JPH0938660A - Method for removing dissolved oxygen in water and device for removing the same - Google Patents

Method for removing dissolved oxygen in water and device for removing the same

Info

Publication number
JPH0938660A
JPH0938660A JP21680095A JP21680095A JPH0938660A JP H0938660 A JPH0938660 A JP H0938660A JP 21680095 A JP21680095 A JP 21680095A JP 21680095 A JP21680095 A JP 21680095A JP H0938660 A JPH0938660 A JP H0938660A
Authority
JP
Japan
Prior art keywords
small
casing
water
gas dispersion
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21680095A
Other languages
Japanese (ja)
Inventor
Tomio Niimi
富男 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kankyo Kagaku Kogyo KK
Original Assignee
Kankyo Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kankyo Kagaku Kogyo KK filed Critical Kankyo Kagaku Kogyo KK
Priority to JP21680095A priority Critical patent/JPH0938660A/en
Publication of JPH0938660A publication Critical patent/JPH0938660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to efficiently remove the dissolved oxygen in water to be treated by dispersing fluid with a gas dispersing device disposed to communicate small chambers, thereby reducing the sizes of the bubbles of the inert gas forcibly fed into the water to be treated and increasing the gas-liquid boundary area. SOLUTION: The water to be treated from which the dissolved oxygen is to be removed is forcibly fed via a supplying pipe 4 for the water to be treated by a pump 3 of a removing device 1. The inert gas of a compressed cylinder 6 is forcibly fed via a flow rate regulating valve 8 into the supplying pipe 4 for the water to be treated. Further, the fluid mixture composed of the water to be treated and the inert gas is supplied to the gas dispersing device 2 and is subjected to gas replacement by the dissolution of the inert gas and the release of gaseous oxygen, by which the dissolved oxygen in the water is removed. On the other hand, the treated water is admitted from a discharge port 5a of a treated water discharge pipe 5 into the primary chamber 9a of a tank 9. The movement of the air bubbles of the treated water to a secondary chamber 9b side is prohibited by a partition 13 and the air bubbles are erased only by the primary chamber 9a. The treated water moving into the secondary chamber 9b is drained from a drain pipe 12 in the state of not mixing the air bubbles therewith.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は機械的な攪拌手段を用い
ずに、水の流動状態を複雑にして不活性ガスの微細気泡
化を図る手段によって、均一で微細な不活性ガスの気泡
を水中に分散させて溶存酸素を除去する様にした水中の
溶存酸素の除去方法および除去装置。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention produces uniform and fine bubbles of inert gas by means of making the flow state of water complicated and making fine bubbles of inert gas without using mechanical stirring means. A method and apparatus for removing dissolved oxygen in water, which is dispersed in water to remove dissolved oxygen.

【0002】[0002]

【従来の技術】食品工業における原料水、洗浄水に使用
される水には、大気圧、常温下で通常8〜10ppm程
度の酸素が溶存しており、かかる溶存酸素による酸化作
用によって食品が劣化したり、細菌による汚染が生じる
ため、溶存酸素を充分に除去することが行われている。
2. Description of the Related Art Generally, about 8 to 10 ppm of oxygen is dissolved in water used as raw material water and washing water in the food industry at atmospheric pressure and room temperature, and food is deteriorated by the oxidizing action of the dissolved oxygen. In addition, the dissolved oxygen is sufficiently removed because of contamination with bacteria.

【0003】そして、水の溶存酸素を除去する手段とし
ては、従来より種々の方法が知られており、その一例と
しては、加熱脱気、真空脱気等が知られているも、前者
の手段にあっては溶存酸素を除去すべき被処理水を加熱
したり、加熱して脱気した処理水を冷却したりする余分
なエネルギーや、加熱、冷却装置を必要とし、又後者の
手段にあっては真空状態に維持するための真空装置や密
閉手段、そのための余分なエネルギーを必要とし、いず
れの除去手段においてもコスト、取扱いメンテナンス等
の面で満足すべきものが無かった。
Various methods have been conventionally known as means for removing dissolved oxygen in water. As examples thereof, heating deaeration, vacuum deaeration, etc. are known. In this case, extra energy for heating the water to be treated from which dissolved oxygen should be removed or cooling the treated water that has been heated and degassed, a heating and cooling device are required. In particular, a vacuum device and a sealing means for maintaining a vacuum state and extra energy for that are required, and none of the removing means is satisfactory in terms of cost, handling and maintenance.

【0004】そして、上記加熱脱気、真空脱気等の除去
手段に比し、余分なエネルギーや、加熱、冷却、真空等
の各種装置を使用せずにコスト、省エネルギーの点から
有利とされている除去手段としては、機械的な攪拌手段
を用いない気泡塔形式の装置が知られている。
Compared with the above-mentioned removal means such as heating deaeration and vacuum deaeration, it is advantageous in terms of cost and energy saving without using extra energy and various devices such as heating, cooling and vacuum. As a removing means, a bubble column type device which does not use a mechanical stirring means is known.

【0005】この気泡塔形式の装置である脱気塔aとし
ては、図26に示す様に脱気塔aの底部に設けたガス分
散器bから水圧に抗して不活性ガスを散気して水面まで
上昇させると共に、被処理水は脱気塔aの頂部より流入
させて底部より排水する向流接触操作で行っている。
The degassing tower a, which is a bubble tower type device, diffuses an inert gas against a water pressure from a gas disperser b provided at the bottom of the degassing tower a as shown in FIG. The water to be treated is caused to flow in from the top of the degassing tower a and drained from the bottom of the degassing tower a by a countercurrent contact operation.

【0006】しかしながら、上記手段において散気され
る不活性ガスの気泡径としては、ガス分散器bの気孔径
が小さくても約0. 2mm程度であって、しかもガス分
散器bの気孔から散気される平均気泡径は数mm以上
(2〜10mm程度)であることにより、気液接触面積
が小さく、且つ上昇速度も20cm/sec以上と速く
溶存酸素の除去効率が低い欠点を有し、しかも不活性ガ
スと接触せずに短絡的に高い溶存酸素の濃度のまま処理
水が排水される欠点を有していた。
However, the bubble diameter of the inert gas diffused by the above means is about 0.2 mm even if the pore diameter of the gas disperser b is small, and the gas is dispersed from the pores of the gas disperser b. Since the average bubble diameter to be vaporized is several mm or more (about 2 to 10 mm), the gas-liquid contact area is small, and the rising speed is as fast as 20 cm / sec or more and the removal efficiency of dissolved oxygen is low, and Moreover, there is a drawback that the treated water is drained without contacting with the inert gas while keeping the concentration of dissolved oxygen high in a short circuit.

【0007】[0007]

【発明が解決しようとする課題】本発明はガス分散装置
によって不活性ガスの気泡径を微細化し、気液界面積を
大きくして溶存酸素の除去効率を向上させ、又処理水は
気泡で全く混濁していない状態で原料水や、洗浄水とし
て使用でき、又被処理水の短絡的な排出を無くし、又ガ
ス分散装置の小型化を図り、又ガス分散集合エレメント
を構成する円板のガタツキを防止して短絡的な流動、脈
流による分散不良等の不具合を防止し、又ガス分散装置
の組立を極めて簡単にすると共に、シール部材を確実に
装着して流体の短終的な流れを規制して混合効率の低下
を防止し、ガス分散効率を良好に維持し、且つ蓋体から
の流体の漏れも同時に防止し、又ケーシングの機械加工
を容易に行える様にし、又目視的な確認が困難であるケ
ーシング内でのシール部材の噛み込みによるシール不良
を防止する様にした水中の溶存酸素の除去方法および除
去装置を提供せんとするものである。
DISCLOSURE OF THE INVENTION According to the present invention, the bubble diameter of an inert gas is made fine by a gas dispersion device to increase the gas-liquid interfacial area to improve the removal efficiency of dissolved oxygen, and the treated water is completely made up of bubbles. It can be used as raw material water or washing water in a non-turbid state, eliminates short-circuit discharge of treated water, reduces the size of the gas dispersion device, and rattles the discs that make up the gas dispersion assembly element. To prevent problems such as short-circuited flow and dispersion failure due to pulsating flow, and to simplify the assembly of the gas dispersion device, and to securely attach the seal member to prevent short-term flow of fluid. Restricted to prevent lowering of mixing efficiency, maintain good gas dispersion efficiency, prevent leakage of fluid from lid at the same time, facilitate machining of casing, and visually check It is difficult to There is provided St. removal method and apparatus for removing water dissolved oxygen was set to prevent seal failure due to biting of the seal member.

【0008】[0008]

【課題を解決するための手段】本発明は上記従来技術に
基づく溶存酸素の除去効率が低い等の課題に鑑み、2枚
の円板に形成した前方開放した小室を相互連通させて配
設したガス分散エレメントによって流体に、直角衝突、
分散、合流、蛇行、渦流等による分散作用を与え、被処
理水中に圧入した不活性ガスの気泡を微細気泡化して気
液界面積を大きくし、溶存酸素の除去効率を向上させる
ことを要旨とする水中の溶存酸素の除去方法および除去
装置を提供して上記欠点を解消せんとしたものである。
In view of the problems such as low efficiency of removing dissolved oxygen based on the above-mentioned conventional technique, the present invention has two open circular chambers formed in front of each other and communicated with each other. Right angle collision with fluid by gas dispersion element,
Dispersing, merging, meandering, vortexing, etc. are given to disperse, and the bubbles of the inert gas injected into the water to be treated are made into fine bubbles to increase the gas-liquid interface area and improve the removal efficiency of dissolved oxygen. The above-mentioned drawbacks are not solved by providing a method and a device for removing dissolved oxygen in water.

【0009】ガス分散装置とタンクから構成し、溶存酸
素を除去すべき被処理水を大気圧以上で加圧供給する被
処理水供給管をガス分散装置の入口に接続し、この処理
水供給管の途中に不活性ガスを圧入する不活性ガス圧入
管を接続し、又処理水排出管をガス分散装置の出口に接
続している。
A treated water supply pipe, which is composed of a gas dispersion device and a tank and which supplies the treated water from which dissolved oxygen is to be removed under pressure at atmospheric pressure or higher, is connected to the inlet of the gas dispersion device. An inert gas injection pipe for injecting an inert gas is connected in the middle of the process, and a treated water discharge pipe is connected to the outlet of the gas dispersion device.

【0010】又、タンク内を透水性のみを有する隔壁に
よって一次室と二次室に区割し、処理水排出管を一次室
と接続すると共に、二次室に排水管を接続している。
Further, the inside of the tank is divided into a primary chamber and a secondary chamber by a partition wall having only water permeability, the treated water discharge pipe is connected to the primary chamber, and the drain pipe is connected to the secondary chamber.

【0011】ガス分散装置は両端に入口、出口を有した
円筒状のケーシングと、互いに対向する前面に、該前面
に対して側壁を直角と成した前方開放の筒状の小室を多
数列した大小2枚の円板を一組みとして、これを同心的
に重合させて成る複数のガス分散エレメントから構成し
ている。
The gas dispersion device has a cylindrical casing having an inlet and an outlet at both ends, and a large number of small open-ended cylindrical chambers having a side wall perpendicular to the front and facing each other. It is composed of a plurality of gas dispersion elements formed by concentrically superposing two discs as a set.

