JPH0961421A - Evaluation of healthiness of concrete and repairing of deteriorated concrete - Google Patents

Evaluation of healthiness of concrete and repairing of deteriorated concrete

Info

Publication number
JPH0961421A
JPH0961421A JP24062895A JP24062895A JPH0961421A JP H0961421 A JPH0961421 A JP H0961421A JP 24062895 A JP24062895 A JP 24062895A JP 24062895 A JP24062895 A JP 24062895A JP H0961421 A JPH0961421 A JP H0961421A
Authority
JP
Japan
Prior art keywords
concrete
test
sulfuric acid
sprayed
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24062895A
Other languages
Japanese (ja)
Other versions
JP3482044B2 (en
Inventor
Isao Kinoshita
勲 木下
Nobuyuki Kadokura
信行 門倉
Shizuo Sasaki
佐々木静郎
Takahiro Matsumura
高宏 松村
Ryohei Ishida
良平 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GESUIDO JIGYODAN
Kumagai Gumi Co Ltd
Original Assignee
NIPPON GESUIDO JIGYODAN
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GESUIDO JIGYODAN, Kumagai Gumi Co Ltd filed Critical NIPPON GESUIDO JIGYODAN
Priority to JP24062895A priority Critical patent/JP3482044B2/en
Publication of JPH0961421A publication Critical patent/JPH0961421A/en
Application granted granted Critical
Publication of JP3482044B2 publication Critical patent/JP3482044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simply and accurately measure the deterioration depth of concrete corroded by a sulfuric acid component by utilizing the color reaction of a reagent as a sulfuric acid ion judging method. SOLUTION: At first, a fragile part crumbling into decay is removed by the sulfuric acid component. Next, concrete from which a core is removed is measured on the spot. The presence of sulfuric ions is judged by utilizing the color reaction of a reagent. For example, when a 0.2% aq. sol.. of chloroforfonazo III is sprayed and a 2% barium chloride aq. soln. is sprayed, the impregnation part of sulfuric ions shows a green color and a not- impregnated part shows a redish-purple color when an 0.2% aq. soln. of dimethylsulfonazo III is sprayed and a 2% aq. soln. of barrium chloride soln. is sprayed, the impregnated part of sulfuric ions shows a redish-purple color and the non-impregnated part shows a bluish-green color.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は主として硫酸成分に
より侵食されたコンクリートの健全度評価方法および劣
化コンクリートの補修方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a soundness evaluation method for concrete corroded by a sulfuric acid component and a method for repairing deteriorated concrete.

【0002】[0002]

【従来の技術】例えば、下水道施設の管渠等に使用され
るコンクリート部材の劣化には、下水や汚泥から発生す
る硫化水素が微生物の働きにより変化した硫酸に起因す
るものが多いことが明らかになっている。こうしたコン
クリート部材を補修するには、脆弱化した部分を完全に
除去し、さらに中性化部をはつり取った後、防食材料で
被覆処理を行っている。この場合、中性化部の判定に
は、通常、フェノールフタレインによる中性化試験が用
いられている。
2. Description of the Related Art For example, it is clear that the deterioration of concrete members used for sewer pipes in sewerage facilities is often attributed to sulfuric acid produced by the action of microorganisms in hydrogen sulfide generated from sewage and sludge. Has become. In order to repair such a concrete member, the weakened portion is completely removed, the neutralized portion is removed, and then the concrete member is covered with a corrosion-preventing material. In this case, a neutralization test with phenolphthalein is usually used to determine the neutralization part.

【0003】コンクリート部材の劣化が激しい場合に
は、脆弱化部を除去した後の面から、さらに数mm程度
内部まで中性化が進行しているが、軽微な劣化では、脆
弱化部を取り除けば中性化試験の結果はアルカリ性を示
し、健全であるとみなされている。このように、コンク
リートの劣化の判定には、中性化を1つの指標に用いて
いるのが現状である。
If the concrete member is severely deteriorated, neutralization is progressing to a few mm further from the surface after the weakened portion is removed, but if the deterioration is slight, the weakened portion should be removed. For example, the results of the neutralization test show alkalinity and are considered sound. As described above, in the present situation, neutralization is used as one index for determining deterioration of concrete.

【0004】しかしながら、中性化試験においてアルカ
リ性を示し、健全とみなされた部分においても劣化の原
因物質である硫酸イオンが浸透しており、将来劣化を惹
起する虞があり、フェノールフタレインによる中性化試
験だけでは不十分である。従って、劣化コンクリートの
補修に際しては、劣化の指標として硫酸イオンが浸透し
ている範囲を正確に把握し、浸透部分を全て取り除く必
要がある。
However, in the neutralization test, the sulfate ion, which is a causative substance of deterioration, permeates even in a portion which is considered to be healthy and is considered to be healthy, and may cause deterioration in the future. The sexualization test alone is not sufficient. Therefore, when repairing deteriorated concrete, it is necessary to accurately grasp the range in which sulfate ions have permeated as an index of deterioration and remove all permeated parts.

【0005】一方、硫酸ナトリウム、硫酸アンモニウ
ム、硫酸アルミニウムなどの硫酸塩に由来する硫酸イオ
ンの浸透深さを測定する方法として、劣化したコンクリ
ートからコアを採取して所定の深さ毎の試料を作成し、
溶出試験により試料中に含まれる硫酸イオンを水中に溶
出させ、その濃度を定量する方法が公知である。しか
し、この方法では硫酸イオン濃度をその場で測定するこ
とができず、現場での適用には問題がある。また、硫酸
塩によるコンクリート劣化の化学的メカニズムは、酸に
よるメカニズムとは相違することも知られている(「コ
ンクリート構造物の耐久性シリーズ−化学的腐食」、
2.2.4硫酸塩による劣化、第32〜35頁、198
6年12月、技報堂出版(株)発行)。
On the other hand, as a method for measuring the penetration depth of sulfate ions derived from sulfates such as sodium sulfate, ammonium sulfate and aluminum sulfate, cores are taken from deteriorated concrete to prepare samples at predetermined depths. ,
A method is known in which a sulfate ion contained in a sample is dissolved in water by a dissolution test and the concentration thereof is quantified. However, this method cannot measure the sulfate ion concentration in-situ, and there is a problem in application in the field. It is also known that the chemical mechanism of concrete deterioration by sulfate is different from the mechanism by acid (“Durability series of concrete structures-chemical corrosion”,
2.2.4 Degradation by sulfate, pp. 32-35, 198
Published by Gihodo Publishing Co., Ltd. in December 2006.

【0006】[0006]

【発明が解決しようとする課題】この発明は、硫酸成分
により侵食されたコンクリートの劣化深さを簡易かつ正
確に測定することのできるコンクリートの健全度評価方
法を提供し、併せて、劣化コンクリートの有用な補修方
法を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention provides a concrete soundness evaluation method capable of easily and accurately measuring the deterioration depth of concrete eroded by a sulfuric acid component. It is intended to provide a useful repair method.

【0007】[0007]

【発明を解決するための手段】本発明に係るコンクリー
トの健全度評価方法は、硫酸成分により侵食されたコン
クリートの劣化深さを測定するに際し、コンクリートの
脆弱化部を除去した後、当該コンクリート中に存在する
硫酸イオンの有無により前記劣化深さを測定することを
特徴とするものである。前記硫酸イオンの有無は、試薬
の呈色反応により測定することが好ましい。
The soundness evaluation method for concrete according to the present invention is a method for measuring the depth of deterioration of concrete eroded by a sulfuric acid component, in which the weakened portion of the concrete is removed and The depth of deterioration is measured by the presence or absence of sulfate ions present in the. The presence or absence of the sulfate ion is preferably measured by a color reaction of a reagent.

【0008】本発明に係る劣化コンクリートの補修方法
は、前記コンクリートの健全度評価方法によりコンクリ
ートの劣化深さを測定した後、当該劣化したコンクリー
トを除去し、補修することを特徴とするものである。
The method for repairing deteriorated concrete according to the present invention is characterized in that after the deterioration depth of the concrete is measured by the soundness evaluation method for concrete, the deteriorated concrete is removed and repaired. .

