JPH09268511A - Snowmelt freeze prevention structure - Google Patents
Snowmelt freeze prevention structureInfo
- Publication number
- JPH09268511A JPH09268511A JP8005596A JP8005596A JPH09268511A JP H09268511 A JPH09268511 A JP H09268511A JP 8005596 A JP8005596 A JP 8005596A JP 8005596 A JP8005596 A JP 8005596A JP H09268511 A JPH09268511 A JP H09268511A
- Authority
- JP
- Japan
- Prior art keywords
- snow
- snow melting
- tourmaline
- snowmelt
- antifreezing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005413 snowmelt Substances 0.000 title claims abstract description 34
- 230000002265 prevention Effects 0.000 title abstract description 16
- 238000002844 melting Methods 0.000 claims abstract description 142
- 239000000463 material Substances 0.000 claims abstract description 119
- 229910052613 tourmaline Inorganic materials 0.000 claims abstract description 65
- 229940070527 tourmaline Drugs 0.000 claims abstract description 65
- 239000011032 tourmaline Substances 0.000 claims abstract description 65
- 238000007710 freezing Methods 0.000 claims description 35
- 238000010438 heat treatment Methods 0.000 claims description 35
- 239000011347 resin Substances 0.000 claims description 21
- 229920005989 resin Polymers 0.000 claims description 21
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 229910010272 inorganic material Inorganic materials 0.000 claims description 8
- 239000011147 inorganic material Substances 0.000 claims description 8
- 230000000694 effects Effects 0.000 abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052570 clay Inorganic materials 0.000 abstract description 7
- 239000004927 clay Substances 0.000 abstract description 7
- 239000000843 powder Substances 0.000 abstract description 7
- 239000010881 fly ash Substances 0.000 abstract description 6
- 229910052573 porcelain Inorganic materials 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 238000004898 kneading Methods 0.000 abstract description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 3
- 239000011707 mineral Substances 0.000 abstract description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052796 boron Inorganic materials 0.000 abstract description 2
- 229910052607 cyclosilicate Inorganic materials 0.000 abstract description 2
- 239000011159 matrix material Substances 0.000 abstract description 2
- 239000003054 catalyst Substances 0.000 abstract 1
- 239000007921 spray Substances 0.000 abstract 1
- 238000005507 spraying Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 33
- 239000010426 asphalt Substances 0.000 description 25
- 230000002528 anti-freeze Effects 0.000 description 19
- 239000004567 concrete Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 7
- 239000003673 groundwater Substances 0.000 description 7
- 239000006260 foam Substances 0.000 description 6
- 239000004570 mortar (masonry) Substances 0.000 description 6
- 238000009413 insulation Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N AI2O3 Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N Tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000012615 aggregate Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000010454 slate Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000011232 storage material Substances 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- -1 viscosity Inorganic materials 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000004698 Polyethylene (PE) Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000000996 additive Effects 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001186 cumulative Effects 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000000644 propagated Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は融雪凍結防止構造物
に関し、特に道路、駐車場、建物屋上、建物屋根、建物
外壁、屋外施設等の融雪凍結防止構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a snowmelt antifreezing structure, and more particularly to a snowmelt antifreezing structure for roads, parking lots, roofs of buildings, roofs of buildings, outer walls of buildings, outdoor facilities and the like.
【0002】[0002]
【従来の技術】豪雪地帯における融雪は、地域社会の産
業と生活のあり方の将来を左右する長年の重要課題であ
り、今日まで多くの研究開発が行われてきた。その中
で、最も効果的かつ実用的な融雪方法として普及し利用
されているのは、地下水を汲み上げて散水する消雪方法
であり、現在多くの豪雪地域で採用されている。2. Description of the Related Art Snow melting in a heavy snowfall region has been an important issue for many years that determines the future of industry and lifestyles of local communities, and much research and development has been conducted to date. Among them, the most effective and practical snow melting method is widely used and used is the snow-melting method of pumping groundwater and sprinkling it, and it is currently adopted in many heavy snow regions.
【0003】また、道路の融雪・凍結防止方法として、
アスファルトやコンクリートの舗装道路、あるいは屋上
や屋根の下に電気ヒータを配設して電気加熱する方法
も、コスト高であるが、有効な方法として一部では採用
されている。As a method of preventing snow melting and freezing on roads,
Although a method of electrically heating by disposing an electric heater on an asphalt or concrete paved road, or on a roof or under a roof is expensive, it is partially adopted as an effective method.
【0004】[0004]
【発明が解決しようとする課題】上記の地下水を利用す
る融雪方法では、この方法が普及するほど地域一帯の地
盤沈下が起きるほか、地下水資源の枯渇をもたらす弊害
が生じている。一部地域ではすでにこれらが社会問題と
なり、道路・建築物・家屋等の大幅な修復を余儀なくさ
れているケースもある。また、現在ではそう問題になっ
ていない地域ではも、今後とも永遠に地下水を汲み上げ
を続けるわけにはいかず、早晩そのための対策を構じす
る必要に迫られている。In the above-mentioned snow melting method using groundwater, the more popular the method is, the more ground subsidence occurs in the region, and the more harmful the groundwater resources are exhausted. In some areas, these have already become social problems, and in some cases roads, buildings, houses, etc. have been forced to undergo major restoration. Moreover, even in areas where this is not a problem at present, it is not possible to continue pumping groundwater forever, and it is necessary to devise countermeasures for it sooner or later.
【0005】また、電気ヒータによる融雪方法は、電気
エネルギーの消費量が多いので、なんといってもコスト
高で、どこでも採用できるわけてはない。また、コスト
高にかかわらず電気ヒータによる融雪方法を採用してい
る場合でも、コストの低減が望まれていることはいうま
でもない。そこで、本発明は、このような社会的な需要
に答えて、散水の必要がなく、しかも低コストな、融雪
システムを開発することを目的としてなされたものであ
る。Further, the snow melting method using an electric heater consumes a large amount of electric energy, so that the cost is high and cannot be adopted anywhere. Needless to say, cost reduction is desired even when the snow melting method using the electric heater is adopted regardless of the high cost. Therefore, the present invention has been made with the object of developing a snow melting system that does not require watering and is low in cost in response to such social demand.
【0006】[0006]
【課題を解決するための手段】本発明によれば、上記従
来技術の課題は、融雪凍結防止剤として電気石が分散さ
れている融雪凍結防止材を用いて融雪凍結防止構造物と
することにより解決される。また、本発明の好ましい態
様において、融雪凍結防止剤として電気石が分散されて
いる融雪凍結防止材と加熱手段を含むことを特徴とする
融雪凍結防止構造物が提供され、さらに、外気側からか
ら内側に向かって順に表面材、中間層、加熱手段を含
み、かつ表面材と中間層の少なくとも一方が電気石が分
散されている融雪凍結防止材からなることを特徴とする
融雪凍結防止構造物も提供される。According to the present invention, the above-mentioned problems of the prior art are achieved by providing a snow-melting antifreezing structure using a snow-melting anti-freezing material in which tourmaline is dispersed as a snow-melting antifreezing agent. Will be resolved. Further, in a preferred embodiment of the present invention, there is provided a snow-melting anti-freezing structure characterized by comprising a snow-melting anti-freezing material in which tourmaline is dispersed as a snow-melting antifreezing agent and a heating means, and further from the outside air side. A snow melting anti-icing structure including a surface material, an intermediate layer, a heating means in order toward the inside, and at least one of the surface material and the intermediate layer is composed of a snow melting antifreezing material in which tourmaline is dispersed. Provided.
【0007】本発明の融雪凍結防止構造物には、例え
ば、車道、歩道、橋を含む道路、駐車場、建物敷地など
の土木施設、屋根、屋上、外壁、エクステリア(玄関先
の敷石などの屋外施設物を含む)などの建物施設が含ま
れる。本発明において、融雪凍結防止とは、融雪、凍結
防止のうち少なくとも一方の作用を指称するが、凍結防
止には解凍の意味が含まれる。The structure for preventing snow from freezing according to the present invention includes, for example, roadways, sidewalks, roads including bridges, parking lots, civil engineering facilities such as building sites, roofs, rooftops, outer walls, exteriors (externals such as paving stones at the entrance). Building facilities such as (including facilities) are included. In the present invention, the term "antifreezing of snowmelt" refers to at least one of the functions of snowmelt and antifreezing, but the term "antifreezing" includes the meaning of thawing.
【0008】理論には限定されないが、電気石は周囲の
熱(光)を吸収して雪や氷を融解するのに最適の放射線
(特に約6〜10μm の波長)を放射する性質を有する
ため、以下の実施例に示されるように、驚異的な融雪凍
結防止効果が得られると考えられる。特に、雪は密度が
小さく、熱伝導率が低いので、積雪はあたかも断熱材の
ような働きをするため、従来の接触式熱伝導による融雪
では原理的に問題があったものが、本発明により熱伝導
と放射熱を併用したことにより、積雪中に空間があって
も放射線は個々の雪(雪の結晶)まで伝搬され、雪に吸
収されるので、これまでにない驚異的な融雪効果を奏す
ることができたものと考えられる。Although not limited to theory, tourmaline has a property that it absorbs ambient heat (light) and emits optimum radiation (in particular, a wavelength of about 6 to 10 μm) for melting snow and ice. As shown in the following examples, it is considered that a surprising snow-melt freeze prevention effect can be obtained. In particular, since snow has a low density and a low thermal conductivity, since the snow cover acts like a heat insulating material, there is a problem in principle in conventional snow melting by contact heat conduction. By using both heat conduction and radiant heat, even if there is space in the snow, the radiation is propagated to individual snow (snow crystals) and absorbed by the snow, creating a surprising snow melting effect never seen before. It is thought that he was able to play.
【0009】[0009]
【発明の実施の形態】本発明において融雪凍結防止剤と
して用いる電気石は、ホウ素を含有するシクロ珪酸塩鉱
物である。化学成分によりトライパイト、ショール、エ
ルバイト、チラサイトなどに分けられる。ペグマタイ
ト、銅鉱床、花コウ岩などの中に産する。本発明では、
電気石を含む岩石から選鉱、精製した鉱物としての電気
石を用いることが好ましい。電気石を含む岩石(又は選
鉱したもの)を粉砕したものでも、所望の効果を奏する
ように分散させることができれば使用してもよい。BEST MODE FOR CARRYING OUT THE INVENTION Tourmaline used as a snow melting antifreezing agent in the present invention is a boron-containing cyclosilicate mineral. It is divided into trypite, shawl, elvite, and thylasite according to their chemical composition. It is found in pegmatites, copper deposits and granite rocks. In the present invention,
It is preferable to use tourmaline as a mineral that has been beneficiated and refined from rocks including tourmaline. A crushed rock containing tourmaline (or a beneficiated rock) may be used as long as it can be dispersed to obtain a desired effect.
【0010】電気石を添加する方法は電気石又は電気石
含有材料の粒子、粉末を用いるのが簡便で好適である。
電気石の融雪凍結防止材中に含まれる割合は、少量でも
それなりに有効であり、0.01重量%でも有効である
ことが確認されている。目的によるが、0.05重量%
以上、0.1重量%以上、さらには0.3重量%以上が
好ましい。目的に応じて1重量%以上、さらに3重量%
以上添加する。添加量の上限は、融雪凍結防止材を使用
する用途に求められる物性を損なわない限り、特に限定
されず使用でき、結着さえできれば、例えば、95重量
%以上でもよい。しかし、普通の用途には、30重量%
以下、15重量%以下、さらに10重量%以下で充分で
ある。好ましい範囲は、0.1〜5重量%、より好まし
くは0.3〜3重量%である。電気石を分散させた分だ
けの効果が得られる。As a method of adding tourmaline, it is convenient and preferable to use particles or powder of tourmaline or tourmaline-containing material.
It has been confirmed that the proportion of tourmaline contained in the snow-melting antifreezing material is effective even in a small amount, and 0.01% by weight is also effective. Depending on the purpose, 0.05% by weight
As described above, it is preferably 0.1% by weight or more, and more preferably 0.3% by weight or more. 1% by weight or more, further 3% by weight depending on the purpose
The above is added. The upper limit of the amount of addition is not particularly limited as long as it does not impair the physical properties required for the use of the snow melting antifreeze material, and may be 95% by weight or more, as long as it can bind. However, for normal use, 30% by weight
Below, 15% by weight or less, more preferably 10% by weight or less is sufficient. A preferred range is 0.1 to 5% by weight, more preferably 0.3 to 3% by weight. The effect is obtained only by dispersing tourmaline.
【0011】また、電気石は融雪凍結防止効果を得よう
とする面のすべてに分散させることが望ましい。しか
し、局所的に分散できない領域があったり、また不必要
な部分には分散させなくてもよいことは勿論である。例
えば、道路を融雪凍結防止構造にするために、2つの実
施例では電気石を他の有効成分とともに混ぜたものを深
さ4cm又は深さ8cmに施工して、顕著な有効な効果が得
られた。屋上タイルでは1cmの厚さで効果があった。Further, it is desirable to disperse tourmaline on all the surfaces for which the effect of preventing snow melting and freezing is to be obtained. However, it goes without saying that there is a region that cannot be locally dispersed, and it is not necessary to disperse it in an unnecessary portion. For example, in order to make a road a structure for preventing snow from freezing, in two examples, a mixture of tourmaline with other active ingredients is applied to a depth of 4 cm or a depth of 8 cm to obtain a remarkable effective effect. It was For roof tiles, a thickness of 1 cm was effective.
【0012】すなわち、分散させる量と分散層の深さ
(厚さ)は効果との兼ね合いで適宜決定される。本発明
の融雪凍結防止剤である電気石を具体的な融雪凍結防止
構造物に使用する場合、例えば、歩道舗装用タイルに電
気石を混入するのであれば、セラミックス又はモルタル
やコンクリートのタイル材料中に電気石を添加し、また
アスファルト歩道であれば、アスファルト中に電気石を
添加して製造又は施工することができる。That is, the amount of dispersion and the depth (thickness) of the dispersion layer are appropriately determined in consideration of the effect. When using tourmaline which is the snowmelt antifreezing agent of the present invention in a specific snowmelt antifreezing structure, for example, if tourmaline is mixed in the tiles for sidewalk pavement, ceramic or mortar or concrete tile material It is possible to manufacture or construct by adding tourmaline to the asphalt, or in the case of an asphalt sidewalk, adding tourmaline into the asphalt.
【0013】必要に応じて、また好ましくは、最適の融
雪凍結防止効果を得るために、あるいは電気石を添加し
やすくするために、電気石を他の材料、特に熱伝導性に
優れた材料や保熱効果のある材料などと組み合わせて目
的物を製造又は施工する。電気石を分散させた融雪凍結
防止材は、後記の如く加熱手段と組み合わせる場合には
高熱伝導性であることが好ましく、また蓄熱性材料や大
熱容量材料も保熱効果によるエネルギー節約に有効であ
る。従って、用途と所望の効果に応じて、基材及び添加
物を選定する。If necessary, and preferably, in order to obtain the optimum snow-freezing prevention effect or to facilitate the addition of tourmaline, tourmaline is used as another material, particularly a material excellent in thermal conductivity. The target product is manufactured or constructed in combination with a material having a heat retaining effect. The snow melting antifreezing material in which tourmaline is dispersed preferably has high thermal conductivity when combined with a heating means as described later, and a heat storage material or a large heat capacity material is also effective for energy saving due to the heat retention effect. . Therefore, the base material and the additive are selected according to the application and the desired effect.
【0014】例えば、建物屋上タイル、外壁パネル、歩
道タイルなどのセラミックス製タイルを用いる構造に適
用する場合、粘度、陶土、などのセラミックス材料と電
気石を混練し、焼成して製造できるが、好ましくは、熱
伝導性を高めまた遠赤外効果を得るために、例えば、炭
素、カーボンブラック、グラファイト、フライアッシ
ュ、アルミナなどの高熱伝導性材料、蓄熱材料を添加
し、また炭素材料、酸化アンチモンをドープした酸化第
二錫、元素周期律表第4族遷移金属の炭化物(例、Zr
C)及び酸化物(例、TiO2 )、アルミナなどの他の
遠赤外線放射材料(外部から熱や光を吸収して遠赤外線
を放射する性質を有する電気石以外の材料)を添加す
る。限定するわけではなく経済性や構造物の要件による
が、例えば、高熱伝導性材料は5〜40重量%、好まし
くは10〜30重量%程度、遠赤外線放射材料は3〜2
0重量%、好ましくは5〜15重量%程度添加するとよ
い。特に炭素材料は有用である。For example, when applied to a structure using ceramic tiles such as a building roof tile, an outer wall panel, and a sidewalk tile, it can be manufactured by kneading a ceramic material such as viscosity, porcelain clay, etc. and tourmaline and firing it, but is preferable. In order to enhance the thermal conductivity and to obtain the far-infrared effect, for example, carbon, carbon black, graphite, fly ash, high thermal conductivity materials such as alumina, heat storage materials are added, and carbon materials and antimony oxide are added. Doped stannic oxide, carbides of Group 4 transition metals of the Periodic Table of Elements (eg, Zr
C) and other far-infrared radiation materials such as oxides (eg, TiO 2 ) and alumina (materials other than tourmaline which have the property of absorbing far-infrared rays by absorbing heat or light from the outside). Although not limited, depending on the economy and the requirements of the structure, for example, the high thermal conductive material is 5 to 40% by weight, preferably about 10 to 30% by weight, and the far infrared ray emitting material is 3 to 2% by weight.
It is recommended to add 0% by weight, preferably about 5 to 15% by weight. Carbon materials are particularly useful.
【0015】また、コンクリートのタイルや舗装に使用
する場合には、コンクリート材料に電気石を添加する
が、好ましくは、上記の高熱伝導性材料や遠赤外線放射
材料、また必要に応じてセラミックス材料を添加する
が、電気石、高熱伝導性材料、遠赤外線放射材料を混練
して、混練物をコンクリート材料に混入するのが簡便で
ある。When used for concrete tiles or pavement, tourmaline is added to the concrete material, but preferably the above-mentioned high thermal conductive material, far infrared ray radiating material or, if necessary, ceramic material. Although it is added, it is easy to knead tourmaline, a material having high thermal conductivity, and a far-infrared radiation material, and mix the kneaded material with the concrete material.
【0016】また、アスファルト舗装に適用する場合
は、アスファルト材料に電気石を混練すればよいが、こ
の場合にも、好ましくは、上記の高熱伝導性材料や遠赤
外線放射材料、また必要に応じてセラミックス材料を添
加する。アスファルト材料あるいはコンクリート材料な
どの道路材料に電気石、高熱伝導性材料、遠赤外線放射
材料を添加する場合は、限定するわけではないが、例え
ば、上記タイルの製造に用いた混練材料を、アスファル
ト材料あるいはコンクリート材料に3〜30重量%、好
ましくは5〜20重量%程度添加してもよい。When applied to asphalt pavement, tourmaline may be kneaded into the asphalt material, but in this case also, preferably, the above-mentioned high thermal conductive material or far-infrared radiation material, and if necessary, Add ceramic material. The addition of tourmaline, high thermal conductivity material, far-infrared radiation material to road materials such as asphalt material or concrete material is not limited, but for example, the kneading material used for the production of the above tiles may be the asphalt material. Alternatively, it may be added to the concrete material in an amount of about 3 to 30% by weight, preferably about 5 to 20% by weight.
【0017】また、フライアッシュなどの産業用廃棄材
料を利用して環境問題の解決にも寄与することができ
る。また、各種の増量材、骨材、添加材などを適宜添加
することができる。構造物の目的と熱効果を考慮して選
択するとよい。さらに、金属材料中に電気石を混入して
も効果がある。Also, industrial waste materials such as fly ash can be used to contribute to solving environmental problems. Further, various fillers, aggregates, additives, etc. can be added as appropriate. It is recommended to select it considering the purpose and heat effect of the structure. Furthermore, mixing tourmaline into the metal material is also effective.
【0018】以上は無機材料を用いる場合について述べ
たが、有機材料中に電気石を混入させても同様な効果を
奏することができる。例えば、樹脂パネル中に電気石を
混入することができる。本発明では、電気石を樹脂シー
トに混入したものを、表面材の内側に配置しても(好ま
しくはそのさらに内側に加熱装置を配置して)、所望の
融雪凍結防止効果を得ることができる。樹脂シート中の
電気石の添加量は、限定されないが、一般的に、0.1
〜10重量%、好ましくは1〜5重量%、さらには3重
量%前後でよい。樹脂の材質は限定されないが、農業用
塩化ビニル廃棄物を利用すると、安価であり、かつ資源
の有効利用及び環境問題の解決に寄与する。樹脂シート
の厚みは限定されない。必要に応じて、通気性、水分透
過性のために、穿孔して使用してもよい。Although the case where an inorganic material is used has been described above, the same effect can be obtained even if tourmaline is mixed into the organic material. For example, tourmaline can be mixed into the resin panel. In the present invention, even if the tourmaline mixed with the resin sheet is arranged inside the surface material (preferably, a heating device is arranged further inside the surface material), a desired snow-melt freezing prevention effect can be obtained. . The amount of tourmaline added to the resin sheet is not limited, but is generally 0.1.
The amount may be from 10 to 10% by weight, preferably from 1 to 5% by weight, and further around 3% by weight. Although the material of the resin is not limited, the use of agricultural vinyl chloride waste is inexpensive and contributes to effective use of resources and solution of environmental problems. The thickness of the resin sheet is not limited. If necessary, it may be perforated and used for air permeability and water permeability.
【0019】本発明の融雪凍結防止構造物を製造、施工
するにあたって、融雪凍結防止材は通常外気と接する表
面材に使用するが、表面材の内側の中間層(中間材)と
して使用してもよい。放射線は表面材料を透過するから
である。従って、表面材は使用目的に応じて、また熱伝
導性を考慮して決めてもよい。また、表面材又は中間層
の融雪凍結防止材は多層構造であってもよい。用途に応
じて、また所望の融雪凍結防止効果に応じて変更でき
る。In manufacturing and constructing the snow-melting antifreezing structure of the present invention, the snow-melting antifreezing material is usually used as a surface material in contact with the outside air, but even if it is used as an intermediate layer (intermediate material) inside the surface material. Good. This is because the radiation penetrates the surface material. Therefore, the surface material may be determined according to the purpose of use and in consideration of thermal conductivity. Further, the surface material or the snow melting antifreezing material of the intermediate layer may have a multilayer structure. It can be changed according to the application and the desired effect of preventing snow melting.
【0020】本発明の電気石が分散されている融雪凍結
防止材を用いた融雪凍結防止構造によれば、外気温度が
氷結温度に近いような低温でも、融雪凍結防止材から融
雪解凍作用のある電磁波(放射線)が放射されて、融雪
凍結防止効果が奏せられる。しかし、この融雪凍結防止
材だけでは、気温が氷結温度以下になれば、融雪解凍作
用は生じない。そこで、少なくとも融雪凍結防止材の表
面温度が氷結温度より高い温度になるように加熱する融
雪凍結防止システムを構築することが望ましい。According to the snow-melting antifreezing structure using the snowmelt antifreezing material in which tourmaline is dispersed according to the present invention, the snow-melting antifreezing material has a thaw-melting action even when the outside air temperature is close to the freezing temperature. Electromagnetic waves (radiation) are radiated to exert the effect of preventing snow melting and freezing. However, with this snow melting anti-freezing material alone, the snow melting defrosting action does not occur when the temperature falls below the freezing temperature. Therefore, it is desirable to construct a snow melting anti-freezing system that heats at least the surface temperature of the snow melting antifreezing material to a temperature higher than the freezing temperature.
【0021】加熱方法は特に限定されず、従来公知の如
く、地下パイプ中に温水を通したり、電気加熱ヒータを
埋め込む方法を採用してもよい。しかし、本発明の好ま
しい態様では、面状電気ヒータを用いる。特に、いわゆ
るPTC(正温度係数)特性を持つ面状電気ヒータを用
いれば、サーモスタットを省略できるので、設備費用を
低減できる。さらにPTC素子は自己温度制御性を有
し、周囲温度とバランスとして一定温度を保つ性質があ
るため、周囲温度変化のムラをなくすことができ、ひい
て電気消費量の低減を図ることができる。PTC素子
は、例えば、ポリエチレンにカーボンブラックを分散し
た組成物で作成しものが公知である。The heating method is not particularly limited, and as is conventionally known, a method of passing hot water through an underground pipe or embedding an electric heater may be adopted. However, in the preferred embodiment of the present invention, a planar electric heater is used. In particular, if a planar electric heater having a so-called PTC (Positive Temperature Coefficient) characteristic is used, the thermostat can be omitted, and the facility cost can be reduced. Further, since the PTC element has the self-temperature controllability and the property of keeping a constant temperature as a balance with the ambient temperature, it is possible to eliminate the unevenness of the ambient temperature change, and consequently to reduce the electricity consumption. As the PTC element, for example, one made of a composition in which carbon black is dispersed in polyethylene is known.
【0022】本発明の1つの態様では、表面材と面状加
熱ヒータの間に中間層を設けて、表面材と中間層の少な
くとも一方を電気石が分散されている融雪凍結防止材で
構成する。表面層と中間層の両方を電気石が分散されて
いる融雪凍結防止材で構成することがより望ましいが、
電気石が分散されている融雪凍結防止材で構成しなかっ
た方、あるいは表面材と中間層の一部を、遠赤外線放射
材料あるいは高熱伝導性材料にした場合も、加熱エネル
ギーの低減に有効である。理論を限定するわけではない
が、遠赤外線放射材料あるいは高熱伝導性材料の熱伝搬
及び保熱効果によるものと考えられる。しかし、表面層
と中間層の両方を電気石が分散されている融雪凍結防止
材で構成すると、このような熱伝搬及び保熱効果と共に
放射による熱伝搬と融雪の作用が加わるので、より有効
である。In one embodiment of the present invention, an intermediate layer is provided between the surface material and the planar heater, and at least one of the surface material and the intermediate layer is formed of a snow melting antifreezing material in which tourmaline is dispersed. . Although it is more desirable to configure both the surface layer and the intermediate layer with snowmelt antifreezing material in which tourmaline is dispersed,
It is also effective in reducing heating energy if you do not use snowmelt antifreeze in which tourmaline is dispersed, or if you use far infrared radiation material or high thermal conductivity material for the surface material and part of the intermediate layer. is there. Although the theory is not limited, it is considered to be due to the heat propagation and heat retention effects of the far infrared radiation material or the high thermal conductivity material. However, if both the surface layer and the intermediate layer are made of snow melting antifreezing material in which tourmaline is dispersed, heat transfer due to radiation and the action of snow melting are added in addition to such heat transfer and heat retention effects, so it is more effective. is there.
【0023】本発明では、電気石が分散されている表面
材と組み合わせて、中間層を電気石が分散されている樹
脂シートとし、これを面状ヒータの上に配設した構造が
最も好ましい。遠赤外線放射材料及び高熱伝導性材料と
しては前記と同様の材料を使用することができる。表面
材や中間層あるいはそれらの一部を遠赤外線放射材料及
び高熱伝導性材料にするには、遠赤外線放射粒子や高熱
伝導性粒子を樹脂材料に混入したものでもよい。In the present invention, it is most preferable that the intermediate layer is a resin sheet in which tourmaline is dispersed in combination with a surface material in which tourmaline is dispersed, and the resin sheet is disposed on the planar heater. As the far-infrared radiation material and the high thermal conductivity material, the same materials as described above can be used. In order to make the surface material, the intermediate layer or a part thereof into the far infrared ray emitting material and the high thermal conductive material, the far infrared ray emitting particles or the high thermal conductive particles may be mixed in the resin material.
【0024】先に述べたように、本発明の融雪凍結防止
材は、用途に応じてタイル化又はパネル化し、あるいは
アスファルトやコンクリート施工して使用されるが、道
路舗装材としてアスファルト舗装を使用する場合には、
電気石を混入したアスファルト舗装材と加熱ヒータ(及
び中間層、特に樹脂シート)との間にコンクリート材な
どを挿入して、加熱されたアスファルト舗装材が軟化す
るほど高い温度に上昇しないようにすることが望まし
い。As described above, the snow-melting antifreezing material of the present invention is used as tiles or panels, or asphalt or concrete construction, depending on the application, but asphalt pavement is used as road paving material. in case of,
Insert concrete material between the asphalt paving material containing tourmaline and the heater (and the intermediate layer, especially the resin sheet) so that the heated asphalt paving material does not rise to a temperature high enough to soften it. Is desirable.
【0025】また、加熱装置(特に面状電気ヒータ)の
下側あるいは内側には断熱層を設けると、熱が表面の融
雪凍結防止材の側により多く伝搬させる効果を得ること
ができる。断熱層としては、建築物用途(屋上、屋根、
外壁など)ではいわゆる樹脂発泡体などが有効である
が、道路など地中では樹脂発泡体のほか、熱伝導性の低
い骨材等を敷設してもよい。If a heat insulating layer is provided below or inside the heating device (particularly, a sheet-like electric heater), the heat can be more effectively transmitted to the surface side of the snow melting antifreezing material. As a heat insulation layer, it can be used for buildings (rooftop, roof,
So-called resin foam and the like are effective for outer walls and the like, but aggregates having low thermal conductivity may be laid in addition to resin foam in the ground such as roads.
【0026】驚くべきことに、従来の融雪加熱システム
では、外気温度が約23℃以上の温度になるまで加熱し
ないと融雪効果は得られなかったが、本発明の融雪凍結
防止構造では、外気温度が約2℃の低い温度でも融雪凍
結防止効果が奏せられた。即ち、外気温度が氷結温度よ
り高ければ融雪凍結防止効果は発現する。従って、本発
明によれば、融雪凍結防止材の外表面温度を20℃以
下、さらに15℃以下、特に5℃以下、さらには2〜3
℃に設定した、融雪凍結防止システムを構築することが
でき、電気代の削減効果は極めて大きい。即ち、以下の
実施例で詳述するように同じ気候条件下で実験して完全
融雪を達成するために、従来の融雪加熱システムでは電
気ヒータを全面に敷設し、50〜80℃の発熱体温度に
設定し、なおかつ24時間連続通電加熱しているが、本
発明では、電気ヒータを加熱面積の一部だけに敷設し
(半分以下、例えば約3分の1の面積に敷設)、しかも
50℃未満(好ましくは約30℃の地中温度)の発熱体
温度に設定し、かつ間歇通電加熱(例えば2時間ごと)
で充分であった。勿論、これは温水ボイラ方式やヒート
パイプ方式と比べても経済的である。但し、電気ヒータ
の面積、加熱温度、加熱時間などは本発明を限定するも
のではない。Surprisingly, in the conventional snow melting heating system, the snow melting effect cannot be obtained unless the outside air temperature is heated to a temperature of about 23 ° C. or higher. Even at a low temperature of about 2 ° C, the snowmelt freeze prevention effect was exhibited. That is, if the outside air temperature is higher than the freezing temperature, the effect of preventing snow melting is exhibited. Therefore, according to the present invention, the outer surface temperature of the snow melting antifreezing material is 20 ° C. or lower, further 15 ° C. or lower, particularly 5 ° C. or lower, and further 2-3.
It is possible to build a snowmelt freeze prevention system that is set at ℃, and the effect of reducing the electricity bill is extremely large. That is, in order to achieve complete snow melting by performing experiments under the same climatic conditions as described in detail in the following examples, an electric heater is laid on the entire surface in a conventional snow melting heating system, and a heating element temperature of 50 to 80 ° C. However, in the present invention, the electric heater is laid on only a part of the heating area (less than half, for example, about ⅓ of the area), and at 50 ° C. Set the heating element temperature below (preferably about 30 ° C underground temperature) and intermittently heat by energization (for example, every 2 hours).
Was enough. Of course, this is more economical than the hot water boiler method and heat pipe method. However, the area, heating temperature, heating time, etc. of the electric heater do not limit the present invention.
【0027】さらに、本発明の融雪凍結防止加熱システ
ムでは、地下水、温水を使わないで、充分な経済性をも
って融雪凍結防止効果を奏するので、地下水の汲み上げ
に伴う従来技術の課題を見事に解決し、社会的需要に答
えるものである。本発明の代表的な態様を下記に示す。 (1)融雪凍結防止剤として電気石が分散されている融
雪凍結防止材を用いたことを特徴とする融雪凍結防止構
造物。Further, in the snow-melting antifreezing heating system of the present invention, the snowmelt antifreezing effect is exerted with sufficient economic efficiency without using groundwater or hot water. Therefore, the problems of the prior art associated with pumping up groundwater are solved satisfactorily. , To meet social demand. Representative aspects of the present invention are shown below. (1) A snow melting anti-freezing structure comprising a snow melting anti-freezing material in which tourmaline is dispersed as a snow melting antifreezing agent.
【0028】(2)融雪凍結防止剤として電気石が分散
されている融雪凍結防止材と加熱手段を含むことを特徴
とする融雪凍結防止構造物。 (3)表面材と、表面材の内側に配置された加熱手段
と、表面材と加熱手段の間に配置された中間層を含み、
かつ表面材及び中間層の少なくとも一方が電気石が分散
されている融雪凍結防止材からなることを特徴とする融
雪凍結防止構造物。(2) A snowmelt antifreezing structure comprising a snowmelt antifreezing material in which tourmaline is dispersed as a snowmelt antifreezing agent and a heating means. (3) including a surface material, a heating means arranged inside the surface material, and an intermediate layer arranged between the surface material and the heating means,
At least one of the surface material and the intermediate layer is composed of a snowmelt antifreezing material in which tourmaline is dispersed, and a snowmelt antifreezing structure.
【0029】(4)融雪凍結防止材が無機材料中に電気
石が分散されている。 (5)融雪凍結防止材が有機材料中に電気石が分散され
ている。 (6)融雪凍結防止材の無機材料がモルタル又はコンク
リートである。 (7)融雪凍結防止材の無機材料がセラミックスであ
る。 (8)融雪凍結防止材の無機材料がアスファルトであ
る。(4) Tourmaline antifreezing material has tourmaline dispersed in an inorganic material. (5) Tourmaline antifreeze has tourmaline dispersed in an organic material. (6) The inorganic material of the snow melting antifreeze material is mortar or concrete. (7) The inorganic material of the snow melting antifreeze material is ceramics. (8) Asphalt is an inorganic material of the snow-melting antifreeze material.
【0030】(9)表面材が電気石が分散されているア
スファルト製であり、アスファルト製表面材と中間層の
間にさらに非アスファルト製無機材料層を有する。 (10)表面材が電気石が分散されている無機材料から
なり、中間層が電気石が分散されている樹脂シートであ
る。 (11)融雪凍結防止材が電気石を0.1〜10重量%
含む。(9) The surface material is made of asphalt in which tourmaline is dispersed, and a non-asphalt inorganic material layer is further provided between the asphalt surface material and the intermediate layer. (10) The surface sheet is made of an inorganic material in which tourmaline is dispersed, and the intermediate layer is a resin sheet in which tourmaline is dispersed. (11) Snow melting antifreeze 0.1 to 10% by weight tourmaline
Including.
【0031】(12)加熱手段が正温度係数(PTC)
特性を有する面状電気ヒータである。 (13)加熱手段が融雪凍結防止面積の半分以下の面積
に敷設されている。 (14)加熱手段が間歇通電される。 (15)加熱手段が表面材の表面温度を15℃以下に加
熱するように温度制御されている。(12) The heating means has a positive temperature coefficient (PTC).
It is a planar electric heater having characteristics. (13) The heating means is laid in an area less than half of the snow-melting freeze prevention area. (14) The heating means is intermittently energized. (15) The heating means is temperature-controlled to heat the surface temperature of the surface material to 15 ° C. or lower.
【0032】(16)加熱手段の発熱体温度が50℃未
満に制御されている。 (17)融雪凍結防止構造物が道路である。 (18)融雪凍結防止構造物が歩道である。 (19)融雪凍結防止構造物が建物屋根である。 (20)融雪凍結防止構造物が建物屋上である。(16) The temperature of the heating element of the heating means is controlled to less than 50 ° C. (17) The snow melting antifreeze structure is a road. (18) The snow-melting antifreeze structure is a sidewalk. (19) The snow melting antifreezing structure is a building roof. (20) The snow melting antifreeze structure is on the roof of the building.
【0033】(21)融雪凍結防止構造物が駐車場であ
る。 (22)融雪凍結防止構造物が建物エクステリアであ
る。(21) The snow melting / freezing prevention structure is a parking lot. (22) The snow melting anti-freezing structure is the building exterior.
【0034】[0034]
(実施例1)無機マトリックス材料として陶土62重量
%、遠赤外線放射パウダー(三基物産より市販)10重
量%、炭素パウダー20重量%、フライアッシュ5重量
%、電気石(三基物産より市販)3重量%を水を溶媒と
して混練し、平板状に成形してから、800℃で焼成し
て、焼結体(融雪凍結防止材)1を得た。(Example 1) 62% by weight of clay as an inorganic matrix material, 10% by weight of far infrared radiation powder (commercially available from Sanki & Co.), 20% by weight of carbon powder, 5% by weight of fly ash, tourmaline (commercially available from Sanki & Co.) 3% by weight of water was kneaded as a solvent, formed into a flat plate shape, and fired at 800 ° C. to obtain a sintered body (snow melting antifreeze material) 1.
【0035】同様にして、陶土と電気石の合計量を65
重量%とし、電気石の添加量を0.02重量%、0.1
重量%、1重量%、10重量%と変えて、焼結体(融雪
凍結防止材)2〜5を作成した。また、フライアッシュ
の全部を陶土に変えたものを作成した。比較のために、
100重量%陶土を用いて同様に作成した陶板、及び砂
を用いたモルタルで上記と同じ形状に成形及び硬化させ
たモルタル板を用意した。Similarly, the total amount of clay and tourmaline is 65
%, And the amount of tourmaline added is 0.02% by weight, 0.1
Sintered bodies (snow melting antifreeze materials) 2 to 5 were prepared by changing the content to 1% by weight, 1% by weight, and 10% by weight. In addition, I made the thing which changed all of fly ash into clay. For comparison,
A porcelain plate prepared in the same manner using 100% by weight porcelain clay, and a mortar plate molded and cured in the same shape as above with mortar using sand were prepared.
【0036】これらの板の上に氷を置くと、電気石が分
散されている板(融雪凍結防止材1〜5)の上では直ち
に氷が融けたが、陶板及びモルタル板の上では氷はなか
なか融けなかった。氷に変えて雪を用いても、同様の結
果が得られた。 (実施例2)実施例1と同様に陶土62重量%、遠赤外
線放射パウダー10重量%、炭素パウダー20重量%、
電気石3重量%、フライアッシュ5重量%を水を溶媒と
して混練して得た混練物を、アスファルトに対して10
重量%になるように混入した。(融雪凍結防止材6) また、同様にして、同じ混練物を、川砂を用いたモルタ
ルに対して10重量%になるように混入した。(融雪凍
結防止材7) これらについても、氷と雪を用いて解凍、融雪実験を行
った。実施例1の融雪凍結防止材と同様の効果が確認さ
れた。When ice was placed on these plates, the ice immediately melted on the plates (snow melting antifreeze materials 1 to 5) in which tourmaline was dispersed, but on the ceramic plate and the mortar plate, the ice did not melt. It didn't melt easily. Similar results were obtained using snow instead of ice. (Example 2) As in Example 1, 62% by weight of porcelain clay, 10% by weight of far infrared radiation powder, 20% by weight of carbon powder,
A kneaded material obtained by kneading tourmaline 3% by weight and fly ash 5% by weight with water as a solvent is used to obtain 10 parts of asphalt.
It was mixed so as to become a weight%. (Snow melting antifreeze material 6) Similarly, the same kneaded material was mixed so as to be 10% by weight with respect to the mortar using river sand. (Snow melting anti-freezing material 7) These were also thawed using ice and snow and a snow melting experiment was conducted. The same effect as that of the snow melting antifreeze material of Example 1 was confirmed.
【0037】(実施例3)農業用塩化ビニル廃棄物を粉
砕、洗浄、乾燥後、電気石(平均粒径0.6μm)3重
量%を溶融混練し、押出成形して厚さ0.8mmのシート
を作成した。このシートに1mm径の孔を縦横10mm間隔
で一列毎に5mmずらして穿孔した。PTC面状ヒータの
上にこの樹脂シートを置き、さらにその上に厚さ10mm
の陶板を置いたものと、樹脂シートを介さずにPTC面
状ヒータの上に直接に同じ陶板を置いたものを用意し、
ヒータを30℃に加熱して、陶板の上に氷と雪をのせて
実験した。Example 3 Agricultural vinyl chloride waste was crushed, washed and dried, and then 3% by weight of tourmaline (average particle size 0.6 μm) was melt-kneaded and extruded to a thickness of 0.8 mm. Created a sheet. Holes having a diameter of 1 mm were punched in this sheet at intervals of 10 mm in the vertical and horizontal directions, offset by 5 mm in each row. Place this resin sheet on the PTC sheet heater, and then set a thickness of 10 mm on it.
Prepare the one with the ceramic plate placed and the one with the same ceramic plate directly placed on the PTC planar heater without the resin sheet.
The heater was heated to 30 ° C., and ice and snow were put on a ceramic plate to perform an experiment.
【0038】実施例1〜3で作成した融雪凍結防止材を
道路、屋根、屋上などに使用すれば、一般の材料を使用
した場合よりも融雪凍結防止効果があることは明白であ
る。 (実施例4)新潟県六日町の田崎新堀工業団地内に、屋
根融雪実験棟(屋根融雪面積16m2)、屋上融雪実験施
設(屋上融雪面積10m2)、道路融雪実験施設(道路融
雪面積20m2)を建設施工し、実際に冬の積雪時期に融
雪実験を行った。When the snow-melting antifreezing materials prepared in Examples 1 to 3 are used for roads, roofs, roofs, etc., it is obvious that the snow-melting antifreezing effect is more effective than when using general materials. (Example 4) A roof snow melting experiment building (roof snow melting area 16 m 2 ), a roof snow melting experiment facility (roof snow melting area 10 m 2 ), a road snow melting experiment facility (road snow melting area) in Tasaki Shinbori Industrial Park in Muikamachi, Niigata Prefecture. 20 m 2 ) was constructed and snowmelt experiment was actually conducted during the winter snow season.
【0039】図1に実験施設の平面図を示す。左下1が
屋根融雪実験棟、左上2が屋上融雪実験施設、右側が道
路(歩道)融雪実験施設で、その上半分がコンクリート
舗装部分(10m2)、下半分がアスファルト舗装部分
(10m2)である。図2に、屋根融雪実験棟の屋根融雪
システムを示す。下から順に、発泡断熱シート21、P
TC面状電気ヒータ22、遠赤外線放射樹脂シート2
3、融雪凍結防止瓦24が敷設されている。FIG. 1 shows a plan view of the experimental facility. The lower left 1 is a roof snow melting experiment building, the upper left 2 is a roof snow melting experimental facility, the right is a road (sidewalk) snow melting experimental facility, the upper half is a concrete pavement part (10 m 2 ) and the lower half is an asphalt pavement part (10 m 2 ). is there. Fig. 2 shows the roof snow melting system of the roof snow melting laboratory. From the bottom, foam insulation sheet 21, P
TC planar electric heater 22, far infrared radiation resin sheet 2
3. Snow melting antifreeze roof tiles 24 are laid.
【0040】発泡断熱シート21は任意である。例え
ば、発泡ポリスチレン製シートなどを用いることができ
る。PTC面状電気ヒータ22は、日本オイルシール
(NOK)社から購入した幅25cmの長尺状面状ヒータ
で、図3の平面図に示す如く敷設し、発熱体グループN
o.1〜No.5(22a〜22e)に分けて通電でき
るように構成した。図3中、22a,22b,22c,
22d,22eがそれぞれ発熱体グループNo.1〜N
o.5である。The foam insulation sheet 21 is optional. For example, a foam polystyrene sheet or the like can be used. The PTC planar electric heater 22 is a long planar heater with a width of 25 cm purchased from Nippon Oil Seal (NOK) Co., Ltd. and is laid as shown in the plan view of FIG.
o. 1 to No. 5 (22a to 22e) is configured to be energized separately. In FIG. 3, 22a, 22b, 22c,
22d and 22e are heating element group Nos. 1 to N
o. 5
【0041】遠赤外線放射樹脂シート23は実施例3と
同様にしで作成したシートを使用し、これを全面に敷い
た。融雪凍結防止瓦24は、実施例1の融雪凍結防止材
1と同じ組成で同じ手順でスレート瓦として作成したも
のを用いた。通常のスレート瓦と同様に敷設した。 (実施例5)図4に屋上融雪実験施設の屋上融雪システ
ムを示す。下から順に、PTC面状電気ヒータ32、遠
赤外線放射シート33、融雪凍結防止タイル34が敷設
されている。図4の発泡断熱シート31及び層35、3
6は任意要素である。As the far-infrared emitting resin sheet 23, a sheet prepared in the same manner as in Example 3 was used, and this was laid over the entire surface. As the snow melting anti-freezing roof tile 24, one prepared as a slate roofing tile with the same composition and the same procedure as the snow melting antifreezing material 1 of Example 1 was used. It was laid like a normal slate tile. (Example 5) Fig. 4 shows a rooftop snow melting system of a rooftop snow melting experiment facility. A PTC planar electric heater 32, a far-infrared radiation sheet 33, and a snow melting freeze prevention tile 34 are laid in order from the bottom. Foam insulation sheet 31 and layers 35, 3 of FIG.
6 is an optional element.
【0042】PTC面状電気ヒータ32は実施例2と同
様のものであるが、幅25cmの長尺状面状ヒータを30
cmの間隔で敷設した。遠赤外線放射シート33は実施例
3と同様に作成した樹脂シートを全面に敷いた。融雪凍
結防止タイル34は、実施例1の融雪凍結防止材1と同
じ組成で同じ手順で60cm×90cm×1cmのタイルとし
て作成したものを用いた。The PTC planar electric heater 32 is the same as that of the second embodiment, except that a long planar heater having a width of 25 cm is 30.
Laminated at intervals of cm. As the far infrared radiation sheet 33, a resin sheet prepared in the same manner as in Example 3 was laid over the entire surface. As the snow melting anti-freezing tile 34, a tile having 60 cm × 90 cm × 1 cm having the same composition as the snow melting antifreezing material 1 of Example 1 and the same procedure was used.
【0043】(実施例6)図5に道路融雪実験施設の道
路融雪システムを示す。下から順に、断熱層41、PT
C面状電気ヒータ42、遠赤外線放射樹脂シート43、
基層コンクリート層44、融雪凍結防止アスファルト層
(表層)45である。断熱層41は主として砂利や玉石
などからなる骨材層である。PTC面状電気ヒータ42
は、実施例2と同様のものであるが、図6に示す如く、
幅25cmの長尺状面状ヒータ32aを約30cmの間隔を
おいて配置した。遠赤外線放射樹脂シート43は実施例
3と同様に作成したものを全面に敷いた。その上に、基
層コンクリート層44として、セメント、砂、骨材(小
石)からなるコンクリートを厚さ4cmに施工した。(Embodiment 6) FIG. 5 shows a road snow melting system of a road snow melting experiment facility. Insulating layer 41, PT in order from the bottom
C-plane electric heater 42, far infrared radiation resin sheet 43,
The base layer concrete layer 44 and the snow melting antifreeze asphalt layer (surface layer) 45. The heat insulating layer 41 is an aggregate layer mainly made of gravel or cobblestone. PTC planar electric heater 42
Is the same as the second embodiment, but as shown in FIG.
Elongated sheet heaters 32a having a width of 25 cm were arranged at intervals of about 30 cm. The far-infrared emitting resin sheet 43 was prepared in the same manner as in Example 3 and was laid over the entire surface. As the base concrete layer 44, concrete composed of cement, sand, and aggregate (pebbles) was applied thereon with a thickness of 4 cm.
【0044】融雪凍結防止アスファルト層45は、実施
例2の融雪凍結防止材6と同じ組成で同じ手順で厚さ
(深さ)4cmに施工した。 (実施例7)実施例6と同様であるが、但し融雪凍結防
止アスファルト層45を省略して、厚さ4cmのコンクリ
ート層44をそのまま舗装面とした。The snow melting anti-freezing asphalt layer 45 was formed to have a thickness (depth) of 4 cm by the same procedure and the same composition as the snow melting anti-freezing material 6 of Example 2. (Embodiment 7) Similar to Embodiment 6, except that the snow melting antifreeze asphalt layer 45 is omitted and the concrete layer 44 having a thickness of 4 cm is used as a pavement surface as it is.
【0045】(実施例4の結果)12月より雪が観測さ
れ、1月には充分に積雪していたので、実験を開始し
た。例えば、2月17日に行った屋根融雪実験は下記の
条件であった。 測定日時:午前8時から午後5時まで 測定時間:9時間 屋根融雪面積:16m2 気温:最高気温2.2℃、最低気温−0.8℃ 降雪量:最高5.5cm/1時間 降雪量累計:23.3cm/9時間 このとき、図6に示す発熱体通電スケジュールで完全に
融雪できた。そのときの各時間毎の降雪量、気温、消費
電力を図6に併せて示す。これから下記のデータが得ら
れる。(Results of Example 4) Since snow was observed from December and the snow was sufficiently accumulated in January, the experiment was started. For example, the roof snow melting experiment conducted on February 17 was under the following conditions. Measurement date and time: From 8:00 am to 5:00 pm Measurement time: 9 hours Roof snow melting area: 16 m 2 Temperature: Maximum temperature 2.2 ℃, minimum temperature -0.8 ℃ Snowfall: Max 5.5 cm / 1 hour Snowfall Cumulative total: 23.3 cm / 9 hours At this time, snow was completely melted according to the heating element energization schedule shown in FIG. The amount of snowfall, the temperature, and the power consumption for each time at that time are also shown in FIG. The following data are obtained from this.
【0046】消費電力:9.5Kw/9時間/16m2 単位面積当たりの消費電力:0.066Kw/16m2・
時間 単位面積当たりの消費電力コスト(円/m2・時間): 消費電力料金=9.5Kw÷9時間÷16m2×10.45
円/Kw=0.69円/m2・時間 (実施例5の結果)実施例4と同様に完全融雪を条件と
して、屋上融雪実験を行ったが、間歇通電の低コストの
運転が可能であった。単位面積当たりの消費電力コスト
は、実施例4と同様であった。Power consumption: 9.5 Kw / 9 hours / 16 m 2 Power consumption per unit area: 0.066 Kw / 16 m 2 ·
Time Power consumption cost per unit area (yen / m 2 · hour): Power consumption rate = 9.5 Kw ÷ 9 hours ÷ 16 m 2 × 10.45
Yen / Kw = 0.69 yen / m 2 · hour (Result of Example 5) A rooftop snow melting experiment was performed under the condition of complete snow melting as in Example 4, but intermittent low-cost operation was possible. there were. The power consumption cost per unit area was the same as that of the fourth embodiment.
【0047】(実施例6の結果)実施例4と同様に完全
融雪を条件として、道路融雪実験を行った。下記の如
く、間歇通電の低コストの運転が可能であった。単位面
積当たりの消費電力コストは、0.36円/m2・時間で
あった。 測定日時:午前8時から午後4時まで 測定時間:8時間 屋根融雪面積:20m2 気温:最高気温2.2℃、最低気温−0.6℃ 降雪量:最高5.5cm/1時間 降雪量累計:21.0cm/8時間 消費電力:5.5Kw/8時間/20m2 単位面積当たりの消費電力:0.0344Kw/16m2
・時間 単位面積当たりの消費電力コスト(円/m2・時間): 消費電力料金=0.0344Kw×10.45円/Kw=
0.36円/m2・時間 この道路融雪実験の結果を、従来の融雪システムと比較
すると、下記の如くである。(Results of Example 6) A road snow melting experiment was conducted under the condition of complete snow melting as in Example 4. As described below, it was possible to operate at low cost with intermittent energization. The power consumption cost per unit area was 0.36 yen / m 2 · hour. Measurement date and time: From 8:00 am to 4:00 pm Measurement time: 8 hours Roof snow melting area: 20 m 2 Temperature: Maximum temperature 2.2 ° C, Minimum temperature -0.6 ° C Snowfall: Maximum 5.5 cm / 1 hour Snowfall Total: 21.0 cm / 8 hours Power consumption: 5.5 Kw / 8 hours / 20 m 2 Power consumption per unit area: 0.0344 Kw / 16 m 2
・ Time Power consumption cost per unit area (yen / m 2 · hour): Power consumption rate = 0.0344 Kw x 10.45 yen / Kw =
0.36 yen / m 2 · hour When comparing the results of this road snowmelt experiment with the conventional snowmelt system, it is as follows.
【0048】 比較方式 灯油料 電気料 合 計 対比 温水ボイラ 1.55円 0.46円 2.01円/m2・h 5.66 ヒートパイプ 2.92円 0.13円 3.05円/m2・h 8.47 本発明 ─── 0.36円 0.36円/m2・h 1.00 なお、アスファルト舗装部分とコンクリート舗装部分と
では、どちらも完全な融雪効果が得られたが、アスファ
ルト舗装部分の方がより融雪効果は優れていた。アスフ
ァルト舗装部分の方が、舗装表面はヒータからより遠い
にもかかわらず、コンクリート舗装部分より優れた融雪
効果を示した理由は不明であるが、本発明の融雪凍結防
止材を厚くしたからと考えられる。[0048] comparative method kerosene fee electric fee total contrast hot water boiler 1.55 yen 0.46 yen 2.01 yen / m 2 · h 5.66 Heat pipe 2.92 yen 0.13 yen 3.05 yen / m 2・ h 8.47 The present invention ─── 0.36 yen 0.36 yen / m 2・ h 1.00 In both the asphalt pavement part and the concrete pavement part, a perfect snow melting effect was obtained. The asphalt pavement had a better snow melting effect. It is unclear why the asphalt pavement portion showed a better snow melting effect than the concrete pavement portion, even though the pavement surface was farther from the heater, but it is thought that it was because the snow melting antifreeze material of the present invention was thickened. To be
【0049】[0049]
【発明の効果】以上の説明から明らかなように、本発明
の融雪凍結防止構造物によれば、地下水を用いることな
く、低コストで融雪凍結防止を実現でき、その社会的需
要に極めて大ものものといえなければならない。なお、
上記実施例では、主として道路、屋根、屋上について述
べたが、本発明が広くその他一般の融雪凍結防止構造物
にも応用できることは明白である。EFFECTS OF THE INVENTION As is clear from the above description, according to the structure for preventing melting of snow melt of the present invention, it is possible to realize the prevention of melting of snow melt at low cost without using groundwater, which is extremely great for social demand. It must be said to be a thing. In addition,
In the above embodiments, the road, the roof, and the roof were mainly described, but it is obvious that the present invention can be widely applied to other general snow-melting antifreezing structures.
【図1】融雪実験場所の平面図。FIG. 1 is a plan view of a snow melting experiment site.
【図2】屋根融雪実験棟の屋根融雪システムの模式図。FIG. 2 is a schematic diagram of a roof snow melting system of a roof snow melting experiment building.
【図3】屋根融雪実験棟の屋根融雪システムのヒータ説
明図。FIG. 3 is an explanatory view of a heater of a roof snow melting system of a roof snow melting experiment building.
【図4】屋上融雪実験棟の屋上融雪システムの模式図。FIG. 4 is a schematic diagram of a rooftop snow melting system in a rooftop snow melting laboratory.
【図5】道路融雪実験棟の屋上融雪システムの模式図。FIG. 5 is a schematic diagram of a rooftop snow melting system of a road snow melting experiment building.
【図6】道路融雪実験棟の加熱スケジュール及び降雪
量、気温、消費電力。[Fig. 6] Heating schedule, snowfall amount, temperature, and power consumption of the road snow melting experiment building.
21,31…発泡断熱シート 22,32,42…PTC面状加熱シート 23,33,43…遠赤外線放射樹脂シート 24…融雪凍結防止瓦 34…融雪凍結防止タイル 41…断熱層 44…基層コンクリート 45…融雪凍結防止アスファルト 21, 31 ... Foamed heat insulating sheet 22, 32, 42 ... PTC planar heating sheet 23, 33, 43 ... Far infrared radiation resin sheet 24 ... Snow melting antifreezing tile 34 ... Snow melting antifreezing tile 41 ... Thermal insulation layer 44 ... Base layer concrete 45 … Snow melting freeze prevention asphalt
Claims (9)
ている融雪凍結防止材を用いたことを特徴とする融雪凍
結防止構造物。1. A snow melting antifreezing structure comprising a snow melting antifreezing material in which tourmaline is dispersed as a snow melting antifreezing agent.
ている融雪凍結防止材と加熱手段を含むことを特徴とす
る融雪凍結防止構造物。2. A snow melting anti-freezing structure comprising a snow melting anti-freezing material in which tourmaline is dispersed as a snow melting antifreezing agent, and a heating means.
加熱手段と、該表面材と該加熱手段の間に配置された中
間層を含み、かつ該表面材及び該中間層の少なくとも一
方が電気石が分散されている融雪凍結防止材からなるこ
とを特徴とする融雪凍結防止構造物。3. A surface material, a heating means arranged inside the surface material, and an intermediate layer arranged between the surface material and the heating means, and at least the surface material and the intermediate layer. A snow-melting anti-freezing structure, characterized in that one is made of a snow-melting anti-freezing material in which tourmaline is dispersed.
雪凍結防止材からなる表面材と、該表面材の内側に配置
された加熱手段と、該表面材と該加熱手段の間に配置さ
れた、電気石が分散されている融雪凍結防止材からなる
樹脂シートとを含んで成ることを特徴とする融雪凍結防
止構造物。4. A surface material made of snow melting antifreezing material in which tourmaline is dispersed in an inorganic material, heating means arranged inside the surface material, and arranged between the surface material and the heating means. And a resin sheet made of a snowmelt antifreezing material in which tourmaline is dispersed, the snowmelt antifreezing structure.
性を有する面状電気ヒータである請求項2、3又は4に
記載の融雪凍結防止構造物。5. The snow melting antifreezing structure according to claim 2, 3 or 4, wherein the heating means is a planar electric heater having a positive temperature coefficient (PTC) characteristic.
求項1〜5のいずれか1項に記載の融雪凍結防止構造
物。6. The snow melting anti-freezing structure according to claim 1, wherein the snow melting anti-freezing structure is a road.
る請求項1〜5のいずれか1項に記載の融雪凍結防止構
造物。7. The snowmelt antifreezing structure according to claim 1, wherein the snowmelt antifreezing structure is a building roof.
る請求項1〜5のいずれか1項に記載の融雪凍結防止構
造物。8. The snow melting anti-freezing structure according to claim 1, wherein the snow melting anti-freezing structure is a rooftop of a building.
請求項1〜5のいずれか1項に記載の融雪凍結防止構造
物。9. The snow melting anti-freezing structure according to claim 1, wherein the snow melting anti-freezing structure is a parking lot.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8005596A JPH09268511A (en) | 1996-04-02 | 1996-04-02 | Snowmelt freeze prevention structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8005596A JPH09268511A (en) | 1996-04-02 | 1996-04-02 | Snowmelt freeze prevention structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09268511A true JPH09268511A (en) | 1997-10-14 |
Family
ID=13707559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8005596A Pending JPH09268511A (en) | 1996-04-02 | 1996-04-02 | Snowmelt freeze prevention structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09268511A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100732407B1 (en) * | 2006-12-12 | 2007-06-29 | 한상관 | Method to construct building newly using soil mixture |
KR100809446B1 (en) * | 2006-10-12 | 2008-03-06 | (주)나노테크 | Manufacturing method for construction material using yellow soil |
-
1996
- 1996-04-02 JP JP8005596A patent/JPH09268511A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100809446B1 (en) * | 2006-10-12 | 2008-03-06 | (주)나노테크 | Manufacturing method for construction material using yellow soil |
KR100732407B1 (en) * | 2006-12-12 | 2007-06-29 | 한상관 | Method to construct building newly using soil mixture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11441853B2 (en) | Compositions and systems for bidirectional energy transfer and thermally enhanced solar absorbers | |
CN106702850B (en) | Prevent antifreeze road icy on road and its construction method | |
JP2010132845A (en) | Hybrid heat storage agent, heat storage material using the same, and heat retention and storage system utilizing the same | |
JPH09272860A (en) | Melted snow freeze-proofing material | |
JPH09268511A (en) | Snowmelt freeze prevention structure | |
JPH10168433A (en) | Snow-thawing antifreeze material and snow-thawing antifreeze coating material, sheet, tile, panel, exterior material, roofing material, road and defroster containing the same | |
US20190352550A1 (en) | Systems and compositions for bidirectional thermal or electrical energy transfer | |
JP5294539B2 (en) | Snow melting material and manufacturing method thereof | |
US5639297A (en) | Method of making an improved pavement | |
JP3075530B2 (en) | Snow melting system | |
JP6463531B2 (en) | Snow melting block and snow melting roadbed | |
JPH08326009A (en) | Structure of snow-melting pavement and execution method thereof | |
JP4052630B2 (en) | Snow melting roof structure | |
JPH09143916A (en) | Snow-melting device | |
JP4155855B2 (en) | Concrete slab | |
JPH08269907A (en) | Melting of snow on surface of land and freezing preventing structure | |
Joey | Intersection-pavement de-icing: comprehensive review and the state of the practice | |
JPH08277504A (en) | Snow-melting antifreezing device of ground surface | |
JPH09195220A (en) | Snow melting and freezing preventing structure for ground, and its constructing method | |
JP5438877B2 (en) | Heat insulation structure | |
JP3377337B2 (en) | Pavement structure | |
JP3015132U (en) | Road heating structure | |
JPH093847A (en) | Heat-accumulating device and installation thereof | |
JPH11131414A (en) | Road laying method for melting snow of road, and heat insulating base layer and snow melting surface layer | |
CN208685393U (en) | Active snow melt resonant rubbilizing composite base bituminous pavement and active snow-melting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050726 |
|
A02 | Decision of refusal |
Effective date: 20060110 Free format text: JAPANESE INTERMEDIATE CODE: A02 |