yasuhiro Yonezawa
安広 米沢
Keiko Sakota
恵子 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP4767895 priority Critical
Priority to JP17529695 priority
Priority to JP7-175296 priority
Priority to JP7-47678 priority
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP05111696A priority patent/JP4117915B2/en
Publication of JPH0978428A publication Critical patent/JPH0978428A/en
Application granted granted Critical
Publication of JP4117915B2 publication Critical patent/JP4117915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Abstract

PROBLEM TO BE SOLVED: To obtain a biodegradable nonwoven fabric controllable in biodegradability, excellent in formation, mechanical properties, and both the cooling effect and spinnability of the delivered filament yarns comprising the nonwoven fabric, also having thermoadhesive function, and, according to need, capable of presenting water absorbing ability. SOLUTION: This nonwoven fabric comprises filament yarns each of which is made up of high-melting component l and low-melting component 2 each made from a biodegradable aliphatic polyester and so designed that, in the cross section, the high-melting component 1 and the low-melting component 2 alternately occupy each specified range circumferentially around the center, there is a hollow 3, and both components are respectively divided into segments with equal area. This biodegradable nonwoven fabric is obtained by melt spinning into annularly and uniformly arranged type conjugated continuous fibers 4 where both the high-melting and low-melting components 1, 2 lie continuous in the fiber axial direction and exposed on the fiber surface and the hollow 3 followed by drafting and thinning the fibers into a continuous fiber nonwoven web which is then laminated with a natural fiber nonwoven web followed by conducting an ultrasonic fusing treatment to partially thermofuse both the nonwoven webs into a unit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、医療・衛生材料、
生活資材あるいは一般産業資材など、幅広い用途に用い
られる生分解性不織布およびその製造方法に関するもの
である。
TECHNICAL FIELD The present invention relates to a medical / hygiene material,
The present invention relates to a biodegradable nonwoven fabric used for a wide range of purposes such as daily life materials and general industrial materials, and a method for producing the same.

【0002】[0002]

【従来の技術】生分解性不織布としては、例えば、コッ
トン、麻、羊毛、レーヨン、キチン、アルギン酸等のよ
うな天然繊維由来の生分解性不織布が知られている。し
かし、これらの生分解性不織布は一般的に親水性であ
り、優れた吸水性を有するものであるが、反面、これら
の不織布は湿潤環境下での強力や寸法安定性の低下が著
しく、一部の用途への展開には限界があった。さらに、
これらの不織布は非熱可塑性であることから、熱成形性
を有さず加工性に劣るものであった。
2. Description of the Related Art As a biodegradable nonwoven fabric, there is known a biodegradable nonwoven fabric derived from natural fibers such as cotton, hemp, wool, rayon, chitin and alginic acid. However, although these biodegradable non-woven fabrics are generally hydrophilic and have excellent water absorption, on the other hand, these non-woven fabrics show a remarkable decrease in strength and dimensional stability in a wet environment. There was a limit to the development of the department. further,
Since these non-woven fabrics are non-thermoplastic, they have no thermoformability and are inferior in processability.

【0003】これらの問題を解決する生分解性不織布と
しては、特開平5−93318号公報または特開平5−
195407号公報に生分解性を有する熱可塑性重合体
を用いた不織布が開示されている。しかし、これらにお
いては、紡出糸条の冷却性および可紡性に劣るためスパ
ンボンド法による製造は困難であり、しかも全融タイプ
となるので得られた不織布の機械的特性および柔軟性に
劣るものであった。これは、一般的に生分解性を有する
重合体の融点および結晶化温度が低く、しかも結晶化速
度が遅いことに起因する。すなわち、溶融紡出後の冷
却、牽引細化、捕集、堆積工程において、糸条間で密着
が発生するために充分な開繊を行なうことができないた
め、得られる不織布の地合いを損なうこととなり、また
生分解速度の制御も困難である等の問題を生じることと
なる。
As a biodegradable non-woven fabric which solves these problems, Japanese Patent Laid-Open Publication No. 93933/1993 or Japanese Laid-Open Patent Publication No.
Japanese Patent No. 195407 discloses a non-woven fabric using a biodegradable thermoplastic polymer. However, in these, the spun bond method is difficult to produce because the spun yarn has poor cooling and spinnability, and the non-woven fabric obtained is inferior in mechanical properties and flexibility because it is a fully melted type. It was a thing. This is because the melting point and crystallization temperature of the biodegradable polymer are generally low and the crystallization rate is slow. That is, in the cooling, traction thinning, collection, and deposition steps after melt spinning, the fibers cannot be sufficiently opened due to adhesion between the yarns, and the texture of the resulting nonwoven fabric is impaired. In addition, problems such as difficulty in controlling the biodegradation rate will occur.

【0004】また、従来の、一成分のみから構成される
単一型、単一中空型等の繊維横断面をもつ長繊維は、ス
パンボンド法による不織布の製造に際し、融点および結
晶化温度の比較的高い生分解性を有する重合体を用いて
紡出糸条の冷却性および開繊性を重視すると、得られる
不織布の生分解性能に劣ることとなる。逆に、生分解性
能を重視し融点および結晶化温度の比較的低い生分解性
を有する重合体を用いると、紡出糸条の冷却性および開
繊性が劣ることとなる。しかも、従来の方法では、生分
解性能の制御は、適用する重合体の種類および繊度、複
合比および繊維の配向度などを変更することにより幾分
かは可能ではあるが、微妙な制御は不可能であった。
Further, conventional long fibers having a fiber cross section of a single type, a single hollow type, etc. composed of only one component are compared in melting point and crystallization temperature in the production of nonwoven fabric by the spunbond method. If a polymer having a relatively high biodegradability is used and importance is attached to the cooling property and the fiber-opening property of the spun yarn, the biodegradability of the resulting nonwoven fabric is inferior. On the other hand, when a polymer having a biodegradability, which has a relatively low melting point and a relatively low crystallization temperature, is used with an emphasis on biodegradability, the spinnability of the spun yarn will be poor. Moreover, in the conventional method, the biodegradability can be controlled to some extent by changing the type and fineness of the polymer to be applied, the composite ratio and the orientation degree of the fiber, but delicate control is not possible. It was possible.

【0005】さらに、前述のような生分解性熱可塑性重
合体を用いた長繊維単独で形成された不織布は、機械的
特性には優れるものの、吸湿性、吸水性に劣り、用途が
限定されるものであった。これを改善する方法として
は、吸水性に優れる天然繊維等を積層することが考えら
れるが、生分解性熱可塑性重合体からなる長繊維不織ウ
エブと天然繊維からなる不織ウエブとを積層して部分熱
融着を施す場合に、従来適用されているエンボスロール
を用いた熱圧接装置によると、両ウエブ間の接着力が弱
く、得られる積層不織布は到底使用に耐えるものではな
かった。
Further, a nonwoven fabric formed of long fibers alone using a biodegradable thermoplastic polymer as described above has excellent mechanical properties but is poor in hygroscopicity and water absorption, and its use is limited. It was a thing. As a method for improving this, it is conceivable to laminate natural fibers and the like having excellent water absorption, but to laminate a long fiber nonwoven web made of a biodegradable thermoplastic polymer and a nonwoven web made of natural fibers. In the case of performing partial heat fusion by means of a heat-pressure welding apparatus using an embossing roll which has been conventionally applied, the adhesive force between the two webs is weak and the obtained laminated nonwoven fabric cannot withstand use at all.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
問題を解決するもので、生分解性能が制御可能であると
ともに不織布の地合いおよび機械的特性、紡出糸条の冷
却性および可紡性に優れ、かつ熱接着機能を有し、さら
に必要に応じて吸水性をも発揮しうる生分解性不織布お
よびこれらの製造方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention solves such a problem and has a controllable biodegradability, texture and mechanical properties of nonwoven fabric, cooling property of spun yarn and spinnability. It is intended to provide a biodegradable nonwoven fabric which has excellent properties, has a heat-adhesive function, and can also exhibit water absorption as required, and a method for producing these.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
本発明は、以下の構成を要旨とするものである。 (1)複合長繊維からなる長繊維不織ウエブが部分的に
熱圧接されて所定の形態が保持されてなる不織布であっ
て、前記複合長繊維が生分解性を有する第1の脂肪族ポ
リエステルからなる高融点成分とこの高融点成分よりも
融点の低い生分解性を有する第2の脂肪族ポリエステル
からなる低融点成分とから形成される環状均等配列型複
合長繊維であり、この環状均等配列型複合長繊維の繊維
横断面において高融点成分および低融点成分が繊維横断
面の中心から周方向の一定範囲ずつを交互に占め、かつ
繊維横断面に中空部を有し、かつ前記両成分が繊維横断
面においてそれぞれ均等な面積を有するセグメントに分
割されており、しかも高融点成分および低融点成分が繊
維軸方向に連続するとともに繊維表面ならびに中空部に
露出していることを特徴とする生分解性不織布。 (2)複合長繊維からなる長繊維不織ウエブと天然繊維
からなる天然繊維不織ウエブとが積層され部分的な圧接
により一体化されてなる積層不織布であって、前記複合
長繊維が生分解性を有する第1の脂肪族ポリエステルか
らなる高融点成分とこの高融点成分よりも融点の低い生
分解性を有する第2の脂肪族ポリエステルからなる低融
点成分とから形成される環状均等配列型複合長繊維であ
り、この環状均等配列型複合長繊維の繊維横断面におい
て高融点成分および低融点成分が繊維横断面の中心から
周方向の一定範囲ずつを交互に占め、かつ繊維横断面に
中空部を有し、かつ前記両成分が繊維横断面においてそ
れぞれ均等な面積を有するセグメントに分割されてお
り、しかも高融点成分および低融点成分が繊維軸方向に
連続するとともに繊維表面ならびに中空部に露出してい
ることを特徴とする生分解性不織布。 (3)複合長繊維からなる長繊維不織ウエブが部分的に
熱圧接されて所定の形態が保持されてなる不織布の製造
方法であって、前記複合長繊維を生分解性を有する第1
の脂肪族ポリエステルからなる高融点成分とこの高融点
成分よりも融点の低い生分解性を有する第2の脂肪族ポ
リエステルからなる低融点成分とを用いて形成し、繊維
横断面において高融点成分および低融点成分が繊維横断
面の中心から周方向の一定範囲ずつを交互に占め、かつ
繊維横断面に中空部を有し、前記両成分が繊維横断面に
おいてそれぞれ均等な面積を有するセグメントに分割さ
れており、しかも高融点成分および低融点成分が繊維軸
方向に連続するとともに繊維表面ならびに中空部に露出
するような環状均等配列型複合長繊維を溶融紡糸し、こ
の環状均等配列型複合長繊維を牽引速度2000m/分
以上で牽引細化した後、長繊維不織ウエブとなし、この
長繊維不織ウエブを熱圧接装置により部分的に熱圧接さ
せることを特徴とする生分解性不織布の製造方法。 (4)複合長繊維からなる長繊維不織ウエブと天然繊維
からなる天然繊維不織ウエブとを積層して部分的に圧接
することにより一体化されてなる積層不織布の製造方法
であって、前記複合長繊維を生分解性を有する第1の脂
肪族ポリエステルからなる高融点成分とこの高融点成分
よりも融点の低い生分解性を有する第2の脂肪族ポリエ
ステルからなる低融点成分とを用いて形成し、繊維横断
面において高融点成分および低融点成分が繊維横断面の
中心から周方向の一定範囲ずつを交互に占め、かつ繊維
横断面に中空部を有し、前記両成分が繊維横断面におい
てそれぞれ均等な面積を有するセグメントに分割されて
おり、しかも高融点成分および低融点成分が繊維軸方向
に連続するとともに繊維表面ならびに中空部に露出する
ような環状均等配列型複合長繊維を溶融紡糸し、この環
状均等配列型複合長繊維を牽引速度2000m/分以上
で牽引細化した後、長繊維不織ウエブとなし、この長繊
維不織ウエブに常法にて別途作成した天然繊維からなる
不織ウエブを積層した後に、超音波融着処理を施して両
不織ウエブを融着させて一体化することを特徴とする生
分解性不織布の製造方法。
To solve this problem, the present invention has the following structures. (1) A non-woven fabric in which a long-fiber non-woven web made of composite long fibers is partially heat-pressed to maintain a predetermined shape, and the composite long fibers are biodegradable first aliphatic polyester. A ring-shaped uniform array type composite long fiber formed of a high-melting-point component composed of and a low-melting-point component composed of a second aliphatic polyester having a lower melting point than the high-melting-point component and having biodegradability. In the fiber cross section of the type composite continuous fiber, the high melting point component and the low melting point component alternately occupy a constant range in the circumferential direction from the center of the fiber cross section, and have a hollow portion in the fiber cross section, and both components are The fiber is divided into segments each having an equal area in the fiber cross section, and the high-melting point component and low-melting point component are continuous in the fiber axis direction and are exposed on the fiber surface and hollow part. Biodegradable nonwoven fabric according to claim. (2) A laminated non-woven fabric in which a long-fiber non-woven web made of composite long fibers and a natural-fiber non-woven web made of natural fibers are laminated and integrated by partial pressure contact, wherein the composite long-fiber is biodegraded. Homogenous array type composite formed from a high-melting point component composed of a first aliphatic polyester having high properties and a low-melting point component composed of a second aliphatic polyester having a biodegradability having a lower melting point than this high-melting point component In the fiber cross section of the annular uniform array type composite long fiber, the high melting point component and the low melting point component alternately occupy a constant range in the circumferential direction from the center of the fiber cross section, and the hollow section is formed in the fiber cross section. And the both components are divided into segments each having an equal area in the cross section of the fiber, and the high melting point component and the low melting point component are continuous in the fiber axis direction and Biodegradable nonwoven fabric, characterized in that exposed on the surface as well as the hollow section. (3) A method for producing a non-woven fabric, wherein a long-fiber non-woven web made of composite long fibers is partially heat-pressed to maintain a predetermined shape, wherein the composite long fibers are biodegradable.
Formed by using a high melting point component made of the aliphatic polyester and a low melting point component made of a second aliphatic polyester having a biodegradability having a lower melting point than the high melting point component, The low melting point component alternately occupies a certain range in the circumferential direction from the center of the fiber cross section, and has a hollow portion in the fiber cross section, and both components are divided into segments having an equal area in the fiber cross section. In addition, the high-melting-point component and the low-melting-point component are continuous in the axial direction of the fiber, and the ring-shaped uniform array type composite filaments are melt-spun, and the ring-shaped uniform array type composite filaments are melt-spun. After being drawn and thinned at a drawing speed of 2000 m / min or more, it is made into a long-fiber non-woven web, and this long-fiber non-woven web is partially heat-pressed by a heat-pressing device. Method of manufacturing that biodegradable nonwoven fabric. (4) A method for producing a laminated non-woven fabric, wherein a long-fiber non-woven web made of composite long fibers and a natural-fiber non-woven web made of natural fibers are laminated and partially pressure-bonded to be integrated. Using a high melting point component made of a first aliphatic polyester having biodegradability and a low melting point component made of a second aliphatic polyester having a biodegradability having a lower melting point than the high melting point component In the fiber cross section, the high-melting point component and the low-melting point component alternately occupy a certain range in the circumferential direction from the center of the fiber cross section, and the fiber cross section has a hollow portion, and both components have the fiber cross section. In each of the above-mentioned areas, the high-melting point component and the low-melting point component are continuous in the axial direction of the fiber, and are evenly distributed in the fiber surface and hollow part. The composite long filaments are melt-spun, and the annular uniform array composite long filaments are pulled and thinned at a pulling speed of 2000 m / min or more to form a long fiber non-woven web. A method for producing a biodegradable non-woven fabric, which comprises laminating non-woven webs made separately from each other and then subjecting the non-woven webs to ultrasonic fusion to integrate them.

【0008】本発明によれば、長繊維の繊維横断面にお
いて、高融点成分と低融点成分とが複数に分かれた状態
で配置されており、しかもこの高融点成分と低融点成分
とが繊維軸方向に連続するとともに繊維表面および中空
部に露出していることから、生分解性能には劣るが冷却
性および開繊性に優れる高融点成分を細分化するととも
に、冷却性および開繊性には劣るが生分解性能に優れる
低融点成分を細分化することができる。これにより、冷
却性、開繊性および生分解性能のいずれにも優れる不織
布を得ることができるのである。しかも、高融点成分お
よび低融点成分はいずれも各々均等に分かれた状態で配
置されていることにより、紡出糸条の冷却性、開繊性に
優れる高融点成分および生分解性能に優れる低融点成分
は繊維表面においてバランス良く配置され、紡出糸条の
冷却性、開繊性および生分解性能を偏りなく均一に付与
することができるのである。
According to the present invention, the high-melting point component and the low-melting point component are arranged in a plurality of states in the cross section of the long fiber, and the high-melting point component and the low-melting point component are arranged in the fiber axis. Since it is continuous in the direction and exposed on the fiber surface and hollow part, it subdivides the high melting point component that is inferior in biodegradability but excellent in cooling and openability, and It is possible to subdivide low-melting-point components that are inferior but have excellent biodegradability. This makes it possible to obtain a nonwoven fabric that is excellent in cooling properties, fiber-opening properties, and biodegradability. Moreover, since the high-melting point component and the low-melting point component are evenly arranged, the high-melting point component that is excellent in cooling and opening properties of the spun yarn and the low melting point that is excellent in biodegradability The components are arranged on the surface of the fiber in a well-balanced manner, and the spinnability of the spun yarn can be uniformly imparted to the spinnability, openability and biodegradability.

【0009】また、本発明の生分解性不織布のうち、長
繊維不織ウエブと天然繊維不織ウエブとを積層した積層
不織布は、天然繊維によって吸水性を発揮させるととも
に、湿潤時の機械的強力に劣るという天然繊維の特性を
長繊維不織ウエブによって補強するものである。しか
も、長繊維不織ウエブは脂肪族ポリエステル系重合体か
ら構成され、天然繊維不織ウエブはコットン等の分解性
素材から構成されるため、本発明の積層不織布の構成素
材は全て自然環境下で分解し得るものである。
Among the biodegradable non-woven fabrics of the present invention, the laminated non-woven fabric obtained by laminating the long fiber non-woven web and the natural fiber non-woven web allows water absorption by the natural fiber and mechanical strength when wet. The property of natural fiber, which is inferior to that of natural fiber, is reinforced by a long-fiber nonwoven web. Moreover, since the long fiber non-woven web is composed of an aliphatic polyester polymer and the natural fiber non-woven web is composed of a degradable material such as cotton, all the constituent materials of the laminated nonwoven fabric of the present invention are under natural environment. It can be decomposed.

【0010】[0010]

【発明の実施の形態】まず、本発明の生分解性不織布の
うち、長繊維不織ウエブが部分的に熱圧接されて所定の
形態を保持してなる長繊維不織布について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION First, among the biodegradable non-woven fabrics of the present invention, a long-fiber non-woven fabric in which a long-fiber non-woven web is partially heat-pressed to maintain a predetermined shape will be described.

【0011】本発明に適用される長繊維は、生分解性を
有する脂肪族ポリエステル2成分により形成される。す
なわち、本発明に適用される長繊維は、高融点成分の脂
肪族ポリエステルと低融点成分の脂肪族ポリエステルと
で構成された複合長繊維である。一般に、高融点成分
は、紡出糸条の冷却性および開繊性には優れるものの、
結晶化度が高いため生分解性能には劣り、逆に、低融点
成分は、紡出糸条の冷却性および開繊性には劣るもの
の、結晶化度が低いため生分解性能には優れる。例え
ば、繊維横断面が高融点成分単相の場合には、製糸性お
よび不織布化には優れるものの、目標とする生分解性能
を得ることができない。一方、繊維横断面が低融点成分
単相の場合には、紡出糸条の冷却性に劣り不織布すら得
ることができない。本発明によれば、繊維横断面におい
て、生分解性能には劣るが冷却性および開繊性に優れる
高融点成分を細分化するとともに、冷却性および開繊性
には劣るが生分解性能に優れる低融点成分を細分化し、
細分化した両成分を円周方向に交互に配列させることに
より、冷却性、開繊性および生分解性能のいずれにも優
れる不織布を得ることができるのである。
The long fiber applied to the present invention is formed by two components of aliphatic polyester having biodegradability. That is, the long fiber applied to the present invention is a composite long fiber composed of an aliphatic polyester having a high melting point component and an aliphatic polyester having a low melting point component. Generally, the high melting point component is excellent in cooling property and fiber opening property of the spun yarn,
Since the degree of crystallinity is high, the biodegradability is inferior. On the contrary, the low melting point component is inferior in the cooling property and the fiber-opening property of the spun yarn, but the low melting point is excellent in the biodegradability. For example, when the cross-section of the fiber is a single phase having a high melting point component, the desired biodegradability cannot be obtained, although the spinnability and the non-woven fabric are excellent. On the other hand, when the cross-section of the fiber is a low melting point component single phase, the cooling property of the spun yarn is poor and even a non-woven fabric cannot be obtained. According to the present invention, in the cross-section of the fiber, while subdividing the high-melting point component which is inferior in biodegradability but excellent in cooling and opening properties, it is inferior in cooling properties and opening properties but is excellent in biodegradability. The low melting point component is subdivided,
By alternately arranging the two subdivided components in the circumferential direction, it is possible to obtain a non-woven fabric having excellent cooling properties, fiber-opening properties and biodegradability.