【0009】[0009]

【発明の実施の形態】本発明は、硫化水素や亜硫酸ガス
などが変化した硫酸成分により侵食されたコンクリート
の劣化深さを測定するに際し、先ず、コンクリートの脆
弱化部を除去する。脆弱化部とは、硫酸成分によりコン
クリートがボロボロになった部分であり、劣化の程度に
よりその深さは相違する。
BEST MODE FOR CARRYING OUT THE INVENTION In measuring the depth of deterioration of concrete eroded by a sulfuric acid component in which hydrogen sulfide, sulfurous acid gas or the like has changed, the present invention first removes the weakened portion of the concrete. The weakened portion is a portion where concrete is broken down due to the sulfuric acid component, and the depth thereof varies depending on the degree of deterioration.

【0010】次に、コンクリート中に浸透した硫酸イオ
ンの有無を測定するのであるが、本発明では、コア抜き
したコンクリートを試験室に持ち帰ることなく、その場
で測定することが望ましい。このような硫酸イオン有無
の判定方法としては、試薬の呈色反応を利用した方法を
挙げることができ、特に、次のような試薬を用いる方法
を例示することができる。
Next, the presence or absence of sulfate ions that have penetrated into the concrete is measured. In the present invention, it is desirable to carry out the measurement on the spot without taking the cored concrete back to the test room. Examples of such a method for determining the presence or absence of sulfate ion include a method utilizing a color reaction of a reagent, and in particular, the following method using a reagent can be exemplified.

【0011】クロロホスホナゾIII 〔2,7−ビス
(4−クロロ−2−ホスホノフェニルアゾ)クロモトロ
ーブ酸2ナトリウム〕の0.2%水溶液を噴霧し、続い
て塩化バリウムの2%水溶液を噴霧すると、硫酸イオン
の浸透部分は緑色を呈し、浸透していない部分は赤紫色
を呈する。
A 0.2% aqueous solution of chlorophosphonazo III [2,7-bis (4-chloro-2-phosphonophenylazo) chromotropic acid disodium] was sprayed on, followed by a 2% aqueous solution of barium chloride. When sprayed, the portion where the sulfate ions penetrate is green, and the portion where it does not penetrate is magenta.

【0012】ジメチルスルホナゾIII 〔3,6−ビス
((2−スルホ−4−メチルフェニル)アゾ)−4,5
−ジヒドロキシ−2,7−ナフタレンジスルホン酸2ナ
トリウム〕の0.2%水溶液を噴霧し、続いて塩化バリ
ウムの2%水溶液を噴霧すると、硫酸イオンの浸透部分
は赤紫色を呈し、浸透していない部分は青緑色を呈す
る。
Dimethylsulfonazo III [3,6-bis ((2-sulfo-4-methylphenyl) azo) -4,5
-Dihydroxy-2,7-naphthalenedisulfonic acid disodium salt] was sprayed with a 0.2% aqueous solution of barium chloride, and then a 2% aqueous solution of barium chloride was sprayed. The part has a blue-green color.

【0013】ジニトロスルホナゾIII 〔3,6−ビス
((4−ニトロ−2−スルホフェニル)アゾ)−4,5
−ジヒドロキシ−2,7−ナフタレンジスルホン酸4ナ
トリウム〕の0.2%水溶液を噴霧し、続いて塩化バリ
ウムの2%水溶液を噴霧すると、硫酸イオンの浸透部分
は青紫色を呈し、浸透していない部分は青色を呈する。
Dinitrosulfonazo III [3,6-bis ((4-nitro-2-sulfophenyl) azo) -4,5
-Dihydroxy-2,7-naphthalenedisulfonic acid tetrasodium] was sprayed with a 0.2% aqueous solution of barium chloride, and then a 2% aqueous solution of barium chloride was sprayed, the permeation part of sulfate ion was blue-purple and did not permeate. The part is blue.

【0014】スルホナゾIII 〔4,5−ジヒドロキシ
−3,6ビス((o−スルホフェニル)アゾ)−2,7
−ナフタレンジスルホン酸4ナトリウム〕の0.2%水
溶液を噴霧し、続いて塩化バリウムの2%水溶液を噴霧
すると、硫酸イオンの浸透部分は赤紫色を呈し、浸透し
ていない部分は青色を呈する。
Sulfonazo III [4,5-dihydroxy-3,6bis ((o-sulfophenyl) azo) -2,7
When a 0.2% aqueous solution of naphthalenedisulfonic acid] is sprayed, and then a 2% aqueous solution of barium chloride is sprayed, the part where the sulfate ion penetrates exhibits a reddish purple color and the part that does not penetrate exhibits a blue color.

【0015】0.2mol/リットルの塩化バリウム
溶液と過マンガン酸カリウム溶液を3:1で混合した溶
液を噴霧し、約1分間蒸留水で洗浄すると、硫酸イオン
の浸透部分は赤色を呈し、浸透していない部分は紫色を
呈する。
When a solution of 0.2 mol / liter barium chloride solution and potassium permanganate solution mixed at 3: 1 was sprayed and washed with distilled water for about 1 minute, the permeation part of sulfate ion became red and permeated. The part that has not been shown has a purple color.

【0016】上記方法によりコンクリートの劣化深さが
測定できれば、当該劣化部分を除去し、コンクリートを
補修または補強する。補修または補強は、通常行われて
いる工法と材料を用いて行うことができ、例えば、補修
であれば、樹脂系、セメント系、FRP系などの補修材
料を用いて、表面防護、断面補修、注入などの工法を採
用することができる。
If the depth of deterioration of the concrete can be measured by the above method, the deteriorated portion is removed and the concrete is repaired or reinforced. The repair or reinforcement can be performed by using commonly used construction methods and materials. For example, in the case of repair, surface protection, cross-section repair, surface protection, cross-section repair, using resin-based, cement-based, FRP-based repair materials, etc. A construction method such as injection can be adopted.

【0017】[0017]

【実施例】硫酸イオンの検出試薬による呈色反応の確認
と、その有効性を把握するため、硫酸溶液中にコンクリ
ート試験体を浸漬し、その浸漬暴露試験体を用いて、硫
酸イオンの有無およびその浸透深さを測定した。
[Examples] In order to confirm the color reaction by a detection reagent of sulfate ion and to confirm its effectiveness, a concrete test body was immersed in a sulfuric acid solution, and the immersion test specimen was used to determine the presence or absence of sulfate ion. The penetration depth was measured.

【0018】〔実施例1〕試験方法 10×10×40cmの普通ポルトランドセメント供試
体A、Bを準備し、供試体AのW/Cは55%とし、供
試体BのW/Cは100%とした。この供試体A、Bを
5%硫酸溶液中に20℃の一定温度下で4週間浸漬し
た。
[Example 1] Test method : Standard Portland cement specimens A and B having a size of 10 x 10 x 40 cm were prepared. The W / C of the specimen A was 55% and the W / C of the specimen B was 100%. And The specimens A and B were immersed in a 5% sulfuric acid solution at a constant temperature of 20 ° C. for 4 weeks.

【0019】試験項目および分析方法 4週間後に各試験体を取り出し、表面の脆弱化部を除去
した後の試験体について、次の試験を行った。
Test Items and Analytical Method After 4 weeks, each test body was taken out, and the following test was performed on the test body after removing the weakened portion on the surface.

【0020】(1)中性化試験 試験体を割断し、その割断面にフェノールフタレイン1
%溶液を噴霧し、中性化の判断を行った。
(1) Neutralization test A test piece was cut into pieces, and phenolphthalein 1 was added to the cut surface.
% Solution was sprayed and neutralization was judged.

【0021】(2)試薬による呈色反応試験 試験体を割断し、その割断面に、0.2mol/リット
ルの塩化バリウム溶液と過マンガン酸カリウム溶液を
3:1で混合した溶液を噴霧し、呈色反応の確認と呈色
深さを測定した。
(2) Color reaction test with a reagent A test piece was cut and sprayed with a solution in which a 0.2 mol / liter barium chloride solution and a potassium permanganate solution were mixed at a ratio of 3: 1. The color reaction was confirmed and the color depth was measured.

【0022】(3)溶出試験による硫酸イオンの定量分
析 上記呈色反応試験に用いたものと同一の割断片からコア
(φ20mm)を抜き取り、そのコアをダイアモンドカ
ッターにて一定間隔毎に裁断した後、さらにメノウ乳鉢
で微粉砕した。得られた粉末試料を蒸留水と混合し、イ
オンクロマトグラフを用いて溶出液中の硫酸イオン濃度
を定量した。
(3) Quantitative Analysis of Sulfate Ion by Elution Test After extracting cores (φ20 mm) from the same split pieces used in the above color reaction test, and cutting the cores at regular intervals with a diamond cutter. Further, it was pulverized in an agate mortar. The obtained powder sample was mixed with distilled water, and the sulfate ion concentration in the eluate was quantified using an ion chromatograph.

【0023】試験結果 上記中性化試験(1)の結果では、試験体A、B共、脆
弱化した部分を除去した面は赤紫色を呈し、アルカリ性
を示していた。
Test Results In the result of the neutralization test (1), the surfaces of the test bodies A and B from which the weakened portions were removed exhibited a reddish purple color and were alkaline.

【0024】図1と図2は、試験体A、Bにおける上記
溶出試験(3)による硫酸イオンの分析結果をそれぞれ
示したものであり、横軸は試験体表面の脆弱化部を除去
した後の面からの深さを表し、縦軸は硫酸イオン濃度を
表している。
FIG. 1 and FIG. 2 show the results of the analysis of sulfate ion in the above-mentioned dissolution test (3) in the test bodies A and B, respectively. Represents the depth from the plane, and the vertical axis represents the sulfate ion concentration.

【0025】また、図1と図2中には、前記試薬を用
いた呈色反応(2)による変色点を破線で示した。破線
より左側の領域(図1では、表面から4〜6mmまでの
範囲、図2では、表面から2〜4mmまでの範囲)が、
硫酸イオンの浸透により試験体が赤着色した部分であ
る。
Further, in FIGS. 1 and 2, the color change point due to the color reaction (2) using the above-mentioned reagent is shown by a broken line. A region on the left side of the broken line (in FIG. 1, a range from the surface to 4 to 6 mm, in FIG. 2, a range from the surface to 2 to 4 mm) is
This is the portion where the test body was colored red due to the permeation of sulfate ions.

【0026】上記試験結果から、フェノールフタレイン
による中性化試験では健全と見なされた部分から、さら
に数mm程度内部まで硫酸イオンの浸透が確認された。
また、外部から浸入した硫酸イオンの浸透深さと、呈色
反応による発色深さとはほぼ一致しており、試薬による
硫酸イオンの判定方法が有効であることが判る。
From the above-mentioned test results, it was confirmed that the permeation of sulfate ions was carried out from a portion considered healthy in the neutralization test with phenolphthalein to the inside by about several mm.
Further, the penetration depth of the sulfate ions that have entered from the outside and the color development depth due to the color reaction are almost the same, which shows that the method for determining the sulfate ions by the reagent is effective.

【0027】〔実施例2〕試験方法 実施例1で準備した供試体A、Bを5%硫酸溶液中に2
0℃の一定温度下で8か月間浸漬した。
[Example 2] Test method Samples A and B prepared in Example 1 were added to a 2% 5% sulfuric acid solution.
Immersion was carried out at a constant temperature of 0 ° C. for 8 months.

【0028】試験項目および分析方法 8か月後に、各試験体を取り出し、表面の脆弱化部を除
去した後の試験体について、実施例1と同様に中性化試
験と試薬による呈色反応試験を行った。
Test Items and Analytical Method After 8 months, each test body was taken out, and the test body after removing the weakened portion on the surface was subjected to a neutralization test and a color reaction test with a reagent as in Example 1. I went.

【0029】試験結果 フェノールフタレインによる中性化深さと試薬による
呈色深さを比較した結果、供試体A、B共、後者の方が
前者よりも平均2〜3mm大きい値であった。即ち、従
来、コンクリートの劣化度を評価する目安として用いら
れている中性化試験では、硫酸イオンの浸透による劣化
を判定するのは難しいことが判る。
Test Results As a result of comparing the neutralization depth by phenolphthalein and the coloring depth by the reagent, both of the samples A and B, the latter had a value larger by an average of 2 to 3 mm than the former. That is, it can be seen that it is difficult to judge the deterioration due to the permeation of sulfate ions in the neutralization test which has been conventionally used as a standard for evaluating the deterioration degree of concrete.

【0030】〔比較例〕硫酸成分による劣化を判定した
試薬と同じ試薬を用いて、硫酸塩による劣化コンクリー
トについて呈色試験を行い、両者の違いを比較した。
[Comparative Example] Using the same reagent as the reagent judged to be deteriorated by the sulfuric acid component, a color test was carried out on the deteriorated concrete by the sulfuric acid salt to compare the difference between the two.

【0031】試験方法 φ10×20cmの普通ポルトランドセメント供試体C
(W/C:55%)を準備し、この供試体Cを5%およ
び10%の硫酸ナトリウム水溶液中に20℃の一定温度
で12か月間浸漬した。
Test Method Ordinary Portland Cement Specimen C of φ10 × 20 cm
(W / C: 55%) was prepared, and this sample C was immersed in a 5% and 10% sodium sulfate aqueous solution at a constant temperature of 20 ° C. for 12 months.

【0032】試験項目および分析方法 浸漬3か月毎に供試体Cを取り出し、次の試験を行っ
た。 (1)前記試薬、およびを用い、実施例1と同様
にして、呈色反応試験を実施した。 (2)実施例1と同様、溶出試験による硫酸イオンの定
量分析を行った。 (3)その他、外観目視観察や電子顕微鏡による表面観
察を行った。
Test Items and Analytical Method Immersion Specimen C was taken out every 3 months and the following tests were conducted. (1) A color reaction test was conducted in the same manner as in Example 1 using the above reagents and. (2) In the same manner as in Example 1, the sulfate ion was quantitatively analyzed by the dissolution test. (3) In addition, the appearance was visually observed and the surface was observed with an electron microscope.

【0033】試験結果 呈色反応については、浸漬期間に関係なく、いずれの試
薬を用いた場合も、硫酸成分による劣化のように呈色の
境界が明確ではなかった。このため、本試験により硫酸
イオンの浸透深さを測定することができなかった。
Test Results Regarding the color reaction, regardless of the dipping period, no matter what reagent was used, the boundary of color development was not clear, such as deterioration due to the sulfuric acid component. For this reason, the depth of permeation of sulfate ions could not be measured by this test.

【0034】外観の目視や電子顕微鏡による観察では、
表面から数mmの範囲内において、脱色や緻密さの欠如
などが見られたが、硫酸浸漬の場合のような脆弱化は見
られなかった。溶出試験による硫酸イオンの分析結果
は、浸漬12か月時点において、5%硫酸ナトリウム水
溶液で表面から5〜10mm程度、10%水溶液で表面
から10〜15mm程度であった。
In visual observation and observation with an electron microscope,
Within a range of several mm from the surface, decolorization and lack of denseness were observed, but weakening as in the case of immersion in sulfuric acid was not observed. The analysis result of the sulfate ion by the dissolution test was about 5 to 10 mm from the surface with the 5% sodium sulfate aqueous solution and about 10 to 15 mm from the surface with the 10% aqueous solution at the 12th month of immersion.

【0035】以上の試験結果から、硫酸ナトリウムによ
るコンクリートの劣化の場合には、硫酸浸漬の場合と比
べて硫酸イオンの浸透深さ(硫酸浸漬の場合の脆弱化部
を除去した後の浸透深さ)が深いにも関わらず、呈色試
薬による硫酸イオンの判定は不確実であり、有効ではな
いことが判る。
From the above test results, in the case of deterioration of concrete due to sodium sulfate, the depth of penetration of sulfate ions (the depth of penetration after removal of the weakened portion in the case of sulfuric acid immersion is greater than that in the case of sulfuric acid immersion). ) Is deep, the determination of sulfate ion by the color reagent is uncertain and not effective.

【0036】[0036]

【発明の効果】本発明方法は、硫酸成分により侵食され
たコンクリート中の硫酸イオンの有無を判定することに
より、コンクリートの劣化深さを正確に測定することが
できる。また、試薬の噴霧による呈色反応を利用すれ
ば、コンクリート中の硫酸イオン濃度を現場で測定する
ことができ、現場に適した極めて簡便なコンクリートの
健全度評価方法である。
According to the method of the present invention, the depth of deterioration of concrete can be accurately measured by determining the presence or absence of sulfate ions in the concrete eroded by the sulfuric acid component. Further, by utilizing the color reaction by spraying the reagent, the sulfate ion concentration in the concrete can be measured on site, which is a very simple concrete soundness evaluation method suitable for the site.

【0037】従って、本発明方法は下水道管渠および枡
その他の下水道付帯設備の他、浄化槽、ビルピット、化
学工場等の排水施設、化学薬品等の貯蔵タンクなど、硫
酸を直接的または間接的原因とするコンクリート部材の
劣化に対して、特に有用な補修方法となる。また、硫酸
成分を含有する酸性雨等に起因する劣化コンクリート部
材の補修に対しても有効である。
Therefore, in the method of the present invention, in addition to sewer pipes, basins and other sewer incidental equipment, sulfuric acid is used as a direct or indirect cause of sulfuric acid in septic tanks, building pits, drainage facilities such as chemical plants, storage tanks for chemicals and the like. This is a particularly useful repairing method against the deterioration of the concrete member. It is also effective for repairing deteriorated concrete members due to acid rain containing sulfuric acid components.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において、試験体Aの溶出試験におけ
る硫酸イオンの定量分析結果を示す。
FIG. 1 shows the results of quantitative analysis of sulfate ions in the dissolution test of test sample A in Example 1.

【図2】実施例1において、試験体Bの溶出試験におけ
る硫酸イオンの定量分析結果を示す。
FIG. 2 shows the results of quantitative analysis of sulfate ions in the dissolution test of test sample B in Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木静郎 茨城県つくば市大字鬼ヶ窪字下山1043番1 株式会社熊谷組技術研究所内 (72)発明者 松村 高宏 茨城県つくば市大字鬼ヶ窪字下山1043番1 株式会社熊谷組技術研究所内 (72)発明者 石田 良平 茨城県つくば市大字鬼ヶ窪字下山1043番1 株式会社熊谷組技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shizuro Sasaki 1043-1, Shimoyama, Onigakushi, Tsukuba, Ibaraki Prefecture Inside Kumagai Technical Research Institute (72) Takahiro Matsumura Onigagaku, Tsukuba, Ibaraki 1043-1, Shimoyama, Kumagai Gumi Research Laboratory, Ltd. (72) Inventor, Ryohei Ishida, Onigakubo, Tsukuba, Ibaraki Prefecture 1043-1, Shimoyama, Kumagai Gumi Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 硫酸成分により侵食されたコンクリート
の劣化深さを測定するに際し、コンクリートの脆弱化部
を除去した後、当該コンクリート中に存在する硫酸イオ
ンの有無により前記劣化深さを測定することを特徴とす
るコンクリートの健全度評価方法。
1. When measuring the deterioration depth of concrete eroded by a sulfuric acid component, after removing the weakened part of the concrete, measuring the deterioration depth by the presence or absence of sulfate ions existing in the concrete. A method for evaluating the soundness of concrete, characterized by.
【請求項2】 試薬の呈色反応により前記硫酸イオンの
有無を測定する請求項1記載のコンクリートの健全度評
価方法。
2. The soundness evaluation method for concrete according to claim 1, wherein the presence or absence of the sulfate ion is measured by a color reaction of a reagent.
【請求項3】 請求項1または請求項2記載のコンクリ
ートの健全度評価方法によりコンクリートの劣化深さを
測定した後、当該劣化したコンクリートを除去し、補修
することを特徴とする劣化コンクリートの補修方法。
3. Repair of deteriorated concrete, characterized in that the deteriorated concrete is removed and repaired after the deterioration depth of the concrete is measured by the concrete soundness evaluation method according to claim 1 or 2. Method.
JP24062895A 1995-08-26 1995-08-26 Concrete soundness evaluation method and deterioration concrete repair method Expired - Fee Related JP3482044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24062895A JP3482044B2 (en) 1995-08-26 1995-08-26 Concrete soundness evaluation method and deterioration concrete repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24062895A JP3482044B2 (en) 1995-08-26 1995-08-26 Concrete soundness evaluation method and deterioration concrete repair method

Publications (2)

Publication Number Publication Date
JPH0961421A true JPH0961421A (en) 1997-03-07
JP3482044B2 JP3482044B2 (en) 2003-12-22

Family

ID=17062334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24062895A Expired - Fee Related JP3482044B2 (en) 1995-08-26 1995-08-26 Concrete soundness evaluation method and deterioration concrete repair method

Country Status (1)

Country Link
JP (1) JP3482044B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398945B1 (en) 1999-07-22 2002-06-04 Infrastructure Repair Technologies, Inc. Method of treating corrosion in reinforced concrete structures by providing a uniform surface potential
WO2003076916A1 (en) * 2002-03-13 2003-09-18 Burn-Am Co., Ltd. Device and method for inspecting inside of underground pipe line and method of inspecting concrete on inside of underground pipe line for deterioration
JP2012202731A (en) * 2011-03-24 2012-10-22 Taiheiyo Cement Corp Prediction method for diffusion state of chemical species in concrete and prediction method for corrosion occurrence period of steel material in concrete using the same
CN114133763A (en) * 2021-08-24 2022-03-04 南京理工大学 Preparation method and detection method of concrete neutralization detection reagent based on anthocyanidin

