JPH09306768A - Manufacture of cylindrical resin magnet - Google Patents

Manufacture of cylindrical resin magnet

Info

Publication number
JPH09306768A
JPH09306768A JP11983896A JP11983896A JPH09306768A JP H09306768 A JPH09306768 A JP H09306768A JP 11983896 A JP11983896 A JP 11983896A JP 11983896 A JP11983896 A JP 11983896A JP H09306768 A JPH09306768 A JP H09306768A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
cylindrical
ferromagnetic particles
resin magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11983896A
Other languages
Japanese (ja)
Inventor
Takuzo Shiba
卓造 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neomax Kiko Co Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Metals Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Metals Kiko Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP11983896A priority Critical patent/JPH09306768A/en
Publication of JPH09306768A publication Critical patent/JPH09306768A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable providing a cylindrical resin magnet having a high magnetic force, by applying to a mixture a first magnetic field acting substantially in the direction of the diameter of a mold, and then applying a second magnetic field having the same direction as the magnetization pattern while performing extrusion molding. SOLUTION: A material fused by heating is passed through a parallel magnetic field (that is, a magnetic field formed substantially in the direction of the diameter of a mold) generated by a first magnetic field generation member 8, so that ferromagnetic particles in the material are oriented. Then, this material is passed through a magnetic field (that is, a polar anisotropy magnetic field) generated by a second magnetic field generation member 9, so that the ferromagnetic particles are oriented. In this anisotropic process, the intensity of the first magnetic field is made higher than the intensity of the second magnetic field. The content of the ferromagnetic particles in the material is set to 90-94% by weight. The compact which is caused to be anisotropic is extruded from a metal mold, then cut under the condition of L/D>=5 or greater (where L represents the length and D represents the outer diameter), and then cooled, solidified and demagnetized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真や静電記
録等において現像ロール用として使用されるマグネット
ロールを構成する円筒状樹脂磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a cylindrical resin magnet which constitutes a magnet roll used as a developing roll in electrophotography, electrostatic recording and the like.

【0002】[0002]

【従来の技術】電子写真や静電記録等では、画像担体
(感光体、誘電体)の表面に静電荷像を形成し、トナー
を含む磁性現像剤(一成分系磁性トナー又はトナーと磁
性キャリアからなる二成分系現像剤等)を現像ロールに
より現像領域に搬送して静電荷像を現像し、得られたト
ナー像を転写部材(普通紙等)に転写し、次いで加熱及
び/又は加圧により定着して画像が形成される。
2. Description of the Related Art In electrophotography, electrostatic recording, etc., a magnetic developer (one-component magnetic toner or toner and magnetic carrier) that forms an electrostatic charge image on the surface of an image carrier (photoreceptor or dielectric) and contains toner. A two-component developer, etc.) to a developing area by a developing roll to develop an electrostatic image, transfer the resulting toner image to a transfer member (plain paper, etc.), and then heat and / or pressurize. The image is formed by fixing with.

【0003】上記の現像ロールとしては、例えば図5に
示す構造のマグネットロールが多用されている。図5に
おいて、1は永久磁石部材であり、表面に軸方向に伸長
する複数個の磁極を有する円筒状永久磁石11とその中
心部に同軸的に固着された軸12とを有する。永久磁石
部材1は、円筒状に形成したスリーブ2の内部に収容さ
れ、軸12の両端部においてフランジ3a、3bに軸受
4,4を介して支持されている。スリーブ2とその両端
に固着されたフランジ3a,3bはアルミニウム合金又
はオーステナイト系ステンレス鋼等の非磁性材料で形成
されている。5はシール部材(オイルシール)である。
上記の構成により、永久磁石部材1とスリーブ2との間
の相対的回転(例えば永久磁石部材1を固定し、フラン
ジ3aを回転させる)により、スリーブ2の表面に磁性
現像剤を吸着し、現像領域(画像担体とスリーブとが対
向する領域)に搬送して静電荷像が顕像化される。
As the developing roll, for example, a magnet roll having a structure shown in FIG. 5 is often used. In FIG. 5, reference numeral 1 denotes a permanent magnet member, which has a cylindrical permanent magnet 11 having a plurality of magnetic poles extending in the axial direction on the surface, and a shaft 12 coaxially fixed to the central portion thereof. The permanent magnet member 1 is housed inside a sleeve 2 formed in a cylindrical shape, and is supported by flanges 3 a and 3 b on both ends of the shaft 12 via bearings 4 and 4. The sleeve 2 and the flanges 3a and 3b fixed to both ends thereof are formed of a non-magnetic material such as an aluminum alloy or austenitic stainless steel. Reference numeral 5 is a seal member (oil seal).
With the above-described structure, the relative rotation between the permanent magnet member 1 and the sleeve 2 (for example, the permanent magnet member 1 is fixed and the flange 3a is rotated), the magnetic developer is adsorbed on the surface of the sleeve 2 and developed. The electrostatic charge image is visualized by transporting it to a region (a region where the image carrier and the sleeve face each other).

【0004】[0004]

【発明が解決しようとする課題】上記マグネットロール
を構成する円筒状永久磁石は、通常外径(D)が10〜
60mm、長さ(L)が200〜350mmで、L/D≧5
といった細長いもので、例えば強磁性粒子と樹脂を主成
分とする樹脂磁石で形成される。この樹脂磁石は、例え
ば原料混合物を加熱混練し次いで磁場中で押出成形した
後、所定の着磁パターンに従って着磁することにより製
造される。この手法によれば、寸法精度が高くかつ高能
率で生産できる等の利点がある(例えば特公昭60−3
5806号、特開昭63−182803号参照)。
The cylindrical permanent magnet constituting the above magnet roll usually has an outer diameter (D) of 10 to 10.
60mm, length (L) is 200 ~ 350mm, L / D ≧ 5
Such a long and narrow object is formed of, for example, a resin magnet containing ferromagnetic particles and a resin as main components. This resin magnet is produced, for example, by heating and kneading a raw material mixture, extruding the mixture in a magnetic field, and then magnetizing the mixture in a predetermined magnetizing pattern. According to this method, there are advantages such as high dimensional accuracy and high efficiency of production (for example, Japanese Patent Publication No. Sho 60-3).
No. 5806, JP-A-63-182803).

【0005】しかしながら、従来の磁場中押出成形の手
法では、原料混合物が溶融後固化するまでの間に強磁性
粒子の磁化容易軸が所定の着磁パターンと同方向に配向
されるような磁場(直流磁場)を印加しているが、特定
の磁極(例えば現像磁極)を高磁力(例えば磁石表面で
1600G)とすることが必要な場合には対応できない
という問題がある。そこで配向度を高めるために、磁場
強度を大きくすることが考えられるが、そのためには、
磁場発生手段(磁場コイル又は永久磁石)が大型化し、
磁極数が多い場合には対応できなくなるという別の問題
を伴う。更に磁場強度を徒らに大きくしても配向度が過
飽和状態になり、それ以上の配向度の向上を期待できな
いという問題がある。
However, in the conventional magnetic field extrusion molding method, a magnetic field (such that the easy axis of magnetization of the ferromagnetic particles is oriented in the same direction as the predetermined magnetization pattern until the raw material mixture is melted and solidified). Although a direct-current magnetic field is applied, there is a problem that it cannot be applied when a specific magnetic pole (for example, a developing magnetic pole) needs to have a high magnetic force (for example, 1600 G on the magnet surface). Therefore, it is possible to increase the magnetic field strength in order to increase the degree of orientation.
The magnetic field generating means (magnetic field coil or permanent magnet) becomes large,
If the number of magnetic poles is large, another problem is that it cannot be dealt with. Furthermore, even if the magnetic field strength is increased unnecessarily, the degree of orientation becomes supersaturated, and there is a problem that further improvement of the degree of orientation cannot be expected.

【0006】したがって本発明の目的は、上記従来技術
に存在する問題点を解消し、高磁力の円筒状樹脂磁石が
得られる製造方法を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above problems existing in the prior art and to provide a manufacturing method capable of obtaining a cylindrical resin magnet having a high magnetic force.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、強磁性粒子と熱可塑性樹脂を含
む原料混合物を磁場中で押出成形することにより円筒状
成形体を作成し、その後円筒状成形体の表面に複数個の
磁極を着磁することより所定の着磁パターンを形成する
円筒状樹脂磁石の製造方法において、前記混合物に成形
体の略直径方向に作用する第1の磁場を印加し次いで前
記着磁パターンと同一の方法を有する第2の磁場を印加
しながら押出成形する、という技術手段を採用した。本
発明において、円筒状成形体は、長さ(L)と外径
(D)との比(L/D)が5以上であることが望まし
い。本発明において、円筒状成形体は、強磁性粒子を9
0〜94重量%含有することが望ましい。本発明におい
て、第1の磁場の強度は第2の磁場の強度よりも大であ
ることが望ましい。
In order to achieve the above object, in the present invention, a raw material mixture containing ferromagnetic particles and a thermoplastic resin is extruded in a magnetic field to form a cylindrical compact, Then, in the method for producing a cylindrical resin magnet, in which a predetermined magnetizing pattern is formed by magnetizing a plurality of magnetic poles on the surface of the cylindrical molded body, the first resin which acts on the mixture in a substantially diametrical direction of the molded body. A technical means of applying a magnetic field and then extruding while applying a second magnetic field having the same method as the magnetization pattern was adopted. In the present invention, the cylindrical molded body preferably has a ratio (L / D) of the length (L) to the outer diameter (D) of 5 or more. In the present invention, the cylindrical molded body has 9 ferromagnetic particles.
It is desirable to contain 0 to 94% by weight. In the present invention, the strength of the first magnetic field is preferably higher than the strength of the second magnetic field.

【0008】[0008]

【発明の実施の形態】本発明では、まず成形用原料を準
備する。すなわち少なくとも強磁性粒子と熱可塑性樹脂
を、例えばミキサにより乾式混合し、この混合物を加熱
混練し、次いで数mm以下に粉砕した後造粒することによ
り原料が得られる。上記の混練及び造粒は、例えば二軸
混練押出機により100〜200℃の温度で行うことが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a raw material for molding is first prepared. That is, at least the ferromagnetic particles and the thermoplastic resin are dry-mixed by, for example, a mixer, the mixture is kneaded by heating, and then pulverized to a few mm or less and then granulated to obtain a raw material. The above-mentioned kneading and granulation can be carried out at a temperature of 100 to 200 ° C. by a twin-screw kneading extruder, for example.

【0009】強磁性粒子としては、例えば、バリウムフ
ェライトおよび/又はストロンチウムフェライト、また
はR−Co系もしくはR−Fe−B系のような希土類系
磁石粉末等の磁気異方性定数の大きい磁性粒子を用いる
ことができ、磁気特性、成形性、生産性の点から平均粒
径0.5〜3μmの粒子を用いることが好ましい。樹脂
材料との濡れ性を改善するために、強磁性粒子の表面を
例えば有機ケイ素化合物(シランカップリング剤)又は
有機チタネート化合物(チタンカップリング剤)で処理
してもよい。この強磁性粒子は、磁気特性の点から原料
の全重量中88重量%以上(より好ましくは90重量%
以上)含有させることが好ましい。ただし磁性粒子の含
有量が多くなると、樹脂分が不足して機械的強度が不足
し、又成形が困難となるので、94重量%以下が好まし
い。
As the ferromagnetic particles, for example, barium ferrite and / or strontium ferrite, or magnetic particles having a large magnetic anisotropy constant such as R-Co or R-Fe-B-based rare earth magnet powders are used. It is possible to use, and it is preferable to use particles having an average particle size of 0.5 to 3 μm in terms of magnetic properties, moldability, and productivity. In order to improve the wettability with the resin material, the surface of the ferromagnetic particles may be treated with, for example, an organic silicon compound (silane coupling agent) or an organic titanate compound (titanium coupling agent). From the viewpoint of magnetic properties, these ferromagnetic particles account for 88% by weight or more (more preferably 90% by weight) based on the total weight of the raw material.
Above) It is preferable to contain. However, when the content of the magnetic particles increases, the resin content becomes insufficient, the mechanical strength becomes insufficient, and molding becomes difficult. Therefore, 94% by weight or less is preferable.

【0010】樹脂成分としては、ポリエチレン、塩化ビ
ニール、エチレン−エチルアクリレート共重合体(EE
A)、エチレン−酢酸ビニル共重合体(EVA)、ポリ
アセタール(デルリン)、ABS樹脂等の熱可塑性樹脂
を用い得る。これらの内では、細長いものを押出成形す
ることを考慮すると、EEAが好適である。
As the resin component, polyethylene, vinyl chloride, ethylene-ethyl acrylate copolymer (EE
Thermoplastic resins such as A), ethylene-vinyl acetate copolymer (EVA), polyacetal (Delrin), and ABS resin can be used. Among these, EEA is preferable in consideration of extruding a long and thin product.

【0011】上記の必須成分の他に、原料中に磁粉分散
剤、滑剤、可塑剤などを添加することができる。これら
の添加量は合計で3重量%以下が好ましく、より好まし
くは1〜2重量%である。分散剤としては、フェノール
系、アミン系などを用い得る。滑剤としては、ワックス
類(パラフィンワックス、マイクロリスタリンワックス
等)、脂肪酸(ステアリン酸、オレイン酸等)、脂肪酸
塩(ステアリン酸カルシウム、ステアリン酸亜鉛等)な
どを用い得る。可塑剤としては、例えばフタル酸ジ2−
エチルヘキシル(DOP)、フタル酸ジブチル(DB
P)等のフタル酸エステルを用い得る。
In addition to the above essential components, a magnetic powder dispersant, a lubricant, a plasticizer and the like can be added to the raw material. The total addition amount of these is preferably 3% by weight or less, and more preferably 1 to 2% by weight. As the dispersant, a phenol type, an amine type or the like can be used. As the lubricant, waxes (paraffin wax, microlisterin wax, etc.), fatty acids (stearic acid, oleic acid, etc.), fatty acid salts (calcium stearate, zinc stearate, etc.), etc. can be used. Examples of the plasticizer include di2-phthalate.
Ethylhexyl (DOP), dibutyl phthalate (DB
Phthalates such as P) may be used.

【0012】上記の原料混合物は成形装置に投入され、
その先端部分に配設された配向金型を通過する時に異方
性化される。得られた円筒状成形体は、冷却、脱磁され
次いで所定長さに切断される。この円筒状成形体はその
中心部に軸が固着された後、表面に複数個の磁極(通常
は3〜8極)が着磁されて図5に示す永久磁石部材が得
られる。ここで上記の成形装置の構成を図1〜3により
説明する。図1は成形装置の要部を示す縦断面図、図2
は図1におけるA−A断面図、図3は同B−B断面図
(但し、拡大してある)である。図1において、6は二
軸混練タイプの押出機であり、一端側にホッパー61を
有する、複数個に分割されたバレル62と、その内部に
配設された2本のスクリュー63(図では1本のみ示
す)と、バレル62の先端に設置されたアダプタ64と
を有する。アダプタ64の吐出口には、配向用金型7が
接続さる。この金型7は、それとマンドレル72との間
に形成された円筒状の成形空間73とを有すると共に、
成形空間73の周囲に配設された第1の磁場発生部材8
及び第2の磁場発生部材9を有する。
The above raw material mixture is put into a molding apparatus,
It is anisotropic when it passes through an alignment mold provided at the tip. The obtained cylindrical molded body is cooled, demagnetized, and then cut into a predetermined length. After the shaft is fixed to the center of the cylindrical molded body, a plurality of magnetic poles (usually 3 to 8 poles) are magnetized on the surface to obtain the permanent magnet member shown in FIG. Here, the configuration of the above-described molding apparatus will be described with reference to FIGS. 1 is a vertical cross-sectional view showing the main part of the molding apparatus, FIG.
1 is a sectional view taken along the line AA in FIG. 1, and FIG. 3 is a sectional view taken along the line BB (but enlarged). In FIG. 1, 6 is a twin-screw kneading type extruder, which has a hopper 61 at one end and is divided into a plurality of barrels 62 and two screws 63 (in the figure, 1). (Only a book is shown) and an adapter 64 installed at the tip of the barrel 62. The orientation mold 7 is connected to the ejection port of the adapter 64. This mold 7 has a cylindrical molding space 73 formed between it and the mandrel 72, and
The first magnetic field generating member 8 arranged around the molding space 73
And a second magnetic field generating member 9.

【0013】第1の磁場発生部材8は、鉄、鋼等の強磁
性体からなる上部ブロック81及び下部ブロック82と
これらの間に装着されたオーステナイト系ステンレス鋼
等の非磁性体からなるスペーサ83と、直流磁場コイル
(図示せず)とを有する。第2の磁界発生部材9は、強
磁性体からなる円筒ヨーク91の内部に、非磁性体から
なるリング状スペーサ96の内部に形成された成形空間
73を取囲むように配設された複数個の磁石ユニット9
2を配設した構成を有する。各磁石ユニットは強磁性体
からなるスペーサ93、半径方向に磁化された永久磁石
94及び強磁性体からなる磁極片95とを含む。
The first magnetic field generating member 8 includes an upper block 81 and a lower block 82 made of a ferromagnetic material such as iron and steel, and a spacer 83 made of a non-magnetic material such as austenitic stainless steel mounted between them. And a DC magnetic field coil (not shown). A plurality of second magnetic field generating members 9 are arranged inside a cylindrical yoke 91 made of a ferromagnetic material so as to surround a molding space 73 formed inside a ring-shaped spacer 96 made of a non-magnetic material. Magnet unit 9
2 is provided. Each magnet unit includes a spacer 93 made of a ferromagnetic material, a permanent magnet 94 magnetized in the radial direction, and a pole piece 95 made of a ferromagnetic material.

【0014】上記の成形装置によれば次のようにして高
配向度を有する異方性樹脂磁石が得られる。ホッパー6
1を介してバレル62内に投入された原料は、一対のス
クリュー63の回転によりせん断力が加えられると共
に、150〜230℃の温度で加熱溶融されながら配向
金型7に搬送され、そこで磁場を受けながら所定の断面
積に絞り込まれて成形空間内を通過する。
According to the above molding apparatus, an anisotropic resin magnet having a high degree of orientation can be obtained as follows. Hopper 6
The raw material charged into the barrel 62 via 1 is conveyed to the orienting die 7 while being heated and melted at a temperature of 150 to 230 ° C. while a shearing force is applied by the rotation of the pair of screws 63, and a magnetic field is applied there. While receiving, it is narrowed down to a predetermined cross-sectional area and passes through the molding space.

【0015】加熱溶融された原料はまず第1の磁場発生
部材8による平行磁場中(成形体の略直径方向に形成さ
れる磁場)を通過するので、原料中の強磁性粒子は図4
(a)に示すように配向される。すなわち第1の磁場発
生部材8による磁力線はN1極からS2極に向っているの
で(但しS2極では広がっている)、この磁力線に沿っ
て強磁性粒子が配向され、もって磁力線の集中したN1
極が強く異方性化される。次に上記原料が第2の磁界発
生部材9による磁場中(極異方性磁場)を通過するの
で、原料中の強磁性粒子は図4(b)に示すように配向
される。このようにして得られた成形体10は、特定の
磁極部分(図1のN1極)が他の磁極部分よりも強く異
方性化されるので、その部分の表面磁束密度を他の部分
よりも高めることができる。上記の異方性化工程におい
て、第1の磁場の強度(H1)は第2の磁場の強度
(H2)よりも高いことが望しく、より好ましくはH1
2の1.5〜2倍である。これは、本発明では原料中
の強磁性粒子の含有量が多い(90重量%以上)ので、
最初に高い磁場強度で特定部分のみ配向させ、次いでそ
れよりも低い磁場強度で他の部分も配向させることによ
り、特定極の磁束密度を向上させることができるように
するためである。
Since the heated and melted raw material first passes through the parallel magnetic field generated by the first magnetic field generating member 8 (the magnetic field formed in the substantially diametrical direction of the compact), the ferromagnetic particles in the raw material are shown in FIG.
It is oriented as shown in (a). That is, since the magnetic force lines generated by the first magnetic field generating member 8 are directed from the N 1 pole to the S 2 pole (however, the magnetic field lines are spread at the S 2 pole), the ferromagnetic particles are oriented along the magnetic force lines, so that the magnetic force lines are concentrated. Done N 1
The poles are strongly anisotropy. Next, since the raw material passes through the magnetic field (polar anisotropic magnetic field) generated by the second magnetic field generating member 9, the ferromagnetic particles in the raw material are oriented as shown in FIG. 4 (b). In the molded body 10 thus obtained, the specific magnetic pole portion (N 1 pole in FIG. 1) is made more anisotropic than the other magnetic pole portions, so that the surface magnetic flux density of that portion is changed to other portions. Can be higher than. In the above anisotropy step, it is desired that the intensity (H 1 ) of the first magnetic field is higher than the intensity (H 2 ) of the second magnetic field, and more preferably H 1 is 1.5 times that of H 2 . ~ 2 times. This is because the content of the ferromagnetic particles in the raw material is large in the present invention (90% by weight or more),
This is because it is possible to improve the magnetic flux density of the specific pole by first orienting only a specific portion with a high magnetic field strength and then orienting another portion with a lower magnetic field strength.

【0016】異方性化された成形体は金型から押出され
た後、所定長さ(L/D≧5以上)に切断され、冷却・
固化及び脱磁される。次いでこの成形体を軸に固着して
図5に示す永久磁石部材1が得られる。具体的な磁場強
度としてはH1が50〜100KOeで、H2が30〜5
0KOeであればよい。H1、H2は低すぎると、十分な
配向度が得られず、高すぎても配向度の向上に寄与しな
い(飽和してしまう)ので、このような範囲が望まし
い。
The anisotropy molded body is extruded from the mold, cut into a predetermined length (L / D ≧ 5 or more), and cooled.
It is solidified and demagnetized. Next, this molded body is fixed to a shaft to obtain the permanent magnet member 1 shown in FIG. As concrete magnetic field strength, H 1 is 50 to 100 KOe and H 2 is 30 to 5
It may be 0KOe. If H 1 and H 2 are too low, a sufficient degree of orientation cannot be obtained, and if H 1 and H 2 are too high, they do not contribute to the improvement of the degree of orientation (saturate).

【0017】[0017]

【実施例】次に本発明を次の実施例及び比較例により更
に具体的に説明する。まず平均粒径1μmのSrフェラ
イト粒子93重量部と、エチレン−エチルアクリレート
共重合体(日本ユニカ−社製MB−870)5重量部
と、分散剤(アデカアーガス社製DH−37)1重量
部、滑剤(日本化成社製スリパックスE)0.5重量部
とをミキサーで混合し、得られた混合物を150℃で加
熱混練し、冷却固化後直径5mm以下の粒子に粉砕し、シ
リコーンオイル0.5重量部(信越化学工業社製KF9
68)を添加した後150℃の温度で造粒する。なお混
練と造粒は二軸混練押出機で行った。このように調整さ
れた原料を図1に示す成形装置に投入し、150〜20
0℃の温度で混練しながら金型から押出し、所定長さに
切断し、中心部に軸を固着した後非対称5極の着磁を施
して図5に示す永久磁石部材が得られる。この永久磁石
部材は外径16.5mm、長さ220mmの円筒状永久磁石
の中心部に外径5mmの軸(SUM材)を固着したもので
ある。上記押出成形時においては、第1の磁場発手段に
より70KOeの平行磁場を印加した後第2の磁場発生
手段により40K0eの極異方性を有する磁場を印加す
ることにより、永久磁石のN1極の表面磁束密度は16
00Gであり、他の磁極の表面磁束密度は1400Gで
あった。これに対して第2の磁場発生手段のみで異方性
化処理した場合は、N1極の表面磁束密度は1400G
であった。
EXAMPLES Next, the present invention will be described more specifically by the following examples and comparative examples. First, 93 parts by weight of Sr ferrite particles having an average particle diameter of 1 μm, 5 parts by weight of ethylene-ethyl acrylate copolymer (MB-870 manufactured by Nippon Unicar Co., Ltd.), and 1 part by weight of a dispersant (DH-37 manufactured by ADEKA ARGUS CORPORATION). , 0.5 part by weight of a lubricant (Sripax E manufactured by Nippon Kasei Co., Ltd.) were mixed in a mixer, and the resulting mixture was heated and kneaded at 150 ° C., cooled and solidified, and then pulverized into particles having a diameter of 5 mm or less. 5 parts by weight (KF9 manufactured by Shin-Etsu Chemical Co., Ltd.
After adding 68), granulate at a temperature of 150 ° C. The kneading and granulation were performed by a twin-screw kneading extruder. The raw material adjusted in this way is charged into the molding apparatus shown in FIG.
The mixture is extruded from a mold while being kneaded at a temperature of 0 ° C., cut into a predetermined length, fixed with a shaft at the center, and then asymmetrically magnetized with 5 poles to obtain a permanent magnet member shown in FIG. This permanent magnet member is a cylindrical permanent magnet having an outer diameter of 16.5 mm and a length of 220 mm, and a shaft (SUM material) having an outer diameter of 5 mm is fixed to the central portion thereof. At the time of the extrusion molding, by applying a parallel magnetic field of 70 KOe by the first magnetic field generating means and then applying a magnetic field having a polar anisotropy of 40 KOe by the second magnetic field generating means, the N 1 pole of the permanent magnet is Surface magnetic flux density is 16
And the surface magnetic flux density of other magnetic poles was 1400G. On the other hand, when the anisotropy treatment is performed only by the second magnetic field generating means, the surface magnetic flux density of the N 1 pole is 1400G.
Met.

