JPH09261133A - Reverberation suppression method and its equipment - Google Patents

Reverberation suppression method and its equipment

Info

Publication number
JPH09261133A
JPH09261133A JP8068549A JP6854996A JPH09261133A JP H09261133 A JPH09261133 A JP H09261133A JP 8068549 A JP8068549 A JP 8068549A JP 6854996 A JP6854996 A JP 6854996A JP H09261133 A JPH09261133 A JP H09261133A
Authority
JP
Japan
Prior art keywords
signal
reverberation
coefficient
path
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8068549A
Other languages
Japanese (ja)
Inventor
Yoichi Haneda
陽一 羽田
Shoji Makino
昭二 牧野
Junji Kojima
順治 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8068549A priority Critical patent/JPH09261133A/en
Publication of JPH09261133A publication Critical patent/JPH09261133A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress a reverberation without knowing information of an original voice of a talker and without the need for advance measurement of a sound transfer characteristic at a position of the talker. SOLUTION: The equipment divides a reverberation signal into short time blocks, a linear prediction coefficient is obtained from each block (42), the coefficient is convoluted into the reverberation signal to obtain a residual signal (43), a pitch frequency is eliminated from the residual signal (46), an outline shape of a frequency amplitude characteristic of a reverberation path in the vicinity of the reverberation path is obtained (52), the outline shape is convoluted onto the signal from which the pitch frequency is eliminated (47), an AR coefficient is obtained from the convoluted signal for a long time block (48), the reverberation voice is given to an FIR filter having the AR coefficient as a filter means to obtain the reverberation elimination signal (50).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、TV会議装置,音声会
議装置,音声認識装置など、残響環境下においても残響
の除去された音声の収音を必要とする音声/音響装置、
音声/音響信号処理方式に適用される残響抑圧方法およ
び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voice / acoustic apparatus, such as a TV conference apparatus, a voice conference apparatus, a voice recognition apparatus, etc., which needs to pick up a sound with reverberation removed even in a reverberant environment.
The present invention relates to a reverberation suppressing method and apparatus applied to a voice / acoustic signal processing system.

【0002】[0002]

【従来の技術】残響とは、対象とする音響系(例えば室
内音場)内において、音源から発せられた音信号が、部
屋の壁などによる反射の影響によって響きのある音とな
る現象である。このような残響は、音楽信号などに対し
ては音を豊かにするが、音声信号に対しては、明瞭性を
低下させる原因となる。この残響の影響は、室内の音源
と受音器の間の音の伝わりの様子を表す音響伝達特性に
よって完全に表現される。残響抑圧手法とは、音源から
受音器に至る音響伝達特性の逆特性を受音器で収音され
た信号に畳み込み、音源信号を復元する手法を意味す
る。本明細書では、信号は離散信号であると仮定し、信
号の時間表現は、時間を表す整数パラメータkで例えば
x(k) と表現され、またその周波数表現はz変換を用い
てX(z) と表される。
2. Description of the Related Art Reverberation is a phenomenon in which a sound signal emitted from a sound source becomes a reverberant sound in a target acoustic system (for example, a room sound field) due to reflection of a room wall or the like. . Such reverberation enriches the sound with respect to a music signal or the like, but causes a decrease in clarity with respect to a voice signal. The effect of this reverberation is completely expressed by the acoustic transfer characteristics that represent the state of sound transmission between the sound source and the sound receiver in the room. The dereverberation method means a method of restoring the sound source signal by convolving the signal picked up by the sound receiver with the inverse characteristic of the acoustic transfer characteristic from the sound source to the sound receiver. In the present specification, it is assumed that the signal is a discrete signal, and the time representation of the signal is represented by, for example, x (k) with an integer parameter k representing time, and its frequency representation is expressed by X (z ).

【0003】図4は、室内における話者の発生した音声
が音響伝達特性H(z) の影響を残響として受けて収音さ
れる様子について説明する図である。1は室内空間、2
は話者、3は受音器(例えばマイクロホン)、4は出力
端である。
FIG. 4 is a diagram for explaining how a voice generated by a speaker in a room is picked up by receiving the influence of the acoustic transfer characteristic H (z) as reverberation. 1 is indoor space, 2
Is a speaker, 3 is a sound receiver (for example, a microphone), and 4 is an output end.

【0004】話者2が発生した音の信号をX(z) とする
と、信号X(z) は音響伝達特性H(z) の影響を受け受音
器3に達する。受音器3において受音された信号Y(z)
は出力端4から出力される。ここで、受音器3において
受音された信号Y(z) は、
Assuming that the sound signal generated by the speaker 2 is X (z), the signal X (z) reaches the sound receiver 3 under the influence of the acoustic transfer characteristic H (z). Signal Y (z) received by the sound receiver 3
Is output from the output terminal 4. Here, the signal Y (z) received by the sound receiver 3 is

【0005】[0005]

【数1】 と表現される。音響伝達特性H(z) は、室内での壁によ
る反射などの情報をすべて含んでおり、同一室内空間内
においても話者2や受音器3の空間的位置が異なればそ
の特性が異なる。通常、X(z) がH(z) を通過してきた
信号Y(z) は残響が付加された残響信号、あるいは反響
信号と呼ばれる。
[Equation 1] Is expressed as The acoustic transfer characteristic H (z) includes all the information such as the reflection by the wall in the room. Even within the same room space, the characteristics differ if the spatial positions of the speaker 2 and the sound receiver 3 are different. Usually, a signal Y (z) in which X (z) has passed through H (z) is called a reverberation signal with reverberation or a reverberation signal.

【0006】残響抑圧手法とは、音響伝達特性H(z) を
通過して受音された信号Y(z) からH(z) の成分を除去
し、話者2の発生した残響の付加される以前の信号X
(z) を復元する手法を意味する。
The reverberation suppressing method is to add the reverberation generated by the speaker 2 by removing the H (z) component from the signal Y (z) received by passing through the acoustic transfer characteristic H (z). Signal X before
It means a method of restoring (z).

【0007】〔逆フィルタによる残響抑圧〕図5は、従
来の残響除去手法の例の1つを説明する図である。11
は残響音声Y(z) 、12は音響伝達特性測定部、13は
逆フィルタ計算部、14は逆フィルタ畳み込み部、15
は残響除去後の信号X′(z) である。
[Reverberation Suppression by Inverse Filter] FIG. 5 is a diagram for explaining one example of a conventional dereverberation method. 11
Is a reverberant speech Y (z), 12 is an acoustic transfer characteristic measuring unit, 13 is an inverse filter calculation unit, 14 is an inverse filter convolution unit, 15
Is the signal X '(z) after dereverberation.