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398945B1 (en) 1999-07-22 2002-06-04 Infrastructure Repair Technologies, Inc. Method of treating corrosion in reinforced concrete structures by providing a uniform surface potential
WO2003076916A1 (en) * 2002-03-13 2003-09-18 Burn-Am Co., Ltd. Device and method for inspecting inside of underground pipe line and method of inspecting concrete on inside of underground pipe line for deterioration
JPWO2003076916A1 (en) * 2002-03-13 2005-07-07 株式会社バーナム Embedded pipe inspection device and method, and buried pipe concrete deterioration inspection method
US7131344B2 (en) 2002-03-13 2006-11-07 Burn-Am Co., Ltd. Device and method for inspecting inside of underground pipe line and method of inspecting concrete on inside of underground pipe line for deterioration
JP2012202731A (en) * 2011-03-24 2012-10-22 Taiheiyo Cement Corp Prediction method for diffusion state of chemical species in concrete and prediction method for corrosion occurrence period of steel material in concrete using the same
CN114133763A (en) * 2021-08-24 2022-03-04 南京理工大学 Preparation method and detection method of concrete neutralization detection reagent based on anthocyanidin
CN114133763B (en) * 2021-08-24 2022-11-04 南京理工大学 Preparation method and detection method of concrete neutralization detection reagent based on anthocyanidin

Also Published As

Publication number Publication date
JP3482044B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
Nilsson et al. HETEK, Chloride penetration into concrete, State-of-the-Art, Transport processes, corrosion initiation, test methods and prediction models
Bouteiller et al. Corrosion initiation of reinforced concretes based on Portland or GGBS cements: Chloride contents and electrochemical characterizations versus time
Alonso et al. Na2PO3F as inhibitor of corroding reinforcement in carbonated concrete
Samson et al. Calculation of ionic diffusion coefficients on the basis of migration test results
Silva Chloride induced corrosion of reinforcement steel in concrete: Threshold values and ion distributions at the concrete-steel interface
Okeniyi et al. Effect of NaNO 2 and C 6 H 15 NO 3 synergistic admixtures on steel-rebar corrosion in concrete immersed in aggressive environments
Pease et al. The design of an instrumented rebar for assessment of corrosion in cracked reinforced concrete
Basheer et al. ‘PERMIT’ion migration test for measuring the chloride ion transport of concrete on site
JP3482044B2 (en) Concrete soundness evaluation method and deterioration concrete repair method
Hartt et al. Effect of cement alkalinity upon chloride threshold and time-to-corrosion of reinforcing steel in concrete
Topcu et al. Experimental investigation of utilizing chemical additives and new generation corrosion inhibitors on reinforced concrete
Käthler et al. Towards understanding corrosion initiation in concrete–influence of local concrete properties in the steel-concrete interfacial zone
Appleman Painting over soluble salts: a perspective
Russo et al. Effects of cracks on chloride‐induced corrosion initiation and propagation of carbon and stainless steel rebar
JP5865802B2 (en) Pre-evaluation method for anti-rust effect and method for constructing short-term distribution model of anti-rust component concentration of neutralized concrete
US5496739A (en) Test for glycol in water
Chen et al. Monitoring microbial corrosion in large oilfield water systems
Mancio et al. Electrochemical and in-situ SERS study of passive film characteristics and corrosion performance of microcomposite steel in simulated concrete pore solutions
Dauberschmidt et al. Corrosion behaviour of rebars 1.4003 in cracks of RC structures containing chlorides
JP2005090219A (en) Method for regenerating concrete structure
Boschmann Käthler Chloride-induced reinforcement corrosion in concrete: the role of the steel-concrete interface and implications for engineering
Ukpaka Detrimental effect of water soluble contaminant on steel/paint interface
Huet et al. A review on corrosion mechanisms of reinforced concrete degradation
Elsener et al. Corrosion inhibitors for steel in concrete
Persson Investigation of the impact of load-induced cracking on the initiation time on steel corrosion in concrete

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees