JPH0966217A - Gas separation method - Google Patents

Gas separation method

Info

Publication number
JPH0966217A
JPH0966217A JP7182098A JP18209895A JPH0966217A JP H0966217 A JPH0966217 A JP H0966217A JP 7182098 A JP7182098 A JP 7182098A JP 18209895 A JP18209895 A JP 18209895A JP H0966217 A JPH0966217 A JP H0966217A
Authority
JP
Japan
Prior art keywords
gas
component
specific
membrane module
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7182098A
Other languages
Japanese (ja)
Inventor
Kenichi Inoue
賢一 井上
Toshiyuki Kawashima
敏行 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP7182098A priority Critical patent/JPH0966217A/en
Publication of JPH0966217A publication Critical patent/JPH0966217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Gas Separation By Absorption (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE: To provide a gas separation method in which a film having a large transmission coefficient and a film having a relatively small transmission coefficient are used together without deteriorating the merits of both, and a specified component concentrated gas in which a specified gas component is concentrated from a mixed gas of three or more components and a specified component diluted gas in which the specified component is diluted can be separated at high purification efficiency. CONSTITUTION: Multistage separation with the use of gas separation modules 3, 4 with films having different transmission coefficients and others.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、3成分以上の混合ガス
から、一の特定ガス成分が濃縮された特定成分濃縮ガス
と同特定ガス成分が希釈された特定成分希釈ガスとを分
離する場合に使用するガス分離方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a case where a specific component concentrated gas in which one specific gas component is concentrated and a specific component dilution gas in which the specific gas component is diluted are separated from a mixed gas of three or more components. The present invention relates to a gas separation method used in.

【0002】[0002]

【従来の技術】混合ガスから特定ガス成分を濃縮分離す
る場合、近来においては、低エネルギ−運転、操作の簡
易化、設置スペ−スの縮小化等を図るために、旧来の吸
収分離法、吸着分離法または蒸留分離法に代え、膜分離
法が開発されつつある。例えば、石油精製後のナフサよ
り得られる石油化学成分のガソリンやC2〜C5の留分に
は、高分子樹脂やゴム類等の化学製品の原料成分が含有
されているが、その原料中の不純物の除去や純度向上の
ための分離・精製処理が必要であり、この処理に膜分離
を使用することが検討されている。
2. Description of the Related Art Recently, when a specific gas component is concentrated and separated from a mixed gas, in order to achieve low energy operation, simplification of operation, reduction of installation space, etc., the conventional absorption separation method, Membrane separation methods are being developed in place of adsorption separation methods or distillation separation methods. For example, petroleum chemical components such as gasoline and C 2 to C 5 fractions obtained from naphtha after petroleum refining contain raw material components for chemical products such as polymer resins and rubbers. Separation / purification treatment is required to remove impurities and improve the purity, and the use of membrane separation for this treatment is being considered.

【0003】周知の通り、ガス膜分離は、膜界面でガス
分子が溶解し、この溶解ガス分子が膜中で拡散して他端
で膜から脱離する、いわゆる溶解拡散機能に基づく透過
係数の差を利用している。従来のガス膜分離において
は、透過速度の大きい一種類の膜を使用し、処理流量の
高流量化、ガス分離膜モジュ−ルの小型化等を図ってい
る。
As is well known, in gas membrane separation, gas molecules are dissolved at the membrane interface, and the dissolved gas molecules diffuse in the membrane and are desorbed from the membrane at the other end. We are taking advantage of the difference. In the conventional gas membrane separation, one kind of membrane having a high permeation rate is used to increase the processing flow rate and to downsize the gas separation membrane module.

【0004】[0004]

【発明が解決しようとする課題】上記ナフサの軽質留分
から特定のガス成分、例えば、イソプレンを濃縮した特
定成分濃縮ガスを分離する場合、ナフサの軽質留分中に
は透過特性がイソプレンに類似した成分(イソペンタ
ン、nペンタン、メチルブテン類)がイソプレン濃度に
近い濃度で含有されており、これらの成分とイソプレン
との透過係数の比、すなわち分離係数が小さいので、イ
ソプレンとイソペンタン、nペンタン、メチルブテン類
との分離は困難である。一般に分離係数の大きな膜は透
過係数が小さく(従って、透過速度が小さく処理流量が
少ない)、一の特定ガス成分の分離に一種類の膜のガス
分離膜モジュ−ルを使用することを前提とする従来方式
によれば、分離係数の大きな膜では処理流量の大なる工
業的用途に対しては、モジュ−ルの大型化が避けられな
い。
When a specific gas component, such as isoprene-enriched specific component enriched gas, is separated from the light fraction of naphtha, the permeation characteristics of the light fraction of naphtha are similar to that of isoprene. Since the components (isopentane, n-pentane, methylbutenes) are contained at a concentration close to the isoprene concentration and the ratio of the permeation coefficient between these components and isoprene, that is, the separation coefficient is small, isoprene and isopentane, n-pentane, methylbutenes Is difficult to separate. Generally, a membrane with a large separation coefficient has a small permeation coefficient (and therefore a small permeation rate and a small processing flow rate), and it is assumed that a gas separation membrane module of one kind of membrane is used for separating one specific gas component. According to the conventional method described above, a membrane having a large separation coefficient inevitably requires an increase in the size of the module for industrial use in which the processing flow rate is large.