【0012】従って、本発明における長繊維では、高融
点成分と低融点成分との融点差を5℃以上とすることが
好ましく、さらに好ましくは10℃以上とするのが良
い。高融点成分と低融点成分との融点差が5℃未満であ
ると、繊維横断面が単相の場合のような全融タイプに近
づくため、次工程における不織布の部分熱圧接において
低融点成分のみならず高融点成分であっても熱的なダメ
ージを生じることとなり、得られる不織布は機械的特性
と柔軟性とを伴せ持つことができないものとなる。
Therefore, in the long fiber of the present invention, the melting point difference between the high melting point component and the low melting point component is preferably 5 ° C. or more, more preferably 10 ° C. or more. If the melting point difference between the high-melting point component and the low-melting point component is less than 5 ° C., the fiber cross-section approaches a full-melt type as in the case of a single phase, so only the low-melting point component is used in the partial hot-pressing of the nonwoven fabric in the next step. However, even a high melting point component causes thermal damage, and the resulting nonwoven fabric cannot have both mechanical properties and flexibility.

【0013】まず、本発明における環状均等配列型複合
長繊維を形成する脂肪族ポリエステルについて説明す
る。高融点成分はポリブチレンサクシネートであること
が好ましい。低融点成分は、ブチレンサクシネートを主
繰り返し単位とし、これに他の脂肪族ポリエステルを構
成する繰り返し単位要素を共重合させたものであること
が好ましい。前記ブチレンサクシネ−トに共重合せしめ
る他の脂肪族ポリエステルとしては、例えば、ポリグリ
コール酸やポリ乳酸のようなポリ(α−ヒドロキシ酸)
またはこれらを構成する繰り返し単位要素による共重合
体が挙げられる。また、ポリ(ε−カプロラクトン)、
ポリ(β−プロピオラクトン)のようなポリ(ω−ヒド
ロキシアルカノエート)が、さらに、ポリ−3−ヒドロ
キシプロピオネート、ポリ−3−ヒドロキシブチレー
ト、ポリ−3−ヒドロキシカプロエート、ポリ−3−ヒ
ドロキシヘプタノエート、ポリ−3−ヒドロキシオクタ
ノエートのようなポリ(β−ヒドロキシアルカノエー
ト)およびこれらを構成する繰り返し単位要素とポリ−
3−ヒドロキシバリレートやポリ−4−ヒドロキシブチ
レートを構成する繰り返し単位要素との共重合体が挙げ
られる。またジオールとジカルボン酸の縮重合体からな
るものとして、例えば、ポリエチレンオキサレート、ポ
リエチレンサクシネート、ポリエチレンアジペート、ポ
リエチレンアゼテート、ポリブチレンオキサレート、ポ
リブチレンアジペート、ポリブチレンセバケート、ポリ
ヘキサメチレンセバケート、ポリネオペンチルオキサレ
ートまたはこれらを構成する繰り返し単位要素による共
重合体が挙げられる。以上の脂肪族ポリエステルのなか
で、ポリエチレンサクシネートならびにポリブチレンア
ジペートが、製糸性および生分解性能に優れるなどの理
由により、特に好適に用いられる。
First, the aliphatic polyester forming the annular uniform array type composite long fibers in the present invention will be described. The high melting point component is preferably polybutylene succinate. The low melting point component is preferably one in which butylene succinate is a main repeating unit and a repeating unit element constituting another aliphatic polyester is copolymerized with this. Other aliphatic polyesters that can be copolymerized with the butylene succinate include, for example, poly (α-hydroxy acids) such as polyglycolic acid and polylactic acid.
Alternatively, there may be mentioned a copolymer of repeating unit elements constituting these. In addition, poly (ε-caprolactone),
Poly (ω-hydroxyalkanoates), such as poly (β-propiolactone), may also be poly-3-hydroxypropionate, poly-3-hydroxybutyrate, poly-3-hydroxycaproate, poly Poly (β-hydroxyalkanoates) such as 3-hydroxyheptanoate, poly-3-hydroxyoctanoate, and the repeating unit elements and poly-constituting them
Examples thereof include copolymers with repeating unit elements constituting 3-hydroxyvalerate and poly-4-hydroxybutyrate. Examples of the polycondensate of diol and dicarboxylic acid include polyethylene oxalate, polyethylene succinate, polyethylene adipate, polyethylene azate, polybutylene oxalate, polybutylene adipate, polybutylene sebacate, polyhexamethylene sebacate. , Polyneopentyl oxalate, or copolymers of the repeating unit elements constituting them. Among the above aliphatic polyesters, polyethylene succinate and polybutylene adipate are particularly preferably used because of their excellent spinnability and biodegradability.

【0014】前記低融点成分を構成する共重合体におい
ては、ブチレンサクシネートの共重合量比が70〜90
モル%であることが好ましい。ブチレンサクシネートの
共重合量比が70モル%未満であると、生分解性能には
優れるものの、紡出糸条の冷却性および開繊性に劣り、
目的とする長繊維ひいては不織布が得られないこととな
る。逆に、90モル%を超えると、冷却性および開繊性
には優れるものの、生分解性能に劣り本発明の目的とす
るものではない。
In the copolymer constituting the low melting point component, the copolymerization ratio of butylene succinate is 70 to 90.
Preferably it is mol%. When the copolymerization amount ratio of butylene succinate is less than 70 mol%, the biodegradability is excellent, but the cooling property and the fiber opening property of the spun yarn are poor,
The intended long fibers and thus the non-woven fabric cannot be obtained. On the other hand, when it exceeds 90 mol%, although the cooling property and the fiber-opening property are excellent, the biodegradability is poor and it is not the object of the present invention.

【0015】本発明で適用する重合体のメルトフロレー
ト値(以降、MFR値と記す)は、高融点成分が20〜
70g/10分であり、低融点成分が15〜50g/1
0分であることが好ましい。但し、本発明におけるMF
R値は、ASTM−D−1238(E)記載の方法に準
じて測定したものである。高融点成分のMFR値が20
g/10分未満および/または低融点成分のMFR値が
15g/10分未満であると、あまりにも高粘度である
ため、紡出糸条の細化がスムーズに行われず操業性を損
なう結果となり、しかも得られる繊維は太繊度で均斉度
に劣るものとなる。逆に、高融点成分のMFR値が70
g/10分および/または低融点成分のMFR値が50
g/10分を超えると、あまりにも低粘度であるため、
複合断面が不安定となるばかりか、紡糸工程において糸
切れが発生し操業性を損なうとともに、得られる不織布
の機械的特性が劣る結果となる。これらの理由により、
高融点成分のMFR値は25〜65g/10分、低融点
成分のMFR値は18〜45g/10分であることがさ
らに好ましい。
The polymer used in the present invention has a melt fluorate value (hereinafter referred to as MFR value) of 20 to 50 for the high melting point component.
70 g / 10 minutes, low melting point component 15 to 50 g / 1
It is preferably 0 minutes. However, the MF in the present invention
The R value is measured according to the method described in ASTM-D-1238 (E). High melting point MFR value is 20
If it is less than g / 10 minutes and / or the MFR value of the low melting point component is less than 15 g / 10 minutes, the viscosity will be too high, and the spinning yarn will not be thinned smoothly, resulting in impaired operability. Moreover, the obtained fiber has a large fineness and a poor uniformity. On the contrary, the MFR value of the high melting point component is 70
g / 10 minutes and / or MFR value of low melting point component is 50
When it exceeds g / 10 minutes, the viscosity is too low.
Not only is the composite cross section unstable, yarn breakage occurs in the spinning process, impairing operability, and the resulting nonwoven fabric has poor mechanical properties. For these reasons,
More preferably, the high melting point component has an MFR value of 25 to 65 g / 10 minutes, and the low melting point component has an MFR value of 18 to 45 g / 10 minutes.

【0016】また、高融点成分の粘度は低融点成分の粘
度より低い方が好ましい。一般に、熱可塑性樹脂の複合
紡糸においては、低粘度成分が高粘度成分を被覆する傾
向がある。すなわち、本発明においては、生分解性能に
は劣るものの紡出糸条の冷却性に優れる高融点成分を低
粘度にすることにより、繊維表面における低融点成分の
露出比率を減少させ、紡出糸条の密着を防止しさらに開
繊性を良化させるとともに、両成分の楔状形態を安定化
できるのである。
The viscosity of the high melting point component is preferably lower than that of the low melting point component. Generally, in a composite spinning of a thermoplastic resin, a low viscosity component tends to cover a high viscosity component. That is, in the present invention, the high melting point component, which has poor biodegradability but is excellent in the cooling property of the spun yarn, is made to have a low viscosity, whereby the exposure ratio of the low melting point component on the fiber surface is decreased, and the spun yarn is spun. It is possible to prevent the strips from adhering to each other and further improve the spreadability, and to stabilize the wedge shape of both components.

【0017】本発明において、高融点成分および低融点
成分に適用される脂肪族ポリエステルは、数平均分子量
が約20,000以上、好ましくは40,000以上、
さらに好ましくは60,000以上のものが、製糸性お
よび得られる糸条の特性の点で良い。また、重合度を高
めるために少量のジイソシアネートやテトラカルボン酸
二無水物などで鎖延長したものでも良い。
In the present invention, the aliphatic polyester applied to the high melting point component and the low melting point component has a number average molecular weight of about 20,000 or more, preferably 40,000 or more,
More preferably, 60,000 or more is preferable in view of the spinnability and the characteristics of the obtained yarn. Further, it may be chain-extended with a small amount of diisocyanate or tetracarboxylic dianhydride in order to increase the degree of polymerization.

【0018】本発明において適用される長繊維において
は、その構成成分のうちの少なくとも低融点成分中に結
晶核剤が添加されていることが好ましい。結晶核剤を添
加することにより、溶融紡出後に固化しにくい結晶性の
低い重合体であっても、紡出糸条間に密着が発生するの
を防止することができる。また、結晶核剤は、重合工程
あるいは溶融工程で添加するが、その際、得られる糸の
機械的性能および均斉度を向上させるため、できる限り
均一分散させておくことが好ましい。
In the long fiber applied in the present invention, it is preferable that a crystal nucleating agent is added to at least the low melting point component of the constituent components. By adding the crystal nucleating agent, it is possible to prevent adhesion between spun yarns even if the polymer has low crystallinity and is hard to solidify after melt spinning. The crystal nucleating agent is added in the polymerization step or the melting step. At this time, it is preferable to disperse the nucleating agent as uniformly as possible in order to improve the mechanical performance and the uniformity of the obtained yarn.

【0019】結晶核剤としては、粉末状の無機物で、か
つ溶融液に溶解したりするものでなければ特に制限をう
けないが、タルク、炭酸カルシウム、酸化チタン、窒化
ホウ素、シリカゲル、酸化マグネシウムなどが通常用い
られ、これらの中でも特に、タルクまたは酸化チタンま
たはこれらの混合物が好適に用いられる。
The crystal nucleating agent is not particularly limited as long as it is a powdered inorganic substance and does not dissolve in a melt, but talc, calcium carbonate, titanium oxide, boron nitride, silica gel, magnesium oxide and the like. Is usually used, and among these, talc, titanium oxide, or a mixture thereof is preferably used.

【0020】結晶核剤としての無機粉末の平均粒径は5
μm以下であるのが好ましい。平均粒径が5μmを超え
ると、繊度のより細かな繊維が得られにくくなる傾向が
生じたり、あるいは吐出孔を複数備えている紡糸口金内
の濾過フィルターに目詰まりが発生しやすくなり、紡糸
操業性が低下する傾向が生じる。これら理由により、結
晶核剤としての無機粉末の平均粒径は5μm以下、好ま
しくは4μm以下、さらに好ましくは3μm以下が良
い。
The average particle size of the inorganic powder as a crystal nucleating agent is 5
It is preferably not more than μm. When the average particle size exceeds 5 μm, it tends to be difficult to obtain finer fibers, or the filtration filter in the spinneret having a plurality of discharge holes is apt to be clogged, resulting in a spinning operation. There is a tendency for the sex to decrease. For these reasons, the average particle size of the inorganic powder as the crystal nucleating agent is 5 μm or less, preferably 4 μm or less, more preferably 3 μm or less.

【0021】結晶核剤としての無機粉末の嵩比容は、2
〜10cc/gであるのが好ましく、3〜8cc/gで
あるのがより好ましい。なお、嵩比容は、単位重量当り
の無機粉末の体積のことである。嵩比容が大きくなれば
なるほど、無機粉末の表面積が大きくなり、結晶核剤と
しての効果を増大させることになる。無機粉末の嵩比容
が2cc/g未満であると、結晶核剤としての効果が低
減し、そのために結晶核剤の添加量(重合体中への含有
量)を多くしなければならず、得られる長繊維ひいては
不織布の機械的強度は低下する。また、嵩比容が10c
c/gを超える無機粉末の製造は困難であり、このよう
な無機粉末を得ようとすると、無機粉末のコストが高騰
し、ひいては得られる長繊維のコストも高騰する結果と
なる。
The bulk specific volume of the inorganic powder as a crystal nucleating agent is 2
It is preferably from 10 to cc / g, more preferably from 3 to 8 cc / g. The bulk specific volume is the volume of the inorganic powder per unit weight. The larger the bulk specific volume, the larger the surface area of the inorganic powder and the greater the effect as a crystal nucleating agent. If the bulk specific volume of the inorganic powder is less than 2 cc / g, the effect as a crystal nucleating agent is reduced, and therefore the amount of the crystal nucleating agent added (content in the polymer) must be increased, The mechanical strength of the resulting long fibers and thus of the nonwoven fabric decreases. The bulk specific volume is 10c
It is difficult to produce an inorganic powder exceeding c / g, and if such an inorganic powder is tried to be obtained, the cost of the inorganic powder will increase, and the cost of the obtained long fiber will also increase.

【0022】また、結晶核剤は、高融点成分中への結晶
核剤の添加量をQA (重量%)とし、低融点成分中への
結晶核剤の添加量をQB (重量%)としたときに、
(1)式および(2)式を満足するように添加されてい
ることが好ましい。 [(ΔTA +ΔTB)/100]−2 /3 ≦QA +QB ≦[(ΔTA +ΔTB)/100]+4 …(1) QA ≦QB …(2) 但し、ΔTA =高融点成分の融点−高融点成分の結晶化
温度≧35 ΔTB =低融点成分の融点−低融点成分の結晶化温度≧
35 結晶核剤の全添加量QA +QB (重量%)が(1)式で
定義された上限を超えると、紡出糸条の冷却効果は高い
ものの、製糸性が低下するとともに得られた長繊維ひい
ては不織布の機械的性能が劣り好ましくない。逆に、結
晶核剤の全添加量QA +QB (重量%)が(1)式で定
義された下限より低くなると、紡出糸条の冷却性が低下
して紡出糸条間に密着が発生し、目標とする不織布を得
ることが困難となる。また、高融点成分中への結晶核剤
の添加量QA (重量%)が、低融点成分中への結晶核剤
の添加量QB (重量%)よりも多くなると、高融点成分
の冷却性はさらに向上するが、低融点成分の冷却性が低
くなり、これによって紡出糸条間に密着が発生しやすく
なるため好ましくない。
Regarding the crystal nucleating agent, the addition amount of the crystal nucleating agent to the high melting point component was QA (wt%), and the addition amount of the crystal nucleating agent to the low melting point component was QB (wt%). sometimes,
It is preferable that it is added so as to satisfy the formulas (1) and (2). [(ΔTA + ΔTB) / 100] −2 / 3 ≦ QA + QB ≦ [(ΔTA + ΔTB) / 100] +4 (1) QA ≦ QB (2) where ΔTA = melting point of high melting point component−high melting point component Crystallization temperature ≧ 35 ΔTB = melting point of low melting point component−crystallization temperature of low melting point component ≧
35 If the total amount QA + QB (% by weight) of the crystal nucleating agent exceeds the upper limit defined by the formula (1), the spinning effect is high, but the spinnability is deteriorated and the long fibers obtained are obtained. Furthermore, the mechanical performance of the nonwoven fabric is inferior, which is not preferable. Conversely, if the total amount of the crystal nucleating agent QA + QB (% by weight) is lower than the lower limit defined by the formula (1), the cooling property of the spun yarn is reduced, and adhesion between the spun yarns occurs. Then, it becomes difficult to obtain the target nonwoven fabric. Also, when the addition amount QA (% by weight) of the nucleating agent in the high melting point component is larger than the addition amount QB (% by weight) of the nucleating agent in the low melting point component, the cooling property of the high melting point component is reduced. Although it is further improved, the cooling property of the low-melting point component is lowered, and this is not preferable because adhesion between spun yarns is likely to occur.

【0023】ところで、(1)式において、ΔTは各成
分の融点と結晶化温度との差であるが、製糸工程におい
ては、このΔTが小さいほうが紡出糸条の冷却性は向上
する。本発明の重合体において、ΔTは通常35以上と
大きくなるが、結晶核剤を添加することにより効果的に
紡出糸条の冷却を促進することができるのである。
In the formula (1), ΔT is the difference between the melting point of each component and the crystallization temperature. In the yarn making process, the smaller ΔT, the better the cooling property of the spun yarn. In the polymer of the present invention, ΔT is usually as large as 35 or more. However, the cooling of the spun yarn can be effectively promoted by adding a nucleating agent.

【0024】なお、本発明において適用される熱可塑性
重合体に、必要に応じて、例えば艶消し剤、顔料、光安
定剤、耐候剤、酸化防止剤などの各種添加剤を本発明の
効果を損なわない範囲内で添加することができる。
If necessary, various additives such as a matting agent, a pigment, a light stabilizer, a weathering agent and an antioxidant may be added to the thermoplastic polymer applied in the present invention. It can be added within a range that does not impair it.

【0025】次に、本発明に適用される複合長繊維の繊
維横断面形状について説明する。本発明の環状均等配列
型複合断面においては、高融点成分と低融点成分とが周
方向の一定範囲ずつを交互に占め、かつ繊維横断面に中
空部を有し、しかも高融点成分および低融点成分が繊維
軸方向に連続するとともに繊維表面ならびに中空部に露
出しており、前記両成分は繊維横断面においてそれぞれ
均等な面積を有するセグメントに分割されていることが
必要である。高融点成分と低融点成分とが交互に配列さ
れていることにより、例えば、低融点成分が冷却性およ
び開繊性に劣る重合体であっても、隣接する高融点成分
により紡出糸条の冷却性および開繊性を向上できるので
ある。また、高融点成分が生分解性能に劣る重合体であ
っても隣接する低融点成分の生分解性能が優れるため、
経時的に低融点成分が分解すると高融点成分が繊度が極
細い楔状の薄片として取り残される状態となり、不織布
としての生分解性能には優れる結果となるのである。ま
た、繊維横断面に中空部を有することにより、紡出糸条
の冷却性を向上させ、さらに、生分解速度を促進させる
ことができる。すなわち、低融点成分の分解が進行する
と中空部が有るために高融点成分が弧状の薄片として取
り残される状態となり生分解速度が促進するのである。
さらに、高融点成分および低融点成分のいずれもが繊維
軸方向に連続していることが、繊維横断面の安定性、製
糸性および繊維の機械的特性を高めるために必要であ
る。また、前記両成分のいずれもが繊維表面ならびに中
空部に露出していることが、紡出糸条の冷却性、開繊性
および生分解性能の促進、制御のために必要である。た
とえば低融点成分が繊維横断面の中空部まで貫通してい
ない場合には、高融点成分が弧状になるのに時間を要す
るため生分解性能には劣る結果となる。さらに、高融点
成分と低融点成分とがそれぞれ均等な面積を有するセグ
メントに配列されていることにより、紡出糸条の冷却
性、開繊性に優れる高融点成分および生分解性能に優れ
る低融点成分は繊維表面においてバランス良く配置され
るので、紡出糸条の冷却性、開繊性および生分解性能を
偏りなく均一に付与することができる。
Next, the fiber cross-sectional shape of the composite continuous fiber applied to the present invention will be described. In the annular uniform array type composite cross section of the present invention, the high melting point component and the low melting point component alternately occupy a certain range in the circumferential direction, and has a hollow portion in the fiber cross section, and the high melting point component and the low melting point It is necessary that the components are continuous in the fiber axial direction and are exposed on the fiber surface and the hollow portion, and that both components are divided into segments each having an equal area in the fiber cross section. By alternately arranging the high-melting point component and the low-melting point component, for example, even if the low-melting point component is a polymer inferior in the cooling property and the fiber-opening property, the adjacent high-melting point component causes the spun yarn to It is possible to improve the cooling property and the fiber opening property. Further, even if the high melting point component is a polymer having poor biodegradability, the adjacent low melting point component is excellent in biodegradability,
When the low-melting point component is decomposed with time, the high-melting point component is left as a wedge-shaped thin piece having an extremely fine size, resulting in excellent biodegradability as a nonwoven fabric. In addition, by having a hollow portion in the cross section of the fiber, it is possible to improve the cooling property of the spun yarn and further accelerate the biodegradation rate. That is, as the decomposition of the low melting point component progresses, the high melting point component is left as an arc-shaped thin piece due to the presence of the hollow portion, and the biodegradation rate is accelerated.
Furthermore, it is necessary that both the high-melting point component and the low-melting point component be continuous in the fiber axis direction in order to improve the stability of the fiber cross section, the spinnability, and the mechanical properties of the fiber. Further, it is necessary that both of the above components are exposed on the fiber surface and in the hollow portion in order to promote and control the cooling property, fiber-opening property and biodegradability of the spun yarn. For example, when the low-melting point component does not penetrate to the hollow portion of the fiber cross section, it takes time for the high-melting point component to form an arc, resulting in poor biodegradability. Furthermore, since the high-melting point component and the low-melting point component are arranged in the segments having equal areas, the high-melting point component excellent in cooling property and fiber-opening property of the spun yarn and the low melting point excellent in biodegradability Since the components are arranged in a well-balanced manner on the fiber surface, it is possible to impart evenly the cooling properties, fiber-opening properties and biodegradability of the spun yarn.

