JPH09283175A - Sodium/fused salt secondary battery - Google Patents

Sodium/fused salt secondary battery

Info

Publication number
JPH09283175A
JPH09283175A JP8088250A JP8825096A JPH09283175A JP H09283175 A JPH09283175 A JP H09283175A JP 8088250 A JP8088250 A JP 8088250A JP 8825096 A JP8825096 A JP 8825096A JP H09283175 A JPH09283175 A JP H09283175A
Authority
JP
Japan
Prior art keywords
positive electrode
sodium
alumina
molten salt
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8088250A
Other languages
Japanese (ja)
Inventor
Akihiro Sawada
明宏 沢田
Yoshimi Yashima
吉見 八島
Masahiko Nagai
正彦 永井
Hiroshi Notomi
啓 納富
Nozomi Kawasetsu
川節  望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8088250A priority Critical patent/JPH09283175A/en
Publication of JPH09283175A publication Critical patent/JPH09283175A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To realize high performance, a long lifetime and low cost by using the glass brazing material for a battery seal part. SOLUTION: In this battery, a lower part of an α alumina pellet is formed into a recessed shape, and connected for sealing to an upper end of an alumina pipe 5 by a first bonding material 8 made of the glass brazing material. A positive electrode chamber 3 is sealed by the alumina pipe 5 and the (α alumina pellet. Furthermore, a second bonding material made of the glass brazing material 12 and for sealing a negative electrode chamber 4 is bonded between the top surface and a side surface of the alumina pellet and an outer cylindrical container 1. The glass brazing material has the excellent corrosion resistance in relation to the fused salt of the positive electrode. Bonding structure of each part is simple and the material at a low cost can be used so as to reduce the cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はナトリウム/溶融塩
二次電池に関し、特にロードレベリングの電力貯蔵用電
池及び電気自動車用駆動電源に適用される充放電可能な
ナトリウム/溶融塩二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium / molten salt secondary battery, and more particularly to a charge / dischargeable sodium / molten salt secondary battery applied to a power storage battery for load leveling and a driving power source for an electric vehicle.

【0002】[0002]

【従来の技術】従来、ナトリウム/溶融塩二次電池の構
造としては、ナトリウムイオンの導電性のβあるいは
β”アルミナと称するセラミックスチューブの内外に正
負極室を配備したものが一般的である。また、これに類
する電池として、正極活物質に多硫化ナトリウム(Na
2 Sx)を用いたナトリウム/硫黄電池がある。
2. Description of the Related Art Conventionally, as a structure of a sodium / molten salt secondary battery, generally, a positive and negative electrode chamber is provided inside and outside of a ceramic tube called conductive β or β ″ alumina of sodium ions. In addition, as a battery similar to this, sodium polysulfide (Na
There is a sodium / sulfur battery using 2 Sx).

【0003】この種の電池は、作動温度下では正・負極
活物質いずれも液体であるため、その正・負極室を液漏
れのない構造とする必要がある他、大気中の水分や酸素
と爆発的に反応するため、大気と完全に遮断した気密性
の高い密閉構造とする必要がある。それ故、各接合部の
シール性を高めるために、外筒容器とαアルミナとの接
合に活性金属を用いたろう付け法や熱拡散接合法が採用
されている。また、活物質注入口部のシールには、金属
面同士を押し潰したメカニカルシール法や電子ビーム封
着法が知られている。
[0003] In this type of battery, both the positive and negative electrode active materials are liquid at the operating temperature, so that the positive and negative electrode chambers need to have a structure free from liquid leakage. Since it reacts explosively, it is necessary to have a highly airtight closed structure completely shut off from the atmosphere. Therefore, in order to improve the sealing property of each joint, a brazing method using an active metal or a thermal diffusion joining method is used for joining the outer cylindrical container and the α-alumina. Further, as a seal for the active material injection port, a mechanical seal method in which metal surfaces are crushed or an electron beam sealing method is known.

【0004】[0004]

【発明が解決しようとする課題】発明者らは、ナトリウ
ム/溶融塩二次電池の中でも、700〜800Wh/K
gの高い理論エネルギー密度を有する正極活物質として
NaCl−AlCl3 −SClx(x=0〜4)の混合
溶融塩に着目し、上記従来の接合技術を採用して電池を
組立て性能を確認したところ、ナトリウム負極室側は従
来の接合法で問題ないものの、該溶融塩を配備した正極
室のシール部は、容易に腐食され正極活物質がリークす
ることが判明した。また、正極溶融塩と接した金属製の
容器腐食も著しく、その結果、正極活物質の消耗により
容量低下を招くといった問題も生じた。
Among the sodium / molten salt secondary batteries, the inventors of the present invention have proposed 700-800 Wh / K.
Focusing as a positive electrode active material having a high theoretical energy density g in a mixed molten salt of NaCl-AlCl 3 -SClx (x = 0~4), was confirmed assembling performance battery by employing the conventional joining techniques Although the sodium negative electrode chamber side has no problem in the conventional joining method, it has been found that the seal portion of the positive electrode chamber in which the molten salt is disposed is easily corroded and the positive electrode active material leaks. Corrosion of the metal container in contact with the positive electrode molten salt is also significant, and as a result, the capacity of the positive electrode active material is reduced due to consumption of the positive electrode active material.