【0005】本発明の目的は、上記透過係数の大きい膜
と透過係数の比較的小さな膜との併用により、両者の利
点を兼備させつつ、3成分以上の混合ガスから、一の特
定ガス成分が濃縮された特定成分濃縮ガスと同ガス成分
が希釈された特定成分希釈ガスとを充分な精製効率で分
離できるガス分離方法を提供することにある。
An object of the present invention is to combine a membrane having a large permeation coefficient with a membrane having a relatively small permeation coefficient so that one specific gas component can be obtained from a mixed gas of three or more components while having the advantages of both. It is an object of the present invention to provide a gas separation method capable of separating a concentrated concentrated gas of a specific component and a diluted gas of a specific component diluted with the same gas component with sufficient purification efficiency.

【0006】[0006]

【課題を解決するための手段】本発明に係るガス分離方
法は、3成分以上の混合ガスから、一の特定ガス成分が
濃縮された特定成分濃縮ガスと同特定ガス成分が希釈さ
れた特定成分希釈ガスとを分離する方法において、膜の
透過係数が異なるガス分離膜モジュ−ルで多段分離する
ことを特徴とする構成であり、被分離混合ガスがナフサ
軽質留分で、一の特定ガス成分がイソプレンガスである
場合、ガス分離膜モジュ−ルには架橋シリコ−ン系ガス
分離膜モジュ−ルと含フッ素ポリイミド系ガス分離膜モ
ジュ−ルとを使用することができる。また、凝縮分離
法、吸収分離法、吸着分離法または蒸留分離法を併用す
ることも可能である。
A gas separation method according to the present invention is a specific component concentrated gas in which one specific gas component is concentrated and a specific component in which the specific gas component is diluted from a mixed gas of three or more components. In the method for separating a diluent gas, the gas separation membrane module having a different permeation coefficient of the membrane is characterized by a multi-stage separation, the mixed gas to be separated is a naphtha light fraction, one specific gas component When is isoprene gas, a crosslinked silicone-based gas separation membrane module and a fluorine-containing polyimide-based gas separation membrane module can be used as the gas separation membrane module. It is also possible to use the condensation separation method, the absorption separation method, the adsorption separation method or the distillation separation method together.

【0007】以下、図面を参照しつつ本発明の構成を説
明する。図1の(イ)は本発明に係るガス分離方法の基
本的構成の一例を示す説明図である。図1の(イ)にお
いて、21は3成分以上の被分離混合ガスのガス供給源
であり、分離しようとする特定のガス成分Aとこのガス
成分に透過特性的に近似したA’とその他のガス残余成
分B1,…Bnとから成っている。3は第1段目のガス分
離膜モジュ−ルであり、特定ガス成分Aはその膜に対し
大なる透過係数を呈するが、ガス残余成分B1,…Bnの
透過係数はそれ以上に大きく、特定ガス成分Aが非透過
側で濃縮されていく(以下、このガス分離膜モジュ−ル
を特定ガス成分に対し選択非透過性を有するガス分離膜
モジュ−ルと称する)。特定ガス成分Aの濃度が希釈さ
れた透過側ガスはガス供給源に戻されて循環されてい
く。上記ガス成分A’の透過係数A’f1と特定ガス成分
Aの透過係数Af1とはほぼ等しく、A’はAとの分離が
殆ど行われずに非透過側に流動する。
The structure of the present invention will be described below with reference to the drawings. FIG. 1A is an explanatory diagram showing an example of the basic configuration of the gas separation method according to the present invention. In FIG. 1A, reference numeral 21 denotes a gas supply source of a mixed gas of three or more components to be separated, which is a specific gas component A to be separated, A ′ which is similar in permeation characteristic to this gas component, and other It consists of gas residual components B 1 , ... Bn. Reference numeral 3 denotes a first-stage gas separation membrane module, in which the specific gas component A has a large permeability coefficient for the membrane, but the gas residual components B 1 , ... Bn have a larger permeability coefficient, The specific gas component A is concentrated on the non-permeate side (hereinafter, this gas separation membrane module is referred to as a gas separation membrane module having selective non-permeability with respect to the specific gas component). The permeate side gas in which the concentration of the specific gas component A is diluted is returned to the gas supply source and circulated. The gas 'substantially equal to the permeability coefficient A'f 1 with permeability coefficient Af 1 of the specific gas component A, A' component A to flow to the non-permeate side is not performed hardly to separate the A.

【0008】4は第2段目のガス分離膜モジュ−ルであ
り、特定ガス成分Aのその膜に対する透過係数は小であ
るが、ガス残余成分B1,…Bnの透過係数よりも大き
く、特定ガス成分Aが透過側で濃縮されていく(以下、
このガス分離膜モジュ−ルを特定ガス成分に対し選択透
過性を有するガス分離膜モジュ−ルと称する)。従っ
て、非透過側の出口31から、特定ガス成分が希釈さ
れ、かつガス残余成分B1,…Bnが濃縮された特定成分
希釈ガスが取り出されていく。この第2段目ガス分離膜
モジュ−ル4では、特定ガス成分Aの透過係数Af2が小
でも、このAf2と当該第2段目ガス分離膜モジュ−ル4
での上記ガス成分A’の透過係数A’f2との比、すなわ
ち分離係数は、充分に大であり(Af2/A’f2≧1)、
従って、AとA’との分離が充分に行われ、透過側の出
口32からはA’の濃度が充分に減少されその分Aの濃
度が高められたところの特定成分濃縮ガスが取り出され
ていく。
Reference numeral 4 denotes a gas separation membrane module of the second stage, which has a small permeation coefficient of the specific gas component A to the membrane, but is larger than the permeation coefficient of the gas residual components B 1 , ... Bn, The specific gas component A is concentrated on the permeate side (hereinafter,
This gas separation membrane module is referred to as a gas separation membrane module having selective permeability for specific gas components). Therefore, the specific component dilution gas in which the specific gas component is diluted and the gas residual components B 1 , ... Bn are concentrated is taken out from the outlet 31 on the non-permeate side. In the second-stage gas separation membrane module 4, even if the permeation coefficient Af 2 of the specific gas component A is small, this Af 2 and the second-stage gas separation membrane module 4
The ratio of the gas component A ′ to the permeation coefficient A′f 2 , that is, the separation coefficient is sufficiently large (Af 2 / A′f 2 ≧ 1),
Therefore, A and A ′ are sufficiently separated, and the concentrated gas of the specific component where the concentration of A ′ is sufficiently reduced and the concentration of A is correspondingly increased is taken out from the outlet 32 on the permeate side. Go.

【0009】図1の(ロ)は本発明に係るガス分離方法
の基本的構成の別例を示す説明図である。図1の(ロ)
において、第1段目3のガス分離膜モジュ−ルには、特
定ガス成分Aのその膜に対する透過係数は小であるが、
その透過係数がガス残余成分B1,…Bnの透過係数より
も大きいもの(特定ガス成分に対し選択透過性を有する
ガス分離膜モジュ−ル)が使用されており、特定ガス成
分Aが透過側で濃縮されていく。特定ガス成分Aの濃度
が希釈された非透過側ガスは特定成分希釈ガスとして出
口31から取り出されていく。この第1段目ガス分離膜
モジュ−ル3では、特定ガス成分Aの透過係数Af1が小
でも、このAf1と当該第1段目ガス分離膜モジュ−ル3
での上記ガス成分A’の透過係数A’f1との比、すなわ
ち分離係数は、充分に大であり(Af1/A’f1≧1)、
従って、AとA’との分離が充分に行われ、透過側から
はA’の濃度が減少されてその分Aの濃度が高められ
る。
FIG. 1B is an explanatory view showing another example of the basic constitution of the gas separation method according to the present invention. (B) of FIG.
In the gas separation membrane module of the first stage 3, the permeability coefficient of the specific gas component A to the membrane is small,
The permeation coefficient of which is larger than the permeation coefficient of the residual gas components B 1 , ... Bn (a gas separation membrane module having selective permeability for a specific gas component) is used, and the specific gas component A is on the permeation side. Will be concentrated in. The non-permeate side gas in which the concentration of the specific gas component A is diluted is taken out from the outlet 31 as the specific component dilution gas. In the first-stage gas separation membrane module 3, even if the permeation coefficient Af 1 of the specific gas component A is small, this Af 1 and the first-stage gas separation membrane module 3
The ratio of the gas component A ′ to the permeation coefficient A′f 1 , that is, the separation coefficient is sufficiently large (Af 1 / A′f 1 ≧ 1),
Therefore, A and A ′ are sufficiently separated, the concentration of A ′ is reduced from the permeation side, and the concentration of A is increased accordingly.

【0010】2段目のガス分離膜モジュ−ル4には、特
定ガス成分Aがその膜に対し大なる透過係数を呈する
が、ガス残余成分B1,…Bnの透過係数はそれ以上に大
きいもの(特定ガス成分に対し選択非透過性を有するガ
ス分離膜モジュ−ル)が使用され、特定ガス成分Aが非
透過側で更に濃縮されて特定成分濃縮ガスとして出口3
2から取り出されていく。第2段目ガス分離膜モジュ−
ル4における特定ガス成分Aの濃度が希釈された透過側
ガスは第2段目ガス分離膜モジュ−ル4の供給側に戻さ
れて循環されていく。この第2段目ガス分離膜モジュ−
ル4では、特定ガス成分Aの透過係数Af2と当該第2段
目ガス分離膜モジュ−ルでの上記ガス成分A’の透過係
数A’f2との比、すなわち分離係数は、小であり、従っ
て、AとA’との分離は実質上行われないが、上記第1
段目ガス分離膜モジュ−ル3でその分離が既に充分に行
われているので、出口32から取出される特定成分濃縮
ガスのA’ガス成分濃度は充分に低濃度である。
In the second-stage gas separation membrane module 4, the specific gas component A has a large permeation coefficient with respect to the membrane, but the gas residual components B 1 , ... Bn have a larger permeation coefficient. (A gas separation membrane module having a selective non-permeability with respect to a specific gas component) is used, and the specific gas component A is further concentrated on the non-permeate side to obtain a specific component concentrated gas as an outlet 3
It is taken out from 2. Second stage gas separation membrane module
The permeate side gas in which the concentration of the specific gas component A in the module 4 is diluted is returned to the supply side of the second stage gas separation membrane module 4 and circulated. This second stage gas separation membrane module
In Le 4, the transmission coefficient Af 2 and the second stage gas separation membrane module of a specific gas component A - the ratio between the permeability coefficient A'f 2 of the gas component A 'of Le, i.e. separation factor, a small Yes, and therefore the separation of A and A ′ is substantially not achieved, but the first
Since the separation has already been sufficiently performed in the stage gas separation membrane module 3, the concentration of the A ′ gas component of the specific component concentrated gas taken out from the outlet 32 is sufficiently low.

【0011】図2乃至図6は本発明により、ナフサ軽質
留分から特定成分例えば、イソプレンガスが濃縮された
特定成分濃縮ガスと同ガス成分が希釈された特定成分希
釈ガスとを分離する場合に使用する異なるガス分離装置
を示し、重質分を凝縮液化分離するために凝縮器を組み
込んである。図2に示すガス分離装置おいて、3は特定
ガス成分に対し選択非透過性を有する第1段目のガス分
離膜モジュ−ルであり、ブロワ6で被分離混合ガス21
をこのガス分離膜モジュ−ル3に供給すると共に主に重
質分を凝縮器2で液化分離し、透過側ガスを真空ポンプ
7により被分離混合ガス供給源側に戻している。4は特
定ガス成分に対し選択透過性を有する第2段目ガス分離
膜モジュ−ルであり、第1段目ガス分離膜モジュ−ル3
の非透過側の特定ガス成分濃縮ガス23を圧力調整弁1
1を経てこの第2段目ガス分離膜モジュ−ル4に供給し
て透過側で特定ガス成分を更に濃縮し、この濃縮ガス2
6を真空ポンプ8による吸引のもとで凝縮器5に導き、
重質分を液化分離したうえで出口32から特定成分濃縮
ガスを取出し、また、第2段目ガス分離膜モジュ−ル4
の非透過側の出口31より特定成分希釈ガスを取出して
いる。33は凝縮液出口である。図2において、第1段
目ガス分離膜モジュ−ル3の膜間差圧は真空ポンプ7に
より、第2段目ガス分離膜モジュ−ル4の膜間差圧は真
空ポンプ8によりそれぞれ発生させている。
2 to 6 are used according to the present invention to separate a specific component, for example, a specific component concentrated gas in which isoprene gas is concentrated and a specific component diluted gas in which the same gas component is diluted, from a naphtha light fraction. 2 shows a different gas separation device, which incorporates a condenser for condensing and liquefying heavy components. In the gas separation device shown in FIG. 2, 3 is a first-stage gas separation membrane module having selective non-permeability with respect to a specific gas component, and a blower 6 separates a mixed gas 21 to be separated.
Is supplied to the gas separation membrane module 3 and mainly heavy components are liquefied and separated in the condenser 2, and the permeate side gas is returned to the separated gas supply source side by the vacuum pump 7. Reference numeral 4 denotes a second-stage gas separation membrane module having a selective permeability for a specific gas component, and a first-stage gas separation membrane module 3
Pressure regulating valve 1 for the specific gas component concentrated gas 23 on the non-permeation side of
1 to the second stage gas separation membrane module 4 to further concentrate the specific gas component on the permeate side,
6 is guided to the condenser 5 under suction by the vacuum pump 8,
The heavy component is liquefied and separated, and then the specific component concentrated gas is taken out from the outlet 32, and the second stage gas separation membrane module 4 is also used.
The specific component dilution gas is taken out from the outlet 31 on the non-permeation side. 33 is a condensate outlet. In FIG. 2, the transmembrane pressure difference of the first-stage gas separation membrane module 3 is generated by a vacuum pump 7, and the transmembrane pressure difference of the second-stage gas separation membrane module 4 is generated by a vacuum pump 8. ing.

【0012】図3に示すガス分離装置においては、第1
段目ガス分離膜モジュ−ル3の膜間差圧並びに第2段目
ガス分離膜モジュ−ル4の膜間差圧を圧縮機1と圧力調
整弁11,12の操作により発生させており、他の構成
・操作は図2に示したものと実質的に同じである。
In the gas separation device shown in FIG. 3, the first
The transmembrane pressure difference of the second stage gas separation membrane module 3 and the transmembrane pressure difference of the second stage gas separation membrane module 4 are generated by operating the compressor 1 and the pressure control valves 11 and 12. Other configurations and operations are substantially the same as those shown in FIG.

【0013】図4に示すガス分離装置おいては、第1段
目ガス分離膜モジュ−ル3に、特定ガス成分に対し選択
透過性を有するガス分離膜モジュ−ルを使用し、第2段
目ガス分離膜モジュ−ル4に、特定ガス成分に対し選択
非透過性を有するガス分離膜モジュ−ルを使用し、第2
段目ガス分離膜モジュ−ル4の透過側ガス26を同ガス
分離膜モジュ−ル4の供給側に戻し、出口32から特定
成分濃縮ガスを取出し、出口31から特定成分希釈ガス
を取出している。図4において、1並びに9は圧縮機
を、11並びに12は圧力調整弁を、5は凝縮器を、3
3は凝縮液出口をそれぞれ示している。
In the gas separation device shown in FIG. 4, a gas separation membrane module having a selective permeability for a specific gas component is used as the first stage gas separation membrane module 3, and the second stage gas separation membrane module 3 is used. As the eye gas separation membrane module 4, a gas separation membrane module having selective non-permeability with respect to a specific gas component is used.
The permeate side gas 26 of the stage gas separation membrane module 4 is returned to the supply side of the same gas separation membrane module 4, the specific component concentrated gas is taken out from the outlet 32, and the specific component diluted gas is taken out from the outlet 31. . 4, 1 and 9 are compressors, 11 and 12 are pressure regulating valves, 5 is a condenser,
Reference numerals 3 respectively indicate condensate outlets.

【0014】図5に示すガス分離装置において、3は特
定ガス成分に対し選択非透過性を有する第1段目のガス
分離膜モジュ−ルであり、圧縮機1で被分離混合ガス2
1をこのガス分離膜モジュ−ル3に供給すると共に主に
重質分を凝縮器2で液化分離し、透過側ガス24を被分
離混合ガス供給源21側に戻している。4は特定ガス成
分に対し選択透過性を有する第2段目ガス分離膜モジュ
−ルであり、第1段目ガス分離膜モジュ−ル3の非透過
側の特定ガス成分濃縮ガス23を圧力調整弁11を経て
この第2段目ガス分離膜モジュ−ル4に供給し、透過側
で特定ガス成分を更に濃縮し、非透過側からは特定成分
希釈ガスを出口31を経て取出している。第1段目ガス
分離膜モジュ−ル3並びに第2段目ガス分離膜モジュ−
ル4の膜間差圧は、圧縮機1と圧力調整弁11,12の
操作により発生させている。10は特定ガス成分に対し
選択非透過性を有する第3段目のガス分離膜モジュ−ル
であり、真空ポンプ8により膜間差圧を発生させ、特定
ガス成分が更に希釈された透過側ガスを凝縮器5に導
き、主に重質分を液化分離したうえで第3段目ガス分離
膜モジュ−ル10の供給側に戻し、第3段目ガス分離膜
モジュ−ル10の非透過側の更に一層濃縮された特定成
分濃縮ガスを出口32から取出していく。凝縮液は出口
33から取出していく。
In the gas separation apparatus shown in FIG. 5, 3 is a first-stage gas separation membrane module having selective non-permeability with respect to specific gas components.
1 is supplied to the gas separation membrane module 3 and mainly heavy components are liquefied and separated in the condenser 2, and the permeate side gas 24 is returned to the separated gas supply source 21 side. Reference numeral 4 is a second-stage gas separation membrane module having a selective permeability for a specific gas component, and regulates the pressure of the specific gas component concentrated gas 23 on the non-permeate side of the first-stage gas separation membrane module 3. It is supplied to the second-stage gas separation membrane module 4 through the valve 11, the specific gas component is further concentrated on the permeate side, and the specific component dilution gas is taken out from the non-permeate side via the outlet 31. First stage gas separation membrane module 3 and second stage gas separation membrane module
The transmembrane pressure difference of the valve 4 is generated by operating the compressor 1 and the pressure control valves 11 and 12. Reference numeral 10 is a gas separation membrane module at the third stage having selective non-permeability with respect to a specific gas component, and a transmembrane gas in which the transmembrane pressure is generated by the vacuum pump 8 and the specific gas component is further diluted. To the condenser 5, mainly liquefying and separating heavy components, and then returning to the supply side of the third stage gas separation membrane module 10, and the non-permeate side of the third stage gas separation membrane module 10. The further concentrated specific component concentrated gas is taken out from the outlet 32. The condensate is taken out from the outlet 33.

【0015】図6に示すガス分離装置においては、第1
段目ガス分離膜モジュ−ル3に、特定ガス成分に対し選
択非透過性を有するガス分離膜モジュ−ルを使用し、第
2段目ガス分離膜モジュ−ル4に、特定ガス成分に対し
選択透過性を有するガス分離膜モジュ−ルを使用し、第
1段目ガス分離膜モジュ−ル3と第2段目ガス分離膜モ
ジュ−ル4との間に蒸留装置51を設け、第1段目ガス
分離膜モジュ−ル3の非透過側の特定成分濃縮ガス23
を蒸留装置51に送入し、重質成分を除去すると共に軽
質成分の精製度を高め、その留分である特定成分濃縮ガ
スを更に第2段目ガス分離膜モジュ−ル4に供給し、透
過側の更に一層濃縮された特定成分濃縮ガス25を出口
32から取出し、非透過側の特定成分希釈ガス26を出
口31から取出している。第1段目ガス分離膜モジュ−
ル3の特定ガス成分が希釈されたガス24は凝縮器2で
重質分を液化除去したうえで被分離混合ガス供給源21
側に戻している。図6において、1並びに11は第1段
目ガス分離膜モジュ−ル3に膜間差圧を発生させるため
の圧縮機並びに圧力調整弁、9並びに12は第2段目ガ
ス分離膜モジュ−ル4に膜間差圧を発生させるための圧
縮機並びに圧力調整弁、5は蒸留装置の還流用凝縮器、
33は凝縮液出口である。図6に示すガス分離装置にお
いて、蒸留装置51に代え、特定ガス成分を吸着により
分離する吸着分離装置、特定ガス成分を抽出液での吸収
により分離する抽出分離装置を使用することもできる。
In the gas separation device shown in FIG. 6, the first
A gas separation membrane module having a selective impermeability to a specific gas component is used for the second stage gas separation membrane module 3, and a second gas separation membrane module 4 for a specific gas component is used. A gas separation membrane module having selective permeability is used, and a distillation apparatus 51 is provided between the first-stage gas separation membrane module 3 and the second-stage gas separation membrane module 4, Concentrated gas 23 of specific component on the non-permeate side of the stage gas separation membrane module 3
To the distillation apparatus 51 to remove heavy components and improve the degree of purification of light components, and further supply the concentrated gas of the specific component, which is the fraction, to the second-stage gas separation membrane module 4, The further concentrated specific component concentrated gas 25 on the permeate side is taken out from the outlet 32, and the specific component diluted gas 26 on the non-permeate side is taken out from the outlet 31. 1st stage gas separation membrane module
The gas 24 in which the specific gas component of the gas 3 is diluted is liquefied to remove heavy components in the condenser 2, and then the mixed gas supply source 21 for separation is separated.
Back to the side. In FIG. 6, 1 and 11 are compressors and pressure regulating valves for generating transmembrane pressure difference in the first stage gas separation membrane module 3, and 9 and 12 are second stage gas separation membrane modules. 4, a compressor for generating a transmembrane pressure difference and a pressure regulating valve, 5 is a condenser for reflux of the distillation apparatus,
33 is a condensate outlet. In the gas separation device shown in FIG. 6, instead of the distillation device 51, an adsorption separation device that separates a specific gas component by adsorption, or an extraction separation device that separates a specific gas component by absorption with an extraction liquid can be used.

【0016】上記において、特定ガス成分がイソプレン
の場合、特定ガス成分に対し選択非透過性を有するガス
分離膜モジュ−ルには架橋シリコ−ン系ガス分離膜モジ
ュ−ルを、特定ガス成分に対し選択透過性を有するガス
分離膜モジュ−ルには含フッ素ポリイミド系ガス分離膜
モジュ−ルを使用できる。また、モジュ−ルの形式とし
ては、スパイラル型、管状型、中空糸膜型、プレ−ト&
フレ−ム型等の公知の方式を使用できる。本発明におい
ては、使用する機器類での被分離混合ガス中への不純成
分や第三成分の混入を防止することが望まれ、真空ポン
プやブロワにはドライ容積式を使用し、凝縮器には間接
熱交換式を使用することが好ましい。
In the above, when the specific gas component is isoprene, the gas separation membrane module having selective non-permeability with respect to the specific gas component is a crosslinked silicone-based gas separation membrane module. For the gas separation membrane module having selective permeability, a fluorine-containing polyimide gas separation membrane module can be used. The types of modules are spiral type, tubular type, hollow fiber membrane type, plate &
A known method such as a frame type can be used. In the present invention, it is desired to prevent the impure component and the third component from being mixed into the gas mixture to be separated in the equipment to be used, and a dry positive-displacement type is used for the vacuum pump and the blower, and the condenser is used. It is preferable to use an indirect heat exchange type.

【0017】[0017]

【作用】透過係数の大なる膜のガス分離膜モジュ−ルに
おいては、透過速度が大であり、膜面積を小にし得、モ
ジュ−ルを小型化できるが、分離係数が小さく、特定ガ
ス成分Aを分離しようとする被分離混合ガスにその特定
ガス成分と透過特性的に近似した成分A’が含まれてい
ると、AとA’との分離が実質上不可であり、Aを高収
率で分離し難い。他方、透過係数の小なる膜のガス分離
膜モジュ−ルにおいては、膜面積を大きくする必要があ
り、モジュ−ルの大型化が余儀なくされるが、分離係数
が大きく、特定ガス成分Aを分離しようとする被分離混
合ガスにその特定ガス成分と透過特性的に近似した成分
A’が含まれていても、AとA’とをよく分離でき、A
の高収率での分離が可能である。本発明に係るガス分離
方法においては、特定ガス成分に対する透過係数が大で
ある膜のガス分離膜モジュ−ルと透過係数が小である膜
のガス分離膜モジュ−ルとで多段分離しており、全ガス
分離膜モジュ−ルの膜面積を充分に小にして特定ガス成
分Aをガス成分A’からよく分離して充分な収率で分離
できる。従って、ナフサ軽質留分からイソプレンの濃縮
されたガスとイソプレンの希釈されたガスとを分離する
場合、ナフサ軽質留分中に透過特性がイソプレンと近似
したイソペンタン、nペンタン、メチルブテン類果が含
まれているにもかかわらず、架橋シリコ−ン系ガス分離
膜モジュ−ルと含フッ素ポリイミド系ガス分離膜モジュ
−ルとによる多段分離でイソプレンガスを高収率で分離
できる。
In a gas separation membrane module with a membrane having a large permeation coefficient, the permeation rate is large, the membrane area can be made small, and the module can be made compact, but the separation coefficient is small and the specific gas component When the gas mixture to be separated containing A contains a component A ′ that is similar in permeation characteristics to the specific gas component, it is practically impossible to separate A and A ′, and the A yield is high. It is difficult to separate by rate. On the other hand, in a gas separation membrane module having a membrane with a small permeation coefficient, it is necessary to increase the membrane area, which necessitates an increase in the size of the module, but the separation coefficient is large and the specific gas component A is separated. Even if the gas to be separated to be separated contains a component A ′ that is similar in permeation characteristics to the specific gas component, A and A ′ can be well separated, and A
Can be separated in high yield. In the gas separation method according to the present invention, a gas separation membrane module having a membrane having a large permeability coefficient for a specific gas component and a gas separation membrane module having a membrane having a small permeability coefficient are separated in multiple stages. The specific gas component A can be well separated from the gas component A ′ by sufficiently reducing the membrane area of the entire gas separation membrane module and can be separated with a sufficient yield. Therefore, when separating the gas enriched with isoprene and the gas diluted with isoprene from the naphtha light fraction, the naphtha light fraction contains isopentane, n-pentane, and methylbutene fruits whose permeation characteristics are similar to that of isoprene. Nevertheless, the isoprene gas can be separated at a high yield by the multi-stage separation using the crosslinked silicone gas separation membrane module and the fluorine-containing polyimide gas separation membrane module.

【0018】[0018]

【実施例】表に示すナフサ軽質留分(C5)からイソプ
レンの回収を目的として図5に示すガス分離装置を使用
し分離を行った。図5において、圧縮機1には風量10
3/min,吐出量7kg/cm2・G,モ−タ−75
kwのドライ容積式圧縮機を、第1段目ガス分離膜モジ
ュ−ル3には有効膜面積21m2,架橋シリコ−ン系ス
パイラル型ガス分離膜モジュ−ル〔日東電工(株)製、
NTGS-2200-S8〕を、第2段目ガス分離膜モジュ−ル4に
は有効膜面積840m2,含フッ素ポリイミド系スパイ
ラル型ガス分離膜モジュ−ル〔日東電工(株)製、NTGS
-3300-S8X〕を、第3段目ガス分離膜モジュ−ル10に
は有効膜面積21m2,架橋シリコ−ン系スパイラル型
ガス分離膜モジュ−ル〔日東電工(株)製、NTGS-2200-
S8〕をそれぞれ使用した。被分離ガス(圧力1.05a
tm)の供給流量は100Nm3/hr、操作温度は40℃
とした。出口32での分離ガスの流量は48Nm3/hr、
出口31での分離ガスの流量は36Nm3/hr、出口33
での凝縮液流量は16Nm3/hrであり、各分離ガス及び
凝縮液の組成は表の通りであった。出口32での分離ガ
ス中のイソプレンの収率は93%〔100(48×2
9.3)/(100×15.2)〕であり、イソプレン
収率の高いガスを分離できた。
[Example] Separation was carried out from the light fraction of naphtha (C 5 ) shown in the table using the gas separator shown in FIG. 5 for the purpose of recovering isoprene. In FIG. 5, the compressor 1 has an air flow of 10
m 3 / min, discharge rate 7 kg / cm 2 · G, motor 75
A kw dry positive displacement compressor was used for the first stage gas separation membrane module 3 having an effective membrane area of 21 m 2 and a cross-linked silicone type spiral type gas separation membrane module [manufactured by Nitto Denko Corporation,
NTGS-2200-S8] is a second stage gas separation membrane module 4 having an effective membrane area of 840 m 2 , a fluorine-containing polyimide spiral type gas separation membrane module [manufactured by Nitto Denko Corporation, NTGS
-3300-S8X] for the third stage gas separation membrane module 10 having an effective membrane area of 21 m 2 and a cross-linked silicone-based spiral type gas separation membrane module [Nitto Denko Corporation, NTGS-2200]. -
S8] were used respectively. Gas to be separated (pressure 1.05a
tm) supply flow rate is 100 Nm 3 / hr, operating temperature is 40 ° C.
And The flow rate of the separated gas at the outlet 32 is 48 Nm 3 / hr,
The flow rate of the separated gas at the outlet 31 is 36 Nm 3 / hr, the outlet 33
The condensate flow rate was 16 Nm 3 / hr, and the composition of each separated gas and the condensate was as shown in the table. The yield of isoprene in the separated gas at the outlet 32 is 93% [100 (48 × 2
9.3) / (100 × 15.2)], and a gas with a high isoprene yield could be separated.

【0019】[0019]

【表1】 [Table 1]

【0020】なお、上記実施例はC5留分中のイソプレ
ン分離についての例であるが、本発明は、C4留分中の
ブタジエン分離、C3留分中のプロピレン分離、C2留分
中のエチレン分離等にも適用できる。
Although the above examples are examples of separation of isoprene in a C 5 fraction, the present invention is directed to separation of butadiene in a C 4 fraction, separation of propylene in a C 3 fraction, and C 2 fraction. It can also be applied to the separation of ethylene inside.

【0021】[0021]

【発明の効果】本発明によれば、3成分以上の混合ガス
から、一の特定ガス成分が濃縮された特定成分濃縮ガス
と同特定ガス成分が希釈された特定成分希釈ガスとをガ
ス分離膜モジュ−ルで多段分離する場合、全ガス分離膜
モジュ−ルの総計膜面積を充分に小さくし、かつ特定成
分ガスの収率を高くできる。
EFFECTS OF THE INVENTION According to the present invention, from a mixed gas of three or more components, a specific component concentrated gas in which one specific gas component is concentrated and a specific component dilution gas in which the specific gas component is diluted are separated by a gas separation membrane. In the case of multi-stage separation with a module, the total membrane area of all gas separation membrane modules can be made sufficiently small and the yield of the specific component gas can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るガス分離方法の基本構成を示す説
明図である。
FIG. 1 is an explanatory diagram showing a basic configuration of a gas separation method according to the present invention.

【図2】本発明に係るガス分離方法に使用する分離装置
の一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a separation device used in the gas separation method according to the present invention.

【図3】本発明に係るガス分離方法に使用する分離装置
の上記とは異なる例を示す説明図である。
FIG. 3 is an explanatory view showing an example different from the above of the separation device used in the gas separation method according to the present invention.

【図4】本発明に係るガス分離方法に使用する分離装置
の上記とは異なる例を示す説明図である。
FIG. 4 is an explanatory view showing an example different from the above of the separation device used in the gas separation method according to the present invention.

【図5】本発明に係るガス分離方法に使用する分離装置
の上記とは異なる例を示す説明図である。
FIG. 5 is an explanatory view showing an example different from the above of the separation device used in the gas separation method according to the present invention.

【図6】本発明に係るガス分離方法に使用する分離装置
の上記とは異なる例を示す説明図である。
FIG. 6 is an explanatory view showing an example different from the above of the separation device used in the gas separation method according to the present invention.

【符号の説明】[Explanation of symbols]

21 被分離混合ガス源 3 第1段目ガス分離膜モジュ−ル 4 第2段目ガス分離膜モジュ−ル 10 第3段目ガス分離膜モジュ−ル 31 特定成分希釈ガス出口 32 特定成分濃縮ガス出口 21 Source of mixed gas to be separated 3 First stage gas separation membrane module 4 Second stage gas separation membrane module 10 Third stage gas separation membrane module 31 Specific component diluted gas outlet 32 Specific component concentrated gas Exit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 71/64 B01D 71/64 71/70 500 71/70 500 // C10L 3/00 6958−4H C10L 3/00 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01D 71/64 B01D 71/64 71/70 500 71/70 500 // C10L 3/00 6958-4H C10L 3/00 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】3成分以上の混合ガスから、一の特定ガス
成分が濃縮された特定成分濃縮ガスと同特定ガス成分が
希釈された特定成分希釈ガスとを分離する方法におい
て、膜の透過係数が異なるガス分離膜モジュ−ルで多段
分離することを特徴とするガス分離方法。
1. A method of separating a specific component enriched gas in which one specific gas component is concentrated and a specific component dilution gas in which the specific gas component is diluted from a mixed gas of three or more components, wherein a permeation coefficient of a membrane is obtained. A gas separation method, characterized in that multi-stage separation is performed using gas separation membrane modules having different temperatures.
【請求項2】混合ガスがナフサ軽質留分であり、一の特
定ガス成分がイソプレンガスであり、ガス分離膜モジュ
−ルに架橋シリコ−ン系ガス分離膜モジュ−ルと含フッ
素ポリイミド系ガス分離膜モジュ−ルとを使用する請求
項1記載のガス分離方法。
2. A mixed gas is a naphtha light fraction, one specific gas component is isoprene gas, and a gas separation membrane module has a crosslinked silicone-based gas separation membrane module and a fluorine-containing polyimide-based gas. The gas separation method according to claim 1, wherein a separation membrane module is used.
【請求項3】凝縮分離法、吸収分離法、吸着分離法また
は蒸留分離法を併用する請求項1または2記載のガス分
離方法。
3. The gas separation method according to claim 1, wherein a condensation separation method, an absorption separation method, an adsorption separation method or a distillation separation method is used in combination.
JP7182098A 1995-06-23 1995-06-26 Gas separation method Pending JPH0966217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7182098A JPH0966217A (en) 1995-06-23 1995-06-26 Gas separation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-180725 1995-06-23
JP18072595 1995-06-23
JP7182098A JPH0966217A (en) 1995-06-23 1995-06-26 Gas separation method

Publications (1)

Publication Number Publication Date
JPH0966217A true JPH0966217A (en) 1997-03-11

Family

ID=26500149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7182098A Pending JPH0966217A (en) 1995-06-23 1995-06-26 Gas separation method

Country Status (1)

Country Link
JP (1) JPH0966217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116872A (en) * 2008-11-13 2010-05-27 Aisan Ind Co Ltd Evaporated fuel treatment device
CN102580472A (en) * 2012-03-05 2012-07-18 厦门国麟科技有限公司 Industrial waste gas resource utilization and treatment method
US8388743B2 (en) 2008-10-30 2013-03-05 Aisan Kogyo Kabyshiki Kaisha Separation membrane module and fuel vapor processing apparatus incorporating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8388743B2 (en) 2008-10-30 2013-03-05 Aisan Kogyo Kabyshiki Kaisha Separation membrane module and fuel vapor processing apparatus incorporating the same
JP2010116872A (en) * 2008-11-13 2010-05-27 Aisan Ind Co Ltd Evaporated fuel treatment device
CN102580472A (en) * 2012-03-05 2012-07-18 厦门国麟科技有限公司 Industrial waste gas resource utilization and treatment method

Similar Documents

Publication Publication Date Title
US6221131B1 (en) Multi-stage process for the separation/recovery of gases
US5785739A (en) Steam cracker gas separation process
US5769927A (en) Monomer recovery process
US5256295A (en) Two-stage membrane process and apparatus
US6648944B1 (en) Carbon dioxide removal process
US5256296A (en) Membrane process and apparatus for removing a component from a fluid stream
Baker et al. The design of membrane vapor–gas separation systems
US3144313A (en) Difusion purification of gases
JPH08173749A (en) Method for film separation of hydrogen through cascade of film increased in selectivity
JP2773892B2 (en) Method and apparatus for gas-liquid separation
EP0564563A1 (en) Membrane process and apparatus for removing a component from a fluid stream
EP2995364B1 (en) Process for recovering olefins in polyolefin plants
EP2995365B1 (en) Process for recovering olefins from manufacturing operations
US6128916A (en) Membrane technology to remove non-condensable gases from refrigeration systems
US6280578B1 (en) Operation process of a pumping-ejection stand for distilling liquid products
TW201500098A (en) Method for condensing water-soluble organic matter and device for condensing water-soluble organic matter
US5861049A (en) Chlorine separation process combining condensation, membrane separation and flash evaporation
US5147550A (en) Membrane process and apparatus for removing a component from a fluid stream
JPH06205924A (en) Method of forming highly pure film
US5350519A (en) Pervaporation process and use in treating waste stream from glycol dehydrator
JPH0966217A (en) Gas separation method
WO2015069882A1 (en) Two-step membrane gas separation process with membranes having different selectivities
JPH10314551A (en) Separation method
JPH11267644A (en) Water treating apparatus
JP7031214B2 (en) Helium-enriched gas production method and gas separation system