【0026】本発明に適用される複合長繊維の繊維横断
面において、高融点成分/低融点成分の複合比が1/3
〜3/1(重量比)であることが好ましい。複合比がこ
の範囲を外れると紡出糸条の冷却性、開繊性および生分
解性能の全てを併せて満足することができず、さらに、
繊維横断面形状の不安定さを誘発するため好ましくな
い。たとえば、高融点成分/低融点成分の複合比が1/
3を超えると、生分解性能には優れるものの、紡出糸条
の冷却性、開繊性には劣る結果となる。逆に、高融点成
分/低融点成分の複合比が3/1を超えると、紡出糸条
の冷却性、開繊性には優れるものの、生分解性能には劣
る結果となる。低融点成分が生分解性能に劣る重合体で
あれば、高融点成分の複合比を上げることにより生分解
速度を促進させることができる。この理由により、高融
点成分/低融点成分の複合比は、さらに好ましくは1/
2〜2/1(重量比)が良い。
In the fiber cross section of the composite long fiber applied to the present invention, the composite ratio of high melting point component / low melting point component is 1/3.
It is preferably ˜3 / 1 (weight ratio). If the composite ratio is out of this range, it is not possible to satisfy all of the cooling properties, opening properties and biodegradability of the spun yarn, and further,
It is not preferable because it induces instability of the fiber cross-sectional shape. For example, the composite ratio of high melting point component / low melting point component is 1 /
When it exceeds 3, although the biodegradability is excellent, the cooling property and the fiber-opening property of the spun yarn are inferior. Conversely, when the composite ratio of the high melting point component / the low melting point component exceeds 3/1, the spun yarn is excellent in the cooling property and the spreadability, but is inferior in the biodegradability. If the low melting point component is a polymer having poor biodegradability, the biodegradation rate can be accelerated by increasing the composite ratio of the high melting point component. For this reason, the composite ratio of high melting point component / low melting point component is more preferably 1 /
2 to 2/1 (weight ratio) is preferable.

【0027】また、本発明に適用される複合長繊維の繊
維横断面において、中空率は5〜30%であることが好
ましい。ここで、中空率とは、図1に示すように、繊維
横断面における糸の直径を(A)、中空部の直径を
(a)としたとき、次式で示される値である。
In the fiber cross section of the composite long fiber applied to the present invention, the hollow ratio is preferably 5 to 30%. Here, as shown in FIG. 1, the hollow ratio is a value represented by the following formula, where (A) is the diameter of the yarn in the fiber cross section and (a) is the diameter of the hollow portion.

【0028】中空率(%)=(a2 /A2 )×100 中空率が5%未満であると、冷却性および生分解速度の
促進には不充分であり、逆に、中空率が30%を超える
と、製糸段階において中空部がパンクしたり高速製糸性
に劣ることとなり好ましくない。この理由により、中空
率は、さらに好ましくは10〜25%が良い。
Hollow ratio (%) = (a 2 / A 2 ) × 100 When the hollow ratio is less than 5%, it is insufficient to promote the cooling property and the rate of biodegradation, and conversely, the hollow ratio is 30%. When it exceeds%, the hollow part is flat in the yarn making stage and the high-speed yarn formability is deteriorated, which is not preferable. For this reason, the hollow rate is more preferably 10 to 25%.

【0029】本発明に適用される複合長繊維の繊維横断
面において、高融点成分、低融点成分の各セグメント数
が3〜20であることが好ましい。ここで、セグメント
数とは、繊維横断面において、高融点成分、低融点成分
それぞれが配列されて占める最小構成単位の存在数であ
る。各セグメント数が3未満であると、紡出糸条の冷却
性および開繊性に劣るとともに生分解性能にも劣る結果
となる。逆に、各セグメント数が20を超えると、紡糸
口金における開孔数が減少し生産性に劣るとともに、安
定した複合断面が得られないこととなる。従って、低融
点成分が紡出糸条の冷却性および開繊性に劣る重合体で
あり、セグメント数が3未満であれば、セグメントが大
きすぎるため冷却性および開繊性を改良することは困難
となる。また、高融点成分が生分解性能に劣る重合体で
あれば、セグメント数を増加させ高融点成分を細分化す
ることにより、生分解速度を促進させることができる。
この理由により、各セグメント数は、さらに好ましくは
6〜16が良い。
In the fiber cross section of the composite continuous fiber applied to the present invention, it is preferable that the number of each segment of the high melting point component and the low melting point component is 3 to 20. Here, the number of segments is the number of the minimum constitutional units that the high melting point component and the low melting point component are arranged and occupy in the cross section of the fiber. When the number of each segment is less than 3, the spun yarn has poor cooling properties and fiber opening properties, and also has poor biodegradability. On the other hand, when the number of each segment exceeds 20, the number of openings in the spinneret decreases, the productivity deteriorates, and a stable composite cross section cannot be obtained. Therefore, if the low melting point component is a polymer inferior in the cooling property and the fiber-opening property of the spun yarn, and the number of segments is less than 3, it is difficult to improve the cooling property and the fiber-opening property because the segments are too large. Becomes If the high melting point component is a polymer having poor biodegradability, the biodegradation rate can be accelerated by increasing the number of segments and subdividing the high melting point component.
For this reason, the number of each segment is more preferably 6 to 16.

【0030】本発明に適用される複合長繊維の単糸繊度
は1.5〜10デニールであることが好ましい。1.5
デニール未満であると、紡糸口金の複雑化、製糸工程に
おける糸切れの増大、生産量の低下および繊維横断面形
状の不安定さなどにより好ましくない。逆に、10デニ
ールを超えると紡出糸条の冷却性に劣るとともに生分解
性能にも劣る結果となる。この理由により、さらに好ま
しくは2〜8デニールが良い。
The single filament fineness of the composite continuous fiber applied to the present invention is preferably 1.5 to 10 denier. 1.5
If it is less than denier, it is not preferable because the spinneret becomes complicated, the number of yarn breaks in the spinning process increases, the production amount decreases, and the fiber cross-sectional shape becomes unstable. On the other hand, when it exceeds 10 denier, the spun yarn has poor cooling properties and biodegradability. For this reason, 2 to 8 denier is more preferable.

【0031】本発明の生分解性不織布は、生分解性能を
異にする高融点成分および低融点成分で構成された環状
均等配列型複合長繊維より形成されるので、両成分の複
合比、両成分の各セグメント数、中空率、単糸繊度を適
宜組み合わせることにより、要求する紡出糸条の冷却
性、開繊性および生分解性能を発揮することができ、し
かも生分解性能を微妙に制御することができる。
Since the biodegradable nonwoven fabric of the present invention is formed from the annular uniform array type composite long fibers composed of the high melting point component and the low melting point component having different biodegradability, the composite ratio of both components, both By appropriately combining the number of segments, hollowness, and single yarn fineness of the components, the required cooling properties, openability and biodegradability of the spun yarn can be exhibited, and the biodegradability is finely controlled. can do.

【0032】次に、本発明の生分解性不織布のうち、前
記の長繊維不織ウエブに天然繊維不織ウエブを積層して
超音波融着により一体化された積層不織布について説明
する。
Next, among the biodegradable non-woven fabrics of the present invention, a laminated non-woven fabric obtained by laminating a natural fiber non-woven web on the long-fiber non-woven web and ultrasonically fusing the same will be described.

【0033】本発明に適用される天然繊維は、生分解性
を有するものであれば特に制限はないが、特に、コット
ン、ラミー、短繊維状に裁断されたシルク繊維等が好適
に用いられる。ここで、コットンとしては、晒し加工の
施されていないコーマ糸、晒し加工の施された晒し綿、
または織物・編み物から得られた反毛等が挙げられる。
The natural fiber applied to the present invention is not particularly limited as long as it has biodegradability, and particularly cotton, ramie, silk fiber cut into short fibers and the like are preferably used. Here, as cotton, combed yarn that has not been bleached, bleached cotton that has been bleached,
Alternatively, anti-wool obtained from a woven or knitted fabric may be used.

【0034】本発明における天然繊維不織ウエブは、前
記天然繊維を単独または複数組み合わせて作成されるウ
エブであり、カード機の進行方向に配列したパラレルウ
エブ、パラレルウエブのクロスレイドされたウエブ、ラ
ンダムに配列したランダムウエブあるいは中程度に配列
したセミランダムウエブのいずれであっても良く、使用
用途によって適宜選択することができる。特に、衣料用
途に用いる場合には、不織布としての強力において、縦
/横強力比が概ね1/1となるカードウエブを使用する
のが好ましい。
The natural fiber non-woven web in the present invention is a web produced by using the above-mentioned natural fibers alone or in combination, and includes parallel webs arranged in the traveling direction of the card machine, cross-laid webs of parallel webs, and random webs. It may be either a random web arranged in the above manner or a semi-random web arranged in a medium manner, and can be appropriately selected depending on the intended use. In particular, when used for clothing, it is preferable to use a card web having a strength / longitudinal strength ratio of about 1/1 in terms of strength as a nonwoven fabric.

【0035】天然繊維不織ウエブを積層する場合、天然
繊維不織ウエブと長繊維不織ウエブとの積層比率は10
/90〜90/10(重量%)であることが好ましい。
天然繊維が10重量%未満であると、積層不織布の機械
的特性には優れるものの、吸湿性、吸水性を充分に向上
させることができず、天然繊維を積層した目的を達成す
ることができないため好ましくない。逆に、天然繊維が
90重量%を超えると、吸湿性、吸水性には優れるもの
の、機械的特性を損なうこととなり好ましくない。これ
らの理由により、天然繊維不織ウエブと長繊維不織ウエ
ブとの積層比率は20/80〜80/20(重量%)で
あることがさらに好ましい。
When laminating the natural fiber nonwoven web, the lamination ratio of the natural fiber nonwoven web and the long fiber nonwoven web is 10
It is preferably / 90 to 90/10 (% by weight).
When the content of natural fibers is less than 10% by weight, the laminated nonwoven fabric has excellent mechanical properties, but the hygroscopicity and water absorption cannot be sufficiently improved, and the purpose of laminating the natural fibers cannot be achieved. Not preferable. On the other hand, if the natural fiber content exceeds 90% by weight, the hygroscopicity and water absorption are excellent, but the mechanical properties are impaired, which is not preferable. For these reasons, the lamination ratio of the natural fiber non-woven web and the long fiber non-woven web is more preferably 20/80 to 80/20 (% by weight).

【0036】積層された長繊維不織ウエブと天然繊維不
織ウエブとの一体化は、超音波融着処理によって行われ
る。この超音波融着処理は後述の超音波融着装置を用い
て部分的な融着区域を形成するものであり、融着区域に
おける複合長繊維を熱融解させて天然繊維の内部に埋没
させることにより、長繊維不織ウエブと天然繊維不織ウ
エブとが融着される。これにより、長繊維不織ウエブと
熱接着性を有しない天然繊維とを実用に耐えうるだけの
接着力で一体化することができる。
Integration of the laminated long fiber non-woven web and the natural fiber non-woven web is carried out by ultrasonic fusion treatment. This ultrasonic fusion treatment is to form a partial fusion zone by using an ultrasonic fusion device described later, and to heat-melt the composite long fibers in the fusion zone to be embedded inside the natural fiber. Thus, the long-fiber non-woven web and the natural-fiber non-woven web are fused. As a result, the long-fiber non-woven web and the natural fiber having no heat-adhesiveness can be integrated with each other with an adhesive force sufficient for practical use.

【0037】次に、本発明の生分解性不織布の製造方法
について説明する。まず、本発明の生分解性不織布のう
ち、長繊維不織ウエブが部分的に熱圧接されて所定の形
態を保持してなる長繊維不織布についての製造方法を説
明する。
Next, the method for producing the biodegradable nonwoven fabric of the present invention will be described. First, of the biodegradable nonwoven fabric of the present invention, a method for producing a long fiber nonwoven fabric in which a long fiber nonwoven web is partially heat-pressed to maintain a predetermined shape will be described.

【0038】本発明の生分解性不織布の製造は、通常の
複合紡糸装置を用いて行なうことができる。前述したと
ころの生分解性を有する脂肪族ポリエステルすなわち高
融点成分としてポリブチレンサクシネート、低融点成分
としてブチレンサクシネートの共重合量比が70〜90
モル%であるブチレンサクシネートを主繰り返し単位と
した共重合ポリエステルを好適材料とし、これを別々に
溶融し、高融点成分/低融点成分の複合比が1/3〜3
/1(重量比)となるように個別に計量した後、前述の
両成分の各セグメント数、中空率、単糸繊度を満足する
繊維横断面構造を形成可能な環状均等配列型複合紡糸口
金より吐出した紡出糸条を公知の冷却装置にて冷却す
る。次いで、エアーサッカーを用いて目標繊度となるよ
う牽引細化して引き取られる。牽引細化した複合長繊維
は公知の開繊器具にて開繊せしめた後、スクリーンコン
ベアなどの移動式捕集面上に開繊堆積させて長繊維不織
ウエブとする。その後、この長繊維不織ウエブを熱圧接
装置を用い部分的に熱圧接して生分解性不織布が得られ
るのである。
The production of the biodegradable nonwoven fabric of the present invention can be carried out using an ordinary composite spinning device. As described above, the biodegradable aliphatic polyester, that is, polybutylene succinate as a high melting point component and butylene succinate as a low melting point component have a copolymerization ratio of 70 to 90.
A copolymerized polyester containing mol% butylene succinate as a main repeating unit was used as a suitable material, and these were separately melted to give a high melting point component / low melting point component composite ratio of 1/3 to 3
From the annular uniform array type composite spinneret capable of forming a fiber cross-sectional structure satisfying the number of segments of each of the above components, the hollow ratio, and the single yarn fineness after being individually weighed to be 1/1 (weight ratio). The discharged spun yarn is cooled by a known cooling device. Then, it is pulled and thinned by using an air sucker so that the target fineness is obtained. The traction-thinned composite long fibers are opened with a known opening device, and then spread and deposited on a movable collecting surface such as a screen conveyor to obtain a long fiber non-woven web. Then, the long-fiber nonwoven web is partially heat-pressed using a heat-pressing device to obtain a biodegradable nonwoven fabric.

【0039】本発明の生分解性不織布の製造方法におい
ては、用いる重合体、特に低融点成分を構成する重合体
に前述の結晶核剤を添加することにより、紡出糸条の密
着を防止し、冷却性、開繊性を向上させることができ
る。
In the method for producing a biodegradable nonwoven fabric of the present invention, the above-mentioned crystal nucleating agent is added to the polymer used, particularly the polymer constituting the low melting point component, to prevent the spun yarn from adhering. It is possible to improve the cooling property and the fiber opening property.

【0040】溶融紡糸において、紡糸温度は、用いる脂
肪族ポリエステルによって異なるものの、少なくとも重
合体のMFR値と繊維形成性すなわち製糸性とを勘案す
れば適宜設定することができる。通常は、紡糸温度を重
合体の融点より少なくとも40℃高い温度とし、特に1
20〜300℃とするのが好ましい。紡糸温度が120
℃未満であると、未溶融物が発生したり、重合体の溶融
粘度が高過ぎるため溶融押出機を用いて重合体を押出す
ことが困難となり、逆に、紡糸温度が300℃を超える
と、重合体が熱分解をし始めるため、いずれも好ましく
ない。
In the melt-spinning, the spinning temperature varies depending on the aliphatic polyester used, but can be appropriately set in consideration of at least the MFR value of the polymer and the fiber-forming property, that is, the spinnability. Usually, the spinning temperature is at least 40 ° C. above the melting point of the polymer, especially 1
The temperature is preferably 20 to 300 ° C. Spinning temperature is 120
If the temperature is less than 0 ° C, unmelted matter is generated, or the melt viscosity of the polymer is too high, making it difficult to extrude the polymer using a melt extruder, and conversely, if the spinning temperature exceeds 300 ° C. However, both of them are not preferable because the polymer begins to undergo thermal decomposition.

【0041】牽引細化については、牽引速度は2000
m/分以上であることが必要であり、特に2500m/
分以上とすると不織布の寸法安定性が向上するため好適
である。牽引速度が2000m/分未満であると、糸条
の配向が不十分なため糸条が密着するとともに開繊性も
悪化し、目標とする不織布が得られないこととなる。
For traction refinement, the traction speed is 2000.
m / min or more, especially 2500 m / min
When it is at least the above, the dimensional stability of the nonwoven fabric is improved, which is preferable. When the pulling speed is less than 2000 m / min, the orientation of the yarns is insufficient and the yarns adhere to each other and the openability deteriorates, and the target non-woven fabric cannot be obtained.

【0042】長繊維不織ウエブに部分的な熱圧接処理を
施し所定の形態を保持させるに際しては、加熱されたエ
ンボスロールと表面が平滑な金属ロールとを用いて長繊
維間に点状融着区域を形成する方法、あるいは超音波融
着装置を用いパターンロール上で超音波による高周波を
印加してパターン部の長繊維間に点状融着区域を形成す
る方法が採用される。
When the non-woven long-fiber web is subjected to a partial heat-pressing treatment so as to maintain a predetermined shape, a heated embossing roll and a metal roll having a smooth surface are used to form a point-like fusion between the long fibers. A method of forming a zone or a method of applying a high frequency by ultrasonic waves on a pattern roll using an ultrasonic fusing device to form a point fusion zone between the long fibers of the pattern portion is adopted.

【0043】前記部分的な熱圧接とは、構成繊維間にお
いて、低融点成分同士が熱圧接されることでウエブの形
態を保持し、少なくとも高融点成分同士は融着されず構
成繊維同士の完全融着を防止し得るような熱圧接をい
い、このような部分的熱圧接とすることにより、所定の
不織布形態を保持しつつ生分解性能および柔軟性を発揮
させることができる。
The above-mentioned partial hot-pressing means that the low-melting-point components are heat-pressed between the constituent fibers to maintain the web form, and at least the high-melting-point components are not fused to each other, and the constituent fibers are completely bonded to each other. The term "heat-pressing" is used to prevent fusion, and by using such partial heat-pressing, biodegradability and flexibility can be exhibited while maintaining a predetermined non-woven fabric shape.

【0044】部分的熱圧接により形成された圧接領域
は、長繊維不織ウエブの全表面積に対して特定の領域を
有するものであり、具体的には、個々の熱圧接領域は丸
型,楕円型,菱型,三角型,T字型,井型など任意の形
状であって良いが、0.07〜1.5mm2 の面積を有
し、その密度すなわち圧接点密度が10〜120点/c
2 、好ましくは20〜60点/cm2 であるのが良
い。圧接点密度が10点/cm2 未満であると得られる
不織布の機械的特性や寸法安定性が向上せず、逆に、圧
接点密度が120点/cm2 を超えると柔軟性と嵩高性
が向上せず、いずれも好ましくない。また、ウエブの全
表面積に対する全熱圧接領域の面積の比すなわち圧接面
積率は3〜40%好ましくは4〜30%であるのが良
い。この圧接面積率が3%未満であると得られる不織布
の寸法安定性に劣り好ましくない。逆に、圧接面積率が
40%を超えると、得られた不織布の柔軟性および嵩高
性を損なうとともに、生分解性能にも劣ることとなるた
め好ましくない。
The pressure-bonding region formed by partial heat-pressure bonding has a specific region with respect to the total surface area of the long fiber non-woven web. Specifically, each heat-pressure bonding region is round or elliptical. The shape may be any shape such as a die, a rhombus, a triangle, a T-shape, and a well, but it has an area of 0.07 to 1.5 mm 2 and its density, that is, the pressure contact density is 10 to 120 points / c
m 2, and the good and preferably 20 to 60 points / cm 2. When the pressure contact density is less than 10 points / cm 2 , the mechanical properties and dimensional stability of the resulting nonwoven fabric are not improved, and conversely, when the pressure contact density exceeds 120 points / cm 2 , flexibility and bulkiness are increased. It does not improve and neither is preferable. Further, the ratio of the area of the total heat-welded area to the total surface area of the web, that is, the pressure-contact area ratio is 3 to 40%, preferably 4 to 30%. If the pressure contact area ratio is less than 3%, the dimensional stability of the resulting nonwoven fabric is poor, which is not preferable. On the other hand, if the pressure contact area ratio exceeds 40%, the flexibility and bulkiness of the obtained nonwoven fabric will be impaired and the biodegradability will be poor, which is not preferable.

【0045】加熱されたエンボスロールを用いる場合、
ロールの表面温度すなわち加工温度は低融点成分の融点
以下の温度としなければならない。低融点成分の融点を
超えると、熱圧接装置に重合体が固着し操業性を著しく
損なうばかりか、不織布の風合いが硬くなり柔軟な不織
布が得られない。さらに好ましくは、加工温度は、低融
点成分の融点を(Tm)℃としたとき、(Tm−25)
℃〜(Tm)℃の範囲にあることが良い。加工温度が
(Tm−25)℃未満であると得られる不織布の機械的
機能および毛羽立防止性が劣る結果となり好ましくな
い。
When using a heated embossing roll,
The surface temperature of the roll, that is, the processing temperature, must be lower than the melting point of the low melting point component. If the melting point of the low melting point component is exceeded, not only the polymer adheres to the heat-welding apparatus and the operability is remarkably impaired, but also the texture of the nonwoven fabric becomes hard and a flexible nonwoven fabric cannot be obtained. More preferably, the processing temperature is (Tm-25) when the melting point of the low melting point component is (Tm) ° C.
C. to (Tm) .degree. C. If the processing temperature is lower than (Tm-25) ° C, the resulting nonwoven fabric is inferior in mechanical function and fluff prevention, which is not preferable.

【0046】超音波融着装置を用いる場合、周波数が約
20kHzの通常ホーンと呼称される超音波発振器と、
円周上に点状または帯状に凸状突起部を具備するパター
ンロールとからなる装置が採用される。前記超音波発振
器の下部に前記パターンロールが配設され、長繊維不織
ウエブを超音波発振器とパターンロールとの間に通すこ
とにより部分的に熱融着することができる。このパター
ンロールに配設される凸状突起部1列あるいは複数列で
あってもよく、また、その配設が複数列の場合には、並
列あるいは千鳥型のいずれの配列でも良い。
When using the ultrasonic fusing device, an ultrasonic oscillator having a frequency of about 20 kHz, which is usually called a horn,
An apparatus comprising a pattern roll having a point-like or band-like convex protrusion on the circumference is employed. The pattern roll is disposed below the ultrasonic oscillator, and the long fiber non-woven web can be partially heat-sealed by passing it between the ultrasonic oscillator and the pattern roll. There may be one row or a plurality of rows of convex protrusions arranged on this pattern roll, and when the arrangement is a plurality of rows, either parallel or staggered arrangement may be used.

【0047】なお、部分的な熱圧接処理は、連続工程あ
るいは別工程のいずれで行っても良い。また、熱圧接処
理については、前述の加熱されたエンボスロールあるい
は超音波融着装置のいずれを選択しても良いが、不織布
の使用用途に応じ、特に柔軟性が要求される医療・衛生
材料や拭き取り布などの一般生活関連材としては、超音
波融着装置を用いると、優れた性能を有する不織布を得
ることができる。
The partial heat-pressing treatment may be carried out either as a continuous process or as a separate process. Further, for the heat-pressing treatment, any of the above-described heated embossing roll or ultrasonic fusing device may be selected, but depending on the use application of the nonwoven fabric, a medical / hygiene material or the like which particularly requires flexibility is used. When an ultrasonic fusion device is used as a general living related material such as a wiping cloth, a nonwoven fabric having excellent performance can be obtained.

【0048】次に、本発明の生分解性不織布のうち、長
繊維不織ウエブと天然繊維不織ウエブとを積層した積層
不織布を得る方法について説明する。前記と同様にして
移動式補集面上に開繊堆積させた長繊維不織ウエブに、
常法により別途作成した天然繊維を積層し、これに超音
波融着処理を施して一体化させて積層不織布を得る。
Next, of the biodegradable nonwoven fabric of the present invention, a method for obtaining a laminated nonwoven fabric in which a long fiber nonwoven web and a natural fiber nonwoven web are laminated will be described. In the same manner as described above, to the long fiber non-woven web which is opened and deposited on the movable collecting surface,
Natural fibers separately prepared by a conventional method are laminated and subjected to ultrasonic fusion treatment to be integrated to obtain a laminated nonwoven fabric.

【0049】超音波融着処理を施すに際しては、前述の
部分的熱圧接処理の場合と同様の超音波融着装置が好適
に用いられ、ロールの加圧には空気圧が使用され、ホー
ンがロールに接する線圧は1.0〜50kg/cmの範
囲とすることが好ましい。線圧が1.0kg/cm未満
であると、積層不織布の厚みに対し押し圧が不足となり
積層体の剥離強力が小さくなり好ましくない。逆に、線
圧が50kg/cmを超えると、融着部分に対して圧力
が掛かり過ぎるため、融着部分のフイルム化により同様
に接着強力の低下を招き好ましくない。
When carrying out the ultrasonic fusing treatment, the same ultrasonic fusing device as in the case of the partial thermal pressure welding treatment described above is preferably used, air pressure is used for pressurizing the roll, and the horn is used for the roll. The linear pressure in contact with is preferably in the range of 1.0 to 50 kg / cm. If the linear pressure is less than 1.0 kg / cm, the pressing force becomes insufficient with respect to the thickness of the laminated nonwoven fabric, and the peel strength of the laminate becomes small, which is not preferable. On the other hand, if the linear pressure exceeds 50 kg / cm, the pressure will be excessively applied to the fusion-bonded portion, so that the fusion-bonded portion is also made into a film, which similarly lowers the adhesive strength, which is not preferable.

【0050】本発明においては、移動式補集面上に開繊
堆積させた長繊維不織ウエブと天然繊維不織ウエブとを
積層する前に予め、長繊維不織ウエブに仮熱圧接処理ま
たは熱風接着処理または三次元交絡処理を公知の方法に
より施しておくことが好ましい。これにより、長繊維不
織ウエブと天然繊維不織ウエブとを積層する際に、長繊
維織ウエブの形態を予備的に保持することができる。
In the present invention, before the long fiber non-woven web and the natural fiber non-woven web that have been spread and deposited on the movable collecting surface are laminated, the long fiber non-woven web is preliminarily heat-pressed or treated. It is preferable to perform the hot air adhesion treatment or the three-dimensional entanglement treatment by a known method. Accordingly, when the long fiber non-woven web and the natural fiber non-woven web are laminated, the shape of the long fiber non-woven web can be preliminarily retained.

【0051】本発明の生分解性不織布の目付けは、使用
目的により選択されるため特に限定されるものではない
が、一般的には10〜150g/m2 の範囲が好まし
く、より好ましくは15〜70g/m2 の範囲である。
目付けが10g/m2 未満では柔軟性および生分解速度
には優れるものの機械的強力に劣り実用的ではない。逆
に、目付けが150g/m2 を超えると、不織布が硬い
風合いのものとなり、柔軟性に劣るものとなる。
The basis weight of the biodegradable nonwoven fabric of the present invention is not particularly limited because it is selected according to the purpose of use, but generally it is preferably in the range of 10 to 150 g / m 2 , more preferably 15 to 150 g / m 2. It is in the range of 70 g / m 2 .
When the basis weight is less than 10 g / m 2 , flexibility and biodegradation rate are excellent, but mechanical strength is poor and it is not practical. On the other hand, when the basis weight exceeds 150 g / m 2 , the nonwoven fabric has a hard texture and is inferior in flexibility.

【0052】[0052]

【実施例】次に、実施例に基づき本発明を具体的に説明
するが、本発明は、これらの実施例によって何ら限定さ
れるものではない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0053】実施例において、各物性値の測定を次の方
法により実施した。 ・メルトフローレート値(g/10分);ASTM−D
−1238(E)に記載の方法に準じて温度190℃で
測定した。(以降、MFR値と記す)
In the examples, each physical property value was measured by the following methods. Melt flow rate value (g / 10 minutes); ASTM-D
It measured at the temperature of 190 degreeC according to the method as described in -1238 (E). (Hereinafter referred to as MFR value)

【0054】・融点(℃);パーキンエルマ社製示差走
査型熱量計DSC−2型を用い、試料重量を5mg、昇
温速度を20℃/分として測定して得た融解吸熱曲線の
極値を与える温度を融点(℃)とした。
Melting point (° C.); extremum of melting endotherm curve obtained by measuring with a differential scanning calorimeter DSC-2 type manufactured by Perkin Elma Co., Ltd. with a sample weight of 5 mg and a heating rate of 20 ° C./min. Was given as the melting point (° C.).

【0055】,結晶化温度(℃);パーキンエルマ社製
示差走査型熱量計DSC−2型を用い、試料重量を5m
g、降温速度を20℃/分として測定して得た固化発熱
曲線の極値を与える温度を結晶化温度(℃)とした。
Crystallization temperature (° C.); using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elmer Co., Ltd., a sample weight of 5 m
g, the crystallization temperature (° C.) was defined as the temperature at which the extreme value of the solidification heat generation curve obtained by measuring the temperature drop rate at 20 ° C./min.

【0056】・中空率(%);日本光学社製光学顕微鏡
を用い、糸横断面写真を撮影し、図1に示す如く、糸の
直径(A)および中空部3の直径(a)を求め、次式よ
り中空率を求めた。
Hollow ratio (%): Using an optical microscope manufactured by Nippon Kogaku Co., Ltd., a photograph of the cross section of the yarn is taken, and as shown in FIG. 1, the diameter (A) of the yarn and the diameter (a) of the hollow portion 3 are obtained. The hollow ratio was calculated from the following equation.

【0057】中空率(%)=(a2 /A2 )×100Hollow ratio (%) = (a 2 / A 2 ) × 100

【0058】・冷却性;紡出糸条を目視して下記の4段
階にて評価した。 ◎;密着糸が認められない。 ○;密着糸がわずかではあるが認められる。 △;密着糸があり、繊維が一部集束している。 ×;大部分が密着し、開繊不可能である。
Coolability: The spun yarn was visually observed and evaluated in the following four stages. A: No cohesive yarn is observed. ;: A slight amount of cohesive yarn was observed. Δ: There are adherent threads, and some of the fibers are bundled. X: Most of them adhere to each other and cannot be opened.

【0059】・開繊性;開繊器具より吐出した紡出糸条
にて形成された長繊維不織ウエブを、目視にて下記の4
段階にて評価した。 ◎;構成繊維が分繊され、密着糸および収束糸が全く認
められない。 ○;密着糸および収束糸がわずかではあるが認められ
る。 △;密着糸および収束糸があり、開繊性がやや不良であ
る。 ×;構成繊維の大部分が密着し、開繊性が不良である。
-Opening property: The long-fiber non-woven web formed by the spun yarn discharged from the opening device is visually observed as shown in 4 below.
It was evaluated in stages. ⊚: The constituent fibers are separated, and neither adherent yarn nor convergent yarn is observed. ◯: Adhesive yarn and convergent yarn are slightly observed. Δ: There are adherent yarns and convergent yarns, and the openability is slightly poor. X: Most of the constituent fibers are in close contact with each other and the openability is poor.

【0060】・目付け(g/m2 );標準状態の試料か
ら試料長が10cm、試料幅が10cmの試料片10点
を作成し平衡水分にした後、各試料片の重量(g)を秤
量し、得られた値の平均値を単位面積当たりに換算し、
目付け(g/m2 )とした。
-Basis weight (g / m 2 ); 10 pieces of a sample having a sample length of 10 cm and a sample width of 10 cm were prepared from the standard state sample, equilibrated with water, and then the weight (g) of each sample piece was weighed. Then, convert the average value of the obtained values per unit area,
The basis weight (g / m 2 ) was used.

【0061】・不織布の強力(kg/5cm幅);JI
S−L−1096Aに記載の方法に準じて測定した。す
なわち、試料長が20cm、試料幅が5cmの試料片1
0点を作成し、試料片毎に不織布の縦方向について、定
速伸張型引張り試験機(東洋ボールドウイン社製テンシ
ロンUTM−4−1−100)を用いて、引張り速度1
0cm/分で伸張し、得られた切断時荷重値の平均値を
強力(kg/5cm幅)とした。
Strength of non-woven fabric (kg / 5 cm width); JI
It was measured according to the method described in S-L-1096A. That is, a sample piece 1 having a sample length of 20 cm and a sample width of 5 cm
A zero point was created, and a tensile speed of 1 was set for each sample piece in the longitudinal direction of the nonwoven fabric using a constant-speed extension-type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.).
It was stretched at 0 cm / min, and the average value of the load values at cutting obtained was taken as the strength (kg / 5 cm width).

【0062】・不織布の圧縮剛軟度(g);試料長が1
0cm、試料幅が5cmの試料片5点を作成し、各試料
片毎に横方向に曲げて円筒状物とし、各々その端部を接
合したものを圧縮剛軟度測定試料とした。次いで、各測
定試料毎にその軸方向について、定速伸長型引長試験機
(東洋ボールドウイン社製テンシロンUTM−4−1−
100)を用い、圧縮速度5cm/分で圧縮し、得られ
た最大荷重値(g)の平均値を圧縮剛軟度(g)とし
た。なお、この圧縮剛軟度とは、値が小さいほど柔軟性
が優れることを意味するものである。
-Compression stiffness (g) of non-woven fabric; sample length is 1
Five sample pieces having a size of 0 cm and a sample width of 5 cm were created, and each sample piece was bent in the lateral direction to form a cylindrical object, and the ends thereof were joined to each other to obtain a sample for measuring compression stiffness. Next, a constant speed extension type pulling tester (Tensilon UTM-4-1-manufactured by Toyo Baldwin Co., Ltd.) is used for each measurement sample in the axial direction.
100) was used for compression at a compression rate of 5 cm / min, and the average value of the maximum load values (g) obtained was taken as the compression stiffness (g). The compression stiffness means that the smaller the value, the better the flexibility.

【0063】・生分解性能;不織布を土中に埋設し、6
ヶ月後に取り出し、不織布がその形態を保持していない
場合、あるいは、その形態を保持していても強力が埋設
前の強力初期値に対して50%以下に低下している場
合、生分解性能が良好(;○)であるとし、強力が埋設
前の強力初期値に対して75%以下に低下している場
合、生分解性能が良好(;△)であるとし、強力が埋設
前の強力初期値に対して75%を超える場合、生分解性
能が不良(;×)であると評価した。
Biodegradability: 6 is obtained by embedding a non-woven fabric in soil.
If the nonwoven fabric does not retain its morphology after a month, or if its strength is reduced to 50% or less of the initial strength before embedding even if it retains its morphology, the biodegradation performance is If the strength is good (○), and the strength is 75% or less of the initial strength before burying, the biodegradability is good (△), and the strength is the initial strength before burying. When it exceeded 75% of the value, the biodegradability was evaluated as poor (; x).

【0064】・層間剥離強力(g/5cm幅):試料長
が15cm、試料幅が5cmの試料片計3点を準備し、
各試料毎に不織布の経方向について、定速伸張型引張試
験機(東洋ボールウィン社製テンシロンUTM−4−−
1−100)を用いて、積層不織布における、長繊維不
織ウエブの端部と天然繊維不織ウエブの端部とを上下チ
ャックにて把持し、剥離速度5cm/にて5cm長を強
制的に剥離させて得られた荷重値の平均値を層間剥離を
(g/5cm幅)とした。
Delamination strength (g / 5 cm width): Prepare a total of 3 sample pieces with a sample length of 15 cm and a sample width of 5 cm,
A constant-speed tensile type tensile tester (Tensilon UTM-4-
1-100), the ends of the long-fiber non-woven web and the ends of the natural-fiber non-woven web in the laminated non-woven fabric are gripped by the upper and lower chucks, and a length of 5 cm is forced at a peeling speed of 5 cm /. The average value of the load values obtained by peeling was taken as the delamination (g / 5 cm width).

【0065】・吸水性(mm):JIS−L−1096
に記載のバイレック法に準じて測定した。すなわち、試
料長が20cm、試料幅が2.5cmの試料片5点を作
成し、各試料片を20±2℃の水を入れた水槽上の一定
の高さに支えた水平棒上にピンで留めて吊す。試料片の
下端を一線に並べて水平棒を下げ、試料片の下端の1c
mがちょうど水に浸かるようにする。10分間放置後の
水の上昇した高さ(mm)を測り、その平均値を吸水性
(mm)とした。
Water absorption (mm): JIS-L-1096
It was measured according to the Bayrec method described in 1. That is, five sample pieces having a sample length of 20 cm and a sample width of 2.5 cm were prepared, and each sample piece was pinned on a horizontal bar supported at a constant height on a water tank containing water at 20 ± 2 ° C. And hang it. Align the lower end of the sample piece in a line and lower the horizontal bar,
Make sure that m just submerges in water. The rise height (mm) of water after standing for 10 minutes was measured, and the average value was taken as water absorbency (mm).

【0066】実施例1 高融点成分として、MFR値が40g/10分で融点1
14℃、結晶化温度75℃のポリブチレンサクシネート
を、低融点成分として、MFR値が30g/10分で融
点102℃、結晶化温度52℃のブチレンサクシネート
/エチレンサクシネート=85/15(モル%)の共重
合ポリエステルを用いて、環状均等配列型複合長繊維よ
りなる不織布を製造した。
Example 1 As a high melting point component, an MFR value of 40 g / 10 min and a melting point of 1
Polybutylene succinate of 14 ° C. and crystallization temperature of 75 ° C. was used as a low melting point component, butylene succinate / ethylene succinate = 85/15 (melting point 102 ° C., crystallization temperature 52 ° C., MFR value of 30 g / 10 min. (Mol%) of the copolymerized polyester was used to produce a nonwoven fabric composed of composite filaments having an annular uniform arrangement.