【0018】[0018]

【発明の効果】以上に記述の如く、本発明によれば、樹
脂中に強磁性粒子を分散した押出成形体に特定の異方性
化処理を施すので、強磁性粒子の配向度が向上し、もっ
て高磁力の円筒状樹脂磁石が得られる。
As described above, according to the present invention, since the extruded product in which the ferromagnetic particles are dispersed in the resin is subjected to the specific anisotropy treatment, the orientation degree of the ferromagnetic particles is improved. Therefore, a cylindrical resin magnet having a high magnetic force can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における成形装置の要部縦断面
図である。
FIG. 1 is a longitudinal sectional view of a main part of a molding apparatus according to an embodiment of the present invention.

【図2】図1におけるA−A断面図である。FIG. 2 is a sectional view taken along line AA in FIG.

【図3】図1におけるB−B断面図である。FIG. 3 is a sectional view taken along line BB in FIG.

【図4】本発明により得られた成形体の配向状態を説明
するための図であり、第1磁場印加後(a)、第2磁場
印加後(b)の状態である。
FIG. 4 is a diagram for explaining the orientation state of the molded body obtained by the present invention, which is a state after the first magnetic field is applied (a) and after the second magnetic field is applied (b).

【図5】本発明により得られた円筒状樹脂磁石を含むマ
グネットロールの縦断面図(a)、同横断面図である。
FIG. 5 is a vertical sectional view (a) and a horizontal sectional view of a magnet roll including a cylindrical resin magnet obtained according to the present invention.

【符号の説明】[Explanation of symbols]

1 永久磁石部材、 11 円筒状永久磁石、 6 押
出機、7 配向用金型、 8 第1の磁場発生部材 9
第2の磁場発生部材
DESCRIPTION OF SYMBOLS 1 Permanent magnet member, 11 Cylindrical permanent magnet, 6 Extruder, 7 Orientation metallic mold, 8 1st magnetic field generation member 9
Second magnetic field generating member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 強磁性粒子と熱可塑性樹脂を含む原料混
合物を磁場中で押出成形することにより円筒状成形体を
作成し、その後円筒状成形体の表面に複数個の磁極を着
磁することにより所定の着磁パターンを形成する円筒状
樹脂磁石の製造方法において、前記混合物に成形体の略
直径方向に作用する第1の磁場を印加し次いで前記着磁
パターンと同一の方向を有する第2の磁場を印加しなが
ら押出成形することを特徴とする円筒状樹脂磁石の製造
方法。
1. A cylindrical molded body is produced by extruding a raw material mixture containing ferromagnetic particles and a thermoplastic resin in a magnetic field, and then a plurality of magnetic poles are magnetized on the surface of the cylindrical molded body. In the method for producing a cylindrical resin magnet for forming a predetermined magnetizing pattern according to, a first magnetic field acting in a substantially diametrical direction of a molded body is applied to the mixture, and then a second magnetic field having the same direction as the magnetizing pattern is applied. A method for producing a cylindrical resin magnet, which comprises extruding while applying a magnetic field.
【請求項2】 長さ(L)と外径(D)との比(L/
D)が5以上である円筒状成形体を作成することを特徴
とする請求項1記載の円筒状樹脂磁石の製造方法。
2. The ratio (L / L) of the length (L) and the outer diameter (D).
The method for producing a cylindrical resin magnet according to claim 1, wherein a cylindrical molded body having D) of 5 or more is prepared.
【請求項3】 円筒状成形体は、強磁性粒子を90〜9
4重量%含有する請求項1記載の円筒状樹脂磁石の製造
方法。
3. The cylindrical molded body contains ferromagnetic particles in an amount of 90 to 9
The method for producing a cylindrical resin magnet according to claim 1, wherein the content is 4% by weight.
【請求項4】 第1の磁場の強度は第2の磁場の強度よ
りも大であることを特徴とする請求項1記載の円筒状樹
脂磁石の製造方法。
4. The method for manufacturing a cylindrical resin magnet according to claim 1, wherein the strength of the first magnetic field is higher than the strength of the second magnetic field.
JP11983896A 1996-05-15 1996-05-15 Manufacture of cylindrical resin magnet Pending JPH09306768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11983896A JPH09306768A (en) 1996-05-15 1996-05-15 Manufacture of cylindrical resin magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11983896A JPH09306768A (en) 1996-05-15 1996-05-15 Manufacture of cylindrical resin magnet

Publications (1)

Publication Number Publication Date
JPH09306768A true JPH09306768A (en) 1997-11-28

Family

ID=14771515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11983896A Pending JPH09306768A (en) 1996-05-15 1996-05-15 Manufacture of cylindrical resin magnet

Country Status (1)

Country Link
JP (1) JPH09306768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056273A (en) * 2010-09-13 2012-03-22 Tdk Corp Magnetic field extrusion molding apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056273A (en) * 2010-09-13 2012-03-22 Tdk Corp Magnetic field extrusion molding apparatus

Similar Documents

Publication Publication Date Title
JP3745509B2 (en) Cylindrical resin magnet molding equipment
JPS6312370B2 (en)
JPH09306768A (en) Manufacture of cylindrical resin magnet
JPH0611014B2 (en) Manufacturing method of cylindrical magnet
JP4006653B2 (en) Cylindrical resin magnet
JP3308187B2 (en) Manufacturing method of magnet roller
JPH0470782A (en) Developing device
JPH0736372B2 (en) Method and apparatus for manufacturing long bonded magnet using moving sizing die
JP2002184619A (en) Magnet roll
JP2000164443A (en) Manufacture of resin magnet molding
JPH03122686A (en) Developing device
JPH03192277A (en) Developing device
JP3094515B2 (en) Magnetic dielectric roll
JPH1041128A (en) Magnet roller and its manufacturing method
JPS6010278A (en) Manufacture of anisotropic cylindrical magnet
JPH0470781A (en) Developing device
JP2000153540A (en) Manufacture of resin magnet moldings
JPH03182782A (en) Developing device
JP2005070297A (en) Developing magnet roller and its manufacturing method, developing roller and image forming apparatus
JPH06168836A (en) Manufacture of permanent magnet member
JP2006215148A (en) Magnet roller
JPH0421880A (en) Magnet roll
JPH0582374A (en) Manufacture of permanent magnet member
JPH03116078A (en) Developing device
JPS6010277A (en) Manufacture of anisotropic cylindrical magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050418

A131 Notification of reasons for refusal

Effective date: 20050420

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050809