【0008】まず、音響伝達特性測定部12では、話者
の位置にスピーカなどの既知の入力信号が入力できる音
源を置き、このスピーカと受音器を用い音響伝達特性の
測定を行う。これを図6を用いて説明する。図6におい
て、前述した図4の要素に同一の符号を付けた。5は入
力端、6はスピーカである。まず、スピーカ6を図4の
話者2と同じ位置に設置する。図5の音響伝達特性測定
部12は入力端5に、例えば白色性の信号W(z) を入力
する。出力端4で観測される信号Y(z) はこの時、
First, in the acoustic transfer characteristic measuring section 12, a sound source such as a speaker capable of inputting a known input signal is placed at the position of the speaker, and the acoustic transfer characteristic is measured using the speaker and the sound receiver. This will be described with reference to FIG. 6, the elements in FIG. 4 described above are designated by the same reference numerals. Reference numeral 5 is an input terminal, and 6 is a speaker. First, the speaker 6 is installed at the same position as the speaker 2 in FIG. The acoustic transfer characteristic measuring unit 12 of FIG. 5 inputs, for example, a whiteness signal W (z) to the input end 5. At this time, the signal Y (z) observed at the output terminal 4 is

【0009】[0009]

【数2】 となる。ここで、W(z) は既知であるから、音響伝達特
性測定部12は例えば、
[Equation 2] Becomes Here, since W (z) is already known, the acoustic transfer characteristic measuring unit 12 is, for example,

【0010】[0010]

【数3】 として、音響伝達特性H(z) を測定する。図5における
音響伝達特性測定部12では、以上説明した方式で音響
伝達特性H(z) を事前に測定する。次に、逆フィルタ計
算部13では、H(z) の逆フィルタとして、I(z) =1
/H(z) を計算する。逆フィルタ畳み込み部14では、
このI(z) と残響信号Y(z) を畳み込み、X′(z) =Y
(z) I(z) を出力する。
(Equation 3) As a result, the acoustic transfer characteristic H (z) is measured. The acoustic transfer characteristic measuring unit 12 in FIG. 5 measures the acoustic transfer characteristic H (z) in advance by the method described above. Next, in the inverse filter calculation unit 13, I (z) = 1 as an inverse filter of H (z).
Calculate / H (z). In the inverse filter convolution unit 14,
This I (z) is convolved with the reverberation signal Y (z), and X '(z) = Y
(z) Outputs I (z).

【0011】ここで、I(z) が正確に1/H(z) であれ
ば、X′(z) =Y(z) I(z) =H(z) X(z) /H(z) =
X(z) となり、原信号X(z) を残響除去信号として得る
ことができる。
If I (z) is exactly 1 / H (z), then X '(z) = Y (z) I (z) = H (z) X (z) / H (z ) =
X (z), and the original signal X (z) can be obtained as a dereverberation signal.

【0012】しかしながら、この方法では、あらかじめ
話者2の発生位置での音響伝達特性を測定する必要があ
るという問題がある。また、話者2の位置が変化する毎
に、音響伝達特性を測定し直す必要があるという問題点
を持つ。さらに、音響伝達特性H(z) が非最小位相成分
を持つので、逆フィルタI(z) が安定に計算できない場
合もあるという問題点も持つ。
However, this method has a problem that it is necessary to measure the acoustic transfer characteristics at the position where the speaker 2 is generated in advance. In addition, there is a problem in that it is necessary to remeasure the acoustic transfer characteristics each time the position of the speaker 2 changes. Further, since the acoustic transfer characteristic H (z) has a non-minimum phase component, the inverse filter I (z) may not be calculated stably in some cases.

【0013】〔最小位相逆フィルタによる残響抑圧〕こ
の問題を解決するための手法として、音響伝達特性の測
定を必要としない以下に示す第2の従来方法が提案され
ている。
[Reverberation Suppression by Minimum Phase Inverse Filter] As a method for solving this problem, the following second conventional method which does not require measurement of acoustic transfer characteristics has been proposed.

【0014】この方式は、Y(z) =H(z) X(z) なる残
響音声の対数値を取ると、
In this system, when the logarithmic value of the reverberant voice Y (z) = H (z) X (z) is taken,

【0015】[0015]

【数4】 と分離表現可能なことに着目し、logX(z) の代わり
に事前に収録されて同一話者の発話信号X2(z)を使用し
て、
(Equation 4) Focusing on the fact that it can be expressed separately, using the pre-recorded utterance signal X 2 (z) of the same speaker instead of logX (z),

【0016】[0016]

【数5】 として、H′(z) を求めようとする手法である。話者2
が同一の場合には、一般にX(z) とX2(z)の周波数振幅
特性は似るが、位相特性は一致しない。そこで、上式に
おいては、その振幅成分すなわち絶対値にのみ着目して
操作が行われる。つまり、
(Equation 5) Is a method for trying to obtain H '(z). Speaker 2
In general, the frequency amplitude characteristics of X (z) and X 2 (z) are similar, but the phase characteristics do not match. Therefore, in the above equation, the operation is performed focusing only on the amplitude component, that is, the absolute value. That is,

【0017】[0017]

【数6】 を計算する。ここで、|*|は絶対値を意味する。H′
(z) の位相成分は、H′(z) を最小位相関数であると仮
定して、ヒルベルト変換の関係を用いて決定する。この
方式によれば、音響伝達特性H(z) を測定することな
く、その近似値H′(z) を決定することができ、H′
(z) の逆特性1/H′(z) を残響信号Y(z) に畳み込む
ことによって、残響抑圧信号X′(z) を得ることができ
る。
(Equation 6) Is calculated. Here, | * | means an absolute value. H '
The phase component of (z) is determined using the Hilbert transform relationship, assuming that H '(z) is the minimum phase function. According to this method, the approximate value H '(z) can be determined without measuring the acoustic transfer characteristic H (z), and H'
By convolving the inverse characteristic 1 / H '(z) of (z) into the reverberation signal Y (z), the dereverberation signal X' (z) can be obtained.

【0018】これを図7を用いて説明する。図7におい
て、21は残響音声Y(z) 、22は原音声収録部、2
3,25は絶対値対数計算部、24は原音声X2(z)、2
6は減算部、27はヒルベルト変換部、28はIDFT
(逆離散的フーリエ変換)計算部、29は窓関数処理
部、30はDFT(離散的フーリエ変換)計算部、31
は指数関数変換部、32は逆フィルタ計算部、33は逆
フィルタ畳み込み部、34は残響除去信号である。
This will be described with reference to FIG. In FIG. 7, 21 is the reverberant sound Y (z), 22 is the original sound recording unit, 2
3, 25 are absolute value logarithmic calculation units, 24 are original speech X 2 (z), 2
6 is a subtraction unit, 27 is a Hilbert transform unit, 28 is an IDFT
(Inverse Discrete Fourier Transform) calculation unit, 29 is a window function processing unit, 30 is a DFT (Discrete Fourier Transform) calculation unit, 31
Is an exponential function conversion unit, 32 is an inverse filter calculation unit, 33 is an inverse filter convolution unit, and 34 is a dereverberation signal.