【0067】すなわち、前記2成分を、高融点成分/低
融点成分の複合比が1/1(重量比)となるように個別
に計量した後、個別のエクストルーダ型溶融押出し機を
用いて温度180℃で溶融し、図1に示すような繊維横
断面(両成分各セグメント数=6)となる紡糸口金を用
い、単孔吐出量1.8g/分で環状均等配列型複合長繊
維を溶融紡出した。この紡出糸条を公知の冷却装置にて
冷却した後、口金の下方に設置したエアーサッカーを用
いて、牽引速度が4050m/分で牽引細化して引き取
った。次いで、公知の開繊器具にて開繊し、移動するス
クリーンコンベア上に単糸繊度4.0デニール(高融点
成分セグメント繊度=0.33デニール、低融点成分セ
グメント繊度=0.33デニール)、中空率が20.3
%の複合長繊維からなる長繊維不織ウエブとして開繊堆
積させた。この長繊維不織ウエブを熱エンボスロールか
らなる熱圧接装置にて熱圧接して目付けが30g/m2
の生分解性不織布を得た。熱圧接条件としては、面積が
0.6mm2 の彫刻模様で圧接点密度が20点/cm
2 、圧接面積率が15%で配設された熱エンボスロール
と表面が平滑な金属ロールとを用い、加工温度を95℃
とした。操業性および不織布物性、生分解性能を表1に
示す。
That is, the two components are individually weighed so that the composite ratio of the high melting point component / low melting point component is 1/1 (weight ratio), and then the temperature is set to 180 by using an individual extruder type melt extruder. Using a spinneret that melts at ℃ and has a fiber cross-section as shown in Fig. 1 (number of each component segment = 6), melt-spin an annular uniform array type composite continuous fiber at a single hole discharge rate of 1.8 g / min. I put it out. The spun yarn was cooled by a known cooling device, and then pulled and thinned with an air sucker installed below the spinneret at a pulling speed of 4050 m / min. Then, the fiber is opened by a known fiber-opening device, and a single yarn fineness of 4.0 denier (high melting point component segment fineness = 0.33 denier, low melting point component segment fineness = 0.33 denier) is placed on a moving screen conveyor. Hollow rate is 20.3
Was opened and deposited as a long fiber non-woven web consisting of 10% composite long fibers. This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to give a basis weight of 30 g / m 2.
A biodegradable nonwoven fabric of was obtained. The heat pressure welding condition is an engraving pattern with an area of 0.6 mm 2 and a pressure contact density of 20 points / cm.
2. Using a hot embossing roll with a pressing area ratio of 15% and a metal roll with a smooth surface, the processing temperature is 95 ° C.
And Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0068】実施例2 低融点成分としてMFR値が25g/10分で融点94
℃、結晶化温度48℃のブチレンサクシネート/ブチレ
ンアジペート=80/20(モル%)の共重合ポリエス
テルを用い、高融点成分/低融点成分の複合比が3/1
(重量比)とすること以外は実施例1と同一条件下に
て、環状均等配列型複合長繊維を溶融紡出した。この紡
出糸条を公知の冷却装置にて冷却した後、エアーサッカ
ーを用いて、牽引速度が4000m/分で牽引細化して
引き取った。次いで、公知の開繊器具にて開繊し、移動
するスクリーンコンベア上に単糸繊度4.1デニール
(高融点成分セグメント繊度=0.51デニール、低融
点成分セグメント繊度=0.17デニール)、中空率が
21.2%の複合長繊維からなる長繊維不織ウエブとし
て開繊堆積させた。この長繊維不織ウエブを熱エンボス
ロールからなる熱圧接装置にて熱圧接して目付けが30
g/m2 の生分解性不織布を得た。熱圧接条件は、加工
温度を87℃とすること以外は実施例1と同一条件で実
施した。操業性および不織布物性、生分解性能を表1に
示す。
Example 2 A low melting point component having an MFR value of 25 g / 10 min and a melting point of 94
C., butylene succinate / butylene adipate = 80/20 (mol%) copolyester having a crystallization temperature of 48.degree. C. and a composite ratio of high melting point component / low melting point component of 3/1
Under the same conditions as in Example 1 except that the (weight ratio) was set, the annular uniform array type composite continuous fiber was melt-spun. After this spun yarn was cooled by a known cooling device, it was pulled by an air sucker at a pulling speed of 4000 m / min to be thinned and taken out. Then, the fiber is opened by a known fiber-opening device, and a single yarn fineness of 4.1 denier (high melting point component segment fineness = 0.51 denier, low melting point component segment fineness = 0.17 denier) on a moving screen conveyor, A long-fiber non-woven web made of composite long fibers having a hollow ratio of 21.2% was opened and deposited. This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to give a basis weight of 30
A biodegradable nonwoven fabric of g / m 2 was obtained. The thermal pressure welding conditions were the same as in Example 1 except that the processing temperature was 87 ° C. Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0069】実施例3 低融点成分としてMFR値が20g/10分で融点82
℃、結晶化温度25℃のブチレンサクシネート/エチレ
ンサクシネート=70/30(モル%)の共重合ポリエ
ステルを用い、高融点成分/低融点成分の複合比が3/
1(重量比)とすること以外は実施例1と同一条件下に
て、環状均等配列型複合長繊維を溶融紡出した。この紡
出糸条を公知の冷却装置にて冷却した後、エアーサッカ
ーを用いて、牽引速度が3200m/分で牽引細化して
引き取った。次いで、公知の開繊器具にて開繊し、移動
するスクリーンコンベア上に単糸繊度5.1デニール
(高融点成分セグメント繊度=0.64デニール、低融
点成分セグメント繊度=0.21デニール)、中空率が
22.6%の複合長繊維からなる長繊維不織ウエブとし
て開繊堆積させた。この長繊維不織ウエブを熱エンボス
ロールからなる熱圧接装置にて熱圧接して、目付けが3
0g/m2 の生分解性不織布を得た。熱圧接条件は、加
工温度を75℃とすること以外は実施例1と同一条件で
実施した。操業性および不織布物性、生分解性能を表1
に示す。
Example 3 A low melting point component having an MFR value of 20 g / 10 min and a melting point of 82
C., butylene succinate / ethylene succinate = 70/30 (mol%) copolyester having a crystallization temperature of 25.degree. C. and a composite ratio of high melting point component / low melting point component of 3 /
Under the same conditions as in Example 1 except that the ratio was 1 (weight ratio), the annular uniform array type composite continuous fiber was melt-spun. After this spun yarn was cooled by a known cooling device, it was pulled by an air sucker at a pulling speed of 3200 m / min to be thinned and pulled out. Then, the fiber is opened with a known fiber-opening device, and a single yarn fineness of 5.1 denier (high-melting point component segment fineness = 0.64 denier, low-melting point component segment fineness = 0.21 denier) is placed on a moving screen conveyor. A long fiber non-woven web made of composite long fibers having a hollow ratio of 22.6% was opened and deposited. This long-fiber non-woven web is heat-pressed with a heat-pressing device consisting of a hot embossing roll to give a basis weight of 3
A biodegradable nonwoven fabric of 0 g / m 2 was obtained. The thermal pressure welding conditions were the same as in Example 1 except that the processing temperature was 75 ° C. Table 1 shows operability, non-woven fabric physical properties, and biodegradability.
Shown in

【0070】実施例4 低融点成分としてMFR値が30g/10分で融点10
6℃、結晶化温度58℃のブチレンサクシネート/エチ
レンサクシネート=90/10(モル%)の共重合ポリ
エステルを用い、高融点成分/低融点成分の複合比が1
/2(重量比)とすること以外は実施例1と同一条件下
にて、環状均等配列型複合長繊維を溶融紡出した。この
紡出糸条を公知の冷却装置にて冷却した後、エアーサッ
カーを用いて、牽引速度が4200m/分で牽引細化し
て引き取った。次いで、公知の開繊器具にて開繊し、移
動するスクリーンコンベア上に単糸繊度3.9デニール
(高融点成分セグメント繊度=0.21デニール、低融
点成分セグメント繊度=0.43デニール)、中空率が
20.5%の複合長繊維からなる長繊維不織ウエブとし
て開繊堆積させた。この長繊維不織ウエブを熱エンボス
ロールからなる熱圧接装置にて熱圧接して、目付けが3
0g/m2 の生分解性不織布を得た。熱圧接条件は、加
工温度を99℃とすること以外は実施例1と同一条件で
実施した。操業性および不織布物性、生分解性能を表1
に示す。
Example 4 A low melting point component having an MFR value of 30 g / 10 min and a melting point of 10
A butylene succinate / ethylene succinate = 90/10 (mol%) copolyester having a crystallization temperature of 6 ° C. and a crystallization temperature of 58 ° C. is used, and the composite ratio of the high melting point component / low melting point component is 1
The annular uniform array type composite continuous fiber was melt-spun under the same conditions as in Example 1 except that the ratio was set to / 2 (weight ratio). After this spun yarn was cooled by a known cooling device, it was pulled by an air sucker at a pulling speed of 4200 m / min to be thinned and pulled. Then, the fiber is opened with a known fiber-opening device, and a single yarn fineness of 3.9 denier (high melting point component segment fineness = 0.21 denier, low melting point component segment fineness = 0.43 denier) on a moving screen conveyor, A long-fiber non-woven web composed of composite long fibers having a hollow ratio of 20.5% was opened and deposited. This long-fiber non-woven web is heat-pressed with a heat-pressing device consisting of a hot embossing roll to give a basis weight of 3
A biodegradable nonwoven fabric of 0 g / m 2 was obtained. The heat-pressing conditions were the same as in Example 1 except that the processing temperature was 99 ° C. Table 1 shows operability, non-woven fabric physical properties, and biodegradability.
Shown in

【0071】実施例5 実施例1と同一の2成分を原料とし、高融点成分および
低融点成分の各セグメント数が3である繊維横断面とな
るような紡糸口金を用いること以外は実施例1と同一条
件下にて、環状均等配列型複合長繊維を溶融紡出した。
この紡出糸条を公知の冷却装置にて冷却した後、エアー
サッカーを用いて牽引速度が4000m/分で牽引細化
して引き取った。次いで、公知の開繊器具にて開繊し、
移動するスクリーンコンベア上に単糸繊度4.1デニー
ル(高融点成分セグメント繊度=0.68デニール、低
融点成分セグメント繊度=0.68デニール)、中空率
が20.0%の複合長繊維からなる長繊維不織ウエブと
して開繊堆積させた。この長繊維不織ウエブを熱エンボ
スロールからなる熱圧接装置にて熱圧接して、目付けが
30g/m2 の生分解性不織布を得た。熱圧接条件は、
実施例1と同一条件で実施した。操業性および不織布物
性、生分解性能を表1に示す。
Example 5 Example 1 was repeated except that the same two components as in Example 1 were used as raw materials and a spinneret having a fiber cross section in which each of the high melting point component and the low melting point component had 3 segments was used. Under the same conditions as above, an annular uniform array type composite filament was melt-spun.
After the spun yarn was cooled by a known cooling device, it was pulled and thinned by an air sucker at a pulling speed of 4000 m / min, and was taken out. Then, open with a known opening device,
A single filament fineness of 4.1 denier (high melting point component segment fineness = 0.68 denier, low melting point component segment fineness = 0.68 denier) on the moving screen conveyor, consisting of composite long fibers with a hollow ratio of 20.0%. The long fiber non-woven web was spread and deposited. This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The heat welding conditions are
The operation was performed under the same conditions as in Example 1. Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0072】実施例6 実施例1と同一の2成分を原料とし、高融点成分および
低融点成分の各セグメント数が18である繊維横断面と
なるような紡糸口金を用いること以外は実施例1と同一
条件下にて、環状均等配列型複合長繊維を溶融紡出し
た。この紡出糸条を公知の冷却装置にて冷却した後、エ
アーサッカーを用いて牽引速度が3750m/分で牽引
細化して引き取った。次いで、公知の開繊器具にて開繊
し、移動するスクリーンコンベア上に単糸繊度4.3デ
ニール(高融点成分セグメント繊度=0.12デニー
ル、低融点成分セグメント繊度=0.12デニール)、
中空率が16.8%の複合長繊維からなる長繊維不織ウ
エブとして開繊堆積させた。この長繊維不織ウエブを熱
エンボスロールからなる熱圧接装置にて熱圧接して、目
付けが30g/m2 の生分解性不織布を得た。熱圧接条
件は、実施例1と同一条件で実施した。操業性および不
織布物性、生分解性能を表1に示す。
Example 6 Example 1 was repeated except that the same two components as in Example 1 were used as raw materials and a spinneret having a fiber cross section in which each of the high melting point component and low melting point component had 18 segments. Under the same conditions as above, an annular uniform array type composite filament was melt-spun. After the spun yarn was cooled by a known cooling device, it was pulled by an air sucker at a pulling speed of 3750 m / min to be thinned and pulled. Then, the fiber is opened with a known fiber-opening device, and a single yarn fineness of 4.3 denier (high-melting point component segment fineness = 0.12 denier, low-melting point component segment fineness = 0.12 denier) on a moving screen conveyor,
A long fiber non-woven web composed of composite long fibers having a hollowness of 16.8% was spread and deposited. This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The thermal pressure welding conditions were the same as in Example 1. Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0073】実施例7 実施例1と同一の2成分を原料とし、高融点成分/低融
点成分の複合比が1/3(重量比)となるように個別に
計量した後、単孔吐出量を0.72g/分とすること以
外は実施例1と同一条件下にて、環状均等配列型複合長
繊維を溶融紡出した。この紡出糸条を公知の冷却装置に
て冷却した後、エアーサッカーを用いて牽引速度が36
00m/分で牽引細化して引き取った。次いで、公知の
開繊器具にて開繊し、移動するスクリーンコンベア上に
単糸繊度1.8デニール(高融点成分セグメント繊度=
0.08デニール、低融点成分セグメント繊度=0.2
3デニール)、中空率が18.2%の複合長繊維からな
る長繊維不織ウエブとして開繊堆積させた。この長繊維
不織ウエブを熱エンボスロールからなる熱圧接装置にて
熱圧接して、目付けが30g/m2 の生分解性不織布を
得た。熱圧接条件は、実施例1と同一条件で実施した。
操業性および不織布物性、生分解性能を表2に示す。
Example 7 The same two components as in Example 1 were used as raw materials, and individually measured so that the composite ratio of high melting point component / low melting point component was 1/3 (weight ratio). Of the annular uniform array type composite filament was melt-spun under the same conditions as in Example 1 except that the amount was 0.72 g / min. After cooling this spun yarn with a known cooling device, the pulling speed was set to 36 by using an air sucker.
It was pulled and thinned at 00 m / min and collected. Then, the fiber is opened with a known fiber-opening device, and a single yarn fineness of 1.8 denier (high melting point component segment fineness =
0.08 denier, low melting point component segment fineness = 0.2
3 denier) and a long fiber nonwoven web made of composite long fibers having a hollow ratio of 18.2% was opened and deposited. This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The thermal pressure welding conditions were the same as in Example 1.
Table 2 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0074】実施例8 実施例1と同一の2成分を原料とし、高融点成分/低融
点成分の複合比が3/1(重量比)となるように個別に
計量した後、単孔吐出量を3.5g/分とすること以外
は実施例1と同一条件下にて、環状均等配列型複合長繊
維を溶融紡出した。この紡出糸条を公知の冷却装置にて
冷却した後、エアーサッカーを用いて、牽引速度が45
00m/分で牽引細化して引き取った。次いで公知の開
繊器具にて開繊し、移動するスクリーンコンベア上に単
糸繊度7.0デニール(高融点成分セグメント繊度=
0.88デニール、低融点成分セグメント繊度=0.2
9デニール)、中空率が23.5%の複合長繊維からな
る長繊維不織ウエブとして開繊堆積させた。この長繊維
不織ウエブを熱エンボスロールからなる熱圧接装置にて
熱圧接して、目付けが30g/m2 の生分解性不織布を
得た。熱圧接条件は、実施例1と同一条件で実施した。
操業性および不織布物性、生分解性能を表2に示す。
Example 8 The same two components as in Example 1 were used as raw materials, and individually measured so that the composite ratio of high-melting point component / low-melting point component was 3/1 (weight ratio). Was uniformly spun under the same conditions as in Example 1, except that the annular uniform array type composite continuous fiber was melt-spun. After the spun yarn was cooled by a known cooling device, the pulling speed was 45 with an air sucker.
It was pulled and thinned at 00 m / min and collected. Then, the fiber is opened by a known fiber-opening device, and a single yarn fineness of 7.0 denier (high-melting point component segment fineness =
0.88 denier, low melting point segment segment fineness = 0.2
(9 denier) and a long fiber non-woven web composed of composite long fibers having a hollow ratio of 23.5% was spread and deposited. This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The thermal pressure welding conditions were the same as in Example 1.
Table 2 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0075】実施例9 実施例1と同一の2成分を原料とし、高融点成分/低融
点成分の複合比を1/4(重量比)とすること以外は実
施例1と同一条件下にて、環状均等配列型複合長繊維を
溶融紡出した。この紡出糸条を公知の冷却装置にて冷却
した後、エアーサッカーを用いて牽引速度が3800m
/分で牽引細化して引き取った。次いで、公知の開繊器
具にて開繊し、移動するスクリーンコンベア上に単糸繊
度4.3デニール(高融点成分セグメント繊度=0.1
4デニール、低融点成分セグメント繊度=0.57デニ
ール)、中空率が21.9%の複合長繊維からなる長繊
維不織ウエブとして開繊堆積させた。操業性を表2に示
す。
Example 9 Under the same conditions as in Example 1, except that the same two components as in Example 1 were used as raw materials and the composite ratio of high melting point component / low melting point component was set to 1/4 (weight ratio). The annular uniform array type composite filament was melt-spun. After cooling this spun yarn with a known cooling device, the pulling speed was 3800 m using an air sucker.
/ Min. Then, the fiber is opened by a known fiber-opening device, and a single yarn fineness of 4.3 denier (high-melting point component segment fineness = 0.1 is set on a moving screen conveyor.
4 denier, low melting point component segment fineness = 0.57 denier), and opened and deposited as a long fiber non-woven web composed of composite long fibers having a hollow ratio of 21.9%. The operability is shown in Table 2.

【0076】実施例10 実施例1と同一の2成分を原料とし、高融点成分/低融
点成分の複合比を4/1(重量比)とすること以外は実
施例1と同一条件下にて、環状均等配列型複合長繊維を
溶融紡出した。この紡出糸条を公知の冷却装置にて冷却
した後、エアーサッカーを用いて牽引速度が4350m
/分で牽引細化して引き取った。次いで、公知の開繊器
具にて開繊し、移動するスクリーンコンベア上に単糸繊
度3.7デニール(高融点成分セグメント繊度=0.4
9デニール、低融点成分セグメント繊度=0.12デニ
ール)、中空率が19.6%の複合長繊維からなる長繊
維不織ウエブとして開繊堆積させた。この長繊維不織ウ
エブを熱エンボスロールからなる熱圧接装置にて熱圧接
して、目付けが30g/m2 の生分解性不織布を得た。
熱圧接条件は、実施例1と同一条件で実施した。操業性
および不織布物性、生分解性能を表2に示す。
Example 10 Under the same conditions as in Example 1, except that the same two components as in Example 1 were used as raw materials and the composite ratio of high melting point component / low melting point component was 4/1 (weight ratio). The annular uniform array type composite filament was melt-spun. After cooling this spun yarn with a known cooling device, the pulling speed was 4350 m using an air sucker.
/ Min. Then, the fiber is opened by a known fiber-opening device, and a single yarn fineness of 3.7 denier (high melting point component segment fineness = 0.4 is set on a moving screen conveyor.
9 denier, low-melting-point component segment fineness = 0.12 denier), and opened and deposited as a long-fiber non-woven web composed of composite long fibers having a hollow ratio of 19.6%. This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 .
The thermal pressure welding conditions were the same as in Example 1. Table 2 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0077】実施例11 実施例1と同一の2成分を原料とし、紡糸温度を250
℃とし、単孔吐出量を0.72g/分とすること以外は
実施例1と同一条件下にて、環状均等配列型複合長繊維
を溶融紡出した。この紡出糸条を公知の冷却装置にて冷
却した後、エアーサッカーを用いて、牽引速度が380
0m/分で牽引細化して引き取った。次いで公知の開繊
器具にて開繊し、移動するスクリーンコンベア上に単糸
繊度1.7デニール(高融点成分セグメント繊度=0.
14デニール、低融点成分セグメント繊度=0.14デ
ニール)、中空率が5.0%の複合長繊維からなる長繊
維不織ウエブとして開繊堆積させた。この長繊維不織ウ
エブを熱エンボスロールからなる熱圧接装置にて熱圧接
して、目付けが30g/m2 の生分解性不織布を得た。
熱圧接条件は、実施例1と同一条件で実施した。操業性
および不織布物性、生分解性能を表3に示す。
Example 11 The same two components as in Example 1 were used as raw materials, and the spinning temperature was 250.
The cyclic uniform array type continuous filaments were melt-spun under the same conditions as in Example 1 except that the temperature was set to 0 ° C and the single hole discharge rate was set to 0.72 g / min. After the spun yarn was cooled by a known cooling device, the pulling speed was 380 with air sucker.
It was pulled and thinned at 0 m / min and collected. Then, the fiber is opened by a known fiber-opening device, and a single yarn fineness of 1.7 denier (high melting point component segment fineness = 0.
A long fiber non-woven web composed of composite long fibers having a denier of 14 denier, a segment fineness of a low melting point component of 0.14 denier) and a hollow ratio of 5.0% was opened and deposited. This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 .
The thermal pressure welding conditions were the same as in Example 1. Table 3 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0078】実施例12 実施例1と同一の2成分を原料とし、紡糸温度を160
℃とし、単孔吐出量を3.5g/分とすること以外は実
施例1と同一条件下にて、環状均等配列型複合長繊維を
溶融紡出した。この紡出糸条を公知の冷却装置にて冷却
した後、エアーサッカーを用いて、牽引速度が3200
m/分で牽引細化して引き取った。次いで公知の開繊器
具にて開繊し、移動するスクリーンコンベア上に単糸繊
度9.8デニール(高融点成分セグメント繊度=0.8
2デニール、低融点成分セグメント繊度=0.82デニ
ール)、中空率が30.0%の複合長繊維からなる長繊
維不織ウエブとして開繊堆積させた。この長繊維不織ウ
エブを熱エンボスロールからなる熱圧接装置にて熱圧接
して、目付けが30g/m2 の生分解性不織布を得た。
熱圧接条件は、実施例1と同一条件で実施した。操業性
および不織布物性、生分解性能を表3に示す。
Example 12 The same two components as in Example 1 were used as raw materials, and the spinning temperature was 160.
The cyclic uniform array type composite filament was melt-spun under the same conditions as in Example 1 except that the temperature was set to 0 ° C. and the single hole discharge rate was set to 3.5 g / min. After the spun yarn was cooled by a known cooling device, the pulling speed was 3200 using an air sucker.
It was pulled and thinned at m / min. Then, the fiber is opened by a known fiber-opening device, and a single yarn fineness of 9.8 denier (high-melting point component segment fineness = 0.8
2 denier, low-melting-point component segment fineness = 0.82 denier), and opened and deposited as a long-fiber non-woven web composed of composite long fibers having a hollow ratio of 30.0%. This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 .
The thermal pressure welding conditions were the same as in Example 1. Table 3 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0079】実施例13 高融点成分としてMFR値が18g/10分で融点11
4℃、結晶化温度75℃のポリブチレンサクシネート
を、低融点成分としてMFR値が10g/10分で融点
102℃、結晶化温度52℃のブチレンサクシネート/
エチレンサクシネート=85/15(モル%)の共重合
ポリエステルを用い、紡糸温度を160℃とし、単孔吐
出量を3.0g/分とすること以外は実施例1と同一条
件下にて、環状均等配列型複合長繊維を溶融紡出した。
この紡出糸条を公知の冷却装置にて冷却した後、エアー
サッカーを用いて、牽引速度が2900m/分で牽引細
化して引き取った。次いで、公知の開繊器具にて開繊
し、移動するスクリーンコンベア上に単糸繊度9.3デ
ニール(高融点成分セグメント繊度=0.78デニー
ル、低融点成分セグメント繊度=0.78デニール)、
中空率が35.0%の複合長繊維からなる長繊維不織ウ
エブとして開繊堆積させた。操業性を表3に示す。
Example 13 A high melting point component having an MFR value of 18 g / 10 min and a melting point of 11
Polybutylene succinate of 4 ° C. and crystallization temperature of 75 ° C. was used as a low melting point component of butylene succinate having a MFR value of 10 g / 10 min, a melting point of 102 ° C. and a crystallization temperature of 52 ° C. /
Under the same conditions as in Example 1, except that a copolymerized polyester of ethylene succinate = 85/15 (mol%) was used, the spinning temperature was 160 ° C, and the single hole discharge rate was 3.0 g / min. An annular uniform array type composite filament was melt-spun.
After this spun yarn was cooled by a known cooling device, it was pulled and thinned by an air sucker at a pulling speed of 2900 m / min, and was taken out. Then, the fiber is opened with a known fiber-opening device, and a single yarn fineness of 9.3 denier (high melting point component segment fineness = 0.78 denier, low melting point component segment fineness = 0.78 denier) is placed on a moving screen conveyor.
A long-fiber non-woven web made of composite long fibers having a hollow ratio of 35.0% was opened and deposited. The operability is shown in Table 3.

【0080】実施例14 実施例1と同一条件下にて、環状均等配列型複合長繊維
を溶融紡出した。この紡出糸条を公知の冷却装置にて冷
却した後、エアーサッカーを用いて、牽引速度が200
0m/分で牽引細化して引き取った。次いで、公知の開
繊器具にて開繊し、移動するスクリーンコンベア上に単
糸繊度8.1デニール(高融点成分セグメント繊度=
0.68デニール、低融点成分セグメント繊度=0.6
8デニール)、中空率が19.6%の複合長繊維からな
る長繊維不織ウエブとして開繊堆積させた。この長繊維
不織ウエブを熱エンボスロールからなる熱圧接装置にて
熱圧接して、目付けが30g/m2 の生分解性不織布を
得た。熱圧接条件は、実施例1と同一条件で実施した。
操業性および不織布物性、生分解性能を表3に示す。
Example 14 Under the same conditions as in Example 1, the annular uniform array type composite filament was melt-spun. After cooling this spun yarn with a known cooling device, a pulling speed of 200 is obtained using an air sucker.
It was pulled and thinned at 0 m / min and collected. Then, the fiber is opened by a known fiber-opening device, and a single yarn fineness of 8.1 denier (high melting point component segment fineness =
0.68 denier, low melting point component segment fineness = 0.6
8 denier) and a long fiber non-woven web made of composite long fibers having a hollow ratio of 19.6% was opened and deposited. This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The thermal pressure welding conditions were the same as in Example 1.
Table 3 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0081】実施例15 実施例1と同一条件下にて、環状均等配列型複合長繊維
を溶融紡出、次いで、牽引細化、開繊し、単糸繊度4.
0デニール(高融点成分セグメント繊度=0.33デニ
ール、低融点成分セグメント繊度=0.33デニー
ル)、中空率が20.3%の複合長繊維からなる長繊維
不織ウエブとして開繊堆積させた。この長繊維不織ウエ
ブを超音波融着装置にて熱圧接して、目付けが30g/
2 の生分解性不織布を得た。超音波融着条件は、面積
が0.6mm2 の彫刻模様で圧接点密度が20点/cm
2 、圧接面積率が15%で配設されたロールを用い、周
波数を19.15kHzとした。操業性および不織布物
性、生分解性能を表3に示す。
Example 15 Under the same conditions as in Example 1, the annular uniform array type composite continuous fibers were melt-spun, then pulled and narrowed, and opened to obtain a single yarn fineness of 4.
0 denier (high melting point component segment fineness = 0.33 denier, low melting point component segment fineness = 0.33 denier), opened and deposited as a long fiber non-woven web composed of composite long fibers having a hollow ratio of 20.3% . This long-fiber non-woven web was heat-pressed with an ultrasonic fusing device to give a basis weight of 30 g /
A biodegradable nonwoven fabric of m 2 was obtained. The ultrasonic welding conditions are an engraving pattern with an area of 0.6 mm 2 and a pressure contact density of 20 points / cm.
2. Using a roll arranged with a pressing area ratio of 15%, the frequency was set to 19.15 kHz. Table 3 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0082】実施例16 実施例1と同一条件下にて、環状均等配列型複合長繊維
を溶融紡出、次いで、牽引細化、開繊し、単糸繊度4.
0デニール(高融点成分セグメント繊度=0.33デニ
ール、低融点成分セグメント繊度=0.33デニー
ル)、中空率が20.3%の複合長繊維からなる長繊維
不織ウエブとして開繊堆積させた。この長繊維不織ウエ
ブを熱エンボスロールからなる熱圧接装置にて熱圧接し
て、目付けが30g/m2 の生分解性不織布を得た。熱
圧接条件は、加工温度を67℃とした以外は実施例1と
同一条件で実施した。操業性および不織布物性、生分解
性能を表4に示す。
Example 16 Under the same conditions as in Example 1, the annular uniform array type composite long fibers were melt-spun, then pulled and narrowed, and opened to obtain a single yarn fineness of 4.
0 denier (high melting point component segment fineness = 0.33 denier, low melting point component segment fineness = 0.33 denier), opened and deposited as a long fiber non-woven web composed of composite long fibers having a hollow ratio of 20.3% . This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The heat-pressing conditions were the same as in Example 1 except that the processing temperature was 67 ° C. Table 4 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0083】実施例17 実施例1と同一条件下にて、環状均等配列型複合長繊維
を溶融紡出、次いで牽引細化、開繊し、単糸繊度4.0
デニール(高融点成分セグメント繊度=0.33デニー
ル、低融点成分セグメント繊度=0.33デニール)、
中空率が20.3%の複合長繊維からなる長繊維不織ウ
エブとして開繊堆積させた。この長繊維不織ウエブを熱
エンボスロールからなる熱圧接装置にて熱圧接して、目
付けが30g/m2 の生分解性不織布を得た。熱圧接条
件は、加工温度を77℃とした以外は実施例1と同一条
件で実施した。操業性および不織布物性、生分解性能を
表4に示す。
Example 17 Under the same conditions as in Example 1, annular uniform array type composite long fibers were melt-spun, then pulled and narrowed, and opened to obtain a single yarn fineness of 4.0.
Denier (high melting point component segment fineness = 0.33 denier, low melting point component segment fineness = 0.33 denier),
A long fiber non-woven web composed of composite long fibers having a hollow ratio of 20.3% was opened and deposited. This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The thermal pressure welding conditions were the same as in Example 1 except that the processing temperature was 77 ° C. Table 4 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0084】実施例18 実施例1と同一条件下にて、環状均等配列型複合長繊維
を溶融紡出、次いで、牽引細化、開繊し、単糸繊度4.
0デニール(高融点成分セグメント繊度=0.33デニ
ール、低融点成分セグメント繊度=0.33デニー
ル)、中空率が20.3%の複合長繊維からなる長繊維
不織ウエブとして開繊堆積させた。この長繊維不織ウエ
ブを熱エンボスロールからなる熱圧接装置にて熱圧接し
て、目付けが30g/m2 の生分解性不織布を得た。熱
圧接条件は、加工温度を102℃とした以外は実施例1
と同一条件で実施した。操業性および不織布物性、生分
解性能を表4に示す。
Example 18 Under the same conditions as in Example 1, annular uniform array type composite long fibers were melt-spun, then pulled and narrowed, and opened to obtain a single yarn fineness of 4.
0 denier (high melting point component segment fineness = 0.33 denier, low melting point component segment fineness = 0.33 denier), opened and deposited as a long fiber non-woven web composed of composite long fibers having a hollow ratio of 20.3% . This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The hot pressing conditions were the same as in Example 1 except that the processing temperature was 102 ° C.
It carried out on the same conditions as. Table 4 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0085】実施例19 実施例1と同一の重合体を用い、これに結晶核剤を添加
したこと以外は実施例1と同一条件下にて、長繊維不織
布を得た。すなわち、結晶核剤として、平均粒径が1.
0μmのタルク/酸化チタン=1/1(重量比)を20
重量%含有させたマスターバッチを高融点成分重合体お
よび低融点成分重合体ベースであらかじめ作成し、この
マスターバッチとそれに対応する重合体とをそれぞれブ
レンドして、高融点成分に添加する結晶核剤が0.2重
量%、低融点成分に添加する結晶核剤が1.0重量%と
なるようにして原料としたこと以外は実施例1と同様に
して生分解性不織布を得た。操業性および不織布物性、
生分解性能を表4に示す。
Example 19 A long fiber nonwoven fabric was obtained under the same conditions as in Example 1 except that the same polymer as in Example 1 was used and a crystal nucleating agent was added thereto. That is, as the crystal nucleating agent, the average particle size is 1.
20 μm of 0 μm talc / titanium oxide = 1/1 (weight ratio)
A crystal nucleating agent added in advance to a high-melting point component by pre-creating a master batch containing wt% of a high-melting-point component polymer and a low-melting-point component polymer base and blending the master batch and the corresponding polymer, respectively. Was 0.2 wt% and the crystal nucleating agent added to the low melting point component was 1.0 wt% to obtain a biodegradable non-woven fabric in the same manner as in Example 1. Operability and non-woven physical properties,
The biodegradability is shown in Table 4.

【0086】実施例20 低融点成分としてMFR値が25g/10分で融点63
℃、結晶化温度22℃のブチレンサクシネート/エチレ
ンサクシネート=60/40(モル%)の共重合ポリエ
ステルを用い、実施例19と同一条件下にて結晶核剤を
添加したこと以外は実施例1と同様にして、環状均等配
列型複合長繊維を溶融紡出した。この紡出糸条を公知の
冷却装置にて冷却した後、エアーサッカーを用いて、牽
引速度が3850m/分で牽引細化して引き取った。次
いで、公知の開繊器具にて開繊し、移動するスクリーン
コンベア上に単糸繊度4.2デニール(高融点成分セグ
メント繊度=0.35デニール、低融点成分セグメント
繊度=0.35デニール)、中空率が20.8%の複合
長繊維からなる長繊維不織ウエブとして開繊堆積させ
た。操業性を表4に示す。
Example 20 A low melting point component having an MFR value of 25 g / 10 min and a melting point of 63
C., butylene succinate / ethylene succinate = 60/40 (mol%) copolyester having a crystallization temperature of 22.degree. C. was used, except that a crystal nucleating agent was added under the same conditions as in Example 19 In the same manner as in 1, the annular uniform array type composite continuous fiber was melt-spun. After this spun yarn was cooled by a known cooling device, it was pulled and thinned with an air sucker at a pulling speed of 3850 m / min. Then, the fiber is opened with a known fiber-opening device, and a single yarn fineness of 4.2 denier (high melting point component segment fineness = 0.35 denier, low melting point component segment fineness = 0.35 denier) on a moving screen conveyor, A long-fiber non-woven web composed of composite long fibers having a hollow ratio of 20.8% was opened and deposited. The operability is shown in Table 4.

【0087】実施例21 実施例1と同一の2成分を原料とし、紡糸温度を280
℃とし、単孔吐出量を0.55g/分とし、実施例19
と同一条件下にて結晶核剤を添加したこと以外は実施例
1と同様にして、環状均等配列型複合長繊維を溶融紡出
した。この紡出糸条を公知の冷却装置にて冷却した後、
エアーサッカーを用いて、牽引速度が2900m/分で
牽引細化して引き取った。次いで公知の開繊器具にて開
繊し、移動するスクリーンコンベア上に単糸繊度1.7
デニール(高融点成分セグメント繊度=0.14デニー
ル、低融点成分セグメント繊度=0.14デニール)、
中空率が2.0%の複合長繊維からなる長繊維不織ウエ
ブとして開繊堆積させた。操業性を表4に示す。
Example 21 The same two components as in Example 1 were used as raw materials, and the spinning temperature was 280.
C. and the single hole discharge rate was 0.55 g / min.
In the same manner as in Example 1 except that the crystal nucleating agent was added under the same conditions as described above, the annular uniform array type composite continuous fiber was melt-spun. After cooling this spun yarn with a known cooling device,
Using an air sucker, the towing speed was 2900 m / min. Then, the fiber is opened by a known fiber-opening device, and a single yarn fineness of 1.7 is set on the moving screen conveyor.
Denier (high melting point component segment fineness = 0.14 denier, low melting point component segment fineness = 0.14 denier),
A long-fiber non-woven web composed of composite long fibers having a hollow ratio of 2.0% was opened and deposited. The operability is shown in Table 4.

【0088】実施例22 実施例1と同一条件下にて、環状均等配列型複合長繊維
からなる長繊維不織ウエブを得、これに天然繊維からな
る不織ウエブを積層した積層不織布を得た。すなわち、
移動式補集面上に開繊堆積させた長繊維不織ウエブに、
予めエンボスロールからなる熱圧接装置にて仮熱圧接を
施した。熱圧接条件としては、面積が0.6mm2 の彫
刻模様で圧接点密度が20点/cm2 、圧接面積率が1
5%で配設されたエンボスロールと表面が平滑な金属ロ
ールとを用い、加工温度を55℃とした。
Example 22 Under the same conditions as in Example 1, a long-fiber non-woven web composed of annular uniform array type composite long fibers was obtained, and a laminated non-woven fabric was obtained by laminating a non-woven web composed of natural fibers thereon. . That is,
For long-fiber non-woven webs that have been opened and deposited on the moving collection surface,
Preliminary heat pressure welding was performed by a heat pressure welding device including an embossing roll. The conditions for thermal pressure welding are engraved patterns with an area of 0.6 mm 2 , a pressure contact density of 20 points / cm 2 , and a pressure contact area ratio of 1.
The processing temperature was set to 55 ° C. by using an embossing roll arranged at 5% and a metal roll having a smooth surface.

【0089】一方、天然繊維からなる不織ウエブとし
て、木綿の晒し綿を用い、ランダムカード機により目付
けが25g/m2 のカードウエブを作成した。次いで、
仮熱圧接処理を施した前述の長繊維不織ウエブに晒し綿
よりなる天然繊維不織ウエブを積層し、超音波融着装置
にて融着処理を施し、目付けが50g/m2 の積層不織
布を得た。融着処理条件としては、周波数19.7kH
z、面積が0.4cm2 の彫刻模様が施されたロールに
は凸部が配設され、凸部の圧接面積率15%、線圧2.
0kg/cmで実施した。操業性および不織布物性、生
分解性能を表5に示す。
On the other hand, a bleached cotton cloth was used as the non-woven web made of natural fibers, and a card web having a basis weight of 25 g / m 2 was prepared by a random card machine. Then
Laminated non-woven fabric with a basis weight of 50 g / m 2 after being laminated with a natural fiber non-woven web made of cotton that has been exposed to the above-mentioned long-fiber non-woven web that has been subjected to provisional heat pressing. Got As the fusion processing condition, a frequency of 19.7 kHz
z, a convex portion is provided on the roll having an engraved pattern of 0.4 cm 2 in area, and the pressing area ratio of the convex portion is 15% and the linear pressure is 2.
It was carried out at 0 kg / cm. Table 5 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0090】実施例23 実施例22と同一の長繊維不織ウエブおよび天然繊維不
織ウエブを用い、長繊維不織ウエブの目付けを10g/
2 とし、天然繊維不織ウエブの目付けを40g/m2
としたこと以外、実施例22と同一条件下にて目付けが
50g/m2 の積層不織布を得た。操業性および不織布
物性、生分解性能を表5に示す。
Example 23 Using the same long fiber non-woven web and natural fiber non-woven web as in Example 22, the basis weight of the long fiber non-woven web was 10 g /
m 2 and the basis weight of the natural fiber non-woven web is 40 g / m 2
Other than the above, a laminated nonwoven fabric having a basis weight of 50 g / m 2 was obtained under the same conditions as in Example 22. Table 5 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0091】実施例24 実施例22と同一の長繊維不織ウエブおよび天然繊維不
織ウエブを用い、長繊維不織ウエブの目付けを40g/
2 とし、天然繊維不織ウエブの目付けを10g/m2
としたこと以外、実施例22と同一条件下にて目付けが
50g/m2 の積層不織布を得た。操業性および不織布
物性、生分解性能を表5に示す。
Example 24 Using the same long fiber non-woven web and natural fiber non-woven web as in Example 22, the basis weight of the long fiber non-woven web was 40 g /
m 2, and the basis weight of the natural fiber non-woven web is 10 g / m 2
Other than the above, a laminated nonwoven fabric having a basis weight of 50 g / m 2 was obtained under the same conditions as in Example 22. Table 5 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0092】比較例1 実施例1と同一の高融点成分を単独で用い、繊維横断面
が単相型になる紡糸口金を用いること以外は実施例1と
同一条件下にて、単相型長繊維を溶融紡出した。この紡
出糸条を公知の冷却装置にて冷却した後、エアーサッカ
ーを用いて牽引速度が4500m/分で牽引細化して引
き取った。次いで、公知の開繊器具にて開繊し、移動す
るスクリーンコンベア上に単糸繊度3.6デニールの長
繊維からなる長繊維不織ウエブとして開繊堆積させた。
この長繊維不織ウエブを熱エンボスロールからなる熱圧
接装置にて熱圧接して、目付けが30g/m2 の生分解
性不織布を得た。熱圧接条件は、加工温度を107℃と
すること以外は実施例1と同一条件で実施した。操業性
および不織布物性、生分解性能を表5に示す。
Comparative Example 1 Under the same conditions as in Example 1, except that the same high melting point component as in Example 1 was used alone and a spinneret having a fiber cross section of single phase type was used, the single phase length was increased. The fibers were melt spun. After the spun yarn was cooled by a known cooling device, it was pulled by an air sucker at a pulling speed of 4500 m / min to be thinned and taken out. Then, the fiber was opened by a known fiber-opening device, and was opened and deposited on a moving screen conveyor as a long-fiber non-woven web made of long fibers having a single yarn fineness of 3.6 denier.
This long-fiber non-woven web was heat-pressed with a heat-pressing device consisting of a hot embossing roll to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The thermal pressure welding conditions were the same as in Example 1 except that the processing temperature was 107 ° C. Table 5 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0093】比較例2 実施例1と同一の2成分を用い、繊維横断面が芯鞘型に
なる紡糸口金を用いて芯部が高融点成分に、鞘部が低融
点成分になり、かつ2成分の複合比が1/1(重合比)
になるようにすること以外、実施例1と同一条件下に
て、芯鞘型複合長繊維を溶融紡出した。この紡出糸条を
公知の冷却装置にて冷却した後、エアーサッカーを用い
て牽引速度が4400m/分で牽引細化して引き取っ
た。次いで、公知の開繊器具にて開繊し、移動するスク
リーンコンベア上に単糸繊度3.7デニールの長繊維か
らなる長繊維不織ウエブとして開繊堆積させた。操業性
を表5に示す。
Comparative Example 2 Using the same two components as in Example 1, using a spinneret in which the fiber cross section is a core-sheath type, the core portion has a high melting point component and the sheath portion has a low melting point component, and 2 Composite ratio of components is 1/1 (polymerization ratio)
The core-sheath type composite filament was melt-spun under the same conditions as in Example 1, except that After the spun yarn was cooled by a known cooling device, it was pulled by an air sucker at a pulling speed of 4400 m / min to be thinned and pulled. Next, the fiber was opened by a known fiber-opening device, and was opened and deposited on a moving screen conveyor as a long-fiber non-woven web made of long fibers having a single yarn fineness of 3.7 denier. The operability is shown in Table 5.

【0094】比較例3 実施例1と同一の条件下にて、環状均等配列型複合長繊
維を溶融紡出した。この紡出糸条を公知の冷却装置にて
冷却した後、エアーサッカーを用いて、牽引速度が18
00m/分で牽引細化して引き取った。次いで、公知の
開繊器具にて開繊し、移動するスクリーンコンベア上に
単糸繊度9.0デニール(高融点成分セグメント繊度=
0.75デニール、低融点成分セグメント繊度=0.7
5デニール)、中空率が20.3%の複合長繊維からな
る長繊維不織ウエブとして開繊堆積させた。操業性を表
5に示す。
Comparative Example 3 Under the same conditions as in Example 1, annular uniform array type composite long fibers were melt-spun. After the spun yarn was cooled by a known cooling device, the pulling speed was 18 using an air sucker.
It was pulled and thinned at 00 m / min and collected. Then, the fiber is opened by a known fiber-opening device, and a single yarn fineness of 9.0 denier (high-melting point component segment fineness =
0.75 denier, low melting point component segment fineness = 0.7
5 denier) and a long fiber nonwoven web made of composite long fibers having a hollow ratio of 20.3% was opened and deposited. The operability is shown in Table 5.

【0095】比較例4 実施例16と同一の目付けが25g/m2 の長繊維不織
ウエブと目付けが25g/m2 の晒し綿よりなる天然繊
維不織ウエブとを積層し、熱エンボスローラーにて熱融
着加工を行い、目付けが50g/m2 の積層不織布を得
た。熱融着加工条件としては、ロールには彫刻部面積
0.4cm2 の彫刻模様が施された凸部が配設され、凸
部の圧接面積率15%、線圧50kg/cm、加工温度
90℃で実施した。その結果を表5に示す。
[0095] the same basis weight as Comparative Example 4 Example 16 laminate of a natural fiber nonwoven webs continuous fiber nonwoven web and the basis weight of 25 g / m 2 is formed of bleached cotton 25 g / m 2, the heat embossing rollers Thermal fusion processing was performed to obtain a laminated nonwoven fabric having a basis weight of 50 g / m 2 . As heat fusion processing conditions, the roll is provided with a convex portion having an engraved pattern with an engraved area of 0.4 cm 2 , the pressing area ratio of the convex portion is 15%, the linear pressure is 50 kg / cm, and the processing temperature is 90. It was carried out at ° C. The results are shown in Table 5.