【0005】後者の容器腐食対策としては、これまで正
極室の容器内面の耐食層の形成及び容器材料の代替「特
願平5−202302号」、あるいは正極活物質と外筒
容器が直接接触しないようにβ又はβ”アルミナチュー
ブの内側に正極室を配した構造にする等の処理を施して
きたものの、実用耐久性を図る上では十分なものではな
い。即ち、正極シール部の溶融塩腐食、また溶融塩と直
接接触しなくとも気相側における金属容器の腐食進行
が、同電池の高性能化及び高寿命化を妨げる主な原因で
あることが分かった。
As a measure against the latter container corrosion, the formation of a corrosion-resistant layer on the inner surface of the container of the positive electrode chamber and the alternative of the container material "Japanese Patent Application No. 5-202302", or the positive electrode active material and the outer cylinder container have not been in direct contact with each other. Although it has been subjected to treatment such as the structure in which the positive electrode chamber is placed inside the β or β "alumina tube, it is not sufficient for practical durability. That is, molten salt corrosion of the positive electrode seal part It was also found that the progress of corrosion of the metal container on the gas phase side even without direct contact with the molten salt is the main cause of hindering the performance and life of the battery.

【0006】本発明はこうした事情を考慮してなされた
もので、従来と比べ、高性能,高寿命化及び低コストを
実現でき、電力貯蔵用及び電気自動車用電源に適したナ
トリウム/溶融塩二次電池を提供することを目的とす
る。
The present invention has been made in view of these circumstances, and is capable of realizing higher performance, longer life and lower cost than conventional ones, and is suitable for power storage and electric vehicle power sources. The purpose is to provide a secondary battery.

【0007】[0007]

【課題を解決するための手段】そこで、本発明では、上
記正極溶融塩に対して耐食性に優れたガラス系材料に注
目し、電池シール部に全てガラスろう材を用いることに
した。即ち、溶融塩と外筒容器が直接接することのない
β又はβ”アルミナチューブの内側に正極室を配備した
電池構造において、該チューブ上端開口部と中央部に正
極端子管を貫通接合した絶縁性αアルミナペレット下面
を高融点ガラスろう材を用いて接合し、更に該αアルミ
ナペレット上面及び側面と外筒容器を低融点ガラスろう
材で接合する。また、溶融塩注入口部のシールにも低融
点のガラスろう材を用いて部分的に溶射シールする。こ
うすることにより、正極室では、溶融塩気相部も金属外
筒容器と接することなく、また、溶融塩気相部と金属部
材とが唯一接する正極端子管の材料には、該溶融塩に対
して耐食性に優れたタングステンを用いる。
Therefore, in the present invention, attention has been paid to a glass-based material having excellent corrosion resistance against the positive electrode molten salt, and a glass brazing material is used for all the battery seal portions. That is, in a battery structure in which a positive electrode chamber is provided inside a β or β ″ alumina tube that does not directly contact the molten salt and the outer cylindrical container, an insulating property obtained by penetrating and joining a positive electrode terminal tube to the upper end opening of the tube and the central part The lower surface of the α-alumina pellets is joined with a high melting point glass brazing material, and the upper surface and side surfaces of the α-alumina pellets are joined with a low melting point glass brazing material, and the sealing of the molten salt injection port is also low. Partial thermal spray sealing is performed using a glass brazing material having a melting point, so that in the positive electrode chamber, the molten salt vapor phase portion does not come into contact with the metal outer container, and the molten salt vapor phase portion and the metal member are unique. As a material of the positive electrode terminal tube which is in contact with the molten salt, tungsten having excellent corrosion resistance against the molten salt is used.

【0008】また、正極電極については、既に発明者ら
が同ナトリウム系二次電池において適正化を図ってきた
特願平5−222326号及び特願平6−276407
号の特許出願範囲の条件に従い、気孔率を少なくとも8
5%以上で連通気孔形態を有する細孔構造を有するカー
ボン電極と非晶質系の緻密性カーボン集電子をカーボン
接着剤で結合した構成が同電池性能にとって好ましいこ
とが明らかとなっている。
Regarding the positive electrode, Japanese Patent Application Nos. 5-222326 and 6-276407, which the present inventors have already optimized in the same sodium-based secondary battery,
Porosity of at least 8
It has been clarified that a structure in which a carbon electrode having a pore structure having an open pore form of 5% or more and an amorphous dense carbon current collector are bonded with a carbon adhesive is preferable for the battery performance.

【0009】即ち、本発明は、外筒容器と、この外筒容
器内を正極室と負極室に分けるナトリウムイオン伝導性
固体電解質管と、中央部に正極端子管を貫通接合した絶
縁性αアルミナペレットと、前記固体電解質管の上端と
前記アルミナペレットの下面とを接合シールして前記正
極室を固体電解質管とアルミナペレットで密閉する第1
の接合材と、前記アルミナペレットの上面及び側面と外
筒容器を接合して負極室を密閉する第2の接合材とを具
備することを特徴とするナトリウム/溶融塩二次電池で
ある。
That is, according to the present invention, an outer cylindrical container, a sodium ion conductive solid electrolyte tube for dividing the outer cylindrical container into a positive electrode chamber and a negative electrode chamber, and an insulating α-alumina in which a positive electrode terminal tube is penetratingly joined in a central portion thereof. A pellet, the upper end of the solid electrolyte tube and the lower surface of the alumina pellet are joined and sealed to seal the positive electrode chamber with the solid electrolyte tube and the alumina pellet.
2. A sodium / molten salt secondary battery, comprising: the bonding material of 1. and a second bonding material that bonds the upper surface and the side surfaces of the alumina pellets to the outer cylinder container to seal the negative electrode chamber.

【0010】本発明における作用は次の通りである。即
ち、正極活物質にNaCl−AlCl3 −SClx(x
=0〜4)の混合溶融塩を用いた時の電池反応は、概ね
下記「化1」(式1)、「化2」(式2)のようにな
る。なお、放電反応が左辺から右辺、充電反応がその逆
である。
The operation of the present invention is as follows. That, NaCl-AlCl 3 -SClx (x positive electrode active material
The cell reaction when the mixed molten salt of (0 to 4) is approximately represented by the following "Chemical formula 1" (Formula 1) and "Chemical formula 2" (Formula 2). The discharge reaction is from the left side to the right side, and the charge reaction is the opposite.

【0011】[0011]

【化1】 Embedded image

【0012】[0012]

【化2】 Embedded image

【0013】放電は、まず式1で硫黄の+4価から0価
へのNaClの析出を伴わない反応が起こる。ひきつづ
き、式2で示した硫黄の0価から−2価へのNaClの
析出を伴う反応に移行する。溶融塩による腐食因子とし
ては、正極活物質に含まれるAlCl3 、SCl4 、S
2 Cl2 及びSCl2 が支配的であるものと予想され
る。これらの腐食性液やガスは、ガラス系材料やタング
ステン材と殆ど腐食反応しないことが確認された。従っ
て、本発明の電池構造によれば、電池の高性能化とサイ
クル寿命の向上が一挙に図れ、実用耐久性のあるNa/
溶融塩二次電池を得ることができる。
In the discharge, first, in the formula 1, a reaction from the +4 valence of sulfur to the valence of 0 without precipitation of NaCl occurs. Subsequently, the reaction shifts from the 0 valence of sulfur to the -2 valence of which is accompanied by precipitation of NaCl, which is represented by the formula 2. Corrosion factors caused by the molten salt include AlCl 3 , SCl 4 , and S contained in the positive electrode active material.
2 Cl 2 and SCl 2 are expected to dominate. It was confirmed that these corrosive liquids and gases hardly react with glass-based materials and tungsten materials. Therefore, according to the battery structure of the present invention, the performance of the battery can be improved and the cycle life can be improved all at once, and Na / having practical durability can be used.
A molten salt secondary battery can be obtained.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施例について
図1を参照して説明する。図中の符番1は、上部が開口
し下部にナトリウム注入口2を有した外筒容器である。
この外筒容器1の材質としてはステンレス鋼もしくは炭
素鋼が好ましく、ここではSUS304 またはSUS405
のステンレス鋼を用いる。前記外筒容器1内には、該外
筒容器1内を正極室3と負極室4に分けるナトリウムイ
オン伝導性固体電解質管としてのβ又はβ”アルミナ管
(以下、アルミナ管と呼ぶ)5が設けられている。この
アルミナ管5の上端部には、中央部にタングステン製の
正極端子管6を貫通接合した絶縁性αアルミナペレット
7が冠着されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG. Reference numeral 1 in the figure is an outer cylinder container having an opening at the top and a sodium injection port 2 at the bottom.
The material of the outer cylindrical container 1 is preferably stainless steel or carbon steel, and here, SUS304 or SUS405.
Of stainless steel. A β or β ″ alumina tube (hereinafter referred to as an alumina tube) 5 as a sodium ion conductive solid electrolyte tube that divides the inside of the outer cylindrical container 1 into a positive electrode chamber 3 and a negative electrode chamber 4 is provided in the outer cylindrical container 1. At the upper end of the alumina tube 5, an insulating α-alumina pellet 7 having a positive electrode terminal tube 6 made of tungsten penetratingly joined to the center is capped.

【0015】前記αアルミナペレット7の下方は凹状に
成形加工されている。前記アルミナ管5の上端と前記α
アルミナペレット7の下面は、ガラスろう材からなる第
1の接合材8により接合シールされている。この第1の
接合材8により、前記正極室3をアルミナ管5とαアル
ミナペレット7で密閉している。前記αアルミナペレッ
ト7の上面及び側面と前記外筒容器1間には、前記負極
室4を密閉するガラスろう材からなる第2の接合材9が
接合されている。
The lower part of the α-alumina pellet 7 is formed into a concave shape. The upper end of the alumina tube 5 and the α
The lower surface of the alumina pellet 7 is bonded and sealed by a first bonding material 8 made of a glass brazing material. The first bonding material 8 seals the positive electrode chamber 3 with the alumina tube 5 and the α-alumina pellet 7. A second bonding material 9 made of a glass brazing material for sealing the negative electrode chamber 4 is bonded between the upper surface and the side surface of the α-alumina pellet 7 and the outer cylindrical container 1.

【0016】前記第1の接合材8及び第2の接合材9に
用いるガラスろう材には、αアルミナ、β又はβ”アル
ミナ及びタングステンの線膨脹係数(4〜8×10-6
℃)に近いもので、かつ前記外筒容器1とαアルミナペ
レット7を接合に用いるガラスろう材よりも高融点のも
のを選ぶ必要がある。ここで、第1の接合材8、第2の
接合材9に同じガラスろう材を用いれば、両接合工程を
同時に行うことができ電池組立工程を簡略できることに
なる。例えば、前記接合材8,9にいずれも65%SiO
2 −20%B23 −5%Al23 −10%Na2 O他か
らなるガラスろう材を用い、Ar雰囲気中、980℃、
20分熱処理すれば、気密性の高い良好な接合が得られ
る。
The glass brazing material used for the first bonding material 8 and the second bonding material 9 includes α-alumina, β- or β ″ -alumina and a linear expansion coefficient of tungsten (4 to 8 × 10 -6 /
It is necessary to select a material having a melting point close to that of the glass brazing material used for joining the outer cylindrical container 1 and the α-alumina pellets 7 to the melting point. Here, if the same glass brazing material is used for the first joining material 8 and the second joining material 9, both joining steps can be performed at the same time and the battery assembling step can be simplified. For example, the bonding materials 8 and 9 are both made of 65% SiO 2.
With 2 -20% B 2 O 3 -5 % Al 2 O 3 glass brazing material consisting of -10% Na 2 O other, in an Ar atmosphere, 980 ° C.,
If the heat treatment is performed for 20 minutes, good joining with high airtightness can be obtained.

【0017】前記正極端子管6の下端には、一端がアル
ミナ管5の底部近くまで延出したカーボン集電子10がね
じ込まれている。ここで、カーボン集電子10としては、
塩化物とのインターカレーションを避ける為、緻密質の
非晶質カーボン、タングステンあるいはこれらで被覆し
たニッケル、鋼が好ましい。このカーボン集電子10の外
周には、多孔質電極11がカーボン接着剤により接合され
ている。ここで、前記多孔質電極11としては、気孔率9
5〜97%、気孔径100〜500μm、表面積500
0m2 /m3 以上の細孔構造を有する炭素系カーボン繊
維又は非晶質系カーボンフォームを用いたものが好まし
い。
At the lower end of the positive electrode terminal tube 6, a carbon current collector 10 whose one end extends close to the bottom of the alumina tube 5 is screwed. Here, as the carbon current collector 10,
In order to avoid intercalation with chloride, dense amorphous carbon, tungsten, nickel coated with these, or steel is preferable. A porous electrode 11 is bonded to the outer periphery of the carbon current collector 10 with a carbon adhesive. Here, the porous electrode 11 has a porosity of 9
5 to 97%, pore size 100 to 500 μm, surface area 500
It is preferable to use carbon-based carbon fiber or amorphous carbon foam having a pore structure of 0 m 2 / m 3 or more.

【0018】前記外筒容器1の上部開口部と前記αアル
ミナペレット7の一部は、ガラスろう12によって前記正
極端子管6の一部を埋め込むようして接合されている。
ここで、ガラスろう12としては、該ガラスろう12に引っ
張りの残留応力が発生しないように正極端子管6の材料
であるタングステンの線膨脹係数に近いものが好まし
く、かつ、第1,第2の接合材に用いたガラスろう材よ
りも低融点とする必要がある。例えば、このような条件
を満足できるものとしては、10%SiO2 −45%B2
3 −35%ZnO−10%Na2 O他からなるガラスろう材
があり、これをAr雰囲気中、650℃で20分熱処理
すれば、気密性の高い良好な接合が得られる。前記正極
端子管6の先端部はテーパ状にネジ加工されており、こ
のネジ加工部分にタングステン製の雄ネジ13がネジ止め
されている。なお、図中の符番14は正極端子管6の下方
に設けられた貫通孔である。
The upper opening of the outer cylindrical container 1 and a part of the α-alumina pellet 7 are joined by a glass solder 12 so as to fill a part of the positive electrode terminal tube 6.
Here, the glass solder 12 is preferably close to the linear expansion coefficient of tungsten, which is the material of the positive electrode terminal tube 6, so that residual tensile stress does not occur in the glass solder 12, and the first and second It is necessary to have a melting point lower than that of the glass brazing material used for the joining material. For example, as a material which can satisfy such conditions, 10% SiO 2 -45% B 2 O
There are 3 -35% ZnO-10% Na 2 O glass brazing material consisting of another, in which the Ar atmosphere, if 20 minutes heat treatment at 650 ° C., a high favorable bond airtight is obtained. The tip of the positive electrode terminal tube 6 is threaded into a taper shape, and a male thread 13 made of tungsten is screwed to this threaded portion. Reference numeral 14 in the drawing is a through hole provided below the positive electrode terminal tube 6.

【0019】次に、上記構成のナトリウム/溶融塩二次
電池の製造方法について説明する。まず、前記αアルミ
ナペレット7と正極端子管6を第2の接合材9によりガ
ラス接合する。次に、αアルミナペレット7とアルミナ
管5の上端部を第1の接合材8を用いてガラス接合す
る。なお、カーボン集電子10は、αアルミナペレット7
とアルミナ管5を接合する前に、正極端子管6にねじ込
み電気的な接触を保つようにしておく。次に、上記一連
の工程で得られたものを、外筒容器1に挿入する。つづ
いて、以上の製作工程で組立られた電池容器を、200
〜400℃で真空乾燥し、水分を十分除去する。特に、
電池性能に影響を及ぼすアルミナ管5に含浸・吸着した
水分を除去するには、350〜400℃で約1週間真空
乾燥するのが好ましい。
Next, a method of manufacturing the sodium / molten salt secondary battery having the above structure will be described. First, the α-alumina pellet 7 and the positive electrode terminal tube 6 are glass-bonded by the second bonding material 9. Next, the α-alumina pellets 7 and the upper ends of the alumina tubes 5 are glass-bonded by using the first bonding material 8. The carbon current collector 10 is the α-alumina pellet 7
Before the alumina tube 5 and the alumina tube 5 are joined together, they are screwed into the positive electrode terminal tube 6 so as to maintain electrical contact. Next, the one obtained in the above series of steps is inserted into the outer cylinder container 1. Next, the battery container assembled in the above manufacturing process is
Vacuum dry at ˜400 ° C. to remove water sufficiently. Especially,
In order to remove the water impregnated / adsorbed in the alumina tube 5 which affects the battery performance, vacuum drying at 350 to 400 ° C. for about 1 week is preferable.

【0020】真空乾燥処理された外筒容器1に、予め溶
存酸素を十分除去した高純度ナトリウムを負極室4にナ
トリウム注入口2から液状注入する。ナトリウム注入口
2の先端は、注入後電子ビームで真空封着するかもしく
はメカニカルシールを施し、ナトリウムが液漏れしない
ようにする。また、ナトリウムとβアルミナ界面をナト
リウムで十分なじませ、その部分での界面抵抗を下げる
為には、ナトリウム注入後、電該外筒容器1を200〜
400℃で数時間熱処理するのが好ましい。
High-purity sodium, from which dissolved oxygen has been sufficiently removed in advance, is injected into the negative electrode chamber 4 in a liquid form from the sodium injection port 2 into the vacuum-dried outer cylinder container 1. After injection, the tip of the sodium injection port 2 is vacuum-sealed with an electron beam or mechanically sealed to prevent sodium from leaking. In addition, in order to sufficiently adjust the interface between sodium and β-alumina with sodium and reduce the interfacial resistance at that portion, after injecting sodium, the outer cylindrical container 1 is charged with 200-
It is preferable to heat-treat at 400 ° C. for several hours.

【0021】次に、正極室3に乾燥した硫黄粉末と塩化
ナトリウム粉末を正極端子管6の注入口から所定量投入
し、正極端子管6の下方部に設けた貫通孔14から正極室
3に入れる。つづいて、同様に、既に調整・精製した50
mol %NaCl−50mol %AlCl3 (NaAlCl
4 )を粉末又は液状で所定量注入する。全ての正極活物
質を注入後、テーパ状にネジ加工した正極端子管6の先
端部を雄ネジ13でネジ止めし、さらにその上部をガラス
溶射して封止する。ここで、この溶射封止用ガラスろう
材には、タングステンと熱膨脹係数の近いものが好まし
く、例えばガラスろう12に用いたB23 を主成分とす
る低融点ガラスろう材が適当である。
Next, a predetermined amount of dry sulfur powder and sodium chloride powder is put into the positive electrode chamber 3 through the inlet of the positive electrode terminal pipe 6, and the positive electrode chamber 3 is introduced into the positive electrode chamber 3 through the through hole 14 provided in the lower portion thereof. Put in. Then, similarly, 50 already prepared and purified.
mol% NaCl-50 mol% AlCl 3 (NaAlCl
Inject a prescribed amount of 4 ) in powder or liquid form. After all the positive electrode active material has been injected, the tip of the positive electrode terminal tube 6 which is threaded into a taper shape is screwed with a male screw 13, and the upper portion is glass sprayed and sealed. Here, as the glass brazing filler material for thermal spraying and sealing, a material having a thermal expansion coefficient close to that of tungsten is preferable, and for example, a low melting point glass brazing filler material containing B 2 O 3 used for the glass brazing filler 12 as a main component is suitable.

【0022】上記実施例に係るナトリウム/溶融塩二次
電池によれば、アルミナ管5上端開口部とαアルミナペ
レット7下面とを第1の接合材8で接合シールすること
により正極室3をアルミナ管5とαアルミナペレット7
で完全に密閉し、更にαアルミナペレット7上面及び側
面と外筒容器1とを第2の接合材9で接合して負極質4
を密閉シールした構成となっている。従って、各部接合
構造が単純でかつ安価な材料が使用できる為、低コスト
の電池が得られる。
According to the sodium / molten salt secondary battery according to the above-described embodiment, the upper end opening of the alumina tube 5 and the lower surface of the α-alumina pellet 7 are bonded and sealed with the first bonding material 8 so that the positive electrode chamber 3 is made of alumina. Tube 5 and α-alumina pellet 7
Completely seal, and the upper surface and side surfaces of the α-alumina pellets 7 and the outer cylindrical container 1 are joined with a second joining material 9 to form a negative electrode material 4.
Is a hermetically sealed structure. Therefore, a low-cost battery can be obtained because a simple and inexpensive material can be used for the bonding structure of each part.

【0023】[0023]

【実施例】次に、上記のようにして製作したNa/溶融
塩二次電池の充放電作動実施例について説明する。固体
電解質には、Li23 で安定化された高ナトリウムイ
オン導電性のβ”アルミナ管(外径20mmφ、厚み1
mmt、全長142mmL(有効長さ100mmL))
を各セルとして使用した。各電池活物質の充填量は、そ
れぞれナトリウムが20g、乾燥硫黄2.28g、乾燥
塩化ナトリウムが4.21g及びNaAlCl4 が40
gである。また、この時の理論電池容量は7.62Ah
である。電池作動温度は230℃とし、充放電サイクル
試験は定電流法により実施した。また充放電時のβ”ア
ルミナ表面積当たり定格電流密度は、それぞれ充電側を
25mA/cm2 、放電側を50mA/cm2 とした。
EXAMPLES Next, examples of charge / discharge operation of the Na / molten salt secondary battery manufactured as described above will be described. For the solid electrolyte, high sodium ion conductive β ″ alumina tube stabilized with Li 2 O 3 (outer diameter 20 mmφ, thickness 1
mmt, total length 142 mmL (effective length 100 mmL))
Was used as each cell. The filling amount of each battery active material was 20 g of sodium, 2.28 g of dry sulfur, 4.21 g of dry sodium chloride, and 40 of NaAlCl 4.
g. The theoretical battery capacity at this time is 7.62 Ah.
It is. The battery operating temperature was 230 ° C., and the charge / discharge cycle test was carried out by the constant current method. The rated current densities per β ″ alumina surface area during charging / discharging were 25 mA / cm 2 on the charging side and 50 mA / cm 2 on the discharging side, respectively.

【0024】図2には、そのときの典型的な充放電曲線
を示す。放電曲線は、硫黄の利用率が約50%まで平坦
であり、その平均放電電圧は3.8V、平均出力密度は
0.19W/cm2 であった。また、エネルギー効率は
88%であり、いずれも良好な性能を得ることができ
た。なお、利用率50%以上になると、上記した作用説
明のように上記式2の反応に移行しながら、開回路電圧
が2.75Vまで急激に下がる。このような電池出力の
急変は、実際の負荷には実用的でない為、ここでは敢え
て利用しなかった。
FIG. 2 shows a typical charge / discharge curve at that time. The discharge curve was flat until the utilization rate of sulfur was about 50%, the average discharge voltage was 3.8 V, and the average power density was 0.19 W / cm 2 . Further, the energy efficiency was 88%, and good performance was obtained in each case. When the utilization rate becomes 50% or more, the open circuit voltage sharply drops to 2.75 V while shifting to the reaction of the above-mentioned equation 2 as described above. Since such a sudden change in battery output is not practical for an actual load, it was intentionally not used here.

【0025】一方、充放電サイクル特性は、単電池当た
りの重量エネルギー密度と内部抵抗で評価し、その結果
をそれぞれ図3、図4に示す。エネルギー密度は、初期
より150Wh/Kgと非常に高い値を示し、その後も
エネルギー密度の低下は殆ど認められず、1000cy
c.以上経過しても安定な性能を維持できた。同様に内
部抵抗についても、初期より増大することなく、約9Ω
cm2 で安定に推移した。以上の結果から、本電池構造
によれば、Na/NaCl−AlCl3 −SClx系溶
融塩二次電池のもつ高出力,高エネルギー密度を長期の
充放電サイクルに渡り安定に供給できる。
On the other hand, the charge / discharge cycle characteristics were evaluated by the weight energy density per unit cell and the internal resistance, and the results are shown in FIGS. 3 and 4, respectively. The energy density showed a very high value of 150 Wh / Kg from the beginning, and after that, almost no decrease in the energy density was observed and 1000 cy.
c. Even after the above, stable performance could be maintained. Similarly, the internal resistance does not increase from the initial value and is approximately 9Ω.
It remained stable at cm 2 . From the above results, according to the present cell structure, Na / NaCl-AlCl 3 high output with a -SClx molten salts secondary battery, a high energy density can be stably supplied for a long term charge-discharge cycle.

【0026】[0026]

【発明の効果】以上詳述したように本発明によれば、従
来と比べ、高性能,高寿命化及び低コストを実現でき、
電力貯蔵用及び電気自動車用電源に適したナトリウム/
溶融塩二次電池を提供できる。
As described above in detail, according to the present invention, higher performance, longer life and lower cost can be realized as compared with the conventional one.
Sodium suitable for power storage and power source for electric vehicles /
A molten salt secondary battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るナトリウム/溶融塩二
次電池の断面図。
FIG. 1 is a cross-sectional view of a sodium / molten salt secondary battery according to an embodiment of the present invention.

【図2】図1のナトリウム/溶融塩二次電池の充放電曲
線を示す特性図。
FIG. 2 is a characteristic diagram showing a charge / discharge curve of the sodium / molten salt secondary battery of FIG.

【図3】図1のナトリウム/溶融塩二次電池のエネルギ
ー密度のサイクル特性図。
FIG. 3 is a cycle characteristic diagram of energy density of the sodium / molten salt secondary battery of FIG.

【図4】図1のナトリウム/溶融塩二次電池の内部抵抗
のサイクル特性図。
FIG. 4 is a cycle characteristic diagram of internal resistance of the sodium / molten salt secondary battery of FIG.

【符号の説明】 1…外筒容器、 2…ナトリウム注入口、 3…正極室、 4…負極室、 5…アルミナ管、 6…正極端子管、 7…αアルミナペレット、 8…第1の接合材、 9…第2の接合材、 10…カーボン集電子、 11…多孔質電極、 12…ガラスろう、 13…雄ネジ、 14…貫通孔。[Explanation of Codes] 1 ... Outer cylinder container, 2 ... Sodium injection port, 3 ... Positive electrode chamber, 4 ... Negative electrode chamber, 5 ... Alumina tube, 6 ... Positive electrode terminal tube, 7 ... α-alumina pellet, 8 ... First joining Material, 9 ... Second bonding material, 10 ... Carbon current collector, 11 ... Porous electrode, 12 ... Glass solder, 13 ... Male screw, 14 ... Through hole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 納富 啓 長崎県長崎市深堀町5丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 川節 望 長崎県長崎市深堀町5丁目717番1号 三 菱重工業株式会社長崎研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kei Inouto Kei 717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanhishi Heavy Industries Ltd. Nagasaki Research Institute (72) Inventor Nozomu Kawabushi 5-chome, Fukahori-cho, Nagasaki-shi, Nagasaki Prefecture No. 717-1 Sanryo Heavy Industries Co., Ltd. Nagasaki Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外筒容器と、この外筒容器内を正極室と
負極室に分けるナトリウムイオン伝導性固体電解質管
と、中央部に正極端子管を貫通接合した絶縁性αアルミ
ナペレットと、前記固体電解質管の上端と前記アルミナ
ペレットの下面とを接合シールして前記正極室を固体電
解質管とアルミナペレットで密閉する第1の接合材と、
前記アルミナペレットの上面及び側面と外筒容器を接合
して負極室を密閉する第2の接合材とを具備することを
特徴とするナトリウム/溶融塩二次電池。
1. An outer cylinder container, a sodium ion conductive solid electrolyte tube for dividing the inside of the outer cylinder container into a positive electrode chamber and a negative electrode chamber, and an insulating α-alumina pellet having a positive electrode terminal tube penetratingly bonded to a central portion thereof, A first joining material for joining and sealing the upper end of the solid electrolyte tube and the lower surface of the alumina pellet to seal the positive electrode chamber with the solid electrolyte tube and the alumina pellet;
A sodium / molten salt secondary battery comprising: a second bonding material for bonding the upper and side surfaces of the alumina pellet to an outer cylinder container to seal the negative electrode chamber.
【請求項2】 前記固体電解質管の内側に、正極活物質
としてNaCl−AlCl3 −SClx(x=0〜4)
の成分からなる混合溶融塩を、その外側に負極活物質と
して液体ナトリウムを配備したことを特徴とする請求項
1記載のナトリウム/溶融塩二次電池。
Wherein the inside of the solid electrolyte tube, NaCl-AlCl 3 -SClx as a positive electrode active material (x = 0 to 4)
2. The sodium / molten salt secondary battery according to claim 1, wherein the mixed molten salt composed of the above component is provided outside of which liquid sodium is provided as a negative electrode active material.
【請求項3】 正極電極には、カーボン繊維又はカーボ
ンフォームと、良導電性の非晶質系カーボン棒あるいは
非晶質カーボンで被覆された金属棒とをカーボン系接着
剤で接合したものを用い、これを前記正極端子管に接続
したことを特徴とする請求項1記載のナトリウム/溶融
塩二次電池。
3. The positive electrode uses a carbon fiber or carbon foam and a non-conductive amorphous carbon rod or a metal rod coated with amorphous carbon bonded with a carbon adhesive. The sodium / molten salt secondary battery according to claim 1, wherein the sodium / molten salt secondary battery is connected to the positive electrode terminal tube.
JP8088250A 1996-04-10 1996-04-10 Sodium/fused salt secondary battery Withdrawn JPH09283175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8088250A JPH09283175A (en) 1996-04-10 1996-04-10 Sodium/fused salt secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8088250A JPH09283175A (en) 1996-04-10 1996-04-10 Sodium/fused salt secondary battery

Publications (1)

Publication Number Publication Date
JPH09283175A true JPH09283175A (en) 1997-10-31

Family

ID=13937623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8088250A Withdrawn JPH09283175A (en) 1996-04-10 1996-04-10 Sodium/fused salt secondary battery

Country Status (1)

Country Link
JP (1) JPH09283175A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130011714A1 (en) * 2011-07-08 2013-01-10 Dong-Hee Han Electrochemical battery and method of preparing the same
JP2013147418A (en) * 2012-01-19 2013-08-01 General Electric Co <Ge> Sealing glass composition and article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130011714A1 (en) * 2011-07-08 2013-01-10 Dong-Hee Han Electrochemical battery and method of preparing the same
JP2013147418A (en) * 2012-01-19 2013-08-01 General Electric Co <Ge> Sealing glass composition and article

Similar Documents

Publication Publication Date Title
KR101846045B1 (en) Manufacturing method for molten salt battery and molten salt battery
EP0767506B1 (en) Rechargeable lithium ion cell
US20190296276A1 (en) Seals for high temperature reactive material devices
JP5022035B2 (en) Secondary battery with surface mount terminals
KR20160077063A (en) Self healing liquid/solid state battery
US4886715A (en) Molten membrane electrolyte battery
JPH09120801A (en) Sealed alkaline storage battery
JP2001243994A (en) Recycle method of sodium sulfur battery
JPH09283175A (en) Sodium/fused salt secondary battery
JPH10162807A (en) Sodium/fused salt secondary battery
JP2002184456A (en) Sodium-sulfur battery
US3907590A (en) Aluminum electrode
JPH10302830A (en) Sodium/molten salt secondary battery and its assembly method
CN213124524U (en) Lithium thionyl chloride battery structure
JPH0389469A (en) Sodium-sulfur battery
JP3377579B2 (en) Sodium-based secondary battery
JPH10106622A (en) Sodium/molten-salt secondary battery
JP4167032B2 (en) Sodium secondary battery
JPH0418426B2 (en)
JPH06215798A (en) Na/molten salt battery
JPH08138729A (en) Sodium secondary battery
JP3477364B2 (en) Sodium-sulfur battery
JPH0757775A (en) Sodium secondary battery
JP2001332294A (en) Sodium/sulfur battery
JP2002184457A (en) Sodium-sulfur battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701