JPH09325228A - Glass waveguide - Google Patents

Glass waveguide

Info

Publication number
JPH09325228A
JPH09325228A JP14574796A JP14574796A JPH09325228A JP H09325228 A JPH09325228 A JP H09325228A JP 14574796 A JP14574796 A JP 14574796A JP 14574796 A JP14574796 A JP 14574796A JP H09325228 A JPH09325228 A JP H09325228A
Authority
JP
Japan
Prior art keywords
waveguide
glass
core
substrate
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14574796A
Other languages
Japanese (ja)
Inventor
Toshihide Tokunaga
利秀 徳永
Nobuhito Kobayashi
信人 小林
Masakatsu Kamiu
真克 神生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP14574796A priority Critical patent/JPH09325228A/en
Publication of JPH09325228A publication Critical patent/JPH09325228A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a glass waveguide suppressing the shape change of a core waveguide at the time of forming a clad glass film by subjecting a porous glass membrane to heat treatment by providing the core waveguide formed on a substrate and a clad glass film covering the waveguide and making the cross sectional shape of the core waveguide a trapezoid. SOLUTION: Core waveguides 11a, 11b having trapezoidal cross-sectional shapes are formed on a quartz substrate 10 and a glass waveguide 13 is formed by covering the core waveguides 11a, 11b and the substrate 10 by a clad glass film 12. In the glass waveguide 13, the difference α-β between the length αof the lower side and the length β of the higher side is preferably made to be 1μm>α-β>0.1μm. Consequently, by making the cross sectional shapes of the core waveguides 11a, 11b trapezoids, since the shape is stable even when approaching core waveguides are softened with each other due to heat at the time of converting a porous glass membrane to transparent glass, the approach of upper parts of the core waveguies 11a, 11b to each other and the deterioration of a multiplexing/demultiplexing characteristic are suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に形成され
たコア導波路と、コア導波路を覆うクラッドガラス膜と
を備えたガラス導波路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass waveguide provided with a core waveguide formed on a substrate and a clad glass film covering the core waveguide.

【0002】[0002]

【従来の技術】光を利用した通信システムの普及に伴
い、より低損失で信頼性の高い光部品の開発が盛んに進
められている。このような光部品の一種にガラス導波路
がある。これは基板上にコア導波路を形成し、コア導波
路をクラッドガラス膜で覆ったものである。このような
ガラス導波路は、例えば石英ガラス基板上にフォトリソ
グラフィ及びイオンエッチングによってコア導波路を形
成し、火炎堆積法によりコア導波路を覆うように多孔質
ガラスを形成した後、電気炉によって1300℃以上の
高温で透明ガラス化してクラッドガラス膜を形成するこ
とにより得られる。
2. Description of the Related Art With the spread of communication systems using light, development of optical components with lower loss and higher reliability has been actively pursued. A glass waveguide is one of such optical components. This is one in which a core waveguide is formed on a substrate and the core waveguide is covered with a clad glass film. In such a glass waveguide, for example, a core waveguide is formed on a quartz glass substrate by photolithography and ion etching, porous glass is formed so as to cover the core waveguide by a flame deposition method, and then the glass waveguide 1300 is formed by an electric furnace. It is obtained by forming transparent glass at a high temperature of ℃ or more to form a clad glass film.

【0003】[0003]

【発明が解決しようとする課題】ところで上述した従来
例において、多孔質ガラス膜を形成する際、透明ガラス
化温度を石英ガラス基板の変形する温度以下にするた
め、P2 5 やB2 3 を添加したSiO2 の多孔質ガ
ラス膜が用いられる。
By the way, in the above-mentioned conventional example, when forming the porous glass film, in order to keep the transparent vitrification temperature below the temperature at which the quartz glass substrate is deformed, P 2 O 5 or B 2 O is used. A porous glass film of SiO 2 with 3 added is used.

【0004】図3(a)は従来の光導波路の平面図であ
り、図3(b)は図3(a)のA−A線断面図、図3
(c)は図3(a)のB−B線断面図である。この光導
波路1はマッハツェンダ型の光回路が形成された光合分
波器であり、その光結合部(破線で示す)2a,2bは
コア導波路3a,3b同士が3μm間で接近する構造を
有している。
FIG. 3 (a) is a plan view of a conventional optical waveguide, and FIG. 3 (b) is a sectional view taken along the line AA of FIG. 3 (a).
FIG. 3C is a sectional view taken along line BB of FIG. This optical waveguide 1 is an optical multiplexer / demultiplexer in which a Mach-Zehnder type optical circuit is formed, and its optical coupling portions (shown by broken lines) 2a and 2b have a structure in which core waveguides 3a and 3b are close to each other within 3 μm. are doing.

【0005】しかし、このような光導波路1において
は、多孔質ガラス膜に熱処理を施して透明ガラス化する
際に、コア導波路3a,3b同士間で気泡が発生した
り、イオンエッチング工程で形成したコア導波路3a,
3bの上部同士が図3(b)のように接近して合分波特
性が劣化する現象が観測された。
However, in such an optical waveguide 1, when the porous glass film is subjected to heat treatment to be made into a transparent glass, bubbles are generated between the core waveguides 3a and 3b, or formed by an ion etching process. The core waveguide 3a,
It was observed that the upper portions of 3b approached each other as shown in FIG. 3 (b) and the multiplexing / demultiplexing characteristics deteriorated.

【0006】そこで、本発明の目的は、上記課題を解決
し、多孔質ガラス膜に熱処理を施してクラッドガラス膜
を形成する際のコア導波路の形状変化を抑制した高特性
のガラス導波路を提供することにある。
Therefore, an object of the present invention is to solve the above problems and to provide a glass waveguide having high characteristics in which the shape change of the core waveguide is suppressed when the porous glass film is heat-treated to form the clad glass film. To provide.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は、基板上に形成されたコア導波路と、コア導
波路を覆うクラッドガラス膜とを備えたガラス導波路に
おいて、コア導波路の断面形状を台形にしたものであ
る。
To achieve the above object, the present invention provides a core waveguide in a glass waveguide including a core waveguide formed on a substrate and a clad glass film covering the core waveguide. The waveguide has a trapezoidal cross section.

【0008】上記構成に加え本発明のガラス導波路は、
台形の下底の長さαと上底の長さβとの差α−βが1μ
m>α−β>0.1μmであるのが好ましい。
In addition to the above structure, the glass waveguide of the present invention is
The difference α-β between the length α of the bottom of the trapezoid and the length β of the top is 1μ
It is preferable that m>α-β> 0.1 μm.

【0009】ガラス導波路のコア導波路の断面形状を台
形化することにより、多孔質ガラス膜を透明ガラス化す
る際の熱によって接近したコア導波路同士が軟化しても
形状が安定しているため、コア導波路の上部同士の接近
を抑制することができる。従って合分波特性の劣化を従
来よりも抑えることができる。
By making the cross-sectional shape of the core waveguide of the glass waveguide trapezoidal, the shape is stable even if the core waveguides that have come close to each other are softened by the heat when the porous glass film is made into transparent glass. Therefore, it is possible to prevent the upper portions of the core waveguides from approaching each other. Therefore, the deterioration of the multiplexing / demultiplexing characteristics can be suppressed more than ever before.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0011】図1(a)は本発明のガラス導波路の一実
施の形態を示す平面図であり、図1(b)はそのC−C
線断面図である。
FIG. 1A is a plan view showing an embodiment of the glass waveguide of the present invention, and FIG. 1B is its CC view.
It is a line sectional view.

【0012】石英からなる基板(或いは石英系ガラス膜
を形成したSi基板)10上に台形断面形状のコア導波
路11a,11bが形成され、コア導波路11a,11
b及び基板10がクラッドガラス膜12で覆われてガラ
ス導波路13が形成されている。14a,14bは光結
合部である。
Core waveguides 11a and 11b having a trapezoidal cross-section are formed on a substrate 10 made of quartz (or a Si substrate having a quartz glass film formed thereon), and the core waveguides 11a and 11b are formed.
b and the substrate 10 are covered with a clad glass film 12 to form a glass waveguide 13. Reference numerals 14a and 14b are optical coupling portions.

【0013】このガラス導波路13は、コア導波路11
a,11bの断面形状が台形であるため、多孔質ガラス
膜を透明ガラス化してクラッドガラス膜12を形成する
際の熱によってコア導波路11a,11b同士が軟化し
ても形状が変わらずコア導波路11a,11bの上部同
士が接触することがない。
The glass waveguide 13 is a core waveguide 11.
Since the cross-sectional shapes of a and 11b are trapezoidal, even if the core waveguides 11a and 11b are softened by the heat when forming the clad glass film 12 by making the porous glass film into transparent glass, the core waveguides do not change. The upper portions of the waveguides 11a and 11b do not come into contact with each other.

【0014】[0014]

【実施例】直径3インチ、厚さ1mmの透明石英ガラス
基板上にTiO2 −SiO2 系ガラスを電子ビーム蒸着
法で8μm形成した。比屈折率差は0.3%である。フ
ォトリソグラフィ及び反応性イオンエッチングで図1に
示したような台形断面形状のコア導波路を有するマッハ
ツェンダ型の合分波光回路を形成した。
EXAMPLE A TiO 2 —SiO 2 glass was formed on a transparent quartz glass substrate having a diameter of 3 inches and a thickness of 1 mm by 8 μm by an electron beam evaporation method. The relative refractive index difference is 0.3%. A Mach-Zehnder type MUX / DEMUX optical circuit having a core waveguide having a trapezoidal cross-sectional shape as shown in FIG. 1 was formed by photolithography and reactive ion etching.

【0015】コア導波路11a,11bの下底の長さα
は8.1μmであり、上底の長さβは7.8μmであっ
た。基板10上に火炎堆積法で多孔質ガラス膜を350
μm形成した。多孔質ガラス膜はSiO2 ベースにP2
5 、B2 3 を添加したものを用いた。その後電気炉
で1335℃の熱処理を施すことにより、32μm厚の
透明なクラッドガラス膜12が得られた。
The length α of the lower bottom of the core waveguides 11a and 11b
Was 8.1 μm, and the length β of the upper bottom was 7.8 μm. A porous glass film is formed on the substrate 10 by the flame deposition method.
μm was formed. Porous glass membrane P 2 on SiO 2 base
The one to which O 5 and B 2 O 3 were added was used. Then, heat treatment was performed at 1335 ° C. in an electric furnace to obtain a transparent clad glass film 12 having a thickness of 32 μm.

【0016】図2は図1に示したガラス導波路の波長損
失特性を示す図である。
FIG. 2 is a diagram showing wavelength loss characteristics of the glass waveguide shown in FIG.

【0017】同図に示すようにガラス導波路13に1.
3μm帯シングルモードの光ファイバ15,16,17
を接続し、光ファイバ15側より白色光源を入射し、光
ファイバ16側及び光ファイバ17側での波長損失特性
を同時に示した図である。同図において横軸は波長を示
し、縦軸は損失を示している。
As shown in FIG.
3 μm band single mode optical fiber 15, 16, 17
Is a diagram in which a white light source is incident from the optical fiber 15 side, and wavelength loss characteristics at the optical fiber 16 side and the optical fiber 17 side are simultaneously shown. In the figure, the horizontal axis represents wavelength and the vertical axis represents loss.

【0018】このガラス導波路13は、光ファイバ15
から入射して光ファイバ16から出射した光(実線)に
ついては波長1.55μm、光ファイバ15から入射し
て光ファイバ17から出射した光(破線)については波
長1.3μmの光を通す。つまり、波長1.3μmの光
と波長1.55μmの光とを分離した分波器となってい
ることが分かる。
The glass waveguide 13 has an optical fiber 15
Light having a wavelength of 1.55 μm that enters from the optical fiber 16 and is emitted from the optical fiber 16 passes through light having a wavelength of 1.3 μm that enters from the optical fiber 15 and exits from the optical fiber 17 (broken line). In other words, it can be seen that the demultiplexer separates the light of wavelength 1.3 μm and the light of wavelength 1.55 μm.

【0019】ここで、コア導波路11a,11bの断面
形状において、下底の長さαと上底の長さβが等しいか
又はα−β=−0.2のときは、図2の中心波長η、ξ
は短波長側に移動した。α−β=0のときは15nm、
α−β=−0.2のときは32nmほど短波長側に移動
する。この原因は図3(b)に示すようにコア導波路1
1a,11bの上部同士が接近し、ギャップ間隔が狭く
なったことによる。この状態はSEM(Scanning Electron
Microscope、走査型電子顕微鏡)判定でも明らかになっ
た。この現象はエッチング工程後のコア導波路を多孔質
ガラス膜で覆い、透明ガラス化する際に生じることが分
かった。これは多孔質ガラスの密度が約0.2g/cm
3 でガラス(2.2g/cm3 )化時の収縮によるもの
と考えられる。従ってコア導波路の断面形状を台形化す
ることにより変形に対する強度が向上する。
Here, in the cross-sectional shape of the core waveguides 11a and 11b, when the length α of the lower base is equal to the length β of the upper base or α-β = -0.2, the center of FIG. Wavelength η, ξ
Moved to the short wavelength side. 15 nm when α-β = 0,
When α−β = −0.2, the wavelength shifts to the shorter wavelength side by about 32 nm. This is due to the core waveguide 1 as shown in FIG.
This is because the upper portions of 1a and 11b are close to each other and the gap interval is narrowed. This state is SEM (Scanning Electron
Microscope, scanning electron microscope) Judgment was also revealed. It was found that this phenomenon occurs when the core waveguide after the etching process is covered with a porous glass film to be transparent vitrified. This has a porous glass density of about 0.2 g / cm.
3 is believed to be due to shrinkage during the glass (2.2 g / cm 3) of at. Therefore, by making the cross-sectional shape of the core waveguide trapezoidal, the strength against deformation is improved.

【0020】α−β>0.1μmで実施例のような効果
が得られる。このため、1μm>α−β>0.1μmの
範囲が望ましい。α−βが1μm以上の場合には反応性
イオンエッチングでコア導波路を形成することができる
が、断面形状を台形化する条件で1μm以上の差で形成
することが難しく、再現性がない。また、コア導波路1
1a,11b同士のギャップ間の制御を0.1μm以下
に抑えることも難しく、中心波長がコア導波路11a,
11bの変形による依存制御はなくなるが、ギャップの
ばらつきにより変動する現象が見られるからである。
When α-β> 0.1 μm, the effect as in the embodiment can be obtained. Therefore, the range of 1 μm>α-β> 0.1 μm is desirable. When α-β is 1 μm or more, the core waveguide can be formed by reactive ion etching, but it is difficult to form the core waveguide with a difference of 1 μm or more under the condition that the cross-sectional shape is trapezoidal, and there is no reproducibility. In addition, the core waveguide 1
It is difficult to control the gap between 1a and 11b to 0.1 μm or less, and the center wavelength is set to the core waveguide 11a,
This is because the dependent control due to the deformation of 11b disappears, but the phenomenon that it fluctuates due to the variation of the gap is observed.

【0021】以上において、コア導波路の断面形状を台
形化し、1μm>α−β>0.1μmの範囲にすること
により、ガラス導波路の特性を安定化することができ
る。
In the above, the characteristics of the glass waveguide can be stabilized by making the cross-sectional shape of the core waveguide trapezoidal and setting it in the range of 1 μm>α-β> 0.1 μm.

【0022】尚、本実施例では2つの光結合部を有する
ガラス導波路の場合で説明したが、これに限定されるも
のではなく、光結合部の数が1つでも3つ以上であって
もよい。
Although the glass waveguide having two optical coupling portions has been described in this embodiment, the present invention is not limited to this, and the number of optical coupling portions may be one or more than three. Good.

【0023】[0023]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0024】ガラス導波路のコア導波路の断面形状を台
形にすることにより、クラッドガラス膜を形成する際の
コア導波路の形状変化を抑制した高特性のガラス導波路
の提供を実現することができる。
By making the cross-sectional shape of the core waveguide of the glass waveguide trapezoidal, it is possible to realize the provision of a high-performance glass waveguide in which the shape change of the core waveguide when forming the clad glass film is suppressed. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明のガラス導波路の一実施の形態
を示す平面図であり、(b)は(a)のC−C線断面図
である。
1A is a plan view showing an embodiment of a glass waveguide of the present invention, and FIG. 1B is a sectional view taken along line CC of FIG.