【0012】大径な円板はケーシングの内周面と水接と
成る外径にて形成されると共に、中央に流通孔が穿設さ
れ、又小径な円板の外径はケーシングの内周面から離間
してこの内周面との間に流通路が形成される大きさと成
し、大径な円板の小室と、小径な円板の小室とは互いの
小室が対向する他の複数の小室に連通する様に位置を違
えて配列させ、これらガス分散エレメントは互いに同径
の円板が隣接するように重ね合わせてケーシング内に配
列すると共に、ケーシングの入口および出口と連通孔が
連通する様に両側には大径な円板を配置している。
The large-diameter disc is formed with an outer diameter which makes water contact with the inner peripheral surface of the casing, and a through hole is formed in the center, and the outer diameter of the small-diameter disc is the inner periphery of the casing. The small chamber of the large-diameter disk and the small chamber of the small-diameter disk have a size such that a flow path is formed between them and the inner peripheral surface of the small-diameter disk. The gas dispersion elements are arranged in different positions so that they communicate with the small chambers of the gas chambers.The gas dispersion elements are arranged in the casing so that discs of the same diameter are adjacent to each other, and the inlet and outlet of the casing communicate with the communication holes. Large disks are placed on both sides so that it will do.

【0013】又、他のガス分散装置としては、円筒状の
ケーシングの両端に入口および出口を形成した蓋体を着
脱自在と成し、弾性体によりケーシング内に挿入される
外径にて筒体を形成し、この筒体の両端より内方側へ鍔
片を一体成形してリング状の環装シール体を形成し、こ
の環装シール体における筒体の内部空間に上記大小2枚
の円板を配設してガス分散集合エレメントと成し、この
ガス分散集合エレメントをケーシング内に配列し、ガス
分散集合エレメント両端間の寸法をケーシングの両端間
の寸法より大きく設定している。
Further, as another gas dispersion device, a lid body having an inlet and an outlet formed at both ends of a cylindrical casing is detachable, and a cylindrical body having an outer diameter inserted into the casing by an elastic body. To form a ring-shaped annular seal body by integrally molding the collar pieces inward from both ends of the tubular body, and the two large and small circles are formed in the internal space of the annular body in the annular seal body. A plate is arranged to form a gas dispersion collecting element, the gas dispersion collecting elements are arranged in a casing, and a dimension between both ends of the gas dispersion collecting element is set to be larger than a dimension between both ends of the casing.

【0014】又、他のガス分散装置としては、蓋体を着
脱自在と成すケーシング内に挿入される円柱突部を設
け、円柱突部先端の周縁側に半割り状と成したシール座
面を形成し、又大径な円板の外径をケーシングの内周面
に密接しない大きさに形成すると共に、小室が形成され
ていない背面の周縁側に半割り状と成したシール座面を
形成し、互いの小室が対向する他の複数の小室に連通す
る様に位置を違える様に、2枚の大小の円板を連結して
ガス分散エレメントと成し、これらガス分散エレメント
は互いに同径の円板が隣接するように重ね合わせてケー
シング内に配列し、隣接するシール座面によって画成さ
れるシール溝内にシール部材を設け、又シール溝におけ
る底部であるシール座面をテーパ面状と成している。
Further, as another gas dispersion device, a columnar projection is provided which is inserted into a casing having a detachable lid, and a half-seal-shaped seal seating surface is provided on the peripheral edge side of the tip of the columnar projection. In addition, the outer diameter of the large-diameter disk is formed so that it does not come into close contact with the inner peripheral surface of the casing, and a half-seal-shaped seal seat surface is formed on the peripheral edge of the back surface where no small chamber is formed. However, two large and small discs are connected to form a gas dispersion element so that the small chambers are in different positions so that they communicate with other small chambers that face each other, and these gas dispersion elements have the same diameter. Discs are overlapped so that they are adjacent to each other and arranged in the casing, and a seal member is provided in a seal groove defined by the adjacent seal seat surfaces, and the seal seat surface that is the bottom of the seal groove is tapered. Is done.

【0015】[0015]

【実施例】以下本発明の一実施例を図面に基づいて説明
すると、1は本発明に係る水中の溶存酸素の除去装置で
あり、かかる除去装置1としては、攪拌羽根の様な機械
的な攪拌手段を用いずに、被処理水の流動状態を複雑に
して窒素、ヘリウム、ネオン、アルゴン等の不活性ガス
を微細気泡化する手段であるガス分散装置2を用いるも
のである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a device for removing dissolved oxygen in water according to the present invention, and the removing device 1 is a mechanical device such as a stirring blade. The gas dispersion device 2 is used, which does not use a stirring means, but complicates the flow state of the water to be treated and makes inert gas such as nitrogen, helium, neon, and argon into fine bubbles.

【0016】そして、除去装置1の構成としては、ガス
分散装置2の入口側2aに、溶存酸素を除去すべき被処理
水をポンプ3によって大気圧以上で加圧供給する被処理
水供給管4を接続し、又ガス分散装置2の出口側2bには
溶存酸素が除去された処理水を排出する処理水排出管5
を接続している。
As the constitution of the removing device 1, the treated water supply pipe 4 for supplying to the inlet side 2a of the gas dispersion device 2 the treated water from which the dissolved oxygen is to be removed from the pump 3 under atmospheric pressure or higher. And a treated water discharge pipe 5 for discharging treated water from which dissolved oxygen has been removed to the outlet side 2b of the gas dispersion device 2.
Are connected.

【0017】又、処理水供給管4の途中には圧縮ボンベ
6内の加圧状態の不活性ガスを、処理水供給管4管内に
注入する不活性ガス注入管7を接続し、この不活性ガス
注入管7にはガス流量を調整する流量調整弁8を設けて
いる。
An inert gas injection pipe 7 for injecting the pressurized inert gas in the compression cylinder 6 into the treated water supply pipe 4 is connected in the middle of the treated water supply pipe 4. The gas injection pipe 7 is provided with a flow rate adjusting valve 8 for adjusting the gas flow rate.

【0018】又、処理水排出管5は処理水を収容するタ
ンク9に接続するものにして、かかるタンク9は中空状
に形成したタンク本体10上部にガス排気口11が設けられ
ると共に、タンク本体10下部に処理水を排水する排水管
12を接続し、この排水管12の排水口12a の上方側には不
活性ガスの微細気泡が通過しない透水性のみを有する不
織布、スポンジ、工業用セラミックスである透過性多孔
体である濾過体からなる隔壁13が設けられ、この隔壁13
によってタンク9内の上方側の室を一次室9a、下方側の
室を二次室9bに区割している。
Further, the treated water discharge pipe 5 is connected to a tank 9 for containing treated water, and the tank 9 is provided with a gas exhaust port 11 on an upper portion of a hollow tank body 10 and a tank body. 10 Drain pipe for draining treated water at the bottom
12 is connected to the upper side of the drain port 12a of the drain pipe 12 from a non-woven fabric having only water permeability that does not allow the passage of fine bubbles of inert gas, a sponge, and a filter body that is a permeable porous body that is an industrial ceramic. The partition 13 is provided, and this partition 13
The upper chamber in the tank 9 is divided into a primary chamber 9a and the lower chamber is divided into a secondary chamber 9b.

【0019】そして、処理水排出管5はタンク本体10下
部側および隔壁13を貫通させて端部の吐出口5aが一次室
9a内に位置する様に接続したり、又図中一点鎖線で示す
様に、処理水排出管5はタンク本体10上部側を貫通さ
せ、その端部の吐出口5aが一次室9a内に位置する様に接
続しても良い。
The treated water discharge pipe 5 penetrates the lower part of the tank main body 10 and the partition wall 13 and the discharge port 5a at the end is the primary chamber.
9a, or as shown by the alternate long and short dash line in the figure, the treated water discharge pipe 5 penetrates the upper part of the tank body 10, and the discharge port 5a at its end is located in the primary chamber 9a. You may connect as you would.

【0020】又、タンク9の他の実施例としては、タン
ク本体10内の縦方向に隔壁13を設け、この隔壁13によっ
てタンク9内の右側の室を一次室9a、左側の室を二次室
9bに区割し、一次室9a内にオーバーフロー方式とする処
理水排出管5を配設すると共に、二次室9b内に排水管12
を配設している。
Further, as another embodiment of the tank 9, a partition wall 13 is provided in the tank body 10 in the vertical direction, and the partition wall 13 allows the right chamber in the tank 9 to be a primary chamber 9a and the left chamber to be a secondary chamber. Room
It is divided into 9b, the treated water discharge pipe 5 of the overflow type is provided in the primary chamber 9a, and the drain pipe 12 is provided in the secondary chamber 9b.
Is arranged.

【0021】尚、タンク本体10上部には一次室9aおよび
二次室9bを夫々外部と連通させるガス排気口11を設けて
いる。
A gas exhaust port 11 is provided in the upper portion of the tank body 10 to connect the primary chamber 9a and the secondary chamber 9b to the outside.

【0022】次に、ガス分散装置2の第一の実施例とし
ては、円管状のケーシング21の両端の開口部に夫々外周
方向に突出するフランジ22、22a が形成され、該フラン
ジ22、22a 端面にケーシング21の内径より小径な入口側
2aである入口23および出口側2bである出口24を中央に形
成した板状の蓋体25、25a を着脱自在に装着している。
Next, as a first embodiment of the gas dispersion device 2, flanges 22 and 22a projecting in the outer peripheral direction are formed at the openings at both ends of a cylindrical casing 21, respectively, and the end faces of the flanges 22 and 22a are formed. On the inlet side with a diameter smaller than the inner diameter of the casing 21
Plate-like lids 25, 25a having an inlet 23 which is 2a and an outlet 24 which is the outlet side 2b formed in the center are detachably mounted.

【0023】26はケーシング21の中空内部における軸心
方向に複数配列したガス分散エレメントであり、かかる
ガス分散エレメント26は図4、5、6に示す様に、互い
に対向する前面に、該前面に対して側壁32を直角と成し
た前方開放の平面視が多角形状である筒状の小室27、27
a …を多数配列した大小2枚の円板28、29を一組みと
し、これを同心的に重合させている。
Reference numeral 26 designates a plurality of gas dispersion elements arranged in the axial direction in the hollow interior of the casing 21, and the gas dispersion elements 26 are arranged on the front surfaces facing each other as shown in FIGS. On the other hand, the cylindrical small chambers 27, 27 having a polygonal shape in the front view with the sidewall 32 formed at a right angle
Two large and small disks 28 and 29 with a large number of a arranged are set as a set and are concentrically superposed.

【0024】又、前記大径な円板28はケーシング21の内
周面と水密と成る外径にて形成されると共に、中央に流
通孔30が穿設され、一方、小径な円板29の外径はケーシ
ング21の内周面から離間して該内周面との間に流通路31
が形成される大きさと成している。
Further, the large-diameter disk 28 is formed with an outer diameter that is watertight with the inner peripheral surface of the casing 21, and a flow hole 30 is formed in the center thereof, while the small-diameter disk 29 is The outer diameter is separated from the inner peripheral surface of the casing 21 and the flow passage 31 is formed between the outer peripheral surface and the inner peripheral surface.
The size is formed.

【0025】又、図6に示す様に大径な円板28の小室2
7、27a …と、小径な円板29の小室27、27a …とは互い
の小室27、27a …が対向する他の小室27、27a …に連通
する様に位置を違えて配列させている。
Further, as shown in FIG. 6, the small chamber 2 of the large-diameter disk 28 is provided.
7 and 27a, and the small chambers 27, 27a of the small-diameter disk 29 are arranged so that their respective small chambers 27, 27a ... communicate with the opposite small chambers 27, 27a.

【0026】そして、これらガス分散エレメント26は互
いに同径の円板が隣接するように重ね合わせてケーシン
グ21の中空内部に直列的に配設する。
The gas dispersion elements 26 are arranged in series in the hollow inside of the casing 21 by stacking the disks having the same diameter so that they are adjacent to each other.

【0027】又、直列状態のガス分散エレメント26の両
側には大径な円板28を配置して、大径な円板28の流通孔
30と入口23および出口24を連通させている。
Further, large-diameter discs 28 are arranged on both sides of the gas dispersion element 26 in the serial state, and the circulation holes of the large-diameter discs 28 are arranged.
30 communicates with the inlet 23 and the outlet 24.

【0028】又、上記実施例では小室27、27a …の平面
視形状を六角と成してハニカム状に多数配列したものを
示したが、かかる形状に何ら限定されず、図7、8、9
に示す様に小室27、27a …の平面視形状を三角、四角、
八角…等と成したり、又円形(図示せず)と成しても良
い。
In the above-mentioned embodiment, the small chambers 27, 27a, ... Are shown as hexagonal in plan view, and a large number of cells are arranged in a honeycomb shape.
As shown in, the shape of the small chambers 27, 27a ...
It may be octagonal or the like, or may be circular (not shown).

【0029】又、大小2枚の円板28、29の他の実施例と
しては、図11、12に示す様に任意の小室27、27a …
の底面中央に、この小室27、27a …を形成する側壁32の
上端面の高さより低くした突起33を設けることにより、
流体の流れに乱れを積極的に生じさせることが可能とな
り、一層ガス分散効率を高めることができ、又突起33を
円板28、29の中心部に近づくに従って順次小さくするこ
とにより、円周方向に配列される小室27、27a …の直径
方向における外側と内側との内容積を均一化し、脈動を
防止してスムーズな流れを確保できる。
Further, as another embodiment of the large and small discs 28, 29, as shown in FIGS. 11 and 12, arbitrary small chambers 27, 27a ...
By providing a protrusion 33 lower than the height of the upper end surface of the side wall 32 forming the small chambers 27, 27a ...
Turbulence can be positively generated in the fluid flow, the gas dispersion efficiency can be further improved, and the protrusion 33 is gradually reduced toward the central portions of the disks 28, 29, whereby the circumferential direction is reduced. The inner volumes of the outside and the inside in the diametrical direction of the small chambers 27, 27a arranged in a uniform manner can be made uniform to prevent pulsation and ensure a smooth flow.

【0030】次に、ガス分散装置2の第二の実施例につ
いては、図13〜15に示す様に、パッキン、ガスケッ
ト等に使用される材質である弾性体(ニトリルゴム、シ
リコーンゴム、フッ素ゴム、アクリルゴム、テフロン
等)によりケーシング21の内周面との間に若干の隙間を
具有させて遊嵌状に挿入される外径にて筒体35を形成
し、この筒体25の両端より内方側へ鍔片36、36a を一体
成形してリング状の環装シール体37と成している。
Next, as to the second embodiment of the gas dispersion device 2, as shown in FIGS. 13 to 15, an elastic body (nitrile rubber, silicone rubber, fluororubber) which is a material used for packing, gaskets and the like is used. , Acrylic rubber, Teflon, etc.) to form a tubular body 35 with an outer diameter that is inserted in a loose fit with a slight gap between it and the inner peripheral surface of the casing 21. The collar pieces 36, 36a are integrally formed on the inner side to form a ring-shaped annular sealing body 37.

【0031】又、環装シール体37の筒体35の軸心方向の
長さについては、大小の円板28、29を4枚同心的に重ね
た状態の軸心方向の長さに概ね一致させている。
The axial length of the tubular body 35 of the annular seal 37 is approximately the same as the axial length of four large and small disks 28 and 29 concentrically stacked. I am letting you.

【0032】又、環装シール体37における筒体35の内周
面に密接する外径にて大径な円板28を形成し、又小径な
円板の外径は筒体35の内周面から離間してこの内周面と
の間に流通路31を形成する様な大きさと成している。
Further, a large-diameter disk 28 is formed with an outer diameter in close contact with the inner peripheral surface of the cylindrical body 35 in the annular seal body 37, and the outer diameter of the small-diameter disk is the inner circumference of the cylindrical body 35. It is sized so as to form a flow passage 31 between the inner peripheral surface and the surface away from the surface.

【0033】そして、大径な円板28を両側に配設し、そ
の間に互いの小室27、27a …が対向する他の小室27、27
a …に連通する様に位置を違えて、小径な円板29を配設
する様にした大小2枚の円板28、29からなる2組のガス
分散エレメント26を環装シール体37の中空内部に配列さ
せてガス分散集合エレメント38と成している。
Large discs 28 are arranged on both sides, and the small chambers 27, 27a ...
A pair of gas distribution elements 26 consisting of two large and small discs 28 and 29, which are arranged in different positions so as to communicate with a ... Arranged inside is a gas dispersion collecting element 38.

【0034】次に、複数のガス分散集合エレメント38を
ケーシング11の中空内部に直列的に配設し、フランジ2
2、22a 端面に蓋体25、25a を当ててボルト等によって
固定することにより、蓋体25、25a によって複数のガス
分散集合エレメント38が挟持固定されてケーシング21内
に配列される。
Next, a plurality of gas dispersion collecting elements 38 are arranged in series inside the hollow of the casing 11, and the flange 2
A plurality of gas dispersion collecting elements 38 are sandwiched and fixed by the lids 25 and 25a by arranging the lids 25 and 25a on the end faces of the 2 and 22a and fixing them with bolts or the like, and arranged in the casing 21.

【0035】ここで、ケーシング21の両端間の寸法L1
に対し、複数配列するガス分散集合エレメント38を自由
状態で同心的に、環装シール体37の夫々の鍔片36、36a
を接触させた連続状態における両端間の寸法L2を大き
く設定することにより、各ガス分散集合エレメント38に
おける環装シール体37の鍔片36、36a に夫々押圧力が加
わるため、この押圧力によって各鍔片36、36a が圧縮変
形し、その際の弾性復元力によって小室27、27a …の側
壁32の上端面相互が圧接されて密接状態が良好となると
共に、環装シール体37の鍔片36、36a が大径な円板29の
背面に圧接されて密接状態を良好と成してシール機能を
完璧なものにしている。
Here, the dimension L1 between both ends of the casing 21
On the other hand, a plurality of arranged gas dispersion collecting elements 38 are concentrically formed in a free state, and the collar pieces 36 and 36a of the ring-shaped seal body 37 are provided.
By setting a large dimension L2 between both ends in the continuous state in which the two are in contact with each other, a pressing force is applied to the collar pieces 36, 36a of the annular sealing body 37 in each gas dispersion collecting element 38, and this pressing force causes The collar pieces 36, 36a are compressed and deformed, and the elastic restoring force at that time presses the upper end surfaces of the side walls 32 of the small chambers 27, 27a ... into close contact with each other to improve the close contact state. , 36a are pressed against the back surface of the large-diameter disk 29 to maintain a good close contact state, thus perfecting the sealing function.

【0036】又、蓋体25、25a による押圧力が不足する
際には弾性体からなる平板リング状のスペーサ(図示せ
ず)を介装することによって押圧力を調整でき、又上記
実施例においては、ガス分散集合エレメント38が複数の
場合であるが、このガス分散集合エレメント38を単体と
する場合には、ガス分散集合エレメント38の両端間の寸
法L2をケーシング11の両端間の寸法L1より大きくす
れば良い。
When the pressing force of the lids 25 and 25a is insufficient, the pressing force can be adjusted by interposing a flat plate ring spacer (not shown) made of an elastic body. Is a case where there are a plurality of gas dispersion collecting elements 38. When the gas dispersion collecting element 38 is used as a single body, the dimension L2 between both ends of the gas dispersion collecting element 38 is smaller than the dimension L1 between both ends of the casing 11. It should be large.

【0037】次に、ガス分散装置2の第三の実施例につ
いては、図16〜25に示す様に、第一の実施例におけ
る大径な円板28の外径をケーシング11の内周面と密着し
ない大きさ(遊嵌状となる程度)と成すと共に、小室2
7、27a …が形成されていない平坦な背面に、円板28の
外径より若干小径と成す底辺径を有する偏平な円錐台状
の台座部39を一体形成することにより、この台座部39の
外側である円板28の周縁側を陥没状と成してシール座面
40を形成している。
Next, in the third embodiment of the gas dispersion device 2, as shown in FIGS. 16 to 25, the outer diameter of the large diameter disk 28 in the first embodiment is set to the inner peripheral surface of the casing 11. It does not come in close contact with (small enough to fit loosely), and the small chamber 2
By forming a flat truncated cone-shaped pedestal portion 39 having a base diameter slightly smaller than the outer diameter of the disc 28 on a flat back surface on which 7, 27a ... Are not formed, the pedestal portion 39 The outer peripheral side of the disk 28 is formed into a depressed shape to form a seal seat surface.
Form 40.

【0038】このシール座面40は、後述するシール溝54
を画成するために、半割り状と成し、且つその一部がテ
ーパ面状に形成された領域によって形成され、又テーパ
面状の部位としてはシール溝54におけるシール部材55が
押圧接触される座部と成している。
The seal bearing surface 40 has a seal groove 54 which will be described later.
In order to define the above, a half is formed, and a part thereof is formed by an area formed in a tapered surface shape, and as a tapered surface portion, the seal member 55 in the seal groove 54 is pressed and contacted. It is a seat.

【0039】又、シール座面40の他の実施例としては、
台座部39を偏平な円柱状に形成し、この台座部39の外周
面と、円板28の背面における周縁側とによって陥没状と
成した領域にて半割り溝状に形成しても良い。
As another embodiment of the seal seat surface 40,
The pedestal portion 39 may be formed in a flat columnar shape, and may be formed in a half-groove shape in a recessed region formed by the outer peripheral surface of the pedestal portion 39 and the peripheral edge side of the back surface of the disc 28.

【0040】又、大径な円板28の中心を貫く流通孔30の
中心に、流通孔30の内面から中心に指向するアーム41の
先端にハブ42を一体形成し、このハブ42の中心に軸孔43
を形成すると共に、流通孔30の周囲の台座部39に所定深
さで凹状に形成した座ぐり部44を形成している。
Further, a hub 42 is integrally formed at the center of the through hole 30 penetrating the center of the large-diameter disk 28, at the tip of the arm 41 pointing from the inner surface of the through hole 30 to the center, and at the center of the hub 42. Shaft hole 43
In addition to the above, a counterbore portion 44 formed in a concave shape with a predetermined depth is formed in the pedestal portion 39 around the circulation hole 30.

【0041】次に、小径な円板29の小室27、27a …が形
成される前面の中心には、円柱状のボス45を突設し、こ
のボス45の中心にメネジ孔46を螺刻すると共に、同じ前
面の外側には、大径な円板28における最も外側の任意な
小室27、27a …と嵌合する嵌合ピン47、47a を突設して
いる。
Next, a cylindrical boss 45 is provided at the center of the front surface of the small-diameter disk 29 where the small chambers 27, 27a ... Are formed, and a female screw hole 46 is screwed into the center of the boss 45. At the same time, on the outside of the same front surface, fitting pins 47, 47a that fit with the arbitrary outermost small chambers 27, 27a in the large-diameter disk 28 are provided in a protruding manner.

【0042】そして、図23、24に示す様に、前面に
設けた小室27、27a …が対向する他の小室27、27a …に
連通する様に位置を違えて重ね合わせ、その後、止めネ
ジ48を軸孔43に通してメネジ孔46に螺入して大小2枚の
円板28、29を連結してガス分散エレメント26と成してい
る。
As shown in FIGS. 23 and 24, the small chambers 27, 27a provided at the front face are superposed at different positions so as to communicate with the other small chambers 27, 27a. Is passed through the shaft hole 43 and screwed into the female screw hole 46 to connect the two large and small disks 28 and 29 to each other to form the gas dispersion element 26.

【0043】又、ケーシング21のフランジ22、22a には
ボルト挿通孔49、49a …を形成し、このケーシング21の
両端に装着する入口23、出口24を夫々形成する蓋体25、
25aには、ケーシング21両端の開口部内に遊嵌状に挿入
される円柱突部50を設け、円柱突部50先端の周縁側には
前記大小2枚の円板28、29と同様なるシール座面40を形
成し、又フランジ22、22a と対向する個所には調整ボル
ト51が螺入する適宜数の貫通ネジ孔52を形成している。
Further, bolt insertion holes 49, 49a ... Are formed in the flanges 22, 22a of the casing 21, and a lid 25 for forming an inlet 23 and an outlet 24 attached to both ends of the casing 21, respectively.
25a is provided with a columnar protrusion 50 which is inserted into the openings at both ends of the casing 21 in a loosely fitted manner, and a seal seat similar to the two large and small disks 28 and 29 is provided on the peripheral edge side of the tip of the columnar protrusion 50. A surface 40 is formed, and an appropriate number of through screw holes 52 into which adjustment bolts 51 are screwed are formed at the portions facing the flanges 22 and 22a.

【0044】そして、ケーシング21の開口部から中空内
部に直列的に、止めネジ48で大小2枚の円板28、29を連
結したガス分散エレメント26を、大径な円板28同士およ
び小径な円板29同士が隣接する様に配列し、ケーシング
21の両端の開口部内に円柱突部50を挿入した状態で、蓋
体25、25a を適宜数の連結ボルト53、53a によって装着
すると、隣接するガス分散エレメント26における大径な
円板28に形成されるシール座面40によって略V字状、略
U字状のシール溝54が画成される。
Then, the gas dispersion element 26, in which two large and small disks 28 and 29 are connected by a set screw 48 in series from the opening of the casing 21 to the inside of the hollow, is installed in the large disks 28 and in the small diameter. The disks 29 are arranged so that they are adjacent to each other, and the casing
When the lids 25 and 25a are mounted by the appropriate number of connecting bolts 53 and 53a with the columnar protrusions 50 inserted into the openings at both ends of the 21, they are formed on the large diameter disc 28 of the adjacent gas dispersion element 26. The seal seating surface 40 thus defined defines a substantially V-shaped and U-shaped seal groove 54.

【0045】かかるシール溝54とケーシング21内周面と
によって所定のつぶし代が得られるリング状のシール部
材55を、シール溝54内に装着してガス分散装置2とす
る。
A ring-shaped seal member 55, which has a predetermined squeezing margin by the seal groove 54 and the inner peripheral surface of the casing 21, is mounted in the seal groove 54 to form the gas dispersion device 2.

【0046】ここで、シール部材54の装着方法として
は、先ず、ケーシング21の一方の開口部に蓋体25を適宜
数の連結ボルト53、53a によって装着し、その後、シー
ル部材55、ガス分散エレメント26の順で多数直列的に配
列し、最終的に蓋体25a をケーシング21の一方の開口部
に適宜数の連結ボルト53、53a によって装着すると、隣
接するシール座面40によって画成されるシール溝54内に
シール部材54が装着される。
Here, as a method for mounting the seal member 54, first, the lid 25 is mounted in one opening of the casing 21 by an appropriate number of connecting bolts 53, 53a, and then the seal member 55, the gas dispersion element. 26 are arranged in series in the order of 26, and finally the lid 25a is attached to one opening of the casing 21 by an appropriate number of connecting bolts 53, 53a. A seal member 54 is mounted in the groove 54.

【0047】又、シール部材55としては、Oリング、X
リング、Dリング等があり、又その材質についてもニト
リルゴム、シリコーンゴム、フッ素ゴム、アクリルゴ
ム、テフロン等がある。
As the seal member 55, an O-ring, X
There are a ring, a D ring and the like, and the materials thereof include nitrile rubber, silicone rubber, fluororubber, acrylic rubber and Teflon.

【0048】次に、本発明に係る水中の溶存酸素の除去
方法について説明すると、除去装置1におけるポンプ3
によって溶存酸素を除去すべき被処理水を、被処理水供
給管4を介してガス分散装置2内に所定流量にて大気圧
以上の圧力で加圧送給すると共に、被処理水供給管4内
に圧縮ボンベ6の不活性ガスを流量調整弁8を介して所
定流量にて圧入する。
Next, the method of removing dissolved oxygen in water according to the present invention will be described. The pump 3 in the removing apparatus 1 will be described.
The treated water from which the dissolved oxygen is to be removed is fed under pressure at a predetermined flow rate and above the atmospheric pressure through the treated water supply pipe 4, and the treated water supply pipe 4 The inert gas in the compression cylinder 6 is press-fitted at a predetermined flow rate through the flow rate adjusting valve 8.

【0049】そして、この混合流体は、ガス分散装置2
内にてその流れが後述する様に複雑に成って、不活性ガ
スが微細気泡化した状態でガス分散装置2内を通過流動
し、かかるガス分散装置2内の通過過程において被処理
水と不活性ガスの気泡との界面において、水に対する溶
解度に依存する平衡作用がおこり、不活性ガスの溶解と
酸素ガスの放出とによるガス置換を行い水中の溶存酸素
の除去を行う。
The mixed fluid is used as the gas dispersion device 2
The flow becomes complicated in the inside as described later, and the inert gas flows through the gas dispersion device 2 in the state of being formed into fine bubbles. At the interface with the bubbles of the active gas, an equilibrium action depending on the solubility in water occurs, and gas exchange is performed by dissolution of the inert gas and release of oxygen gas to remove dissolved oxygen in water.

【0050】次に、ガス分散装置2内にて溶存酸素の除
去が行われた処理水は、処理水排出管5の吐出口5aから
タンク9の一次室9a内に流入すると、かかる一次室9a内
に入った処理水の気泡は隔壁13によって二次室9b側への
移動が止められるため、一次室9a内でのみ気泡は上昇し
て水面で消泡されると共に、隔壁13を通過して二次室9b
内に入った処理水は排水管12を介して気泡が全く混濁し
ない状態で排水される。
Next, when the treated water from which the dissolved oxygen has been removed in the gas dispersion device 2 flows into the primary chamber 9a of the tank 9 from the discharge port 5a of the treated water discharge pipe 5, the treated primary chamber 9a. Since the bubbles of the treated water entering the inside are stopped from moving to the secondary chamber 9b side by the partition wall 13, the bubbles rise only in the primary chamber 9a to be defoamed on the water surface and pass through the partition wall 13. Secondary chamber 9b
The treated water that has entered the inside is discharged through the drain pipe 12 in a state where the bubbles are not clouded at all.

【0051】又、タンク9の一次室9a内での気泡の上昇
過程においても、ガス分散装置2内で除去しきれない溶
存酸素を有する場合には、当然ながらガス置換が行われ
て更に水中の溶存酸素の除去が行われる。
Further, even in the ascending process of bubbles in the primary chamber 9a of the tank 9, if there is dissolved oxygen that cannot be completely removed in the gas dispersion device 2, gas replacement is naturally performed and further submersion in water is performed. Dissolved oxygen is removed.

【0052】又、タンク9内の上方に一次室9aと、下方
に二次室9bを形成している場合は、溶存酸素が除去され
ると共に、気泡が除去された処理水は大気と接触しない
ため、大気中の酸素が溶解しない利点を有する。
When the primary chamber 9a is formed in the upper part of the tank 9 and the secondary chamber 9b is formed in the lower part of the tank 9, dissolved oxygen is removed and the treated water from which bubbles are removed does not come into contact with the atmosphere. Therefore, it has an advantage that oxygen in the atmosphere is not dissolved.

【0053】次に、上記ガス分散装置2内での不活性ガ
スの微細気泡化のメカニズムについては、被処理水と不
活性ガスの混合流体を、ガス分散装置2の入口23からケ
ーシング21の内部空間に加圧流入させると、この混合流
体の流れは、例えば図4に示す矢印のように上流側のガ
ス分散エレメント26の流通孔30からその内部に達し、小
径な円板29により直進進路が妨げられて方向を変え、互
いに連通する小室27、27a …を経て中央部から外側に向
かって放射状に直角衝突、分散、合流、蛇行、渦流等の
状態が組み合わさって複雑に流動する。
Next, regarding the mechanism of forming fine bubbles of the inert gas in the gas dispersion device 2, the mixed fluid of the water to be treated and the inert gas is introduced from the inlet 23 of the gas dispersion device 2 into the casing 21. When the mixed fluid flows under pressure into the space, the flow of the mixed fluid reaches the inside from the flow hole 30 of the gas dispersion element 26 on the upstream side as shown by the arrow in FIG. After being obstructed, the directions are changed, and through the small chambers 27, 27a ... Which communicate with each other, the states such as collision at right angles, dispersion, merging, meandering, and vortex flow in a radial direction from the central portion to a complex flow.

【0054】この様に、上流側のガス分散エレメント26
を通過してケーシング21の内周面に到達した混合流体
は、そのケーシング21の内周面と小径な円板29とによっ
て形成された流通路31から下流側のガス分散エレメント
26の各小室27、27a …に入り、上述の様な直角衝突、分
散、合流、蛇行、渦流等の複雑な流れで中央部に集合さ
れ、再び流通孔30から下流側のガス分散エレメント26に
入り、そして、再度各小室27、27a …を経ながら中央部
から外側へ向かって直角衝突、分散、合流、蛇行、渦流
等によって複雑に、順次ガス分散エレメント26の内部を
流動し、かかる流動状態によって不活性ガスが微細気泡
化されて気泡で混濁した状態となって出口24より排出さ
れる。
In this way, the upstream gas dispersion element 26
The mixed fluid that has reached the inner peripheral surface of the casing 21 after passing through is a gas dispersion element on the downstream side from the flow passage 31 formed by the inner peripheral surface of the casing 21 and the small-diameter disk 29.
26 enter each of the small chambers 27, 27a ..., and are gathered in the central part by a complicated flow such as right-angle collision, dispersion, merging, meandering, vortex flow as described above, and again from the flow hole 30 to the gas distribution element 26 on the downstream side. After entering, and then again through the small chambers 27, 27a ..., the gas is dispersed in the gas dispersion element 26 in a complicated and sequential manner by a right-angle collision, dispersion, merging, meandering, vortex flow, etc. from the center to the outside, and the flow state is maintained. As a result, the inert gas is made into fine bubbles, becomes turbid with the bubbles, and is discharged from the outlet 24.

【0055】又、混合流体は上記の様に、各小室27、27
a …の底面および側壁32への直角衝突、各小室27、27a
…から他の複数の小室27、27a …への分散、複数の小室
27、27a …から他の一つの小室27、27a …への合流、蛇
行、さらに複数の小室27、27a …から各小室27、27a …
への流入による渦流による流体力学的な剪断、各小室2
7、27a …から他の小室27、27a …への連通路であるオ
リフイスを通過する際の流体力学的な剪断、衝撃的破壊
による粉砕、側壁32の上端面を通過する際の剪断、機械
的なキャビテーション等によって被処理水と不活性ガス
との分散混合が行われるのである。
As described above, the mixed fluid is contained in the small chambers 27, 27.
Right-angle collision with the bottom and side walls 32 of a ..., small chambers 27, 27a
Dispersion from… to other chambers 27, 27a…, chambers
27, 27a… to another small chamber 27, 27a… merging, meandering, and multiple small chambers 27, 27a… to each small chamber 27, 27a….
Fluid dynamic shear due to vortex flow into each chamber 2
Hydrodynamic shear when passing through the orifice, which is a communication path from 7, 27a ... to other small chambers 27, 27a, crushing by impact destruction, shearing when passing through the upper end surface of the side wall 32, mechanical The water to be treated and the inert gas are dispersed and mixed by cavitation or the like.

【0056】又、ここでガス分散エレメント26の分散総
数については、中心より順次放射状に配列した大小2枚
の円板28、29における小室27、27a …の室数によって決
定されるのであり、例えば図9に示す平面視六角状のも
のであれば、室数が6室、12室、18室(計36室) の3列
状の円板28と、室数が3室、9室、15室(計27室) の3
列状の円板29を重合させたガス分散エレメント26の合計
した1流体の場合の分散総数は数千回にも達し、2流体
(被処理水と不活性ガス)以上であれば当然その乗数積
となる。
The total number of dispersions of the gas dispersion element 26 is determined by the number of small chambers 27, 27a ... Of the two large and small circular disks 28, 29 arranged radially in order from the center. In the case of the hexagonal shape in plan view shown in FIG. 9, there are three rows of discs 28 having a number of chambers of 6, 12, and 18 (total of 36 chambers), and the number of chambers is 3, 9, 15 3 rooms (total 27 rooms)
The total number of dispersions in the case of one fluid, which is the total of the gas dispersion elements 26 in which the circular discs 29 are superposed, reaches several thousand times, and if it is two fluids (water to be treated and inert gas) or more, naturally it is a multiplier. Product.

【0057】尚、上記分散総数とは、円板28と円板29に
おいて、互いに連通する小室27、27a …によってガス分
散エレメント26を通過する間に生じるべき混合流体が分
散される数のことであり、複数のガス分散エレメント26
から成る場合は、ガス分散エレメント26の各分散総数の
積と成り、小室27、27a …の列数を増減することによ
り、適宜増減可能である。
It should be noted that the above-mentioned total number of dispersion means the number of the mixed fluids to be generated while passing through the gas dispersion element 26 by the small chambers 27, 27a communicating with each other in the disk 28 and the disk 29. Yes, multiple gas distribution elements 26
In the case of consisting of, the product of the total number of dispersions of the gas dispersion element 26 is obtained, and can be appropriately increased or decreased by increasing or decreasing the number of rows of the small chambers 27, 27a.

【0058】尚、ガス分散集合エレメント38を用いたガ
ス分散装置2でも同様に直角衝突、分散、合流、蛇行、
渦流等が繰り返されて排出される。
Incidentally, in the gas dispersion device 2 using the gas dispersion assembly element 38 as well, right angle collision, dispersion, merging, meandering,
The vortex flow etc. are repeated and discharged.

【0059】又、ガス分散集合エレメント38を配列す
る、第二のガス分散装置2については、分散混合作用に
ついては上記と同様に行われると共に、ガス分散集合エ
レメント38両端間の寸法L2をケーシング21の両端の寸
法L1より大きく設定し、蓋体25、25a をケーシング21
の両端に装着してガス分散集合エレメント38を挟持固定
していることにより、円板28、29における小室27、27a
…を形成する側壁32の上端面の密着状態を強固に維持で
きる。
In the second gas dispersion device 2 in which the gas dispersion collecting elements 38 are arranged, the dispersion mixing operation is performed in the same manner as described above, and the dimension L2 between both ends of the gas dispersion collecting element 38 is set to the casing 21. Set it to be larger than the dimension L1 of both ends of the
Since the gas dispersion collecting element 38 is attached to both ends of the disc and sandwiched and fixed, the small chambers 27, 27a in the disks 28, 29 are fixed.
It is possible to firmly maintain the close contact state of the upper end surface of the side wall 32 forming the.

【0060】又、隣接するシール座面40によってシール
溝54が画成される第三のガス分散装置2については、シ
ール部材55とガス分散エレメント26を順次、ケーシング
21内に入れるだけで、シール溝54内にシール部材55が装
着でき、又このシール部材55によって大径な円板28の外
径とケーシング21の内周面の間からの流体の短絡的な流
れを規制する様にシールでき、又シール座面40をテーパ
面状と成す場合は、図25に示す様に、テーパ面がシー
ル部材55の装着時の誘導面と成るため、シール部材55の
噛み込みが防止できる。
Further, regarding the third gas dispersion device 2 in which the seal groove 54 is defined by the adjacent seal seating surfaces 40, the seal member 55 and the gas dispersion element 26 are sequentially arranged in the casing.
The seal member 55 can be mounted in the seal groove 54 only by inserting it into the seal groove 21, and the seal member 55 prevents short circuit of fluid between the outer diameter of the large-diameter disk 28 and the inner peripheral surface of the casing 21. When sealing can be performed so as to regulate the flow, and when the seal seat surface 40 is formed into a tapered surface, the tapered surface serves as a guide surface when the seal member 55 is mounted, as shown in FIG. Bite can be prevented.

【0061】又、蓋体25、25a の円柱突部50端面とガス
分散集合エレメント26の大径な円板28の背面の間から漏
れようとする流体についても、円柱突部50のシール座面
40と円板28のシール座面40によって画成されるシール溝
54内にシール部材55が装着されるため、円柱突部50外周
からの外部への漏れが防止でき、円柱突部50外周側に一
般的に設けるガスケット類が不要と成る。
Also, with respect to the fluid that is about to leak from between the end faces of the columnar protrusions 50 of the lids 25 and 25a and the rear face of the large diameter disc 28 of the gas dispersion collecting element 26, the seal seating surface of the columnar protrusions 50 is also prevented.
40 and the seal groove defined by the seal seat surface 40 of the disc 28
Since the seal member 55 is mounted inside the cylinder 54, leakage from the outer circumference of the columnar protrusion 50 can be prevented, and gaskets generally provided on the outer peripheral side of the columnar protrusion 50 are unnecessary.

【0062】次に、水中の溶存酸素の除去の実験結果に
ついては、ガス分散装置2としては小室27、27a …の平
面視形状を六角と成すと共に、小室27、27a …の室数を
48室と成した大径な円板28と、小室27、27a …の室数
を30室と成した小径な円板29から構成されるガス分散
集合エレメント38を、ケーシング21内に夫々、2ユニッ
ト、4ユニット、6ユニットおよび10ユニットを内装
した四種類を用い、ガス分散装置2に水道水である被処
理水と、不活性ガスとして高純度(99、9%程度)の
窒素ガスとの混合流体を加圧供給して内部空間を通過さ
せ、該ガス分散装置2の出口2b側での溶存酸素濃度を測
定したところ、表1〜表4の結果が得られた。
Next, regarding the experimental result of the removal of dissolved oxygen in water, the gas dispersion device 2 has a hexagonal plan view of the small chambers 27, 27a ... And the number of the small chambers 27, 27a. A large-diameter disk 28 and a small-diameter disk 29 having 30 small chambers 27, 27a ... A mixed fluid of 4 kinds, 6 units, and 10 kinds of interior units, in which the water to be treated, which is tap water, and a high-purity (about 99, 9%) nitrogen gas as an inert gas are used in the gas dispersion device 2. Was supplied under pressure to pass through the internal space, and the dissolved oxygen concentration at the outlet 2b side of the gas dispersion device 2 was measured. The results shown in Tables 1 to 4 were obtained.

【0063】ここで、溶存酸素濃度の測定個所として
は、ガス分散装置2内のみにおける溶存酸素の除去率を
測定するために、ガス分散装置2を通過した直後の処理
水で測定する必要があり、このためガス分散装置2の出
口2bから排出される気泡が分散して混濁した状態と成っ
ている処理水を透明カラム(図示せず)に採取し、その
後処理水中の気泡が上昇して透明カラムの底部側が透明
に成った時点で、かかる個所に予め配置しておいた溶存
酸素濃度計(図示せず)によって溶存酸素濃度を測定し
た。
Here, in order to measure the removal rate of dissolved oxygen only in the gas dispersion device 2, it is necessary to measure the dissolved oxygen concentration with the treated water immediately after passing through the gas dispersion device 2. Therefore, the treated water in which bubbles discharged from the outlet 2b of the gas dispersion device 2 are dispersed and turbid is collected in a transparent column (not shown), and thereafter the bubbles in the treated water rise to be transparent. When the bottom side of the column became transparent, the dissolved oxygen concentration was measured by a dissolved oxygen concentration meter (not shown) arranged in advance at such a position.

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【表2】 [Table 2]

【0066】[0066]

【表3】 [Table 3]

【0067】[0067]

【表4】 [Table 4]

【0068】又、上記表1〜表4で使用する各種記号に
ついては下記に示す。 VR :ガス分散装置内の体積(cm3 ) VG :不活性ガスの流量(リットル/min) VL :被処理水の流量(リットル/min) T :被処理水の温度(℃) P :被処理水の加圧圧力(Kg/cm2 G) dB :ガス分散装置2内の平均圧力下における気泡径
(μm) Pm :ガス分散装置2内の平均圧力(atm) C0 :被処理水の溶存酸素濃度(ppm) C :処理水の溶存酸素濃度(ppm) θR :混合流体のガス分散装置2内での滞留時間(s
ec) KL a :総括物質移動容量係数(1/sec)
The various symbols used in Tables 1 to 4 are shown below. V R : Volume in gas dispersion device (cm 3 ) V G : Flow rate of inert gas (liter / min) VL : Flow rate of treated water (liter / min) T: Temperature of treated water (° C.) P : applied pressure of the water to be treated (Kg / cm 2 G) d B: cell diameter under average pressure in the gas distribution device 2 (μm) P m: average pressure in the gas distribution device 2 (atm) C 0: Dissolved oxygen concentration of treated water (ppm) C: Dissolved oxygen concentration of treated water (ppm) θ R : Residence time of mixed fluid in gas dispersion device 2 (s
ec) K L a: Overall mass transfer coefficient (1 / sec)

【0069】上記実験結果よりガス分散装置2内におけ
る平均圧力Pm の下での不活性ガスの気泡径dB は45
μm〜66μm程度にまで微細気泡化されることが認め
られ、これによって気液界面積が著しく大きくなり、数
sec以下の極めて短時間な気液接触時間であっても溶
存酸素の除去率が大きいことが確認された。
From the above experimental results, the bubble diameter d B of the inert gas under the average pressure P m in the gas dispersion device 2 was 45.
It is recognized that the bubbles are formed into fine bubbles of about μm to 66 μm, which significantly increases the gas-liquid interface area, and the removal rate of dissolved oxygen is large even with a very short gas-liquid contact time of several seconds or less. It was confirmed.

【0070】尚、表1〜表4における気泡径dB は、ガ
ス分散装置2から排出された処理水を透明カラムに採取
し、大気圧における透明カラム内での気泡の上昇速度よ
り求めた気泡径を、ガス分散装置2内の平均圧力Pm
の値に換算して求めたものである。
[0070] Incidentally, the bubble cell diameter d B in Table 1 to Table 4, the treated water discharged from the gas distribution apparatus 2 taken transparent column was determined from the rate of rise of bubbles in the transparent column at atmospheric pressure The diameter is calculated by converting it to a value under the average pressure P m in the gas dispersion device 2.

【0071】[0071]

【発明の効果】要するに本発明は、ガス分散装置2の入
口23に溶存酸素を除去すべき被処理水を大気圧以上で加
圧供給する被処理水供給管4を接続し、この処理水供給
管4の途中に不活性ガスを圧入する不活性ガス圧入管7
を接続すると共に、ガス分散装置2の出口24に処理水排
出管5を接続したので、ガス分散装置2内で微細化され
た気泡径dB は、このガス分散装置2内が加圧下である
ため、大気開放されている場合よりも小径と成って気液
界面積を大きくすることに有利と成り、しかも気泡径d
B は概ね一定(約55±10μm)であるため、溶存酸
素の除去率の設定時に際しては設定が行い易い液流量、
ガス流量、圧力等の調整で対応できることにより、かか
る除去率の設定が容易と成り、又タンク9内を透水性の
みを有する隔壁13によって一次室9aと二次室9bに区割
し、前記処理水排出管5を一次室9aと接続すると共に、
二次室9bに排水管12を接続したので、隔壁13によって気
泡の移動が止められるため、二次室9bから排水される処
理水は気泡で全く混濁していない状態で原料水や、洗浄
水として使用できる。
In summary, according to the present invention, the inlet 23 of the gas dispersion device 2 is connected to the treated water supply pipe 4 for supplying the treated water from which dissolved oxygen should be removed under pressure at atmospheric pressure or higher, and the treated water supply is performed. Inert gas injection pipe 7 for injecting an inert gas in the middle of the pipe 4.
Since the treated water discharge pipe 5 is connected to the outlet 24 of the gas dispersion device 2, the bubble diameter d B that is made fine in the gas dispersion device 2 is under pressure in the gas dispersion device 2. Therefore, the diameter is smaller than that in the case of being open to the atmosphere, which is advantageous in increasing the gas-liquid interface area, and the bubble diameter d
Since B is almost constant (about 55 ± 10 μm), the liquid flow rate that is easy to set when setting the removal rate of dissolved oxygen,
Since the removal rate can be easily set by adjusting the gas flow rate, the pressure, etc., the inside of the tank 9 is divided into the primary chamber 9a and the secondary chamber 9b by the partition wall 13 having only water permeability, and the treatment is performed. While connecting the water discharge pipe 5 to the primary chamber 9a,
Since the drainage pipe 12 is connected to the secondary chamber 9b, the movement of bubbles is stopped by the partition wall 13, so that the treated water discharged from the secondary chamber 9b is raw water or washing water without being turbid at all in the bubbles. Can be used as

【0072】又、ガス分散装置2は両端に入口23、出口
24を有した円筒状のケーシング21と、互いに対向する前
面に、該前面に対して側壁32を直角と成した前方開放の
筒状の小室27、27a …を多数配列した大小2枚の円板2
8、29を一組みとして、これを同心的に重合させて成る
複数のガス分散エレメント26から成り、前記大径な円板
28はケーシング21の内周面と水密と成る外径にて形成さ
れると共に、中央に流通孔30が穿設され、又小径な円板
29の外径はケーシング21の内周面から離間してこの内周
面との間に流通路31が形成される大きさと成し、大径な
円板28の小室27、27a …と、小径な円板29の小室27、27
a …とは互いの小室27、27a …が対向する他の複数の小
室27、27a …に連通する様に位置を違えて配列させ、こ
れらガス分散エレメント26は互いに同径の円板28、29が
隣接するように重ね合わせてケーシング21内に配列する
と共に、ケーシング21の入口23および出口24と連通孔30
が連通する様に両側には大径な円板28を配置して構成し
たので、流入する被処理水と不活性ガスは互いに連通す
る小室27、27a …を経て上流側から下流側へと拡散およ
び集合を繰り返しながら順次流動し、その流動過程にお
ける小室27、27a …の側壁32の側面および上端面並びに
底面への直角衝突、小室27、27a …から他の小室27、27
a …への分散および合流、蛇行、渦流等の組み合わせに
よる複雑な流動と、大きな分散総数によって不活性ガス
の気泡径dB は、従来の脱気塔aに比して著しく微細化
できるため、溶存酸素の除去効率が格段に向上し、又流
動状態は前記の様に複雑であるため、被処理水が不活性
ガスに接触せずに短絡的に排出されることはなく、又ガ
ス分散エレメント26内の拡散および集合の流動方向は半
径方向であると共に、複雑に屈曲しているため流路長
(滞留時間θR )を長くでき、且つ気泡径dB を小さく
できるため、ガス分散装置2の小型化を図ることができ
る。
The gas dispersion device 2 has an inlet 23 and an outlet at both ends.
Two large and small discs in which a cylindrical casing 21 having 24 and a plurality of cylindrical small chambers 27, 27a open frontward and having side walls 32 formed at right angles to the front faces are arranged on the front faces facing each other. 2
8 and 29 as a set, consisting of a plurality of gas dispersion elements 26 formed by concentrically superposing them, the large-diameter disc
28 is formed with an outer diameter that is watertight to the inner peripheral surface of the casing 21, a through hole 30 is formed in the center, and a small-diameter disk.
The outer diameter of 29 is sized so as to be separated from the inner peripheral surface of the casing 21 so that the flow passage 31 is formed between the outer peripheral surface and the inner peripheral surface of the casing 21, and the small chambers 27, 27a of the large-diameter disk 28, ... Small chambers 29, 27
are arranged in different positions so that the small chambers 27, 27a of each other communicate with the other small chambers 27, 27a of which the gas chambers 27, 27a are opposed to each other. Are arranged in the casing 21 so as to be adjacent to each other, and the inlet 23 and the outlet 24 of the casing 21 and the communication hole 30 are arranged.
Since the large diameter disks 28 are arranged on both sides so that they communicate with each other, the inflowing water to be treated and the inactive gas diffuse from the upstream side to the downstream side through the small chambers 27, 27a which communicate with each other. And the aggregates are sequentially flowed, and in the flow process, the side walls 32 of the small chambers 27, 27a ... Collide against the side surface and the upper end surface and the bottom surface at right angles, and the small chambers 27, 27a.
dispersion and merging into a ..., serpentine, and complex flow by a combination of vortex or the like, the bubble diameter d B of the inert gas by the large variance total number, because it can significantly finer than conventional degassing tower a, Since the efficiency of removing dissolved oxygen is remarkably improved and the flow state is complicated as described above, the water to be treated is not discharged in a short circuit without contacting the inert gas, and the gas dispersion element The flow direction of diffusion and aggregation in 26 is a radial direction, and since it is complicatedly bent, the flow path length (residence time θ R ) can be lengthened and the bubble diameter d B can be reduced, so the gas dispersion device 2 Can be miniaturized.

【0073】又、前記ガス分散装置2において、円筒状
のケーシング21の両端に入口23および出口24を形成した
蓋体25、25a を着脱自在と成し、弾性体によりケーシン
グ21内に挿入される外径にて筒体35を形成し、この筒体
35の両端より内方側へ鍔片36、36a を一体成形してリン
グ状の環装シール体37を形成し、この環装シール体37に
おける筒体35の内周面に密接する外径にて大径な円板28
を形成し、小径な円板29の外径は筒体35の内周面から離
間してこの内周面との間に流通路31を形成する様な大き
さと成し、この環装シール体37内の両側に大径な円板28
を配設し、その間に互いの小室27、27a …が対向する他
の複数の小室27、27a …に連通する様に位置を違える様
に、2枚の小径な円板29を配列させてガス分散集合エレ
メント38と成し、このガス分散集合エレメント38をケー
シング21内に配列し、ガス分散集合エレメント38両端間
の寸法L2をケーシング21の両端間の寸法L1より大き
く設定したので、蓋体25、25a をケーシング21の両端に
装着してガス分散集合エレメント38を挟持固定できるこ
とにより、上記と同様なる脱気効果に加え、円板28、29
における小室27、27a …を形成する側壁32の上端面の密
着状態を強固に維持できるため、各円板28、29のガタツ
キが防止できるため、側壁32相互の上端面或いは大径な
円板28の外周側からの漏れによって発生する短絡的な流
動や、脈流による分散混合不良等の不具合を防止でき
る。
Further, in the gas dispersion device 2, lids 25 and 25a having an inlet 23 and an outlet 24 formed at both ends of a cylindrical casing 21 are made detachable and are inserted into the casing 21 by an elastic body. A tubular body 35 is formed with an outer diameter, and this tubular body is
The collar pieces 36, 36a are integrally molded inward from both ends of 35 to form a ring-shaped annular seal body 37, and the ring-shaped seal body 37 has an outer diameter close to the inner peripheral surface of the tubular body 35. Large diameter disc 28
The outer diameter of the small-diameter circular plate 29 is formed so as to be separated from the inner peripheral surface of the tubular body 35 to form the flow passage 31 between the inner peripheral surface and the inner peripheral surface. Large diameter disks 28 on both sides of 37
Are arranged, and two small-diameter discs 29 are arranged in such a manner that the small chambers 27, 27a ... are arranged in different positions so that the small chambers 27, 27a ... communicate with a plurality of other small chambers 27, 27a ... which are opposed to each other. The gas dispersing and collecting element 38 is arranged in the casing 21, and the dimension L2 between both ends of the gas dispersing and gathering element 38 is set larger than the dimension L1 between both ends of the casing 21. , 25a can be attached to both ends of the casing 21 so that the gas dispersion collecting element 38 can be sandwiched and fixed, and in addition to the degassing effect similar to the above, the disks 28, 29
Since the close contact state of the upper end faces of the side walls 32 forming the small chambers 27, 27a, ... Can be firmly maintained, rattling of the discs 28, 29 can be prevented, and thus the upper end faces of the side walls 32 or the large disc 28. It is possible to prevent problems such as short-circuited flow caused by leakage from the outer peripheral side of the nozzle and defective dispersion and mixing due to pulsating flow.

【0074】又、円筒状のケーシング21の両端に入口23
および出口24を形成した蓋体25、25a を着脱自在と成す
と共に、ケーシング21内に挿入される円柱突部50を設
け、円柱突部50先端の周縁側に半割り状と成したシール
座面40を形成し、又大径な円板28の外径をケーシング21
の内周面に密接しない大きさに形成すると共に、小室2
7、27a …が形成されていない背面の周縁側に半割り状
と成したシール座面40を形成し、互いの小室27、27a …
が対向する他の複数の小室27、27a …に連通する様に位
置を違える様に、2枚の大小の円板28、29を連結してガ
ス分散エレメント26と成し、これらガス分散エレメント
26は互いに同径の円板28、29が隣接するように重ね合わ
せてケーシング21内に配列し、隣接するシール座面40に
よって画成されるシール溝54内にシール部材55を設けた
ので、シール部材55とガス分散エレメント26を単にケー
シング21内に順次挿入して配設するだけで、シール溝54
が画成できると同時にシール溝54内にシール部材55を装
着できるため、ガス分散装置2の組立が極めて簡単にな
ると共に、シール部材55が確実にシール溝54内に装着さ
れるため、大径な円板28の外周側からの流体の短終的な
流れが規制されることによって混合効率の低下が防止
し、ガス分散効率を良好に維持し、又円柱突部50のシー
ル座面40と円板28のシール座面40によって画成されるシ
ール溝54内にシール部材55が装着されるため、円柱突部
50外周からの外部への漏れも同時に防止でき、円柱突部
50外周側に一般的に設けるガスケット類が不要と成り、
しかも、大径な円板28の外径はケーシング21の内周面に
密接しないため、ガス分散エレメント26を複数配列する
ケーシング21の内周面の加工精度を精密にする必要はな
いため、ケーシング21自体の機械加工も簡単と成る。
Further, the inlets 23 are provided at both ends of the cylindrical casing 21.
The lid seats 25 and 25a having the outlet 24 and the outlet 24 are detachable, and a columnar projection 50 is provided to be inserted into the casing 21. 40, and the outer diameter of the large-diameter disk 28 is set to the casing 21.
The size of the small chamber 2
A seal seating surface 40 formed in a half shape is formed on the peripheral side of the rear surface where the 7, 27a ... Are not formed, and the small chambers 27, 27a of each other are formed.
So as to communicate with a plurality of other small chambers 27, 27a which face each other, the two large and small discs 28, 29 are connected to form a gas dispersion element 26.
Since 26 are arranged in the casing 21 so that the disks 28 and 29 having the same diameter are adjacent to each other, the seal member 55 is provided in the seal groove 54 defined by the adjacent seal seat surface 40. By simply inserting the sealing member 55 and the gas dispersion element 26 into the casing 21 one by one, the sealing groove 54
Can be defined and at the same time the seal member 55 can be installed in the seal groove 54, which simplifies the assembly of the gas dispersion device 2 and ensures that the seal member 55 is installed in the seal groove 54. By restricting the short and final flow of the fluid from the outer peripheral side of the circular plate 28, the mixing efficiency is prevented from lowering, the gas dispersion efficiency is kept good, and the seal seat surface 40 of the cylindrical protrusion 50 is Since the seal member 55 is mounted in the seal groove 54 defined by the seal seat surface 40 of the disc 28, the cylindrical protrusion
50 Leakage from the outer periphery to the outside can be prevented at the same time, and the cylindrical protrusion
50 Gaskets that are generally provided on the outer circumference are not required,
Moreover, since the outer diameter of the large-diameter disk 28 does not come into close contact with the inner peripheral surface of the casing 21, it is not necessary to make the processing accuracy of the inner peripheral surface of the casing 21 in which a plurality of gas dispersion elements 26 are arranged precise, Machining of 21 itself will be easy.

【0075】又、シール溝54における底部であるシール
座面40をテーパ面状と成したので、テーパ面がシール部
材55の装着時の誘導面と成るため、目視的な確認が困難
であるケーシング21内でのシール部材55の噛み込みによ
るシール不良が防止できる等その実用的効果甚だ大なる
ものである。
Further, since the seal seat surface 40, which is the bottom of the seal groove 54, is formed into a tapered surface, the tapered surface serves as a guide surface when the seal member 55 is mounted, and it is difficult to visually confirm the casing. This is a great practical effect in that a seal failure due to the biting of the seal member 55 in the inside 21 can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る水中の溶存酸素の除去装置の概略
構成図である。
FIG. 1 is a schematic configuration diagram of a device for removing dissolved oxygen in water according to the present invention.

【図2】同上除去装置の他の実施例の概略構成図であ
る。
FIG. 2 is a schematic configuration diagram of another embodiment of the above removing device.

【図3】ガス分散装置の概略断面図である。FIG. 3 is a schematic sectional view of a gas dispersion device.

【図4】同上ガス分散装置のガス分散エレメントを構成
する2枚の円板の正面図である。
FIG. 4 is a front view of two discs constituting a gas dispersion element of the above gas dispersion device.

【図5】同上円板の斜視図である。FIG. 5 is a perspective view of the same disc.

【図6】同上円板を2枚、同心的に重合させた場合にお
ける各小室の連通配列状態を示す図である。
FIG. 6 is a view showing a communication arrangement state of the small chambers when two discs are overlapped concentrically with each other.

【図7】同上円板における小室の形状を三角と成した連
通配列状態を示す図である。
FIG. 7 is a view showing a communication arrangement state in which the small chambers in the disc are triangular in shape.

【図8】同上円板における小室の形状を四角と成した連
通配列状態を示す図である。
FIG. 8 is a view showing a communication arrangement state in which the small chambers in the disc are formed in a square shape.

【図9】同上円板における小室の形状を八角と成した連
通配列状態を示す図である。
FIG. 9 is a view showing a communication arrangement state in which the small chambers in the disc are formed into octagons.

【図10】図3のAーA概略断面図である。10 is a schematic cross-sectional view taken along the line AA of FIG.

【図11】突起を設けた大小2枚の円板を使用したガス
分散装置の概略断面図である。
FIG. 11 is a schematic cross-sectional view of a gas dispersion device using two large and small circular disks provided with protrusions.

【図12】図11のBーB概略断面図である。12 is a schematic cross-sectional view taken along line BB of FIG.

【図13】ガス分散装置の他の実施例を示す概略断面図
である。
FIG. 13 is a schematic cross-sectional view showing another embodiment of the gas dispersion device.

【図14】同上ガス分散装置における蓋体を装着する前
の状態を示す断面図である。
FIG. 14 is a cross-sectional view showing a state before the lid is mounted in the same gas dispersion device.

【図15】同上ガス分散装置を構成するガス分散集合エ
レメントの分解斜視図である。
FIG. 15 is an exploded perspective view of a gas dispersion assembly element that constitutes the above gas dispersion device.

【図16】ガス分散装置の他の実施例を示す概略断面図
である。
FIG. 16 is a schematic sectional view showing another embodiment of the gas dispersion device.

【図17】同上ガス分散装置におけるガス分散エレメン
トを構成する大小2枚の円板の正面図である。
FIG. 17 is a front view of two large and small discs that constitute a gas dispersion element in the above gas dispersion device.

【図18】同上大小2枚の円板の側面図である。FIG. 18 is a side view of two large and small discs of the same.

【図19】同上大小2枚の円板の前面斜視図である。FIG. 19 is a front perspective view of two large and small discs of the same.

【図20】同上大径な円板の背面斜視図である。FIG. 20 is a rear perspective view of the large-diameter disc of the same.

【図21】図17のCーC概略断面図である。21 is a schematic cross-sectional view taken along the line CC of FIG.

【図22】図17のDーD概略断面図である。22 is a schematic cross-sectional view taken along line DD of FIG.

【図23】ガス分散エレメントの分解斜視図である。FIG. 23 is an exploded perspective view of a gas dispersion element.

【図24】ガス分散エレメントの斜視図である。FIG. 24 is a perspective view of a gas dispersion element.

【図25】テーパ面から成るシール溝へのシール部材の
装着状態を示す部分拡大断面図である。
FIG. 25 is a partially enlarged cross-sectional view showing a mounting state of a seal member in a seal groove formed of a tapered surface.

【図26】従来の気泡塔形式の溶存酸素除去手段を示す
概略構造図である。
FIG. 26 is a schematic structural view showing a conventional bubble column type dissolved oxygen removing means.

【符号の説明】[Explanation of symbols]

2 ガス分散装置 4 被処理水供給管 5 処理水排出管 7 不活性ガス圧入管 9 タンク 9a 一次室 9b 二次室 12 排水管 13 隔壁 21 ケーシング 23 入口 24 出口 25、25a 蓋体 26 ガス分散エレメント 27、27a … 小室 28 円板 29 円板 30 流通孔 31 流通路 32 側壁 35 筒体 36、36a 鍔片 37 環装シール体 38 ガス分散集合エレメント 40 シール座面 50、50a 円柱突部 54 シール溝 55 シール部材 2 Gas disperser 4 Treated water supply pipe 5 Treated water discharge pipe 7 Inert gas injection pipe 9 Tank 9a Primary chamber 9b Secondary chamber 12 Drain pipe 13 Partition 21 Casing 23 Inlet 24 Outlet 25, 25a Lid 26 Gas dispersion element 27, 27a… Small chamber 28 Disc 29 Disc 30 Flow hole 31 Flow passage 32 Side wall 35 Cylindrical body 36, 36a Collar piece 37 Annular seal body 38 Gas dispersion collecting element 40 Seal seat surface 50, 50a Cylindrical protrusion 54 Seal groove 55 Seal member

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 両端に入口、出口を有した円筒状のケー
シングと、互いに対向する前面に、該前面に対して側壁
を直角と成した前方開放の筒状の小室を多数配列した大
小2枚の円板を一組みとして、これを同心的に重合させ
て成る複数のガス分散エレメントから成り、前記大径な
円板はケーシングの内周面と水密と成る外径にて形成さ
れると共に、中央に流通孔が穿設され、又小径な円板の
外径はケーシングの内周面から離間してその内周面との
間に流通路が形成される大きさと成し、大径な円板の小
室と、小径な円板の小室とは互いの小室が対向する他の
複数の小室に連通する様に位置を違えて配列させ、これ
らガス分散エレメントは互いに同径の円板が隣接するよ
うに重ね合わせてケーシング内に配列すると共に、ケー
シングの入口および出口と連通孔が連通する様に両側に
は大径な円板を配置して構成したガス分散装置を用い、
ガス分散装置の入口から溶存酸素を除去すべき被処理水
を大気圧以上で加圧送給すると共に、加圧送給中の被処
理水に不活性ガスを圧入した状態でガス分散装置内を通
過流動させることを特徴とする水中の溶存酸素の除去方
法。
1. A large and a small cylinder having a cylindrical casing having an inlet and an outlet at both ends, and a large number of forward-opening cylindrical small chambers having side walls formed at right angles to the front faces which face each other. A set of discs, which are composed of a plurality of gas dispersion elements formed by concentrically superimposing the discs, and the large-diameter disc is formed with an outer diameter that is watertight with the inner peripheral surface of the casing, A circulation hole is formed in the center, and the outer diameter of the small-diameter disk is large enough to separate from the inner peripheral surface of the casing and form a flow path between the inner peripheral surface and the inner peripheral surface. The small chamber of the plate and the small chamber of the small-diameter disk are arranged in different positions so that the small chambers communicate with a plurality of other small chambers that face each other. So that they are stacked in the casing and arranged in the casing. Using a gas dispersion device configured by arranging large-diameter discs on both sides so that the outlet and the communication hole communicate with each other,
The water to be treated from which dissolved oxygen should be removed is pressure-fed at atmospheric pressure or higher from the inlet of the gas dispersion device, and flows through the gas dispersion device with an inert gas being pressed into the water being pressure-fed. A method for removing dissolved oxygen in water, which comprises:
【請求項2】 ガス分散装置の入口に溶存酸素を除去す
べき被処理水を大気圧以上で加圧供給する被処理水供給
管を接続し、この処理水供給管の途中に不活性ガスを圧
入する不活性ガス圧入管を接続すると共に、ガス分散装
置の出口に処理水排出管を接続し、又タンク内を透水性
のみを有する隔壁によって一次室と二次室に区割し、前
記処理水排出管を一次室と接続すると共に、二次室に排
水管を接続し、前記ガス分散装置は両端に入口、出口を
有した円筒状のケーシングと、互いに対向する前面に、
該前面に対して側壁を直角と成した前方開放の筒状の小
室を多数配列した大小2枚の円板を一組みとして、これ
を同心的に重合させて成る複数のガス分散エレメントか
ら成り、前記大径な円板はケーシングの内周面と水接と
成る外径にて形成されると共に、中央に流通孔が穿設さ
れ、又小径な円板の外径はケーシングの内周面から離間
してこの内周面との間に流通路が形成される大きさと成
し、大径な円板の小室と、小径な円板の小室とは互いの
小室が対向する他の複数の小室に連通する様に位置を違
えて配列させ、これらガス分散エレメントは互いに同径
の円板が隣接するように重ね合わせてケーシング内に配
列すると共に、ケーシングの入口および出口と連通孔が
連通する様に両側には大径な円板を配置して構成したこ
とを特徴とする水中の溶存酸素の除去装置。
2. A treated water supply pipe for supplying the treated water from which dissolved oxygen is to be removed at a pressure higher than atmospheric pressure to the inlet of the gas dispersion device, and an inert gas is provided in the middle of the treated water supply pipe. The inert gas press-fitting pipe to be press-fitted is connected, the treated water discharge pipe is connected to the outlet of the gas dispersion device, and the inside of the tank is divided into a primary chamber and a secondary chamber by a partition having only water permeability. While connecting the water discharge pipe to the primary chamber, connecting the drain pipe to the secondary chamber, the gas dispersion device is a cylindrical casing having an inlet and an outlet at both ends, and on the front surfaces facing each other,
A pair of large and small discs in which a large number of open front small cylindrical chambers whose side walls are perpendicular to the front face are arranged as a set, and are composed of a plurality of gas dispersion elements concentrically superposed. The large-diameter disc is formed with an outer diameter that is in water contact with the inner peripheral surface of the casing, a through hole is formed in the center, and the outer diameter of the small-diameter disc is from the inner peripheral surface of the casing. The small chamber of a large-diameter disk and the small chamber of a small-diameter disk are separated from each other by a size such that a flow passage is formed between them and the inner peripheral surface. The gas distribution elements are arranged in the casing so that discs having the same diameter are adjacent to each other and are arranged in the casing so that the inlet and outlet of the casing communicate with each other. Water with a large diameter disk on each side Apparatus for removing dissolved oxygen.
【請求項3】 請求項2記載のガス分散装置において、
円筒状のケーシングの両端に入口および出口を形成した
蓋体を着脱自在と成し、弾性体によりケーシング内に挿
入される外径にて筒体を形成し、この筒体の両端より内
方側へ鍔片を一体成形してリング状の環装シール体を形
成し、この環装シール体における筒体の内周面に密接す
る外径にて大径な円板を形成し、小径な円板の外径は筒
体の内周面から離間してこの内周面との間に流通路を形
成する様な大きさと成し、この環装シール体内の両側に
大径な円板を配設し、その間に互いの小室が対向する他
の複数の小室に連通する様に位置を違える様に、2枚の
小径な円板を配列させてガス分散集合エレメントと成
し、このガス分散集合エレメントをケーシング内に配列
し、ガス分散集合エレメント両端間の寸法をケーシング
の両端間の寸法より大きく設定したことを特徴とする水
中の溶存酸素の除去装置。
3. The gas dispersion device according to claim 2,
A cylindrical casing having an inlet and an outlet formed at both ends is detachable, and an elastic body forms a cylinder with an outer diameter that is inserted into the casing. A ring-shaped ring-shaped seal body is formed by integrally molding the flange piece, and a large-diameter disk is formed with an outer diameter that is in close contact with the inner peripheral surface of the cylindrical body of this ring-sealed body, and a small-diameter circle is formed. The outer diameter of the plate is set so as to separate from the inner peripheral surface of the cylindrical body to form a flow path between the inner peripheral surface and the inner peripheral surface, and large-diameter circular plates are arranged on both sides of the annular seal body. The small gas chambers are arranged in such a manner that two small circular discs are arranged so that the small chambers are located in different positions so that they communicate with a plurality of other small chambers facing each other. The elements are arranged in the casing, and the dimension between both ends of the gas dispersion collecting element is Apparatus for removing water dissolved oxygen, characterized in that the listening configuration.
【請求項4】 請求項2記載のガス分散装置において、
円筒状のケーシングの両端に入口および出口を形成した
蓋体を着脱自在と成すと共に、ケーシング内に挿入され
る円柱突部を設け、円柱突部先端の周縁側に半割り状と
成したシール座面を形成し、又大径な円板の外径をケー
シングの内周面に密接しない大きさに形成すると共に、
小室が形成されていない背面の周縁側に半割り状と成し
たシール座面を形成し、互いの小室が対向する他の複数
の小室に連通する様に位置を違える様に、2枚の大小の
円板を連結してガス分散エレメントと成し、これらガス
分散エレメントは互いに同径の円板が隣接するように重
ね合わせてケーシング内に配列し、隣接するシール座面
によって画成されるシール溝内にシール部材を設けたこ
とを特徴とする水中の溶存酸素の除去装置。
4. The gas dispersion device according to claim 2,
A seal seat with a cylindrical casing that has an inlet and an outlet formed at both ends and is detachable, and has a columnar protrusion that is inserted into the casing, and is formed in a half-divided shape on the peripheral side of the tip of the columnar protrusion. The surface is formed, and the outer diameter of the large-diameter disk is formed so as not to be in close contact with the inner peripheral surface of the casing.
A seal seating surface is formed on the peripheral edge of the back surface where no small chamber is formed, and the two small and large sizes are used so that the small chambers are in different positions so that they communicate with other multiple small chambers facing each other. Discs are connected to each other to form a gas dispersion element, and these gas dispersion elements are arranged in a casing so that discs having the same diameter are adjacent to each other and are arranged in a casing. A device for removing dissolved oxygen in water, characterized in that a seal member is provided in the groove.
【請求項5】 請求項4記載のガス分散装置において、
シール溝における底部であるシール座面をテーパ面状と
成したことを特徴とする水中の溶存酸素の除去装置。
5. The gas dispersion device according to claim 4,
A device for removing dissolved oxygen in water, characterized in that a seal seat surface which is a bottom portion of the seal groove is formed into a tapered surface shape.
JP21680095A 1995-08-01 1995-08-01 Method for removing dissolved oxygen in water and device for removing the same Pending JPH0938660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21680095A JPH0938660A (en) 1995-08-01 1995-08-01 Method for removing dissolved oxygen in water and device for removing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21680095A JPH0938660A (en) 1995-08-01 1995-08-01 Method for removing dissolved oxygen in water and device for removing the same

Publications (1)

Publication Number Publication Date
JPH0938660A true JPH0938660A (en) 1997-02-10

Family

ID=16694088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21680095A Pending JPH0938660A (en) 1995-08-01 1995-08-01 Method for removing dissolved oxygen in water and device for removing the same

Country Status (1)

Country Link
JP (1) JPH0938660A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228796A (en) * 2001-02-01 2002-08-14 Toshiba Corp Method and device for chemically decontaminating structural component of radiation handling facility
JP2017221152A (en) * 2016-06-16 2017-12-21 株式会社昭和冷凍プラント Manufacturing method of confectionery using nitrogen water
JP2022098284A (en) * 2020-12-21 2022-07-01 株式会社ワールドベンチャー Water reformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228796A (en) * 2001-02-01 2002-08-14 Toshiba Corp Method and device for chemically decontaminating structural component of radiation handling facility
JP2017221152A (en) * 2016-06-16 2017-12-21 株式会社昭和冷凍プラント Manufacturing method of confectionery using nitrogen water
JP2022098284A (en) * 2020-12-21 2022-07-01 株式会社ワールドベンチャー Water reformer

Similar Documents

Publication Publication Date Title
EP0112155A2 (en) A method and system for culturing and treating substances disposed in a flowing culture fluid
US5049320A (en) Gas dissolving system and method
KR101495375B1 (en) Method of cleaning air diffuser apparatus
US9566554B2 (en) Adjustable pulsed gas agitator
US5133862A (en) Flexible membrane diffuser
JPH0938660A (en) Method for removing dissolved oxygen in water and device for removing the same
US4421696A (en) Gas diffuser
JP4174576B2 (en) A mixing device that mixes two or more liquids or a fluid composed of liquid and gas into a solution
JP4439149B2 (en) Submerged membrane separation activated sludge treatment equipment
KR20010031561A (en) Particle separating apparatus
WO2015072400A1 (en) Air diffusion pipe and method for washing air diffusion pipe
JP7131346B2 (en) Air diffuser and membrane separation activated sludge system
JP2013091011A (en) Static fluid mixing apparatus
RU2737273C1 (en) Volkov's cavitation aerator
KR102245329B1 (en) Hollow fiber membrane module and cleaning method thereof
JPH1033108A (en) Bubble-entrained dough for cake, its production and apparatus therefor
JP3884095B2 (en) Catalytic reaction method and catalytic reaction apparatus used therefor
CN106115834B (en) Multi-stage aeration generator and sewage treatment method
CN214734760U (en) Device for treating sewage by three-phase catalytic oxidation
JP6915523B2 (en) Mixer
JPH09276170A (en) Hot water jetting device in bathroom
JP2013150968A (en) Static fluid mixing apparatus
JP6977533B2 (en) Mixer
SU1057118A1 (en) Column flotation apparatus
RU2021347C1 (en) Apparatus for gas saturation and mixing liquid in reservoir