【0019】まず、事前に室内でこれから発声する話者
の原音声S(z) を原音声収録部22にて収録する。この
時、話者の内容は残響信号の内容と一致している必要は
ない。次に、残響音声Y(z) と原音声S(z) はそれぞれ
絶対値対数計算部23,25に渡され、絶対値対数値l
og′|Y(z)|とlog|X2(z)|が計算される。次
に、減算部26では、log|Y(z)|とlog|X
2(z)|の差から音響伝達特性H(z) の推定値H′(z) の
絶対値対数値が、
First, the original voice S (z) of the speaker to be uttered in the room is recorded in advance in the original voice recording section 22. At this time, the content of the speaker does not have to match the content of the reverberation signal. Next, the reverberant speech Y (z) and the original speech S (z) are passed to the absolute value logarithmic calculation units 23 and 25, respectively, and the absolute value logarithmic value l
og ′ | Y (z) | and log | X 2 (z) | are calculated. Next, in the subtraction unit 26, log | Y (z) | and log | X
From the difference of 2 (z) |, the absolute value logarithmic value of the estimated value H ′ (z) of the acoustic transfer characteristic H (z) is

【0020】[0020]

【数7】 として計算される。log|H′(z)|は、ヒルベルト
変換部27に渡され位相特性も含めたlogH′(z) に
変換される。ヒルベルト変換部27では、具体的にはま
ず、IDFT計算部28で、log|H′(z)|の逆離
散的フーリエ変換が施され、h′(n)が計算される。
(Equation 7) Is calculated as log | H ′ (z) | is passed to the Hilbert transform unit 27 and transformed into logH ′ (z) including the phase characteristic. In the Hilbert transform unit 27, specifically, the IDFT calculation unit 28 first performs an inverse discrete Fourier transform of log | H ′ (z) | to calculate h ′ (n).

【0021】次に、窓関数処理部29で、n=0では
1、n=1からN/2−1までは2、n=N/2からN
−1までは0である窓関数がh′(n)に施される。こ
こで、Nは信号の長さを表す。窓関数処理部29で窓関
数が施された信号hm′(n)はDFT計算部30に渡
され、hm′(n)を離散的フーリエ変換することによ
って、logH′(z) が計算される。 logH′(z)
は、指数関数変換部31に渡され、H′(z) =exp
(logH′(z) )が計算される。これにより、最小位
相特性を持つH′(z) が推定される。この結果は、逆フ
ィルタ計算部32に渡され、逆フィルタI(z) =1/
H′(z) が計算され、さらに逆フィルタ畳み込み部33
に渡される。逆フィルタ畳み込み部33では、I(z) と
Y(z) の畳み込みが実行され、残響除去信号34のX′
(z) =I(z) Y(z) が出力される。ここで、I(z) =1
/H′(z) ,Y(z) =H(z) X(z) であるから、X′
(z) =H(z) /H′(z) X(z) となる。H(z) が一般的
に非最小位相関数であり、H′(z)が最小位相関数であ
ることを考慮すれば、X′(z) は周波数振幅特性はX
(z) と一致するが、位相特性は非最小位相成分だけ一致
しない。しかし、一般に非最小位相成分は少ないので、
X(z) は残響が抑圧された信号となる。
Next, in the window function processing unit 29, it is 1 when n = 0, 2 when n = 1 to N / 2, and n = N / 2 to N.
A window function of 0 up to -1 is applied to h '(n). Here, N represents the length of the signal. The signal hm '(n) subjected to the window function in the window function processing unit 29 is passed to the DFT calculation unit 30, and logH' (z) is calculated by performing a discrete Fourier transform of hm '(n). . logH '(z)
Is passed to the exponential function conversion unit 31, and H ′ (z) = exp
(Log H '(z)) is calculated. As a result, H '(z) having the minimum phase characteristic is estimated. This result is passed to the inverse filter calculation unit 32, and the inverse filter I (z) = 1 /
H ′ (z) is calculated, and the inverse filter convolution unit 33 is further added.
Passed to. In the inverse filter convolution unit 33, I (z) and Y (z) are convolved, and X'of the dereverberation signal 34 is executed.
(z) = I (z) Y (z) is output. Where I (z) = 1
/ H '(z), Y (z) = H (z) X (z), so X'
(z) = H (z) / H '(z) X (z). Considering that H (z) is generally a non-minimum phase function and H '(z) is a minimum phase function, X' (z) has a frequency amplitude characteristic of X.
It matches (z), but the phase characteristics do not match only the non-minimum phase component. However, since there are generally few non-minimum phase components,
X (z) is a signal with reverberation suppressed.

【0022】以上説明した方式は、残響抑圧後の信号
X′(z) が非最小位相成分だけX(z)と一致しないが、
室内伝達特性H(z) の測定を必要としないという利点を
持つ。さらに、H′(z) が最小位相関数なので、その逆
フィルタI(z) が安定に求められるという利点を持つ。
In the above-described method, the signal X '(z) after dereverberation does not match X (z) by only the non-minimum phase component.
This has the advantage that it is not necessary to measure the room transfer characteristic H (z). Further, since H '(z) is the minimum phase function, there is an advantage that the inverse filter I (z) can be stably obtained.

【0023】しかしながら、この方式では室内伝達関数
の測定を必要としない代わりに、残響室内で発話する同
一話者の原音声を事前に収録しておかなければならない
というデメリットを持つ。これは、話者2が交代する度
に、その特定の話者の原音声を収録しておく必要を生じ
させる。
However, this method has a demerit that the measurement of the room transfer function is not required, but the original voice of the same speaker who speaks in the reverberation room must be recorded in advance. This causes the original voice of the specific speaker to be recorded every time the speaker 2 changes.

【0024】[0024]

【発明が解決しようとする課題】以上説明してきたよう
に、従来の残響抑圧装置では、事前に話者が発話する位
置での音響伝達特性の測定が必要である。あるいは、事
前に発話する同一話者の原音声を収録しておかなければ
ならないなどの問題点があった。
As described above, in the conventional reverberation suppressing apparatus, it is necessary to measure the acoustic transfer characteristics at the position where the speaker speaks in advance. Alternatively, there is a problem that the original voice of the same speaker who speaks must be recorded in advance.

【0025】本発明は、上記問題点に鑑みなされたもの
で、話者の位置での音響伝達特性の事前測定を必要とせ
ず、さらに話者の原音声の情報を知ることなく残響の抑
制を行うことを目的としている。
The present invention has been made in view of the above problems, and does not require pre-measurement of the acoustic transfer characteristic at the position of the speaker, and further suppresses reverberation without knowing the information of the original voice of the speaker. The purpose is to do.

【0026】[0026]

【課題を解決するための手段】本発明にかかる残響抑圧
方法および装置は、話者の位置での音響伝達特性H(z)
を測定する代わりに、同一室内での話者位置とは異なる
任意の位置での音響伝達特性H2(z)を測定し、両者に共
通する成分に着目して、残響抑圧フィルタを求めるとい
う手法である。
SUMMARY OF THE INVENTION A reverberation suppressing method and apparatus according to the present invention has an acoustic transfer characteristic H (z) at a speaker position.
Instead of measuring, the method of measuring the acoustic transfer characteristic H 2 (z) at an arbitrary position different from the speaker position in the same room, focusing on the components common to both, and obtaining the dereverberation filter. Is.

【0027】[0027]

【作用】本発明においては、まず、残響信号を短時間区
間に分割し、それぞれの区間で線形予測係数(Linier P
redictive Coefficient:LPC係数)を求め、その線
形予測係数を残響信号に畳み込んで、残差信号を求め
る。この残差信号に、同一室内で事前に測定した音響伝
達特性の周波数振幅特性の概形を畳み込み、さらに、残
差信号に残るピッチの影響を取り除く。このようにして
補正された残差信号から長時間区間でのAR(Autoregr
essive:自己回帰)係数を求め、これを残響抑圧フィル
タとして用いることを特徴とする。本発明は、事前に音
響伝達特性の測定を要するが、その測定位置は話者の発
話位置である必要がないため、話者が発話位置を移動し
ても再度測定する必要がなく、さらに、原音声の情報を
必要としないという利点を持つ。
In the present invention, first, the reverberation signal is divided into short time intervals, and the linear prediction coefficient (Linier P
redictive coefficient (LPC coefficient), and the linear prediction coefficient is convoluted with the reverberation signal to obtain the residual signal. The residual signal is convolved with the outline of the frequency-amplitude characteristic of the acoustic transfer characteristic measured in advance in the same room, and the effect of the pitch remaining in the residual signal is removed. From the residual signal corrected in this way, AR (Autoregr
essive: autoregressive) coefficient is obtained and this is used as a dereverberation filter. The present invention requires the measurement of the acoustic transfer characteristics in advance, but since the measurement position does not have to be the speaker's utterance position, there is no need to measure again even if the speaker moves the utterance position, and further, It has the advantage of not requiring the information of the original voice.

【0028】以下ではまず、本発明の残響抑圧手法の基
本となる音響伝達関数のARモデルについて説明する。
ARモデルとは、
First, the AR model of the acoustic transfer function, which is the basis of the dereverberation method of the present invention, will be described below.
What is AR model?

【0029】[0029]

【数8】 で表されるモデルであり、少ないパラメータで共振系を
表現することが可能であるという利点を持つ。ここで、
n がAR係数と呼ばれる係数、Cは定数、PはARモ
デルの次数である。このARモデルは最小位相関数であ
るため、非最小位相関数である室内伝達特性に対しては
厳密なARモデル化を行うことはできない。しかし、真
の音響伝達特性H(z) とARモデルの伝達関数との間の
誤差、
(Equation 8) Is a model represented by, and has an advantage that a resonance system can be expressed with a small number of parameters. here,
a n is a coefficient called an AR coefficient, C is a constant, and P is the order of the AR model. Since this AR model is a minimum phase function, strict AR modeling cannot be performed for the indoor transfer characteristic that is a non-minimum phase function. However, the error between the true acoustic transfer characteristic H (z) and the transfer function of the AR model,

【0030】[0030]

【数9】 の2乗期待値を最小とするようにAR係数を決定するこ
とにより、真の音響伝達特性H(z) をARモデルHP(z)
で近似表現することができる。さて、2乗誤差最小の規
範でのAR係数の具体的な求め方について述べる。今、
(8)式のAR係数を用いて時間領域での真の音響伝達
特性H(z) のインパルス応答h(k) を記述すると、
[Equation 9] Of by determining AR coefficients so as to minimize the square expected, the true acoustic transfer function H (z) the AR model H P (z)
Can be approximated by Now, a specific method of obtaining the AR coefficient based on the criterion of the square error minimum will be described. now,
When the impulse response h (k) of the true acoustic transfer characteristic H (z) in the time domain is described using the AR coefficient of the equation (8),

【0031】[0031]

【数10】 となる。ここで、e(k) は式誤差(予測残差)と呼ばれ
る。この式誤差の2乗期待値、
(Equation 10) Becomes Here, e (k) is called a formula error (prediction residual). The squared expected value of this equation error,

【0032】[0032]

【数11】 を最小とするAR係数an は、[Equation 11] The AR coefficient a n that minimizes

【0033】[0033]

【数12】 を満たすan として求められ、最小2乗解と呼ばれる。
このようにして決定されたAR係数を持つARモデル伝
達特性HP(z)の逆特性
(Equation 12) Is obtained as a n satisfying the above condition and is called a least squares solution.
Inverse characteristics of the thus AR model transfer characteristic with AR coefficients determined by H P (z)

【0034】[0034]

【数13】 をフィルタ特性として持つFIR(Finite duration im
pulse-response)フィルタを真の音響伝達特性H(z) に
畳み込んだ結果は、最小化された式誤差
(Equation 13) FIR (Finite duration im having
The result of convolving the pulse-response) filter with the true acoustic transfer characteristic H (z) is the minimized equation error.

【0035】[0035]

【数14】 となる。ここで、最小2乗解のAR係数an に対する式
誤差e(k) は、入力信号であるインパルスと真の音響伝
達関数をAR係数で表現する時に生じる白色性の誤差と
の和の信号となることが知られている。すなわち、最小
2乗解のAR係数an をフィルタ係数として持つ特性A
(z) をH(z) に畳み込んだ結果は、周波数振幅特性は平
坦であり、時間領域においてもインパルスに近い形状に
なる。以下ではAR係数をフィルタ係数として持つ特性
A(z) をAR特性と呼ぶ。
[Equation 14] Becomes Here, the equation error e (k) with respect to the AR coefficient a n of the least-squares solution is a signal of the sum of the impulse that is the input signal and the whiteness error that occurs when the true acoustic transfer function is represented by the AR coefficient. Is known to be. That is, the characteristic A having the AR coefficient a n of the least squares solution as the filter coefficient
As a result of convolving (z) with H (z), the frequency amplitude characteristic is flat, and the shape is close to an impulse even in the time domain. Hereinafter, the characteristic A (z) having the AR coefficient as the filter coefficient will be referred to as the AR characteristic.

【0036】本発明では、この性質を用い、室内伝達特
性H(z) をARモデル化することによって得られるA
(z) を残響抑圧フィルタとして利用する。
In the present invention, this property is used to obtain A obtained by AR modeling the indoor transfer characteristic H (z).
(z) is used as a dereverberation filter.

【0037】さらに、AR係数は、音源が白色信号の場
合には、音響伝達特性H(z) が分からなくても、残響信
号のみから推定できるという利点を持つ。今、原信号が
白色信号W(z) でその時間領域信号がw(k) である場合
のARモデルの出力は、時間領域において、
Further, when the sound source is a white signal, the AR coefficient has an advantage that it can be estimated only from the reverberation signal without knowing the acoustic transfer characteristic H (z). Now, when the original signal is the white signal W (z) and the time domain signal is w (k), the output of the AR model is

【0038】[0038]

【数15】 と表せる。ここで、(Equation 15) Can be expressed as here,

【0039】[0039]

【数16】 の2乗期待値を最小にするようにAR係数an を決定す
ると、e(k) はw(k) に一致し、AR係数an は(1
2)式で求めた場合と一致する。
(Equation 16) When the AR coefficient a n is determined so as to minimize the squared expected value of, the e (k) matches w (k), and the AR coefficient a n is (1
This agrees with the case of the formula (2).

【0040】さて、一般に話者の発生した音声は白色信
号ではなく、有色性の信号であるため、上記のように原
信号を白色信号と仮定してAR係数を決定することはで
きない。以下では、有色性の音声信号から室内伝達特性
のAR係数を決定する手法について述べる。
In general, since the voice generated by the speaker is not a white signal but a chromatic signal, the AR coefficient cannot be determined by assuming the original signal as a white signal as described above. Hereinafter, a method of determining the AR coefficient of the indoor transfer characteristic from the chromatic audio signal will be described.

【0041】今、音声信号X(z) は有色性を決定する声
道伝達関数(包絡)D(z) と白色性の駆動音源(原音
声)S(z) 、室内伝達特性H(z) はマクロ的な概形(包
絡)G(z) と微細な構造F(z) で表現できると仮定す
る。すなわち、残響音声Y(z) は、
Now, the voice signal X (z) is a vocal tract transfer function (envelope) D (z) that determines chromaticity, a white driving source (original voice) S (z), and a room transfer characteristic H (z). Is assumed to be represented by a macroscopic outline (envelope) G (z) and a fine structure F (z). That is, the reverberant voice Y (z) is

【0042】[0042]

【数17】 で表現できるとする。ここで、室内伝達関数H(z) の概
形G(z) は、同一室内の他の位置での室内伝達特性の概
形とほぼ等しい。
[Equation 17] It can be expressed by. Here, the general shape G (z) of the indoor transfer function H (z) is almost equal to the general shape of the indoor transfer characteristic at other positions in the same room.

【0043】まず、AR係数を推定するために、音声信
号X(z) を白色化することを考える。すなわち残響音声
Y(z) から有色性を表すD(z) を除去し、R(z) =G
(z) F(z) S(z) =H(z) S(z) とすれば前述した(1
6)式のy(k) をR(z) に置き換えて、H(z) のAR係
数を求めることができる。さて、D(z) を除去するに
は、具体的にはY(z) を短時間フレーム(例えば、16
ms)毎にLPC分析を行えば良い。しかし、LPC分
析後の残差信号R(z) からAR係数を求める場合には、
2つの問題が生じる。1つ目は、残差信号R(z) が完全
に白色ではなく、駆動音源S(z) のピッチの影響として
ピークが残る点である。2つ目は、LPC分析を行うと
Y(z) からD(z) とともに室内伝達特性H(z) の概形G
(z) も除去されてしまい、残差信号R(z) =F(z) S
(z) となってしまう点である。これからAR係数を求め
ると、H(z) のAR係数ではなく、F(z) S(z) のAR
係数が求められることになる。そこで、本発明では残差
信号R(z) に残る最も強いピークに関しては、ノッチフ
ィルタN(z) で処理を施す。さらに、あらかじめ測定可
能な位置の室内伝達関数からLPC分析と同じ次数のA
R係数として概形G′(z)を求め、これらを用いてR″
(z) =G′(z) F(z) N(z) S(z) としてからAR係数
を求める。このようにしてA(z) H(z) X(z) =X′
(z) が求められる。これは、共振によるピークを抑圧し
ており、残響も減ったものとなる。
First, consider whitening the audio signal X (z) in order to estimate the AR coefficient. That is, D (z) representing chromaticity is removed from the reverberant voice Y (z), and R (z) = G
If (z) F (z) S (z) = H (z) S (z), then (1)
The AR coefficient of H (z) can be obtained by replacing y (k) in the equation 6) with R (z). Now, in order to remove D (z), specifically, Y (z) is written in a short time frame (for example, 16
LPC analysis may be performed every (ms). However, when obtaining the AR coefficient from the residual signal R (z) after the LPC analysis,
Two problems arise. The first is that the residual signal R (z) is not completely white and a peak remains as an effect of the pitch of the driving sound source S (z). Second, the LPC analysis shows the outline G of the room transfer characteristic H (z) along with Y (z) to D (z).
(z) is also removed, and the residual signal R (z) = F (z) S
It is a point that becomes (z). When the AR coefficient is obtained from this, it is not the AR coefficient of H (z) but the AR of F (z) S (z).
The coefficient will be obtained. Therefore, in the present invention, the notch filter N (z) is applied to the strongest peak remaining in the residual signal R (z). Furthermore, from the room transfer function at a position that can be measured in advance, A of the same order as in LPC analysis is used.
The rough shape G '(z) is calculated as the R coefficient, and R'
(z) = G '(z) F (z) N (z) S (z) Then, the AR coefficient is obtained. Thus, A (z) H (z) X (z) = X '
(z) is required. This suppresses the peak due to resonance and reduces reverberation.

【0044】[0044]

【実施例】以下、本発明にかかる残響抑圧方法および装
置の実施例をについて構成ならびに動作を示す図1を用
いて説明する。図1において、41はY(z) の残響音
声、42はLPC係数計算部、43は残差信号計算部、
44は周波数ピーク計算部、45はノッチフィルタ計算
部、46は周波数ピーク補正部、47は概形補正部、4
8はAR係数推定部、49は残響抑圧フィルタ畳み込み
部、50は残響除去信号X′(z) 、51は同一室内での
他の位置でのH2(z)の音響伝達特性測定部、52は概形
推定部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a dereverberation suppressing method and apparatus according to the present invention will be described below with reference to FIG. 1 showing the configuration and operation. In FIG. 1, 41 is a Y (z) reverberant voice, 42 is an LPC coefficient calculation unit, 43 is a residual signal calculation unit,
44 is a frequency peak calculation unit, 45 is a notch filter calculation unit, 46 is a frequency peak correction unit, 47 is a rough shape correction unit, 4
8 is an AR coefficient estimation unit, 49 is a dereverberation filter convolution unit, 50 is a dereverberation signal X '(z), 51 is an acoustic transfer characteristic measurement unit of H 2 (z) at another position in the same room, 52 Is the rough shape estimation unit.

【0045】まず、本発明では、音響伝達特性測定部5
1で、同一室内の他の位置での残響路の音響伝達特性H
2(z)をあらかじめ測定しておく。次に、概形推定部52
では、測定された音響伝達特性H2(z)に対し、残響音声
から残差信号を求める時に使用するのと同じ次数でLP
C(線形予測符号化)分析を行い、その概形G′(z)を
求める。
First, in the present invention, the acoustic transfer characteristic measuring unit 5
1, the acoustic transfer characteristics H of the reverberation path at other positions in the same room
Measure 2 (z) in advance. Next, the outline estimation unit 52
Then, with respect to the measured acoustic transfer characteristic H 2 (z), LP with the same order as used when obtaining the residual signal from the reverberant speech is used.
C (Linear Predictive Coding) analysis is performed to find its outline G '(z).

【0046】次に、LPC係数計算部42では、実際に
収音された残響音声41の残響信号Y(z) のLPC係数
D′(z) を求める。次に、残差信号計算部43では、こ
のLPC係数D′(z) の逆特性を残響音声信号に畳み込
み、残差信号R(z) を得る。ここで、前述したようにL
PC係数D′(z) には、音声の有色性を表す概形D(z)
と音響伝達特性の概形G(z) が含まれているため、畳み
込まれた出力R(z) は、R(z) =F(z) S(z) となって
しまっている。次に、周波数ピーク計算部44では、R
(z) の中に残る音声のピッチ成分の影響によるピークを
探す。具体的には、残差信号R(z) の周波数振幅特性の
最大振幅とその周波数を探索し、記録する。さらに、周
波数振幅特性の平均値を計算し、記録する。ノッチフィ
ルタ計算部45では、周波数ピーク計算部44の結果に
基づき、最大振幅値を平均振幅値にするノッチフィルタ
を生成する。周波数ピーク補正部46では、残差信号計
算部43の出力R(z) にノッチフィルタN(z) を畳み込
み、周波数振幅特性が平坦となる補正残差信号R′(z)
=N(z) R(z) を得る。さらに、概形補正部47では、
概形推定部52で推定された他の伝達特性の概形G′
(z) をR′(z) に畳み込み、補正残差信号R″(z) =
G′(z) R′(z) =G′(z) N(z) R(z) =G′(z) F
(z) N(z) S(z) を得る。AR係数推定部48では、こ
のR″(z) の時間領域信号r″(n) を(16)式のy
(n) と置き換えてAR係数を推定する。信号N(z) S
(z) がピッチの影響が取り除かれたほぼ白色性の信号で
あること、G′(z) がG(z) とほぼ等しいことを考慮す
れば、R″(z) から求めたAR係数anは、H(z) をA
Rモデル化したHP(z)のAR係数とほぼ一致することが
分かる。残響抑圧フィルタ畳み込み部49では、AR特
性A(z) を残響信号Y(z) に畳み込み、残響抑圧処理後
の信号X′(z) を得る。
Next, the LPC coefficient calculating section 42 obtains the LPC coefficient D '(z) of the reverberation signal Y (z) of the reverberant voice 41 actually collected. Next, the residual signal calculation unit 43 convolves the inverse characteristic of the LPC coefficient D '(z) with the reverberation speech signal to obtain the residual signal R (z). Here, as described above, L
The PC coefficient D '(z) has a general shape D (z) that represents the chromaticity of speech.
And the acoustic transfer characteristic outline G (z) are included, the convolved output R (z) is R (z) = F (z) S (z). Next, in the frequency peak calculation unit 44, R
Find the peak due to the influence of the pitch component of the voice remaining in (z). Specifically, the maximum amplitude of the frequency amplitude characteristic of the residual signal R (z) and its frequency are searched and recorded. Further, the average value of the frequency amplitude characteristic is calculated and recorded. The notch filter calculation unit 45 generates a notch filter that sets the maximum amplitude value to the average amplitude value based on the result of the frequency peak calculation unit 44. The frequency peak correction unit 46 convolves the output R (z) of the residual signal calculation unit 43 with the notch filter N (z) to obtain a corrected residual signal R '(z) with a flat frequency amplitude characteristic.
= N (z) R (z) is obtained. Further, in the outline correction unit 47,
Other transfer characteristic outline G ′ estimated by the outline estimating unit 52.
(z) is convolved with R '(z), and the corrected residual signal R "(z) =
G '(z) R' (z) = G '(z) N (z) R (z) = G' (z) F
(z) N (z) S (z) is obtained. The AR coefficient estimator 48 calculates the time domain signal r ″ (n) of R ″ (z) as y in equation (16).
The AR coefficient is estimated by replacing (n). Signal N (z) S
Considering that (z) is a substantially white signal in which the influence of pitch is removed, and G ′ (z) is almost equal to G (z), the AR coefficient a obtained from R ″ (z) n is H (z)
It can be seen that the AR coefficient of the R modeled HP (z) is almost the same. The dereverberation filter convolution unit 49 convolves the AR characteristic A (z) with the reverberation signal Y (z) to obtain a signal X '(z) after dereverberation processing.

【0047】本発明の効果を明らかにするために、16
kHzサンプリングで収音した5秒間の男性音声に、残
響時間250msの部屋で音源・受音点距離3mで測定
した音響伝達特性を畳み込んだ残響音声を用いて計算機
シミュレーションを行った。
In order to clarify the effect of the present invention, 16
A computer simulation was performed using reverberant voice in which a male voice for 5 seconds picked up by kHz sampling was convoluted with acoustic transfer characteristics measured at a sound source / sound receiving point distance of 3 m in a room with a reverberation time of 250 ms.

【0048】まず、残響信号に対し、フレーム長16m
sで18次のLPC分析を行い、残差信号R(z) を求め
た。これに音源位置から1m離れた点であらかじめ測定
した音響伝達特性から18次のAR係数として求めた概
形G′(z) を畳み込み、さらにノッチフィルタ処理を施
し、補正残差信号を求めた。次に、この補正残差信号か
ら、300次のAR係数an を推定した。
First, with respect to the reverberation signal, the frame length is 16 m.
An 18th-order LPC analysis was performed with s to obtain the residual signal R (z). A contour G '(z) obtained as an 18th-order AR coefficient from the acoustic transfer characteristics measured in advance at a point 1 m away from the sound source position was convoluted with this, and notch filtering was performed to obtain a corrected residual signal. Next, the 300th-order AR coefficient a n was estimated from this corrected residual signal.

【0049】推定したAR特性A(z) を元の音響伝達特
性に畳み込んだ結果と、元の音響伝達特性の周波数振幅
特性を図2に示す。61は元の真の音響伝達特性の周波
数振幅特性、62は残響抑圧処理後の音響伝達特性の周
波数振幅特性である。元の音響伝達特性61に比べ、残
響抑圧処理後の音響伝達特性62では、1kHz付近の
山が抑えられ、全体的に周波数特性が平坦化されている
様子が分かる。
FIG. 2 shows the result of convolving the estimated AR characteristic A (z) with the original acoustic transfer characteristic and the frequency-amplitude characteristic of the original acoustic transfer characteristic. Reference numeral 61 is the frequency amplitude characteristic of the original true acoustic transfer characteristic, and 62 is the frequency amplitude characteristic of the acoustic transfer characteristic after the dereverberation process. It can be seen that in the acoustic transfer characteristic 62 after the dereverberation process, the peaks near 1 kHz are suppressed and the frequency characteristic is flattened as a whole, compared with the original acoustic transfer characteristic 61.

【0050】図3に、元の真の音響伝達特性のインパル
ス応答波形71と、インパルス応答波形72を示す。1
5msから25msにかけての反射音の振幅が抑えられ
ている様子が分かる。
FIG. 3 shows an impulse response waveform 71 and an impulse response waveform 72 of the original true acoustic transfer characteristic. 1
It can be seen that the amplitude of the reflected sound is suppressed from 5 ms to 25 ms.

【0051】[0051]

【発明の効果】本発明にかかる残響抑圧方法および装置
は、対象とする音響系内(例えば室内)において収音さ
れた残響音声信号から残差信号を求め、この残差信号に
対しピッチ成分の除去処理と、他の位置での測定した音
響伝達特性の概形の畳み込み処理の補正を施し、補正さ
れた残差信号からAR係数を求め、これを残響抑制フィ
ルタ係数として用いることを特徴とする残響抑制手法で
ある。本発明を、残響のある室内で収音された残響音声
信号に適用すると、周波数領域では特性が平坦化され、
時間軸上においてもインパルスに近い形となり、音声信
号の明瞭性が向上する。さらに、本発明は、従来の残響
抑圧手法とは異なり、原信号の性質や、話者と受音器の
間の音響伝達特性を知る必要がないため、話者の交代
や、話者位置の偏向に対する追従性能を大幅に向上させ
る。
The reverberation suppressing method and apparatus according to the present invention obtain a residual signal from a reverberant voice signal picked up in a target acoustic system (for example, in a room). It is characterized in that the removal processing and the convolution processing of the approximate shape of the acoustic transfer characteristics measured at other positions are corrected, an AR coefficient is obtained from the corrected residual signal, and this is used as a dereverberation filter coefficient. This is a reverberation suppression method. When the present invention is applied to a reverberant voice signal picked up in a reverberant room, the characteristics are flattened in the frequency domain,
Even on the time axis, the shape becomes close to an impulse, and the clarity of the audio signal is improved. Furthermore, unlike the conventional dereverberation method, the present invention does not need to know the characteristics of the original signal and the acoustic transfer characteristics between the speaker and the sound receiver, so that the change of the speaker and the speaker position Greatly improves the tracking performance for deflection.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の残響抑圧処理方法および装置を説明す
る図である。
FIG. 1 is a diagram illustrating a dereverberation processing method and apparatus according to the present invention.

【図2】本発明の効果を周波数振幅特性で示す図であ
る。
FIG. 2 is a diagram showing an effect of the present invention by a frequency amplitude characteristic.

【図3】本発明の効果をインパルス応答波形で示す図で
ある
FIG. 3 is a diagram showing an effect of the present invention with an impulse response waveform.

【図4】残響音声信号を説明する図である。FIG. 4 is a diagram illustrating a reverberation audio signal.

【図5】従来の逆フィルタを用いた残響抑制処理方法を
説明する図である。
FIG. 5 is a diagram illustrating a conventional reverberation suppression processing method using an inverse filter.

【図6】音響伝達特性の測定方法の一例を説明する図で
ある。
FIG. 6 is a diagram illustrating an example of a method of measuring acoustic transfer characteristics.

【図7】従来の最小位相逆フィルタを用いた残響抑圧処
理方法を説明する図である。
FIG. 7 is a diagram illustrating a conventional dereverberation processing method using a minimum phase inverse filter.

【符号の説明】[Explanation of symbols]

41 残響音声 42 LPC係数計算部 43 残差信号計算部 44 周波数ピーク計算部 45 ノッチフィルタ計算部 46 周波数ピーク補正部 47 概形補正部 48 AR係数推定部 49 残響抑圧フィルタ畳み込み部 50 残響除去信号 51 音響伝達特性測定部 52 概形推定部 41 Reverberant Speech 42 LPC Coefficient Calculator 43 Residual Signal Calculator 44 Frequency Peak Calculator 45 Notch Filter Calculator 46 Frequency Peak Corrector 47 General Shape Corrector 48 AR Coefficient Estimator 49 Reverberation Suppression Filter Convolution 50 50 Dereverberation Signal 51 Acoustic transfer characteristic measurement unit 52 General shape estimation unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 音源信号が残響路を経由した後の残響信
号から前記残響路の逆特性を推定し、前記残響路の逆特
性を前記音源信号に畳み込むことによって、前記音源信
号を復元する残響抑圧装置であって、 前記残響信号を短時間区間に分割し、それぞれの区間で
線形予測係数を求めるLPC係数計算手段と、 前記線形予測係数を前記残響信号に畳み込んで、残差信
号を求める残差信号計算手段と、 前記残差信号からピッチ周波数を除去する周波数ピーク
補正手段と、 前記残響路の近傍の残響路を測定する音響伝達特性測定
手段と、 前記測定された残響路の周波数振幅特性の概形を求める
概形推定手段と、 前記周波数ピーク補正手段によりピッチ周波数が除去さ
れた信号に前記概形を畳み込む概形補正手段と、 前記畳み込まれた信号の長時間区間でのAR係数を求め
るAR係数推定手段と、 前記AR係数をフィルタ手段として持つFIRフィルタ
に前記残響信号を入力して残響を抑圧する残響抑圧フィ
ルタ畳み込み部とを有することを特徴とする残響抑圧装
置。
1. Reverberation for reconstructing the sound source signal by estimating the inverse characteristic of the reverberant path from the reverberant signal after the sound source signal has passed through the reverberant path and convolving the inverse characteristic of the reverberant path with the sound source signal. A suppressor, which divides the reverberation signal into short time sections and calculates an LPC coefficient in each section to obtain a linear prediction coefficient, and convolves the linear prediction coefficient with the reverberation signal to obtain a residual signal. Residual signal calculation means, frequency peak correction means for removing a pitch frequency from the residual signal, acoustic transfer characteristic measurement means for measuring a reverberation path near the reverberation path, and frequency amplitude of the measured reverberation path. A rough shape estimating means for obtaining a rough shape of the characteristic, a rough shape correcting means for convolving the rough shape with a signal from which the pitch frequency has been removed by the frequency peak correcting means, and a long time for the convolved signal. An AR coefficient estimating unit for obtaining an AR coefficient in a section, and a dereverberation filter convolution unit for inputting the reverberation signal to an FIR filter having the AR coefficient as a filtering unit to suppress reverberation. apparatus.
【請求項2】 残差信号計算手段で得られた残差信号の
音声のピッチ成分の影響によるピークを探す周波数ピー
ク計算手段と、この周波数ピーク計算手段の結果に基づ
き、最大振幅値を平均振幅値にして前記周波数ピーク補
正手段に入力するノッチフィルタ計算手段とを備えたこ
とを特徴とする請求項1に記載の残響抑圧装置。
2. A frequency peak calculating means for searching for a peak due to the influence of the pitch component of the voice of the residual signal obtained by the residual signal calculating means, and a maximum amplitude value as an average amplitude based on the result of this frequency peak calculating means. The reverberation suppressing apparatus according to claim 1, further comprising notch filter calculating means for inputting the value into the frequency peak correcting means.
【請求項3】 音源信号が残響路を経由した後の残響信
号から前記残響路の逆特性を推定し、前記残響路の逆特
性を前記音源信号に畳み込むことによって、前記音源信
号を復元する残響抑圧方法であって、 前記残響信号を短時間区間に分割し、それぞれの区間で
線形予測係数を求め、前記線形予測係数を前記残響信号
に畳み込んで、残差信号を求める過程と、 前記残差信号からピッチ周波数を除去する過程と、 前記残響路の近傍の残響路を測定し、前記測定された残
響路の周波数振幅特性の概形を求める過程と、 前記ピッチ周波数が除去された信号に前記概形を畳み込
む過程と、 前記畳み込まれた信号の長時間区間でのAR係数を求め
る過程と、 前記AR係数をフィルタ手段として持つFIRフィルタ
手段に前記残響信号を入力することによって、残響を抑
圧する過程とを有することを特徴とする残響抑圧方法。
3. Reverberation for reconstructing the sound source signal by estimating the reciprocal characteristic of the reverberant path from the reverberant signal after the sound source signal has passed through the reverberant path, and convolving the reciprocal characteristic of the reverberant path with the sound source signal. A method of suppressing, wherein the reverberation signal is divided into short time sections, linear prediction coefficients are obtained in each section, and the linear prediction coefficient is convoluted with the reverberation signal to obtain a residual signal, The step of removing the pitch frequency from the difference signal, measuring the reverberation path in the vicinity of the reverberation path, the step of obtaining the outline of the frequency amplitude characteristics of the measured reverberation path, the signal from which the pitch frequency is removed A step of convolving the outline, a step of obtaining an AR coefficient of the convoluted signal in a long period of time, and a step of inputting the reverberation signal to an FIR filter means having the AR coefficient as a filter means. Therefore, a reverberation suppressing method comprising: a step of suppressing reverberation.
【請求項4】 残差信号の音声のピッチ成分の影響によ
るピークを探す過程と、このピークに基づき最大振幅値
を平均振幅値にして前記残差信号からピッチ周波数を除
去する過程に入力させるノッチフィルタ過程とを有する
ことを特徴とする請求項3に記載の残響抑圧方法。
4. A notch to be input in the process of searching for a peak due to the influence of the pitch component of the voice of the residual signal and the process of removing the pitch frequency from the residual signal by setting the maximum amplitude value to the average amplitude value based on this peak. The dereverberation method according to claim 3, further comprising a filtering process.
JP8068549A 1996-03-25 1996-03-25 Reverberation suppression method and its equipment Pending JPH09261133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8068549A JPH09261133A (en) 1996-03-25 1996-03-25 Reverberation suppression method and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8068549A JPH09261133A (en) 1996-03-25 1996-03-25 Reverberation suppression method and its equipment

Publications (1)

Publication Number Publication Date
JPH09261133A true JPH09261133A (en) 1997-10-03

Family

ID=13376961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8068549A Pending JPH09261133A (en) 1996-03-25 1996-03-25 Reverberation suppression method and its equipment

Country Status (1)

Country Link
JP (1) JPH09261133A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511966A (en) * 2003-11-21 2007-05-10 オクタシク インコーポレイティッド Method and apparatus for reducing echo in a communication system
WO2007100137A1 (en) * 2006-03-03 2007-09-07 Nippon Telegraph And Telephone Corporation Reverberation removal device, reverberation removal method, reverberation removal program, and recording medium
US20110268283A1 (en) * 2010-04-30 2011-11-03 Honda Motor Co., Ltd. Reverberation suppressing apparatus and reverberation suppressing method
WO2012035594A1 (en) * 2010-09-13 2012-03-22 パイオニア株式会社 Playback device, playback method, and playback program
JP2013504283A (en) * 2009-09-07 2013-02-04 クゥアルコム・インコーポレイテッド System, method, apparatus and computer readable medium for dereverberation of multi-channel signals
US8391505B2 (en) 2009-06-04 2013-03-05 Honda Motor Co., Ltd. Reverberation suppressing apparatus and reverberation suppressing method
WO2014097470A1 (en) * 2012-12-21 2014-06-26 Toa株式会社 Reverberation removal device
US8867754B2 (en) 2009-02-13 2014-10-21 Honda Motor Co., Ltd. Dereverberation apparatus and dereverberation method
JP2015019124A (en) * 2013-07-08 2015-01-29 本田技研工業株式会社 Sound processing device, sound processing method, and sound processing program
CN105529034A (en) * 2015-12-23 2016-04-27 北京奇虎科技有限公司 Speech recognition method and device based on reverberation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511966A (en) * 2003-11-21 2007-05-10 オクタシク インコーポレイティッド Method and apparatus for reducing echo in a communication system
WO2007100137A1 (en) * 2006-03-03 2007-09-07 Nippon Telegraph And Telephone Corporation Reverberation removal device, reverberation removal method, reverberation removal program, and recording medium
US8271277B2 (en) 2006-03-03 2012-09-18 Nippon Telegraph And Telephone Corporation Dereverberation apparatus, dereverberation method, dereverberation program, and recording medium
US8867754B2 (en) 2009-02-13 2014-10-21 Honda Motor Co., Ltd. Dereverberation apparatus and dereverberation method
US8391505B2 (en) 2009-06-04 2013-03-05 Honda Motor Co., Ltd. Reverberation suppressing apparatus and reverberation suppressing method
JP2013504283A (en) * 2009-09-07 2013-02-04 クゥアルコム・インコーポレイテッド System, method, apparatus and computer readable medium for dereverberation of multi-channel signals
US20110268283A1 (en) * 2010-04-30 2011-11-03 Honda Motor Co., Ltd. Reverberation suppressing apparatus and reverberation suppressing method
US9002024B2 (en) 2010-04-30 2015-04-07 Honda Motor Co., Ltd. Reverberation suppressing apparatus and reverberation suppressing method
WO2012035594A1 (en) * 2010-09-13 2012-03-22 パイオニア株式会社 Playback device, playback method, and playback program
WO2014097470A1 (en) * 2012-12-21 2014-06-26 Toa株式会社 Reverberation removal device
JP2015019124A (en) * 2013-07-08 2015-01-29 本田技研工業株式会社 Sound processing device, sound processing method, and sound processing program
US9646627B2 (en) 2013-07-08 2017-05-09 Honda Motor Co., Ltd. Speech processing device, method, and program for correction of reverberation
CN105529034A (en) * 2015-12-23 2016-04-27 北京奇虎科技有限公司 Speech recognition method and device based on reverberation

Similar Documents

Publication Publication Date Title
KR100365300B1 (en) Spectral subtraction noise suppression method
US8073147B2 (en) Dereverberation method, apparatus, and program for dereverberation
US5774562A (en) Method and apparatus for dereverberation
JP5452655B2 (en) Multi-sensor voice quality improvement using voice state model
CN108172231B (en) Dereverberation method and system based on Kalman filtering
US8218780B2 (en) Methods and systems for blind dereverberation
US20020049587A1 (en) Speech recognition method, storage medium storing speech recognition program, and speech recognition apparatus
JP6677662B2 (en) Sound processing device, sound processing method and program
JP2006087082A (en) Method and apparatus for multi-sensory voice enhancement
US11133019B2 (en) Signal processor and method for providing a processed audio signal reducing noise and reverberation
JPH09261133A (en) Reverberation suppression method and its equipment
WO2009123387A1 (en) Procedure for processing noisy speech signals, and apparatus and computer program therefor
WO2020074771A1 (en) Processing audio signals
JP2019511864A (en) Method and apparatus for increasing the stability of inter-channel time difference parameters
KR100647826B1 (en) The blind dereverberation models considering measured noises and the deriving method thereof
WO2014132499A1 (en) Signal processing device and method
JP3649847B2 (en) Reverberation removal method and apparatus
JP2006126859A (en) Speech processing device and method
JP2004274234A (en) Reverberation eliminating method for sound signal, apparatus therefor, reverberation eliminating program for sound signal and recording medium with record of the program
Thomas et al. A practical multichannel dereverberation algorithm using multichannel DYPSA and spatiotemporal averaging
JP6790659B2 (en) Sound processing equipment and sound processing method
Lu et al. Comparative evaluation of modulation-transfer-function-based blind restoration of sub-band power envelopes of speech as a front-end processor for automatic speech recognition systems
KR101537653B1 (en) Method and system for noise reduction based on spectral and temporal correlations
Fukui et al. Convolutive Residual Echo Power Estimation for Acoustic Echo Reduction
JP2005284016A (en) Method for inferring noise of speech signal and noise-removing device using the same