【図2】図1に示したガラス導波路の波長損失特性を示
す図である。
FIG. 2 is a diagram showing wavelength loss characteristics of the glass waveguide shown in FIG.

【図3】(a)は従来の光導波路の平面図であり、
(b)は(a)のA−A線断面図、(c)は(a)のB
−B線断面図である。
FIG. 3A is a plan view of a conventional optical waveguide,
(B) is a sectional view taken along line AA of (a), and (c) is B of (a).
FIG. 4 is a cross-sectional view taken along line B.

【符号の説明】[Explanation of symbols]

10 基板 11a,11b コア導波路 12 クラッドガラス膜 13 ガラス導波路 10 substrate 11a, 11b core waveguide 12 clad glass film 13 glass waveguide

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成されたコア導波路と、該コ
ア導波路を覆うクラッドガラス膜とを備えたガラス導波
路において、上記コア導波路の断面形状を台形にしたこ
とを特徴とするガラス導波路。
1. A glass waveguide including a core waveguide formed on a substrate and a clad glass film covering the core waveguide, wherein the core waveguide has a trapezoidal cross-sectional shape. Glass waveguide.
【請求項2】 上記台形の下底の長さαと上底の長さβ
との差α−βが1μm>α−β>0.1μmである請求
項1記載のガラス導波路。
2. The trapezoidal lower base length α and upper base length β
The glass waveguide according to claim 1, wherein the difference α-β is 1 μm>α-β> 0.1 μm.
JP14574796A 1996-06-07 1996-06-07 Glass waveguide Pending JPH09325228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14574796A JPH09325228A (en) 1996-06-07 1996-06-07 Glass waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14574796A JPH09325228A (en) 1996-06-07 1996-06-07 Glass waveguide

Publications (1)

Publication Number Publication Date
JPH09325228A true JPH09325228A (en) 1997-12-16

Family

ID=15392225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14574796A Pending JPH09325228A (en) 1996-06-07 1996-06-07 Glass waveguide

Country Status (1)

Country Link
JP (1) JPH09325228A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950588B2 (en) 2002-02-19 2005-09-27 Omron Corporation Optical wave guide, an optical component and an optical switch
WO2006006681A1 (en) * 2004-07-15 2006-01-19 Asahi Glass Company, Limited Glass light guide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950588B2 (en) 2002-02-19 2005-09-27 Omron Corporation Optical wave guide, an optical component and an optical switch
WO2006006681A1 (en) * 2004-07-15 2006-01-19 Asahi Glass Company, Limited Glass light guide
US7369733B2 (en) 2004-07-15 2008-05-06 Asahi Glass Company, Limited Glass optical waveguide

Similar Documents

Publication Publication Date Title
JP2771131B2 (en) Optical device including a substrate having a thermally matched interface and a waveguide structure
JPH09230150A (en) Optical waveguide, optical module and optical system
US6690872B2 (en) Silica based optical waveguide and production method therefor
CN1298110A (en) Method for producing optical apparatus
JPH09325228A (en) Glass waveguide
JPH0756032A (en) Glass waveguide and its production
JP3283922B2 (en) Manufacturing method of planar optical waveguide and obtained device
JPH1039151A (en) Optical waveguide and its production
KR100377186B1 (en) Fabrication method of polymeric arrayed waveguide grating wavelength multiplexer /demultiplexer
JP3500990B2 (en) Method for manufacturing substrate-type optical waveguide
JPH0651145A (en) Optical circuit and its production
JP2000338353A (en) Dispersion shift optical fiber and its production
JP3575342B2 (en) Method for manufacturing silica glass optical waveguide
JPH0980246A (en) Production of quartz-glass waveguide
JP3317301B2 (en) Optical waveguide
JP2570822B2 (en) Manufacturing method of optical waveguide
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element
US20220236481A1 (en) Optical Waveguide and Manufacturing Method Thereof
JPH09113744A (en) Waveguide and its production
JPH11258436A (en) Optical waveguide channel and its manufacture
JP2000180642A (en) Quartz glass waveguide and manufacture of it
JPH11271544A (en) Planar optical waveguide and its production
JP2001183538A (en) Waveguide type optical device
JP2603652B2 (en) Optical waveguide manufacturing method
JP2005338502A (en) Manufacturing method of optical waveguide