【0096】[0096]

【表1】 [Table 1]

【0097】[0097]

【表2】 [Table 2]

【0098】[0098]

【表3】 [Table 3]

【0099】[0099]

【表4】 [Table 4]

【0100】[0100]

【表5】 [Table 5]

【0101】表1から明らかなように、実施例1は、低
融点成分としてブチレンサクシネート/エチレンサクシ
ネート共重合ポリエステルを用いた本発明の環状均等配
列型複合長繊維を適用しているので、紡出糸条の冷却
性、可紡性、および開繊性も良好であり、機械的性能に
も優れるものであった。また、この不織布は良好な生分
解性能を有することが認められた。
As is apparent from Table 1, Example 1 uses the cyclic evenly-aligned type composite continuous fiber of the present invention using the butylene succinate / ethylene succinate copolymerized polyester as the low melting point component. The spinnability of the spun yarn was good, the spinnability and the spreadability were good, and the mechanical performance was also excellent. It was also found that this non-woven fabric had good biodegradability.

【0102】実施例2は、低融点成分としてブチレンサ
クシネート/ブチレンアジペート共重合ポリエステルを
用いた本発明の環状均等配列型複合長繊維を適用してい
るので、紡出糸条の冷却性、可紡性、および開繊性も良
好であり、機械的性能にも優れるものであった。また、
この不織布は良好な生分解性能を有することが認められ
た。
In Example 2, since the cyclic evenly-arranged composite continuous fiber of the present invention using the butylene succinate / butylene adipate copolyester as the low melting point component is applied, the cooling property of the spun yarn can be improved. The spinnability and openability were also good, and the mechanical performance was also excellent. Also,
It was found that this nonwoven has good biodegradability.

【0103】実施例3は、低融点成分として用いるブチ
レンサクシネート/エチレンサクシネート共重合ポリエ
ステルのブチレンサクシネート共重合量比が実施例1よ
りも低いにもかかわらず、本発明の環状均等配列型複合
長繊維を適用し、かつ高融点成分の複合比を上げブチレ
ンサクシネートを多くしたので、紡出糸条の冷却性、可
紡性、および開繊性も良好であり、機械的性能にも優れ
るものであった。また、この不織布は良好な生分解性能
を有することが認められた。
In Example 3, the butylene succinate / ethylene succinate copolymerized polyester used as the low melting point component had a lower butylene succinate copolymerization amount ratio than that of Example 1, but the cyclically arrayed type of the present invention was used. By using composite long fibers and increasing the composite ratio of high melting point components and increasing the amount of butylene succinate, the spinnability of the spun yarn is good, the spinnability and the spreadability are good, and the mechanical performance is also good. It was excellent. It was also found that this non-woven fabric had good biodegradability.

【0104】実施例4は、低融点成分として用いるブチ
レンサクシネート/エチレンサクシネート共重合ポリエ
ステルのブチレンサクシネート共重合量比が実施例1よ
りも高いにもかかわらず、本発明の環状均等配列型複合
長繊維を適用し、かつ低融点成分の複合比を上げブチレ
ンサクシネート/エチレンサクシネートを多くしたの
で、紡出糸条の冷却性、可紡性、および開繊性も良好で
あり、機械的性能にも優れるものであった。また、この
不織布は良好な生分解性能を有することが認められた。
In Example 4, although the butylene succinate / ethylene succinate copolymerized polyester used as the low melting point component had a higher butylene succinate copolymerization ratio than that in Example 1, the cyclic evenly arranged type of the present invention was used. By using composite long fibers and increasing the composite ratio of low melting point components to increase the butylene succinate / ethylene succinate, the cooling properties, spinnability and spreadability of the spun yarn are also good, It was also excellent in performance. It was also found that this non-woven fabric had good biodegradability.

【0105】実施例5は、両成分の各セグメント数が実
施例1よりも少ないにもかかわらず、本発明の環状均等
配列型複合長繊維を適用しているので、紡出糸条の冷却
性、可紡性、および開繊性も良好であり、機械的性能に
も優れるものであった。また、この不織布は良好な生分
解性能を有することが認められた。
In Example 5, although the number of each segment of both components was smaller than that of Example 1, since the annular uniform array type composite continuous fiber of the present invention was applied, the cooling property of the spun yarn was obtained. The spinnability and openability were also good, and the mechanical performance was also excellent. It was also found that this non-woven fabric had good biodegradability.

【0106】実施例6は、両成分の各セグメント数が実
施例1よりも多いにもかかわらず、本発明の環状均等配
列型複合長繊維を適用しているので、紡出糸条の冷却
性、可紡性、および開繊性も良好であり、機械的性能に
も優れるものであった。また、この不織布は非常に良好
な生分解性能を有することが認められた。
In Example 6, although the number of each segment of both components is larger than that in Example 1, since the annular uniform array type composite continuous fiber of the present invention is applied, the cooling property of the spun yarn is obtained. The spinnability and openability were also good, and the mechanical performance was also excellent. It was also found that this non-woven fabric has a very good biodegradability.

【0107】表2から明らかなように、実施例7は、低
融点成分の複合比を上げたが、繊度を細くし、本発明の
環状均等配列型複合長繊維を適用しているので、紡出糸
条の冷却性、可紡性、および開繊性も良好であり、機械
的性能にも優れるものであった。また、生分解性能は実
施例1で得られた不織布よりさらに良好な結果が得られ
た。
As is clear from Table 2, in Example 7, the composite ratio of the low melting point component was increased, but the fineness was thinned and the annular uniform array type composite continuous fiber of the present invention was applied. The spinnability, spinnability, and spreadability of the spun yarn were good, and the mechanical performance was also excellent. Further, the biodegradability was even better than that of the nonwoven fabric obtained in Example 1.

【0108】実施例8は、高融点成分の複合比を上げた
が、繊度を太くし、本発明の環状均等配列型複合長繊維
を適用しているので、紡出糸条の冷却性、可紡性、およ
び開繊性も良好であり、機械的性能にも優れるものであ
った。また、生分解性能は、高融点成分を低融点成分で
細分化しているので良好な結果が得られた。
In Example 8, the composite ratio of the high melting point component was increased, but the fineness was thickened and the annular uniform array type composite continuous fiber of the present invention was applied. Therefore, the cooling property of the spun yarn was improved. The spinnability and openability were also good, and the mechanical performance was also excellent. Further, the biodegradability was good because the high melting point component was subdivided into the low melting point components.

【0109】実施例9は、実施例7よりもさらに低融点
成分を多くしたため、低融点成分の繊維表面における露
出部分が多くなり、紡出糸条の冷却性に劣り操業性の面
ではあまり好ましくなかった。
In Example 9, since the low melting point component was increased more than in Example 7, the exposed portion on the fiber surface of the low melting point component was increased, the cooling property of the spun yarn was inferior, and the workability was less preferable. There wasn't.

【0110】実施例10は、実施例8よりもさらに低融
点成分を少なくしたため、低融点成分の繊維表面におけ
る露出部分が少なくなるので、得られた不織布の生分解
性能には若干劣るものの、紡出糸条の冷却性、可紡性お
よび開線性も良好であり、機械的性能にも優れるもので
あった。
In Example 10, since the low melting point component was further reduced as compared with Example 8, the exposed portion on the fiber surface of the low melting point component was reduced, so that the biodegradability of the obtained nonwoven fabric was slightly inferior, but The spinnability, spinnability, and openness of the spinning yarn were good, and the mechanical performance was also excellent.

【0111】表3から明らかなように、実施例11は、
紡糸温度を上げ、かつ単孔吐出量を下げて、中空率を実
施例1よりも低くしたにもかかわらず、本発明の環状均
等配列型複合長繊維を適用しているので、紡出糸条の冷
却性、可紡性、および開繊性も良好であり、機械的性能
にも優れるものであった。また、この不織布は良好な生
分解性能を有することが認められた。
As is clear from Table 3, Example 11 is
Although the spinning temperature is raised and the single-hole discharge amount is lowered so that the hollow ratio is lower than that of Example 1, since the annular uniform array type composite continuous fiber of the present invention is applied, the spun yarn is produced. The cooling property, spinnability, and fiber-opening property were good, and the mechanical performance was excellent. It was also found that this non-woven fabric had good biodegradability.

【0112】実施例12は、紡糸温度を下げ、、かつ単
孔吐出量を上げて中空率を実施例1よりも高くしたにも
かかわらず、本発明の環状均等配列型複合長繊維を適用
しているので、紡出糸条の冷却性、可紡性、および開繊
性も良好であり、繊度が太くやや柔軟性に欠けるものの
機械的性能にも優れるものであった。また、この不織布
は良好な生分解性能を有することが認められた。
In Example 12, although the spinning temperature was lowered and the single hole discharge amount was increased to raise the hollow ratio higher than that of Example 1, the annular uniform array type composite continuous fiber of the present invention was applied. Therefore, the spinnability of the spun yarn was good, the spinnability and the fiber-opening property were good, and although the fineness was thick and somewhat lacking in flexibility, it was also excellent in mechanical performance. It was also found that this non-woven fabric had good biodegradability.

【0113】実施例13は、高融点成分および低融点成
分を高粘度とし、紡糸温度を下げ、かつ単孔吐出量を上
げたため、中空率が高く、紡糸工程において紡出糸条の
中空部がパンクし易い傾向となり、操業性の面ではあま
り好ましくなかった。
In Example 13, the high-melting point component and the low-melting point component were made to have high viscosities, the spinning temperature was lowered, and the single hole discharge rate was increased, so that the hollow ratio was high and the hollow portion of the spun yarn was formed in the spinning process. The puncture tends to occur easily, which is not preferable in terms of operability.

【0114】実施例14は、牽引速度が実施例1よりも
遅くしたにもかかわらず、本発明の環状均等配列型複合
長繊維を適用しているので、紡出糸条の冷却性、可紡性
は良好であった。開繊性および柔軟性にはやや劣るもの
の機械的特性に優れるものであった。また、この不織布
は良好な生分解性能を有することが認められた。
In Example 14, although the pulling speed was slower than in Example 1, since the annular uniform array type composite continuous fiber of the present invention was applied, the cooling property of the spun yarn and the spinnability were improved. The sex was good. The openability and flexibility were slightly inferior, but the mechanical properties were excellent. It was also found that this non-woven fabric had good biodegradability.

【0115】実施例15は、実施例1で得られた長繊維
不織ウエブを、超音波融着装置を用い熱圧接しているの
で、不織布物性において若干機械的性能に劣るものの柔
軟性に優れる不織布が得られた。
In Example 15, the long-fiber non-woven web obtained in Example 1 was heat-pressed by using an ultrasonic fusing device, and therefore, the physical properties of the non-woven fabric are slightly inferior in mechanical performance but excellent in flexibility. A non-woven fabric was obtained.

【0116】表4から明らかなように、実施例16は、
熱圧接工程における加工温度が低いので、柔軟性には優
れるものの、機械的特性に劣り、また毛羽が発生し易い
ものであった。また、この不織布は良好な生分解性能を
有することが認められた。
As is clear from Table 4, Example 16 is
Since the processing temperature in the hot press contacting step was low, the flexibility was excellent, but the mechanical properties were inferior and fluff was likely to occur. It was also found that this non-woven fabric had good biodegradability.

【0117】実施例17は、熱圧接工程における加工温
度を低くしたにもかかわらず、本発明の環状均等配列型
複合長繊維を適用しているので、機械的特性にはやや劣
るものの、特に柔軟性には優れるものであった。また、
この不織布は良好な生分解性能を有することが認められ
た。
In Example 17, although the working temperature in the hot pressing step was lowered, the annular uniform array type composite continuous fiber of the present invention was applied, so that the mechanical properties were slightly inferior, but particularly soft. It was excellent in sex. Also,
It was found that this nonwoven has good biodegradability.

【0118】実施例18は、熱圧接工程における加工温
度を高くしたにもかかわらず、本発明の環状均等配列型
複合長繊維を適用しているので、柔軟性には劣るもの
の、機械的特性には優れるものであった。また、この不
織布は良好な生分解性能を有することが認められた。
In Example 18, since the annular uniform array type composite continuous fiber of the present invention was applied despite the fact that the processing temperature in the hot press contacting step was raised, the flexibility was poor, but the mechanical characteristics were poor. Was excellent. It was also found that this non-woven fabric had good biodegradability.

【0119】実施例19は、結晶核剤を添加したので、
紡出糸条の各単繊維の冷却性が均一となり、かつ糸条の
冷却性が向上するので、製糸性もさらに良好となった。
また、この不織布は機械的特性および生分解性能にも優
れるものであった。
In Example 19, since the crystal nucleating agent was added,
Since the individual filaments of the spun yarn are uniform in cooling property and the cooling property of the yarn is improved, the spinnability is further improved.
Further, this non-woven fabric was also excellent in mechanical properties and biodegradability.

【0120】実施例20は、低融点成分として実施例1
よりもさらに融点の低い重合体を用いたため、結晶核剤
の効果が大きく寄与するものの、紡出糸条の冷却性およ
び開繊性にはやや劣る結果であった。
Example 20 is the same as Example 1 as a low melting point component.
Since a polymer having a lower melting point was used, the effect of the crystal nucleating agent largely contributed, but the result was that the spinnability of the spun yarn was slightly inferior in the cooling property and the fiber opening property.

【0121】実施例21は、紡糸温度を上げ、かつ単孔
吐出量を下げて繊度を細くしたため、中空率が低くなっ
たが、結晶核剤を添加しているので、紡出糸条の冷却性
および開繊性には大きな問題がないことが判った。
In Example 21, the hollowness was low because the spinning temperature was raised and the single hole discharge amount was lowered to make the fineness finer, but the crystal nucleating agent was added, so that the spun yarn was cooled. It was found that there was no major problem with the property and openability.

【0122】表5から明らかなように、実施例22は、
天然繊維からなる不織ウエブを積層した本発明の生分解
性不織布であるので、天然繊維により優れた吸水性を具
備するとともに、複合長繊維により優れた機械的特性を
具備し、かつ複合長繊維が天然繊維と同程度の生分解速
度を有しているため、積層不織布としても生分解性能に
優れる不織布であることが認められた。
As is clear from Table 5, Example 22 is
Since it is the biodegradable nonwoven fabric of the present invention in which a nonwoven web made of natural fibers is laminated, the composite fibers have not only excellent water absorption properties due to the natural fibers, but also excellent mechanical properties due to the composite long fibers. Has a biodegradation rate similar to that of natural fiber, it was confirmed that the laminated non-woven fabric has excellent biodegradability.

【0123】実施例23は、実施例22よりも天然繊維
不織ウエブの積層比率が多いため、得られた不織布はさ
らに吸水性に優れるとともに、複合長繊維が天然繊維と
同程度の生分解速度を有しているため、生分解性能にも
優れるものであった。また、長繊維不織ウエブが少ない
ために、不織布の強力についてはやや低いが、実用的な
機械的特性を有するものであった。
In Example 23, since the natural fiber nonwoven web has a higher lamination ratio than that of Example 22, the nonwoven fabric obtained is more excellent in water absorption and the composite continuous fiber has a biodegradation rate similar to that of natural fiber. It also had excellent biodegradability. In addition, since the nonwoven fabric has a small amount of long-fiber nonwoven web, the strength of the nonwoven fabric is slightly low, but it has practical mechanical properties.

【0124】実施例24は、実施例22よりも天然繊維
不織ウエブの積層比率が少ないため、吸水性については
やや劣るが、実用的な機械的特性を有する積層不織布と
なり、しかも複合長繊維が天然繊維と同程度の生分解速
度を有しているため、生分解性能にも優れるものであっ
た。
In Example 24, the laminated ratio of the non-woven natural fiber web was smaller than that of Example 22, so that the water absorption property was slightly inferior, but a laminated nonwoven fabric having practical mechanical properties was obtained. Since it has a biodegradation rate similar to that of natural fiber, it was also excellent in biodegradability.

【0125】これに対して、表5から明らかなように、
比較例1は、実施例1と同一の高融点成分を用いたもの
の、繊維横断面が本発明範囲外である単相型であるの
で、不織布の機械的性能には優れるものの、不織布を6
ヶ月間土中に埋設し、その後に掘り出して観察したとこ
ろ不織布形態を維持しており、不織布の強力も埋設前の
強力初期値に対して91%であり、生分解性能には著し
く劣るものであった。
On the other hand, as is clear from Table 5,
Comparative Example 1 uses the same high melting point component as in Example 1, but is a single-phase type having a fiber cross-section outside the scope of the present invention. Therefore, although the nonwoven fabric has excellent mechanical performance,
It was buried in soil for a month, and then excavated and observed, and the non-woven fabric morphology was maintained, and the strength of the non-woven fabric was 91% of the initial strength before embedding, indicating a markedly poor biodegradability. there were.

【0126】比較例2は、実施例1と同一の原料を用い
たものの、繊維横断面が本発明の範囲外である芯鞘型で
あるので、紡出糸条が密着し、さらに開繊性も不良であ
り目標とした不織布を得ることができなかった。
In Comparative Example 2, the same raw material as in Example 1 was used, but since the fiber cross section was a core-sheath type, which was outside the scope of the present invention, the spun yarn was in close contact, and the openability was further improved. However, the target non-woven fabric could not be obtained.

【0127】比較例3は、牽引速度が低く本発明の範囲
外であるので、紡出糸条の牽引張力が低く、冷却性およ
び開繊性が不良であり、目標とした不織布を得ることが
できなかった。
In Comparative Example 3, the pulling speed is low and out of the range of the present invention, so the pulling tension of the spun yarn is low, the cooling property and the openability are poor, and the target nonwoven fabric can be obtained. could not.

【0128】比較例4は、天然繊維不織ウエブと長繊維
不織ウエブとの積層不織布であるが、両ウエブの一体化
を熱エンボスロールからなる熱圧接装置にて行ったの
で、天然繊維不織ウエブがローラーに取られ熱圧接固定
ができず、天然繊維不織ウエブと長繊維不織ウエブとの
一体化された積層不織布を得ることができなかった。
Comparative Example 4 is a laminated non-woven fabric of a natural fiber non-woven web and a long fiber non-woven web. However, since both webs were integrated with each other by a hot pressing apparatus composed of a hot embossing roll, the natural fiber non-woven fabric was used. Since the woven web was taken by the roller and could not be fixed by heat pressing, it was not possible to obtain a laminated nonwoven fabric in which the natural fiber nonwoven web and the long fiber nonwoven web were integrated.

【0129】[0129]

【発明の効果】本発明によれば、生分解性能が制御可能
であるとともに不織布の地合いおよび機械的特性、紡出
糸条の冷却性および可紡性に優れ、かつ熱接着機能を有
し、さらに必要に応じて吸水性をも発揮しうる生分解性
不織布およびこれらの製造方法を提供することができ
る。
EFFECTS OF THE INVENTION According to the present invention, the biodegradability is controllable, the texture and mechanical properties of the non-woven fabric are excellent, the cooling and spinnability of the spun yarn are excellent, and it has a heat-bonding function. Further, it is possible to provide a biodegradable nonwoven fabric that can also exhibit water absorbency and a method for producing these, if necessary.

【0130】本発明の不織布は、おむつや生理用品など
の医療・衛生材料素材、使い捨ておしぼりやワイピング
クロスなどの拭き取り布、使い捨て包装材、家庭・業務
用の生ごみ捕集用袋その他廃棄物処理材などの生活関連
用素材、あるいは、農業・園芸・土木用に代表される産
業用資材の各素材として好適である。しかもこの不織布
は、生分解性を有するので、その使用後に完全に分解消
失するため、自然環境保護の観点からも有益であり、あ
るいは、例えば堆肥化して肥料とするなど再利用を図る
こともできるため資源の再利用の観点からも有益であ
る。
The nonwoven fabric of the present invention is used as a material for medical / sanitary materials such as diapers and sanitary products, a wipe cloth such as a disposable hand towel and a wiping cloth, a disposable packaging material, a household / commercial garbage collection bag and other waste treatment. It is suitable as a material for daily life such as wood, or as an industrial material typified by agriculture, gardening, and civil engineering. Moreover, since this non-woven fabric has biodegradability, it decomposes and disappears completely after use, which is beneficial from the viewpoint of protecting the natural environment, or it can be reused, for example, by composting it into a fertilizer. Therefore, it is also useful from the viewpoint of resource reuse.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の環状均等配列型複合長繊維の繊維横断
面のモデル図である。
FIG. 1 is a model view of a fiber cross section of an annular uniform array type composite continuous fiber of the present invention.

【符号の説明】[Explanation of symbols]

1 高融点成分 2 低融点成分 3 中空部 4 環状均等配列型複合長繊維 1 High-melting point component 2 Low-melting point component 3 Hollow part 4 Ring-shaped uniform array type composite long fiber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08G 63/06 NLP C08G 63/06 NLP C08L 67/02 LPD C08L 67/02 LPD D01D 5/24 D01D 5/24 C D01F 6/84 301 D01F 6/84 301G 303 303Z 8/14 8/14 B D04H 1/22 D04H 1/22 1/42 1/42 T (72)発明者 米沢 安広 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 迫田 恵子 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C08G 63/06 NLP C08G 63/06 NLP C08L 67/02 LPD C08L 67/02 LPD D01D 5/24 D01D 5/24 C D01F 6/84 301 D01F 6/84 301G 303 303Z 8/14 8/14 B D04H 1/22 D04H 1/22 1/42 1/42 T (72) Inventor Yonezawa Yasuhiro Uji City, Kyoto Prefecture Uji 23 Kozakura, Central Research Institute of Unitika Co., Ltd. (72) Inventor Keiko Sakoda 23, Uji Kozakura, Uji City, Kyoto Prefecture Central Research Laboratory of Unitika Co., Ltd.

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 複合長繊維からなる長繊維不織ウエブが
部分的に熱圧接されて所定の形態が保持されてなる不織
布であって、前記複合長繊維が生分解性を有する第1の
脂肪族ポリエステルからなる高融点成分とこの高融点成
分よりも融点の低い生分解性を有する第2の脂肪族ポリ
エステルからなる低融点成分とから形成される環状均等
配列型複合長繊維であり、この環状均等配列型複合長繊
維の繊維横断面において高融点成分および低融点成分が
繊維横断面の中心から周方向の一定範囲ずつを交互に占
め、かつ繊維横断面に中空部を有し、かつ前記両成分が
繊維横断面においてそれぞれ均等な面積を有するセグメ
ントに分割されており、しかも高融点成分および低融点
成分が繊維軸方向に連続するとともに繊維表面ならびに
中空部に露出していることを特徴とする生分解性不織
布。
1. A first non-woven fabric comprising a long-fiber non-woven web made of composite long fibers, which is partially heat-pressed to maintain a predetermined shape, wherein the composite long fibers are biodegradable. A ring-shaped uniform array type composite continuous fiber formed of a high melting point component made of a group polyester and a low melting point component made of a second aliphatic polyester having a biodegradability having a lower melting point than the high melting point component. The high melting point component and the low melting point component alternately occupy a constant range in the circumferential direction from the center of the fiber cross section in the fiber cross section of the uniformly arranged composite long fiber, and have a hollow portion in the fiber cross section, and The component is divided into segments each having an equal area in the cross section of the fiber, and the high-melting point component and low-melting point component are continuous in the fiber axial direction and are exposed on the fiber surface and hollow part. A biodegradable nonwoven fabric characterized by the following.
【請求項2】 複合長繊維からなる長繊維不織ウエブと
天然繊維からなる天然繊維不織ウエブとが積層され部分
的な圧接により一体化されてなる積層不織布であって、
前記複合長繊維が生分解性を有する第1の脂肪族ポリエ
ステルからなる高融点成分とこの高融点成分よりも融点
の低い生分解性を有する第2の脂肪族ポリエステルから
なる低融点成分とから形成される環状均等配列型複合長
繊維であり、この環状均等配列型複合長繊維の繊維横断
面において高融点成分および低融点成分が繊維横断面の
中心から周方向の一定範囲ずつを交互に占め、かつ繊維
横断面に中空部を有し、かつ前記両成分が繊維横断面に
おいてそれぞれ均等な面積を有するセグメントに分割さ
れており、しかも高融点成分および低融点成分が繊維軸
方向に連続するとともに繊維表面ならびに中空部に露出
していることを特徴とする生分解性不織布。
2. A laminated non-woven fabric comprising a long-fiber non-woven web made of composite long fibers and a natural-fiber non-woven web made of natural fibers, which are laminated and integrated by partial pressure contact.
The composite long fiber is formed from a high melting point component made of a first aliphatic polyester having biodegradability and a low melting point component made of a second aliphatic polyester having a biodegradability lower in melting point than the high melting point component. The annular uniform array type composite continuous fiber, which has a high melting point component and a low melting point component in the fiber cross section of the annular uniform array type composite continuous fiber, alternately occupies a constant range in the circumferential direction from the center of the fiber cross section. The fiber has a hollow portion in the cross section of the fiber, and the both components are divided into segments having an equal area in the cross section of the fiber, and the high melting point component and the low melting point component are continuous in the fiber axial direction and A biodegradable non-woven fabric characterized by being exposed on the surface and in the hollow part.
【請求項3】 少なくとも高融点成分同士が熱圧接され
ていないことにより複合長繊維間において非熱圧接領域
を保持させるとともに、低融点成分同士が熱圧接されて
いることにより所定の形態を保持していることを特徴と
する請求項1に記載の生分解性不織布。
3. At least the high-melting-point components are not heat-welded to each other to maintain a non-heat-pressed region between the composite long fibers, and the low-melting-point components are heat-pressed to maintain a predetermined shape. The biodegradable nonwoven fabric according to claim 1, wherein
【請求項4】 天然繊維が、コットン、ラミー、短繊維
状に裁断されたシルク繊維であることを特徴とする請求
項2に記載の生分解性不織布。
4. The biodegradable nonwoven fabric according to claim 2, wherein the natural fiber is a cotton fiber, a ramie fiber, or a silk fiber cut into a short fiber shape.
【請求項5】 天然繊維不織ウエブと長繊維不織ウエブ
との積層比率が10/90〜90/10(重量%)であ
ることを特徴とする請求項2又は4記載の生分解性不織
布。
5. The biodegradable nonwoven fabric according to claim 2, wherein the natural fiber nonwoven web and the long fiber nonwoven web have a lamination ratio of 10/90 to 90/10 (% by weight). .
【請求項6】 高融点成分がポリブチレンサクシネート
であり、低融点成分がブチレンサクシネートを主繰り返
し単位とし、かつブチレンサクシネートの共重合量比が
70〜90モル%の共重合ポリエステルであることを特
徴とする請求項1から5までのいずれか1項記載の生分
解性不織布。
6. A copolyester having a high melting point component of polybutylene succinate, a low melting point component of butylene succinate as a main repeating unit, and a copolymerization ratio of butylene succinate of 70 to 90 mol%. The biodegradable nonwoven fabric according to any one of claims 1 to 5, which is characterized in that.
【請求項7】 低融点成分が、ブチレンサクシネートに
エチレンサクシネートあるいはブチレンアジペートを共
重合せしめた共重合ポリエステルであることを特徴とす
る請求項1から6までのいずれか1項に記載の生分解性
不織布。
7. The raw material according to claim 1, wherein the low melting point component is a copolyester obtained by copolymerizing butylene succinate with ethylene succinate or butylene adipate. Degradable non-woven fabric.
【請求項8】 低融点成分および高融点成分のうち、少
なくとも低融点成分に中に結晶核剤が添加されているこ
とを特徴とする請求項1から7までのいずれか1項に記
載の生分解性不織布。
8. The raw material according to any one of claims 1 to 7, wherein a crystal nucleating agent is added to at least the low melting point component of the low melting point component and the high melting point component. Degradable non-woven fabric.
【請求項9】 結晶核剤が、高融点成分中への結晶核剤
の添加量をQA (重量%)とし、低融点成分中への結晶
核剤の添加量をQB (重量%)としたときに、(1)式
および(2)式を満足するように添加されていることを
特徴とする請求項8記載の生分解性不織布。 [(ΔTA +ΔTB)/100]−2 /3 ≦QA +QB ≦[(ΔTA +ΔTB)/100]+4 …(1) QA ≦QB …(2) 但し、ΔTA =高融点成分の融点−高融点成分の結晶化
温度≧35 ΔTB =低融点成分の融点−低融点成分の結晶化温度≧
35
9. In the crystal nucleating agent, the addition amount of the crystal nucleating agent to the high melting point component is QA (wt%), and the addition amount of the crystal nucleating agent to the low melting point component is QB (wt%). The biodegradable nonwoven fabric according to claim 8, wherein the biodegradable nonwoven fabric is added so as to satisfy the formulas (1) and (2). [(ΔTA + ΔTB) / 100] −2 / 3 ≦ QA + QB ≦ [(ΔTA + ΔTB) / 100] +4 (1) QA ≦ QB (2) where ΔTA = melting point of high melting point component−high melting point component Crystallization temperature ≧ 35 ΔTB = melting point of low melting point component−crystallization temperature of low melting point component ≧
35
【請求項10】 結晶核剤が、タルクまたは酸化チタン
またはこれらの混合物であることを特徴とする請求項8
又は9記載の生分解性不織布。
10. The crystal nucleating agent is talc or titanium oxide or a mixture thereof.
Alternatively, the biodegradable nonwoven fabric according to item 9.
【請求項11】 高融点成分および低融点成分がそれぞ
れ、3〜20個のセグメント部分に分割されており、か
つ単糸繊度が1.5〜10デニールであることを特徴と
する請求項1から10までのいずれか1項に記載の生分
解性不織布。
11. The high melting point component and the low melting point component are each divided into 3 to 20 segment portions, and the single yarn fineness is 1.5 to 10 denier. The biodegradable nonwoven fabric according to any one of 10 to 10.
【請求項12】 高融点成分/低融点成分の複合比が1
/3〜3/1(重量比)であることを特徴とする請求項
1から11までのいずれか1項に記載の生分解性不織
布。
12. The composite ratio of high melting point component / low melting point component is 1
It is / 3-3 / 1 (weight ratio), The biodegradable nonwoven fabric of any one of Claim 1 to 11 characterized by the above-mentioned.
【請求項13】 長繊維不織ウエブを構成する複合長繊
維の繊維横断面において、糸の直径を(A)、中空部の
直径を(a)としたとき、 (a2 /A2 )×100(%) で示される中空率が、5〜30%であることを特徴とす
る請求項1から12までのいずれか1項に記載の生分解
性不織布。
13. In the fiber cross section of the composite long fibers constituting the long fiber non-woven web, when the diameter of the yarn is (A) and the diameter of the hollow portion is (a), (a 2 / A 2 ) × The biodegradable nonwoven fabric according to any one of claims 1 to 12, characterized in that the hollow ratio represented by 100 (%) is 5 to 30%.
【請求項14】 複合長繊維からなる長繊維不織ウエブ
が部分的に熱圧接されて所定の形態が保持されてなる不
織布の製造方法であって、前記複合長繊維を生分解性を
有する第1の脂肪族ポリエステルからなる高融点成分と
この高融点成分よりも融点の低い生分解性を有する第2
の脂肪族ポリエステルからなる低融点成分とを用いて形
成し、繊維横断面において高融点成分および低融点成分
が繊維横断面の中心から周方向の一定範囲ずつを交互に
占め、かつ繊維横断面に中空部を有し、前記両成分が繊
維横断面においてそれぞれ均等な面積を有するセグメン
トに分割されており、しかも高融点成分および低融点成
分が繊維軸方向に連続するとともに繊維表面ならびに中
空部に露出するような環状均等配列型複合長繊維を溶融
紡糸し、この環状均等配列型複合長繊維を牽引速度20
00m/分以上で牽引細化した後、長繊維不織ウエブと
なし、この長繊維不織ウエブを熱圧接装置により部分的
に熱圧接させることを特徴とする生分解性不織布の製造
方法。
14. A method for producing a non-woven fabric, wherein a long-fiber non-woven web made of composite long fibers is partially heat-pressed to maintain a predetermined shape, wherein the composite long fibers are biodegradable. A high melting point component consisting of the aliphatic polyester of 1 and a second biodegradable substance having a lower melting point than the high melting point component
Formed by using a low melting point component composed of an aliphatic polyester, the high melting point component and the low melting point component alternately occupy a constant range in the circumferential direction from the center of the fiber cross section in the fiber cross section, and It has a hollow part, and both components are divided into segments each having an equal area in the cross section of the fiber, and the high melting point component and the low melting point component are continuous in the axial direction of the fiber and are exposed on the fiber surface and the hollow part. The annular uniform array type composite filaments are melt-spun, and the annular uniform array type composite filaments are pulled at a pulling speed of 20.
A method for producing a biodegradable nonwoven fabric, which comprises drawing a continuous fiber non-woven web after drawing and thinning it at a rate of 00 m / min or more, and partially hot-pressing the long fiber non-woven web with a hot-pressing device.
【請求項15】 低融点成分の融点を(Tm)℃とした
ときに、 (Tm−25)℃〜(Tm)℃ の範囲を満足する温度で、エンボスロールにて長繊維不
織ウエブを部分的に熱圧接させることを特徴とする請求
項14記載の生分解性不織布の製造方法。
15. A long fiber non-woven web is partly cut by an embossing roll at a temperature satisfying a range of (Tm-25) ° C. to (Tm) ° C. when the melting point of the low melting point component is (Tm) ° C. 15. The method for producing a biodegradable non-woven fabric according to claim 14, wherein the heat-pressing is carried out selectively.
【請求項16】 超音波発振器を用いた超音波融着装置
により、長繊維不織ウエブを部分的に熱圧接させること
を特徴とする請求項14記載の生分解性不織布の製造方
法。
16. The method for producing a biodegradable nonwoven fabric according to claim 14, wherein the long fiber non-woven web is partially heat-pressed by an ultrasonic fusing device using an ultrasonic oscillator.
【請求項17】 複合長繊維からなる長繊維不織ウエブ
と天然繊維からなる天然繊維不織ウエブとを積層して部
分的に圧接することにより一体化されてなる積層不織布
の製造方法であって、前記複合長繊維を生分解性を有す
る第1の脂肪族ポリエステルからなる高融点成分とこの
高融点成分よりも融点の低い生分解性を有する第2の脂
肪族ポリエステルからなる低融点成分とを用いて形成
し、繊維横断面において高融点成分および低融点成分が
繊維横断面の中心から周方向の一定範囲ずつを交互に占
め、かつ繊維横断面に中空部を有し、前記両成分が繊維
横断面においてそれぞれ均等な面積を有するセグメント
に分割されており、しかも高融点成分および低融点成分
が繊維軸方向に連続するとともに繊維表面ならびに中空
部に露出するような環状均等配列型複合長繊維を溶融紡
糸し、この環状均等配列型複合長繊維を牽引速度200
0m/分以上で牽引細化した後、長繊維不織ウエブとな
し、この長繊維不織ウエブに常法にて別途作成した天然
繊維の不織ウエブを積層した後に、超音波融着処理を施
して両不織ウエブを部分的に融着させ一体化することを
特徴とする生分解性不織布の製造方法。
17. A method for producing a laminated non-woven fabric comprising a long-fiber non-woven web made of composite long fibers and a natural-fiber non-woven web made of natural fibers, which are laminated and partially pressed to be integrated. A high melting point component composed of the first aliphatic polyester having biodegradability of the composite long fibers, and a low melting point component composed of a second aliphatic polyester having a biodegradability lower than the high melting point component. The high-melting point component and the low-melting point component alternately occupy a certain range in the circumferential direction from the center of the fiber cross section in the fiber cross section, and have a hollow portion in the fiber cross section, and both components are fibers. The ring is divided into segments each having an equal area in the cross section, and the high-melting point component and the low-melting point component are continuous in the fiber axis direction and are exposed on the fiber surface and hollow part. -Shaped uniform array type composite filaments are melt-spun, and the annular uniform array type composite filaments are pulled at a pulling speed of 200.
After traction thinning at 0 m / min or more, it is made into a long fiber non-woven web, and after laminating a non-woven web of natural fibers separately prepared by a conventional method on this long fiber non-woven web, ultrasonic fusion treatment is performed. A method for producing a biodegradable non-woven fabric, which comprises applying both of these nonwoven webs and partially fusing them together.
【請求項18】 長繊維不織ウエブと天然繊維不織ウエ
ブとを積層する前に予め、長繊維不織ウエブに仮熱圧接
処理または熱風接着処理または三次元交絡処理を施すこ
とにより長繊維不織ウエブの形態を保持させることを特
徴とする請求項17記載の生分解性不織布の製造方法。
18. A long fiber non-woven fabric is obtained by subjecting a long fiber non-woven web to temporary hot pressing, hot air bonding or three-dimensional entanglement treatment before laminating the long fiber non-woven web and the natural fiber non-woven web. The method for producing a biodegradable non-woven fabric according to claim 17, wherein the woven web is retained in its form.
【請求項19】 低融点成分および高融点成分のうち、
少なくとも低融点成分に中に結晶核剤を添加することを
特徴とする請求項14から18までのいずれか1項に記
載の生分解性不織布の製造方法。
19. Of the low melting point component and the high melting point component,
The method for producing a biodegradable nonwoven fabric according to any one of claims 14 to 18, wherein a crystal nucleating agent is added to at least the low melting point component.
【請求項20】 高融点成分中への結晶核剤の添加量を
QA (重量%)とし、低融点成分中への結晶核剤の添加
量をQB (重量%)としたときに、(1)式および
(2)式を満足するように、結晶核剤を添加することを
特徴とする請求項19記載の生分解性不織布の製造方
法。 [(ΔTA +ΔTB)/100]−2 /3 ≦QA +QB ≦[(ΔTA +ΔTB)/100]+4 …(1) QA ≦QB …(2) 但し、ΔTA =高融点成分の融点−高融点成分の結晶化
温度≧35 ΔTB =低融点成分の融点−低融点成分の結晶化温度≧
35
20. When the amount of the crystal nucleating agent added to the high melting point component is QA (wt%) and the amount of the crystal nucleating agent added to the low melting point component is QB (wt%), (1 The method for producing a biodegradable nonwoven fabric according to claim 19, wherein a crystal nucleating agent is added so as to satisfy the formulas (2) and (2). [(ΔTA + ΔTB) / 100] −2 / 3 ≦ QA + QB ≦ [(ΔTA + ΔTB) / 100] +4 (1) QA ≦ QB (2) where ΔTA = melting point of high melting point component−high melting point component Crystallization temperature ≧ 35 ΔTB = melting point of low melting point component−crystallization temperature of low melting point component ≧
35
JP05111696A 1995-03-08 1996-03-08 Biodegradable nonwoven fabric and method for producing the same Expired - Fee Related JP4117915B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4767895 1995-03-08
JP17529695 1995-07-12
JP7-175296 1995-07-12
JP7-47678 1995-07-12
JP05111696A JP4117915B2 (en) 1995-03-08 1996-03-08 Biodegradable nonwoven fabric and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05111696A JP4117915B2 (en) 1995-03-08 1996-03-08 Biodegradable nonwoven fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0978428A true JPH0978428A (en) 1997-03-25
JP4117915B2 JP4117915B2 (en) 2008-07-16

Family

ID=27293041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05111696A Expired - Fee Related JP4117915B2 (en) 1995-03-08 1996-03-08 Biodegradable nonwoven fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP4117915B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303337A (en) * 1999-03-01 2000-10-31 Carl Freudenberg:Fa Non-woven fabric made from thermally binding filament or fiber
JP2013226179A (en) * 2012-04-24 2013-11-07 Asahi Kasei Fibers Corp Sheet for makeup

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303337A (en) * 1999-03-01 2000-10-31 Carl Freudenberg:Fa Non-woven fabric made from thermally binding filament or fiber
JP2013226179A (en) * 2012-04-24 2013-11-07 Asahi Kasei Fibers Corp Sheet for makeup

Also Published As

Publication number Publication date
JP4117915B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
KR100404899B1 (en) Biodegradable filament nonwoven fabric and its manufacturing method
JPH09316765A (en) Unidirectionally stretchable nonwoven fabric and its production
JPH06207323A (en) Biodegradable latent-crimping conjugate filament and nonwoven fabric made of the filament
JP3804999B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JPH1150369A (en) Non-woven fabric of biodegradable, conjugate, continuous fiber
JPH08260323A (en) Biodegradable filament nonwoven fabric and its production
JPH11117164A (en) Biodegradable laminated sheet
JP4117915B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH101855A (en) Biodegradable short fiber nonwoven fabric and its production
JP3553722B2 (en) Biodegradable nonwoven fabric and method for producing the same
JP4117916B2 (en) Biodegradable nonwoven fabric and method for producing the same
JP3516291B2 (en) Method for producing biodegradable nonwoven fabric with excellent elasticity
JPH0734369A (en) Biodegradable filament non-woven fabric
JPH09279461A (en) Biodegradable nonwoven fabric and its production
JP3292786B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JP3556089B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JPH06212548A (en) Biodegradable latent-crimping conjugate short fiber and its nonwoven fabric
JPH09279449A (en) Laminated nonwoven fabric and its production
JPH09279454A (en) Biodegradable short fiber nonwoven fabric and its production
JPH09310293A (en) Biodegradable wet nonwoven fabric and its production
JPH09310261A (en) Laminated nonwoven fabric and its production
JP3135054B2 (en) Method for producing stretchable nonwoven fabric
JPH09279448A (en) Laminated nonwoven fabric and its production
JPH0941223A (en) Biodegradable conjugated fiber convertible into fine fiber and fiber sheet using the same
JPH09310257A (en) Laminated nonwoven fabric and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050616

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080422

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees