JPH09258271A - Optical device - Google Patents

Optical device

Info

Publication number
JPH09258271A
JPH09258271A JP18222296A JP18222296A JPH09258271A JP H09258271 A JPH09258271 A JP H09258271A JP 18222296 A JP18222296 A JP 18222296A JP 18222296 A JP18222296 A JP 18222296A JP H09258271 A JPH09258271 A JP H09258271A
Authority
JP
Japan
Prior art keywords
refractive index
frequency
optical device
transparent
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18222296A
Other languages
Japanese (ja)
Other versions
JP3303275B2 (en
Inventor
Shiro Suyama
史朗 陶山
Kinya Kato
謹矢 加藤
Shigenobu Sakai
重信 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26340074&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09258271(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18222296A priority Critical patent/JP3303275B2/en
Priority to US08/784,353 priority patent/US6469683B1/en
Priority to EP06077207A priority patent/EP1798592A3/en
Priority to EP97300262A priority patent/EP0785457A3/en
Publication of JPH09258271A publication Critical patent/JPH09258271A/en
Priority to US10/011,638 priority patent/US6714174B2/en
Publication of JP3303275B2 publication Critical patent/JP3303275B2/en
Application granted granted Critical
Priority to US10/782,972 priority patent/US7209097B2/en
Priority to US10/782,979 priority patent/US7336244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical device in which a high speed driving is uniformly conducted, which is easily produced, and of which optical characteristics can be actively, continuously and periodically varied. SOLUTION: The device is provided with a transparent material layer 21 having a concave Fresnel lens shape and two transparent electrodes 23 and 24 that hold the layer including a refractive index variable material 22 in which dielectric index anisotropy is provided and a difference Δε, that is the difference between different dielectric indexes, reverses its sign at different driving frequencies f11 and f12. By supplying the frequency f11 or the voltage making the frequency f11 as the major frequency or the frequency f12 of the voltage making the frequency f12 as the major frequency by a driving device 25, the refractive index of the material 22 is varied by the changes in the frequency of the applied voltage and the optical characteristics of the device are speedingly varied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、印加電圧により、
光学装置における光学的性質、例えばレンズにおける焦
点距離、プリズムにおける偏向角、レンチキュラレンズ
における発散角等を周期的かつ連続的に変化できる光学
装置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an
The present invention relates to an optical device capable of periodically and continuously changing optical properties of an optical device, such as a focal length of a lens, a deflection angle of a prism, and a divergence angle of a lenticular lens.

【0002】[0002]

【従来の技術】従来の光学装置は、受動的な光学装置が
ほとんどであり、その光学的性質を電圧等によって変化
できる能動的な光学装置の種類は限られていた。その中
で屈折率可変物質を用いた光学装置として、例えば昭和
59年度科学研究費補助金研究成果報告書No.598
50048に記載された液晶レンズがある。
2. Description of the Related Art Most conventional optical devices are passive optical devices, and the types of active optical devices whose optical properties can be changed by voltage or the like are limited. Among them, as an optical device using a variable refractive index material, for example, the 1985 Scientific Research Grant Subsidy Research Result Report No. 598
There is a liquid crystal lens described in US Pat.

【0003】図1は前記液晶レンズの構造を示すもの
で、高分子やガラス等で形成された平凹レンズ1と、そ
の表面に形成された透明電極2と、該透明電極2上に形
成されたポリイミド等による配向膜3と、液晶(誘電率
異方性が周波数の違いにより逆転しない通常のネマチッ
ク液晶)4と、これらに対向した対向基板5と、該対向
基板5上に形成された透明電極6と、この透明電極6上
に形成されたポリイミド等による配向膜7と、これらを
駆動するための駆動装置8とから構成される。ここで、
配向膜3及び7は液晶4がほぼ平行に整列するようにホ
モジニアス配向状態にしてある。
FIG. 1 shows the structure of the liquid crystal lens. A plano-concave lens 1 made of a polymer, glass, or the like, a transparent electrode 2 formed on the surface thereof, and a transparent electrode 2 formed on the transparent electrode 2 are shown. An alignment film 3 made of polyimide or the like, a liquid crystal (a normal nematic liquid crystal whose dielectric anisotropy does not reverse due to a difference in frequency) 4, a counter substrate 5 facing these, and a transparent electrode formed on the counter substrate 5 6, an alignment film 7 made of polyimide or the like formed on the transparent electrode 6, and a driving device 8 for driving these. here,
The alignment films 3 and 7 are in a homogeneous alignment state so that the liquid crystals 4 are aligned substantially in parallel.

【0004】透明電極2と6との間に電圧を印加しない
状態においては、配向膜3,7の作用により液晶4は対
向基板5にほぼ平行に並ぶように配向する。この場合、
この配向方向に対して平行な偏光状態の入射光11にと
って、液晶4は平凹レンズ1と比較して大きな屈折率を
有しているように見えるため、光学装置全体としては平
凸レンズとして作用し、出射光12のように集束する。
When no voltage is applied between the transparent electrodes 2 and 6, the liquid crystal 4 is aligned so as to be substantially parallel to the counter substrate 5 by the action of the alignment films 3 and 7. in this case,
The liquid crystal 4 appears to have a larger refractive index than the plano-concave lens 1 with respect to the incident light 11 in the polarization state parallel to the alignment direction, so that the optical device as a whole functions as a plano-convex lens, It is focused like the emitted light 12.

【0005】一方、透明電極2と6との間に適度な電圧
を印加した状態においては、印加電圧の作用により、液
晶4は対向基板5や平凹レンズ1に対して垂直に配向す
る。この場合、入射光11にとって液晶4は平凹レンズ
1とほぼ同じ屈折率を有しているように見えるため、光
学装置全体としては単なるガラス板と同様な作用しか及
ぼさず、出射光13は入射光11とほぼ同様な方向に出
射する。
On the other hand, when an appropriate voltage is applied between the transparent electrodes 2 and 6, the liquid crystal 4 is vertically aligned with respect to the counter substrate 5 and the plano-concave lens 1 by the action of the applied voltage. In this case, since the liquid crystal 4 appears to have almost the same refractive index as the plano-concave lens 1 for the incident light 11, the optical device as a whole exerts only the same effect as a simple glass plate, and the outgoing light 13 The light is emitted in almost the same direction as 11.

【0006】このように、従来の光学装置においても、
印加電圧によって平凸レンズの光学的性質、例えば焦点
距離を図2に示すように連続的に変化することは可能で
あった。
As described above, even in the conventional optical device,
It was possible to continuously change the optical properties of the plano-convex lens, for example, the focal length, as shown in FIG. 2 by the applied voltage.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
光学装置においては、電圧を印加しない場合の液晶4の
配向を配向膜3,7の配向規制力のみで行っていた。こ
のような光学装置においては液晶4の厚みが数100μ
m以上と厚くなるため、その駆動の際の回復時間が図3
に示すように数秒以上と極めて遅くなる欠点を有してい
た。しかも印加電圧を増加してもその回復時間にはほと
んど改善は見られず、短縮化への方策がないのが現状で
あった。
However, in the conventional optical device, the alignment of the liquid crystal 4 when no voltage is applied is performed only by the alignment regulating force of the alignment films 3 and 7. In such an optical device, the thickness of the liquid crystal 4 is several hundred μm.
m or more, the recovery time at the time of driving is shown in FIG.
As shown in (1), there was a drawback that the time was extremely slow as several seconds or more. Moreover, even if the applied voltage is increased, the recovery time is hardly improved, and there is no measure to shorten the recovery time.

【0008】また、前述したように、配向膜3,7の配
向規制力のみで液晶4を配向させる場合、透明電極2の
近くにおいては、図4に示すように平凹レンズ1の曲面
に沿って液晶4の分子4aが配向する。このため、液晶
の配向が一部分傾いてしまい、入射光が感じる屈折率が
平凹レンズ1の屈折率に近づき、光学的性質の変化量が
小さくなる他、レンズの位置によって光学的性質の変化
量に分布ができてしまうという欠点を有していた。
As described above, when the liquid crystal 4 is aligned only by the alignment control force of the alignment films 3 and 7, the liquid crystal 4 is formed along the curved surface of the plano-concave lens 1 near the transparent electrode 2 as shown in FIG. The molecules 4a of the liquid crystal 4 are aligned. For this reason, the orientation of the liquid crystal partially tilts, the refractive index felt by the incident light approaches the refractive index of the plano-concave lens 1, and the change amount of the optical property becomes small, and the change amount of the optical property depends on the position of the lens. There was a drawback that distribution could occur.

【0009】また、平凹レンズ1等の表面上に透明電極
2を形成するため、電圧を印加した場合、透明電極2の
近くでは電界がその表面に垂直な形でかかり、図5に示
すように液晶4がその表面に垂直な形で配向する。この
ため、液晶の配向が一部分傾いてしまい、入射光が感じ
る屈折率が平凹レンズ1の屈折率とかなり異なる領域が
形成され、本来なら偏向をほとんど受けずに透過するべ
き入射光が部分的に偏向等を受けるという欠点を有して
いた。
When a voltage is applied to form the transparent electrode 2 on the surface of the plano-concave lens 1 or the like, an electric field is applied near the transparent electrode 2 in a form perpendicular to the surface, as shown in FIG. The liquid crystal 4 is oriented perpendicular to the surface. For this reason, the orientation of the liquid crystal is partially tilted, and a region is formed in which the refractive index felt by the incident light is considerably different from the refractive index of the plano-concave lens 1, and the incident light that should be transmitted with little or no deflection is partially formed. It has the disadvantage of being subject to deflection and the like.

【0010】また、平凹レンズ1の表面形状がさらに複
雑な形状、特に深い溝や鋭い突起を有するような場合に
は、透明電極の均一な形成が困難となる欠点を有してい
た。また、液晶4を配向させるための配向膜の配向処
理、例えばラビング処理等も困難となる欠点を有してい
た。さらに、透明電極間の距離は、図1から明かなよう
に位置によって異なり、これに同一の電圧を印加するた
め、狭い部分において絶縁性の劣化や短絡が起こり易い
という欠点を有していた。
Further, when the surface shape of the plano-concave lens 1 is more complicated, especially when it has deep grooves and sharp projections, it has a disadvantage that it is difficult to form a transparent electrode uniformly. In addition, there is a drawback that the alignment treatment of the alignment film for aligning the liquid crystal 4, for example, a rubbing treatment is difficult. In addition, the distance between the transparent electrodes differs depending on the position, as is clear from FIG. 1. Since the same voltage is applied to the transparent electrodes, there is a disadvantage that the insulating property is easily deteriorated and a short circuit is likely to occur in a narrow portion.

【0011】このように、従来の屈折率可変物質を用い
た能動的な光学装置は、長い回復時間、不均一性、製作
上あるいは駆動上の問題点等、実用化上、多くの欠点を
抱えていた。
As described above, the conventional active optical device using the variable refractive index material has many disadvantages in practical use, such as a long recovery time, non-uniformity, problems in manufacturing or driving. I was

【0012】本発明の目的は、高速駆動が可能で均一性
が良く、製作が容易であり、しかも能動的に光学的性質
を連続的に周期的変化できる光学装置を提供することに
ある。
An object of the present invention is to provide an optical device which can be driven at high speed, has good uniformity, is easy to manufacture, and can continuously and periodically change optical properties.

【0013】[0013]

【課題を解決するための手段】前記目的を達成するた
め、本発明の請求項1では、所望の曲面の表面形状を有
する透明物質の層と、誘電率異方性を有しかつ異なる誘
電率の差Δεが異なる駆動周波数f1及びf2で逆符号と
なる性質を有する屈折率可変物質を含む層と、前記透明
物質の層と屈折率可変物質を含む層とを挟んで配置され
る少なくとも2つの透明電極と、前記駆動周波数f1
るいはこれを主な周波数とする電圧及び駆動周波数f2
あるいはこれを主な周波数とする電圧を前記透明電極間
に供給する駆動装置とを備えた光学装置を提案する。
In order to achieve the above object, according to claim 1 of the present invention, a transparent material layer having a desired curved surface shape and a dielectric constant anisotropy and a different dielectric constant are provided. Of the refractive index variable substance having a property that the difference Δε between them has opposite signs at different driving frequencies f 1 and f 2 , and at least the layer of the transparent substance and the layer including the refractive index variable substance are sandwiched therebetween. Two transparent electrodes, the driving frequency f 1 or a voltage having the driving frequency f 1 as a main frequency and the driving frequency f 2
Alternatively, an optical device including a driving device that supplies a voltage having a main frequency of the voltage between the transparent electrodes is proposed.

【0014】本装置によれば、屈折率可変物質に印加す
る電圧の周波数を変えることによってその屈折率を変化
させ、これにより所望の曲面の表面形状を有する透明物
質の層とともに構成する装置の光学的性質を変化させる
ため、従来の電圧のオン・オフによってその屈折率を変
化させる物質を用いたものの如く電圧オフ時の屈折率の
変化(回復)に長い時間を要し、その分、高速駆動がで
きなかった装置と異なり、高速な駆動が可能であり、し
かも常に電界の及ぼす力を利用できるため、電界強度を
大きくすることによりその速度をさらに高めることがで
きる。
According to this device, the refractive index is changed by changing the frequency of the voltage applied to the refractive index variable substance, and thus the optical structure of the device constituted with the transparent substance layer having the desired curved surface shape. In order to change the optical properties, it takes a long time to change (recover) the refractive index when the voltage is off, as in the case of using a conventional material that changes the refractive index by turning the voltage on and off, and correspondingly high speed driving Unlike the device which could not be used, the device can be driven at a high speed and the force exerted by the electric field can always be utilized. Therefore, the speed can be further increased by increasing the electric field strength.

【0015】また、本装置によれば、電界の及ぼす力に
よって屈折率可変物質の屈折率を変化させ、しかも透明
電極を透明物質の層の屈折率可変物質側に設けないた
め、屈折率可変物質がいずれの状態の場合でも、従来の
装置に比べて透明物質の層の表面形状の影響を受け難
く、光学的性質の変化量を均一化し易い。また、本装置
によれば、透明電極を透明物質の層の屈折率可変物質側
に設けないため、複雑な形状の部分に膜を形成する必要
がなく、従来の装置に比べて製作が容易となる。さらに
また、本装置によれば、透明電極を透明物質の層の屈折
率可変物質側に設けないため、透明電極間の距離を概ね
同じ距離とすることも容易であり、しかも透明電極間に
は常に透明物質の層が存在するため、従来の装置と異な
り、絶縁性の劣化や短絡等が起こり難い。
Further, according to this device, the refractive index of the variable refractive index substance is changed by the force exerted by the electric field, and the transparent electrode is not provided on the refractive index variable substance side of the transparent substance layer. In any of the above cases, the surface shape of the layer of the transparent material is less likely to be affected and the amount of change in optical properties can be made uniform as compared with the conventional device. Further, according to the present device, since the transparent electrode is not provided on the refractive index variable substance side of the transparent substance layer, it is not necessary to form a film on a portion having a complicated shape, and the manufacturing is easier than that of the conventional device. Become. Furthermore, according to the present device, since the transparent electrode is not provided on the refractive index variable substance side of the transparent substance layer, it is easy to make the distance between the transparent electrodes substantially the same, and moreover, between the transparent electrodes. Since the layer of the transparent material is always present, unlike the conventional device, the deterioration of the insulating property or the short circuit is unlikely to occur.

【0016】また、本発明の請求項2では、周波数f1
〜fN(N≧2)をそれぞれ主な周波数とする電圧V1
Nを、一定の印加時間及び一定の周期で順次供給する
駆動装置を備えた請求項1記載の光学装置を提案する。
Further, in claim 2 of the present invention, the frequency f 1
~ F N (N ≥ 2) each having a main frequency V 1 ~
The optical device according to claim 1, further comprising a driving device that sequentially supplies V N with a constant application time and a constant cycle.

【0017】本装置によれば、屈折率可変物質の屈折率
が各電圧V1〜VNの周波数に応じて周期的に変化し、疑
似的にそれらの中間的な値をとることが可能となり、光
学的性質を連続的に変化できる。
According to the present apparatus, the refractive index of the variable refractive index material periodically changes according to the frequency of the voltage V 1 ~V N, artificially becomes possible to take their intermediate values , The optical properties can be changed continuously.

【0018】また、本発明の請求項3では、周波数f1
〜fN(N≧2)をそれぞれ主な周波数とする電圧V1
Nを、一定の印加時間及び一定の周期で順次供給する
際、前記周期の所望の位相で供給を一時停止し、その
後、再開する駆動装置を備えた請求項2記載の光学装置
を提案する。
According to claim 3 of the present invention, the frequency f 1 is
~ F N (N ≥ 2) each having a main frequency V 1 ~
The optical device according to claim 2, further comprising a driving device that temporarily stops the supply of V N at a desired phase of the cycle and then restarts the supply when V N is sequentially supplied at a constant application time and a constant cycle. .

【0019】本装置によれば、屈折率可変物質における
状態の維持特性を利用して所望の屈折率を電圧を停止し
たまま維持でき、必ずしも周期的変化ではない高速な屈
折率変化をもたらすことができる。
According to the present device, the desired refractive index can be maintained while the voltage is stopped by utilizing the property of maintaining the state of the refractive index variable substance, and a rapid refractive index change which is not necessarily periodical change can be brought about. it can.

【0020】また、本発明の請求項4では、誘電率異方
性を有しかつ異なる誘電率の差Δεが異なる駆動周波数
1及びf2で逆符号となる性質を有する屈折率可変物質
を含む層と、該屈折率可変物質を含む層を挟んで配置さ
れる少なくとも2つの透明電極と、周波数f1〜fN(N
≧2)をそれぞれ主な周波数とする電圧V1〜VNを重畳
した電圧を前記透明電極間に供給する駆動装置とを備え
た光学装置を提案する。
Further, according to a fourth aspect of the present invention, there is provided a variable refractive index material having a dielectric anisotropy and a property that a difference Δε of different dielectric constants has opposite signs at different driving frequencies f 1 and f 2. A layer containing at least two transparent electrodes sandwiching the layer containing the variable refractive index material, and frequencies f 1 to f N (N
There is proposed an optical device including a driving device that supplies a voltage obtained by superposing voltages V 1 to V N , each having a main frequency of ≧ 2), between the transparent electrodes.

【0021】本装置によれば、屈折率可変物質に印加す
る複数の重畳した互いに周波数の異なる電圧V1〜VN
電圧比によってその屈折率を連続的に変化させ、これに
より装置の光学的性質を連続的変化させるため、従来の
電圧のオン・オフによってその屈折率を変化させる物質
を用いたものの如く電圧オフ時の屈折率の変化(回復)
に長い時間を要し、その分、高速駆動ができなかった装
置と異なり、高速でかつ連続的な変化をもたらす駆動が
可能であり、しかも常に電界の及ぼす力を利用できるた
め、電界強度を大きくすることによりその速度をさらに
高めることができる。
According to the present apparatus, continuously changing its refractive index by voltage ratio of a plurality of superimposed voltage V 1 ~V N of different frequencies from each other to be applied to the variable refractive index material, optical of this by the device Since the property is changed continuously, the refractive index changes (recovery) when the voltage is off, as in the case of using a conventional substance that changes the refractive index by turning the voltage on and off.
It takes a long time to drive, and accordingly, unlike devices that could not be driven at high speed, it is possible to drive at high speed and to bring about continuous changes, and since the force exerted by the electric field can always be used, the electric field strength is increased. By doing so, the speed can be further increased.

【0022】また、本発明の請求項5では、少なくとも
2つの透明電極間に所望の曲面の表面形状を有する透明
物質の層を、屈折率可変物質を含む層に隣接して配置し
た請求項4記載の光学装置を提案する。
According to a fifth aspect of the present invention, a layer of a transparent material having a desired curved surface shape between at least two transparent electrodes is arranged adjacent to a layer containing a refractive index variable material. The described optical device is proposed.

【0023】本装置によれば、屈折率可変物質が所望の
曲面の表面形状を有する透明物質の層とともに構成する
装置の光学的性質を変化させることができ、また、電界
の及ぼす力によって屈折率可変物質の屈折率を変化さ
せ、しかも透明電極を透明物質の層の屈折率可変物質側
に設けないため、屈折率可変物質がいずれの状態の場合
でも、従来の装置に比べて透明物質の層の表面形状の影
響を受け難く、光学的性質の変化量を均一化し易い。ま
た、本装置によれば、透明電極を透明物質の層の屈折率
可変物質側に設けないため、複雑な形状の部分に膜を形
成する必要がなく、従来の装置に比べて製作が容易とな
る。さらにまた、本装置によれば、透明電極を透明物質
の層の屈折率可変物質側に設けないため、透明電極間の
距離を概ね同じ距離とすることも容易であり、しかも透
明電極間には常に透明物質の層が存在するため、従来の
装置と異なり、絶縁性の劣化や短絡等が起こり難い。
According to the present device, the optical property of the device constituted by the variable refractive index material and the layer of the transparent material having the desired curved surface shape can be changed, and the refractive index is changed by the force exerted by the electric field. Since the refractive index of the variable substance is changed and the transparent electrode is not provided on the variable refractive index substance side of the transparent substance layer, the transparent substance layer is different from the conventional device in any state of the variable refractive index substance. It is difficult to be influenced by the surface shape of and the amount of change in optical properties is easily made uniform. Further, according to the present device, since the transparent electrode is not provided on the refractive index variable substance side of the transparent substance layer, it is not necessary to form a film on a portion having a complicated shape, and the manufacturing is easier than that of the conventional device. Become. Furthermore, according to the present device, since the transparent electrode is not provided on the refractive index variable substance side of the transparent substance layer, it is easy to make the distance between the transparent electrodes substantially the same, and moreover, between the transparent electrodes. Since the layer of the transparent material is always present, unlike the conventional device, the deterioration of the insulating property or the short circuit is unlikely to occur.

【0024】また、本発明の請求項6では、周波数f1
〜fN(N≧2)をそれぞれ主な周波数とする電圧V1
Nを重畳した電圧を供給する際、所望の時刻で供給を
一時停止し、その後、再開する駆動装置を備えた請求項
4または5記載の光学装置を提案する。
Further, according to claim 6 of the present invention, the frequency f 1
~ F N (N ≥ 2) each having a main frequency V 1 ~
An optical device according to claim 4 or 5, which is provided with a drive device for temporarily stopping the supply at a desired time and then restarting the supply of the voltage with V N superimposed.

【0025】本装置によれば、屈折率可変物質における
状態の維持特性を利用して所望の屈折率を電圧を停止し
たまま維持でき、必ずしも周期的変化ではない高速な屈
折率変化をもたらすことができる。
According to the present device, the desired refractive index can be maintained while the voltage is stopped by utilizing the state maintaining property of the refractive index variable substance, and a rapid refractive index change which is not necessarily periodical change can be brought about. it can.

【0026】なお、本装置の屈折率可変物質として、屈
折率異方性及び誘電率異方性を有しかつ異なる誘電率の
差Δεが異なる駆動周波数f1及びf2で逆符号となる2
周波駆動液晶を用いることができる。
[0026] As index variable material of the present device, the opposite sign in the refractive index anisotropy and dielectric constant has anisotropy and difference Δε of different dielectric constants have different drive frequencies f 1 and f 2 2
Frequency driven liquid crystals can be used.

【0027】また、本装置の透明電極として、概ね平行
な透明電極を用いることができる。
Further, as the transparent electrode of this device, a substantially parallel transparent electrode can be used.

【0028】また、本装置の屈折率可変物質を含む層側
の透明物質の層の表面形状として、凸レンズまたは凹レ
ンズまたはフレネルレンズまたはプリズムアレイまたは
レンズアレイまたはレンチキュラレンズまたは回折格子
あるいはこれらを任意に組み合わせた曲面を採用するこ
とができる。
As the surface shape of the transparent material layer on the layer side containing the variable refractive index material of the present apparatus, a convex lens, a concave lens, a Fresnel lens, a prism array, a lens array, a lenticular lens, a diffraction grating, or any combination thereof is used. Curved surfaces can be adopted.

【0029】また、本装置の屈折率可変物質を含む層側
の透明電極の表面上に、液晶を一方向に配向させる配向
膜を設けることにより、液晶の配向が配向膜に平行な方
向となる駆動状態において広いドメイン領域において均
一な配向状態とすることができ、液晶の屈折率変化を入
射光に効率良く伝えることが可能となり、かつ液晶が種
々の方向を向くことによって生ずる散乱やこれに起因す
る白濁を防ぐことができる。
Further, by providing an alignment film for aligning the liquid crystal in one direction on the surface of the transparent electrode on the layer side containing the variable refractive index substance of the present device, the alignment of the liquid crystal becomes parallel to the alignment film. In a driving state, a uniform alignment state can be obtained in a wide domain region, a change in the refractive index of the liquid crystal can be efficiently transmitted to the incident light, and scattering caused by the liquid crystal being oriented in various directions or caused by this It is possible to prevent white turbidity.

【0030】また、液晶の配向がより均一な面を光の入
射側に向けて配置することにより、入射光の偏光状態を
前記配向方向と一致させ、屈折率可変物質の屈折率変化
を入射光に効率良く伝えることが可能となる。
Further, by arranging the surface of the liquid crystal having a more uniform orientation toward the light incident side, the polarization state of the incident light is made to coincide with the orientation direction, and the change in the refractive index of the refractive index variable substance is changed to the incident light. Can be efficiently communicated to.

【0031】また、前記配向膜を設けた本発明の装置を
複数個、配向膜の配向方向が互いに直交するように直列
に並べることにより、入射光の偏光状態によらず各種の
機能を実現できる。
Further, by arranging a plurality of the devices of the present invention provided with the alignment film in series so that the alignment directions of the alignment films are orthogonal to each other, various functions can be realized regardless of the polarization state of incident light. .

【0032】また、透明電極のいずれか一方を入射光の
少なくとも一部を反射する電極と置き換えることによ
り、光学特性が変化するアクティブなミラーやハーフミ
ラー、その他各種の光学装置を実現できる。
Further, by replacing any one of the transparent electrodes with an electrode that reflects at least a part of the incident light, it is possible to realize an active mirror or a half mirror whose optical characteristics change and other various optical devices.

【0033】[0033]

【発明の実施の形態】以下、本発明の光学装置の実施の
形態の例を示す。以下に示す例では、主に透明物質の層
の表面としてフレネルレンズ構造を用いた場合について
説明するが、凸レンズ、凹レンズ、プリズムアレイ、レ
ンズアレイ、レンチキュラレンズ、回折格子、またはこ
れらの組み合わせた曲面を含む場合であっても同様な効
果が期待できることは明らかである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an optical device according to the present invention will be described below. In the example shown below, the case where a Fresnel lens structure is mainly used as the surface of the transparent material layer is described, but a convex lens, a concave lens, a prism array, a lens array, a lenticular lens, a diffraction grating, or a curved surface obtained by combining these is used. It is obvious that the same effect can be expected even when it is included.

【0034】また、以下の例では、主に屈折率可変物質
として液晶を用いた例について説明するが、誘電率異方
性の周波数依存性を有する他の材料を用いても同様な効
果を期待できることは明らかである。
Further, in the following example, an example in which liquid crystal is mainly used as the refractive index variable substance will be described, but the same effect is expected even if another material having frequency dependence of dielectric anisotropy is used. It is clear that you can do it.

【0035】また、以下の例では、主に液晶が透明電極
に対して垂直に立った時に該液晶及び透明物質の屈折率
がほぼ等しくなる場合について説明するが、液晶が透明
電極に対して平行になった時にほぼ等しくなる場合、あ
るいは液晶が透明電極に対して一定の角度をなした時に
ほぼ等しくなる場合であっても同様な効果が期待できる
ことは明らかである。
In the following example, the case where the liquid crystal and the transparent substance have substantially the same refractive index when the liquid crystal stands perpendicular to the transparent electrode will be described. However, the liquid crystal is parallel to the transparent electrode. It is obvious that the same effect can be expected even when the liquid crystal becomes almost equal when it becomes, or when the liquid crystal makes a certain angle with respect to the transparent electrode.

【0036】さらに、以下の例では、主に液晶の屈折率
が透明物質の屈折率よりも概ね大きい場合について説明
するが、液晶の屈折率が透明物質の屈折率よりも概ね小
さい場合、あるいは液晶の屈折率の可変範囲内に透明物
質の屈折率の値が含まれる場合であっても同様な効果が
期待できることは明らかである。
Further, in the following example, the case where the refractive index of the liquid crystal is generally larger than that of the transparent substance will be described. However, when the refractive index of the liquid crystal is generally smaller than that of the transparent substance, or It is clear that the same effect can be expected even when the value of the refractive index of the transparent substance is included in the variable range of the refractive index of.

【0037】[0037]

【第1の形態】図6は請求項1、7、8に対応する本発
明の光学装置の実施の形態の一例を示すもので、所望の
曲面の表面形状を有する透明な高分子やガラス等よりな
る透明物質の層21と、液晶を含む透明物質等よりなる
屈折率可変物質22と、これら透明物質の層21及び屈
折率可変物質22を含む層を挟んだITOやSnOx
りなる複数の透明電極23,24と、これらを駆動する
ための駆動装置25とから構成されている。
[First Embodiment] FIG. 6 shows an example of an embodiment of an optical device according to the present invention, which corresponds to claims 1, 7 and 8, and is a transparent polymer or glass having a desired curved surface shape. Layer 21 made of a transparent material, a variable refractive index material 22 made of a transparent material containing liquid crystal, and a plurality of ITO or SnO x layers sandwiching the transparent material layer 21 and the layer containing the variable refractive index material 22. It is composed of transparent electrodes 23 and 24, and a drive device 25 for driving them.

【0038】ここでは能動的な光学装置の一つとして、
焦点距離が可変な平凸レンズ(焦点距離がプラス)の提
供を目的とし、例えば屈折率可変物質22の屈折率の方
が透明物質の層21の屈折率よりも概ね大きい場合に
は、屈折率可変物質22を凸レンズ形状とすれば良い。
従って、屈折率可変物質22側の透明物質の層21の表
面形状を、図示したような凹フレネルレンズ形状等とす
れば良い。むろん、屈折率可変物質22の屈折率の方が
透明物質の層21の屈折率よりも概ね小さい場合には、
屈折率可変物質22側の透明物質の層21の表面形状
を、例えば凸フレネルレンズ形状とすれば良いことは明
らかである。
Here, as one of the active optical devices,
For the purpose of providing a plano-convex lens with a variable focal length (positive focal length), for example, when the refractive index of the variable refractive index material 22 is larger than the refractive index of the transparent material layer 21, the refractive index variable The substance 22 may have a convex lens shape.
Therefore, the surface shape of the transparent material layer 21 on the refractive index variable material 22 side may be a concave Fresnel lens shape as illustrated. Of course, when the refractive index of the variable refractive index material 22 is smaller than the refractive index of the transparent material layer 21,
It is clear that the surface shape of the transparent material layer 21 on the refractive index variable material 22 side may be, for example, a convex Fresnel lens shape.

【0039】本例においては、屈折率可変物質22は、
屈折率異方性及び誘電率異方性を有しており、その誘電
率異方性としては、周波数f11の時に誘電率異方性Δ
ε(=ε‖(分子の長軸に平行な誘電率)−ε⊥(分子
の長軸に垂直な誘電率))がプラスであり、周波数f1
2の時に誘電率異方性Δεがマイナスである例を用い
る。さらに屈折率異方性としてはno(正常屈折率)が
透明物質の層21の屈折率とほぼ等しく、ne(異常屈
折率)が透明物質の層21より概ね大きい例を用いる。
In this example, the refractive index variable substance 22 is
It has a refractive index anisotropy and a dielectric anisotropy. The dielectric anisotropy is the dielectric anisotropy Δ at the frequency f11.
ε (= ε‖ (dielectric constant parallel to the long axis of the molecule) −ε⊥ (dielectric constant perpendicular to the long axis of the molecule)) is positive, and the frequency f1
An example in which the dielectric anisotropy Δε is negative when 2 is used. Still refractive index anisotropy substantially equal to n o (ordinary index) refractive index of the layer 21 of transparent material, n e (extraordinary refractive index) is used generally greater example than the layer 21 of transparent material.

【0040】駆動装置25より周波数f11の電界が透
明電極23,24間に印加された場合には、Δε>0な
ので、屈折率可変物質22の分子は電界方向に平行な向
き、即ち透明電極23,24に対してほぼ垂直に立つ。
このため、前述した透明物質の層21と屈折率可変物質
22との屈折率の関係から、屈折率可変物質22の屈折
率は透明物質の層21の屈折率とほぼ同じとなる。従っ
て、本発明の光学装置に入射してきた光26はほとんど
変化を受けずに出射光27として透過する。
When an electric field of frequency f11 is applied between the transparent electrodes 23 and 24 from the driving device 25, Δε> 0. Therefore, the molecules of the refractive index variable substance 22 are oriented parallel to the electric field direction, that is, the transparent electrode 23. , 24 stands almost vertically.
Therefore, the refractive index of the variable refractive index material 22 is substantially the same as the refractive index of the transparent material layer 21 due to the relationship between the refractive index of the transparent material layer 21 and the refractive index variable material 22 described above. Therefore, the light 26 incident on the optical device of the present invention is transmitted as the outgoing light 27 with almost no change.

【0041】一方、駆動装置25より周波数f12の電
界が透明電極23,24間に印加された場合には、Δε
<0なので、屈折率可変物質22の分子は電界方向に垂
直な向き、即ち透明電極23,24にほぼ平行になる。
このため、前述した透明物質の層21と屈折率可変物質
22との屈折率の関係から、屈折率可変物質22の屈折
率は透明物質の層21の屈折率よりも大きくなる。ここ
で、屈折率可変物質22の部分は凸フレネルレンズ形状
となるため、本光学装置は、屈折率可変物質22の分子
の長軸と平行の偏光で入射してきた光26に対して凸フ
レネルレンズとして機能し、出射光28のように集束す
る。
On the other hand, when an electric field of frequency f12 is applied between the transparent electrodes 23 and 24 from the driving device 25, Δε
Since <0, the molecules of the refractive index variable substance 22 are oriented perpendicular to the electric field direction, that is, substantially parallel to the transparent electrodes 23 and 24.
For this reason, the refractive index of the variable refractive index material 22 is higher than the refractive index of the transparent material layer 21 due to the relationship between the refractive index of the transparent material layer 21 and the refractive index variable material 22 described above. Here, since the portion of the refractive index variable substance 22 has a convex Fresnel lens shape, the present optical device has a convex Fresnel lens for the light 26 that is incident with the polarized light parallel to the long axis of the molecule of the refractive index variable substance 22. And functions as an output light 28 to be focused.

【0042】このように本例では、屈折率可変物質22
の屈折率を変化させることにより、光学装置の光学的性
質のうち、レンズの焦点距離を変化させることができ
る。
As described above, in this example, the refractive index variable substance 22 is used.
Among the optical properties of the optical device, the focal length of the lens can be changed by changing the refractive index of.

【0043】また、本例では、屈折率可変物質22の配
向状態を印加電圧の周波数の相違によって変化させ、図
1乃至5に示した従来例と異なり、主に電界の及ぼす力
を利用するため、電界強度を大きくすることにより、そ
の変化速度を極めて高速化できる。
Further, in this example, the orientation state of the refractive index variable substance 22 is changed by the difference in the frequency of the applied voltage, and unlike the conventional example shown in FIGS. 1 to 5, mainly the force exerted by the electric field is used. By increasing the electric field strength, the rate of change can be extremely increased.

【0044】また、電界の及ぼす力によって屈折率可変
物質22の配向を変化させ、かつ透明電極23を透明物
質の層21の屈折率可変物質22側に設けないため、屈
折率可変物質22がいずれの配向状態の場合でも、図1
乃至5に示した従来例に比べて透明物質の層21の表面
形状の影響を受け難く、焦点距離の変化量を均一化し易
い。
Further, since the orientation of the refractive index variable substance 22 is changed by the force exerted by the electric field and the transparent electrode 23 is not provided on the refractive index variable substance 22 side of the transparent substance layer 21, the refractive index variable substance 22 will eventually be removed. Fig. 1
Compared to the conventional examples shown in FIGS. 5 to 5, the surface shape of the transparent material layer 21 is less likely to be affected, and the change amount of the focal length can be made uniform more easily.

【0045】また、透明電極23を透明物質の層21の
屈折率可変物質22側に設けないため、複雑な形状の部
分に膜を形成する必要がなく、図1乃至5に示した従来
例に比べて製作が容易となる。
Further, since the transparent electrode 23 is not provided on the side of the variable refractive index material 22 of the transparent material layer 21, it is not necessary to form a film on a portion having a complicated shape, and the conventional example shown in FIGS. It is easier to manufacture in comparison.

【0046】さらにまた、透明電極23を透明物質の層
21の屈折率可変物質22側に設けないため、透明電極
23,24間の距離を概ね同じ距離とすることも容易で
あり、しかも透明電極23,24間には常に透明物質の
層21が存在するため、図1乃至5に示した従来例と異
なり、絶縁性の劣化や短絡等が起こり難い。
Furthermore, since the transparent electrode 23 is not provided on the refractive index variable substance 22 side of the transparent substance layer 21, it is easy to make the distances between the transparent electrodes 23 and 24 substantially the same, and moreover, the transparent electrode 23. Since the transparent material layer 21 is always present between the layers 23 and 24, unlike the conventional example shown in FIGS.

【0047】前述したように、本例では、透明物質の層
の屈折率と、液晶等の屈折率可変物質の正常屈折率(あ
るいは異常屈折率)とをほぼ等しい値に設定したが、必
ずしもそうしなくても良い。即ち、前記屈折率をほぼ等
しい値に設定することはその焦点距離を無限大近くに設
定することに相当するが、前記屈折率をほぼ等しい値に
設定することが材料上困難である場合、あるいは前記屈
折率をほぼ等しい値に設定できる材料が他の物性値(誘
電率異方性、屈折率異方性、温度特性、溶媒との混合
性、毒性等)との関係から採用し難い場合であっても、
単に本装置の前後に他の固定焦点のレンズを配置して補
正すれば、その焦点距離を無限大近くに設定できるから
である。
As described above, in this example, the refractive index of the transparent material layer and the normal refractive index (or extraordinary refractive index) of the variable refractive index material such as liquid crystal are set to substantially equal values. You don't have to. That is, setting the refractive index to a substantially equal value is equivalent to setting the focal length to near infinity, but when it is difficult to set the refractive index to a substantially equal value in terms of material, or When it is difficult to use a material that can set the refractive index to almost the same value due to its relationship with other physical properties (dielectric anisotropy, refractive index anisotropy, temperature characteristics, miscibility with solvent, toxicity, etc.) Even so,
This is because the focal length can be set to near infinity simply by disposing another fixed-focus lens in front of and behind the present device for correction.

【0048】このように、本例では、従来例に比べて駆
動の高速化を図れ、均一性、製作の容易化、駆動上の問
題点を解決できることが明らかである。
As described above, in this example, it is apparent that the driving speed can be increased, the uniformity, the ease of manufacture, and the driving problem can be solved as compared with the conventional example.

【0049】[0049]

【第2の形態】図7乃至図11は請求項2、3、7に対
応する本発明の光学装置の実施の形態の一例を示すもの
である。本発明に用いる屈折率可変物質のような、周波
数によって異なる誘電率異方性を示す物質として、ネマ
チック液晶中の2周波駆動液晶がある。
[Second Embodiment] FIGS. 7 to 11 show an example of an embodiment of an optical device of the present invention corresponding to claims 2, 3, and 7. As a substance such as the refractive index variable substance used in the present invention, which exhibits a dielectric anisotropy different depending on the frequency, there is a two-frequency driving liquid crystal in a nematic liquid crystal.

【0050】図7は2周波駆動液晶の誘電率異方性Δε
(=ε‖−ε⊥)の駆動周波数依存性の具体例を示すも
のである。低周波ではΔε>0であるが、周波数が大き
くなると次第にΔεは小さくなり、高周波領域ではΔε
<0となる。ここで、Δε>0の場合には2周波駆動液
晶の分子の長軸が電界に沿って配向し、Δε<0の場合
には分子の長軸が電界に垂直に配向する。従って、周波
数を単純に変えるだけでは2周波駆動液晶の屈折率はほ
ぼ2値的(no及びne)に変化し、連続的に屈折率を変
化させることはできない(なお、配向規制力と電界の力
との釣合によって変化させることはできるが、これは従
来例で述べたように多くの欠点を有している。)。
FIG. 7 shows the dielectric anisotropy Δε of the dual frequency driving liquid crystal.
It shows a specific example of the drive frequency dependence of (= ε‖−ε⊥). Δε> 0 at low frequencies, but Δε becomes smaller as the frequency increases, and Δε at high frequencies.
<0. Here, when Δε> 0, the long axes of the molecules of the dual-frequency driving liquid crystal are oriented along the electric field, and when Δε <0, the long axes of the molecules are oriented perpendicular to the electric field. Accordingly, the refractive index of the two-frequency driving liquid crystal by simply changing the frequency changes almost binary (n o and n e), it can not be changed continuously refractive index (Incidentally, the alignment regulating force Although it can be changed by the balance with the force of the electric field, this has many drawbacks as described in the conventional example.).

【0051】図8は2周波駆動液晶の屈折率を連続的に
周期的変化できる駆動電圧波形の一例を示すものであ
る。例として、Δεの符号が異なる2つの周波数f21
(Δε>0)及びf22(Δε<0)を用いる場合を示
す。本例の駆動方法では、例えば周波数f21を主な周
波数とする電圧と、これと振幅の等しい、周波数f22
を主な周波数とする電圧とを一定のデューティ比及び一
定の周期で印加する。
FIG. 8 shows an example of a drive voltage waveform capable of continuously and periodically changing the refractive index of the dual frequency drive liquid crystal. As an example, two frequencies f21 having different signs of Δε
The case where (Δε> 0) and f22 (Δε <0) are used is shown. In the driving method of this example, for example, a voltage whose main frequency is the frequency f21 and a frequency f22 whose amplitude is equal to this voltage
Is applied with a constant duty ratio and a constant cycle.

【0052】このように駆動すると、2周波駆動液晶の
分子は、その長軸を電界に沿って配向させる力(周波数
f21印加時)と、その長軸を電界に垂直に配向させる
力(周波数f22印加時)とを周期的に交互に感じるこ
とになる。もし、他に拘束力がなければ、このような駆
動では、液晶は周波数f21と周波数f22とが切り替
わる点において急激にデジタル的に変化し、実用的にア
ナログ的動作を行わせることはできない。しかしなが
ら、実際には粘性や液晶の結晶としての束縛力があるた
め、この周期的に加わる交互の力と均衡し、広い領域に
亘ってほぼ均一で高速な液晶のアナログ的周期的配向運
動を可能とする。
When driven in this manner, the molecules of the two-frequency driving liquid crystal have a force for orienting their long axes along the electric field (when frequency f21 is applied) and a force for orienting their long axes perpendicular to the electric field (frequency f22). And (when applied) are felt alternately and periodically. If there is no other restraint force, in such driving, the liquid crystal abruptly changes digitally at the point where the frequency f21 and the frequency f22 are switched, and it is impossible to practically perform an analog operation. However, in reality, since there is viscosity and binding force as a crystal of liquid crystal, it balances with this alternating force applied periodically and enables a uniform and high-speed analog periodic alignment movement of liquid crystal over a wide area. And

【0053】但し、この駆動方法においては、周波数f
21と周波数f22の電界を周期的に一定の時間加える
ことが重要であり、例えば周波数f21と周波数f22
の電界をそれぞれ一回だけ印加しても、均一性が損なわ
れたり、散乱が大きくなったりして、可変焦点レンズと
しての実用性は乏しくなる。周波数f21と周波数f2
2の電界を周期的に一定の時間印加することにより、前
述した均衡がとれ、広い領域に亘って均一な動作が可能
となる。
However, in this driving method, the frequency f
21 and the frequency f22 are applied periodically for a certain period of time. For example, the frequency f21 and the frequency f22 are
Even if each of the electric fields is applied only once, the uniformity is impaired and the scattering becomes large, and the practicality as a variable focus lens becomes poor. Frequency f21 and frequency f2
By applying the electric field of 2 periodically for a certain period of time, the above-mentioned balance can be achieved and uniform operation can be performed over a wide area.

【0054】図9は前述した液晶の連続的な周期的運動
の一例を示すもので、ここでは図6に示した装置におけ
る透明物質の層の表面形状としてプリズム形状を用いた
場合を示している。また、駆動周波数として、低周波f
21と高周波f22とを用いて図8中の矩形波の場合の
ように駆動し、液晶が透明電極に対して垂直に立った場
合に液晶の屈折率と透明物質の屈折率とがほぼ等しくな
り、透明電極に対してほぼ平行な場合に液晶の屈折率が
透明物質の屈折率より大きくなる場合について示す。横
軸は高周波f22の始まる時点からの時間(f22及び
f21の繰り返し周期で規格化)であり、縦軸はプリズ
ム構造と液晶の屈折率変化により生じる出射光の振れ角
(度)である。
FIG. 9 shows an example of the above-mentioned continuous periodic movement of the liquid crystal, and here shows a case where a prism shape is used as the surface shape of the transparent material layer in the device shown in FIG. . Further, as the driving frequency, a low frequency f
21 and the high frequency f22, driving is performed as in the case of the rectangular wave in FIG. 8, and when the liquid crystal stands vertically with respect to the transparent electrode, the refractive index of the liquid crystal and the refractive index of the transparent substance become substantially equal to each other. , The case where the refractive index of the liquid crystal becomes larger than the refractive index of the transparent substance when it is substantially parallel to the transparent electrode. The horizontal axis is the time from the start of the high frequency f22 (normalized by the repeating period of f22 and f21), and the vertical axis is the deflection angle (degree) of the emitted light caused by the change in the refractive index of the prism structure and the liquid crystal.

【0055】同図から、位相が増加するにつれて出射光
の振れ角はほぼ正弦波に近い挙動を示し、アナログ的に
変化できることが明らかになった。また、この例におけ
る2周波(f22及びf21)の繰り返し周期はほぼ2
0msであり、このことから、本発明によれば、従来例
の回復速度の数秒に比べて著しく高速化できることが分
かる。
From the figure, it has been clarified that the deflection angle of the emitted light exhibits a behavior close to a sine wave as the phase increases and can be changed in an analog manner. Further, the repetition cycle of the two frequencies (f22 and f21) in this example is almost 2
It is 0 ms, which means that according to the present invention, the recovery speed of the conventional example can be remarkably increased as compared with several seconds.

【0056】図10は前記例における出射光の形を示す
ものである(ある時点での瞬間像)。入射光として円形
のスポット光を入射した場合であり、出射光も同様なス
ポット状となっている。他の時点でも同様なスポット像
が得られていることから、液晶が広い領域においてほぼ
均一な配向運動を行っていることが明らかである。
FIG. 10 shows the shape of the emitted light in the above example (instantaneous image at a certain point). This is a case where a circular spot light is incident as the incident light, and the emitted light has a similar spot shape. Since similar spot images are obtained at other times, it is clear that the liquid crystal makes almost uniform alignment motion in a wide region.

【0057】図11は2周波駆動液晶の屈折率を連続的
に変化できる駆動電圧波形の他の例を示すものである。
ここでは、図8の場合と同様に、Δεの符号が異なる2
つの周波数f21(Δε<0)及びf22(Δε>0)
を用いる場合を示すが、図8では振幅の等しい周波数f
21及びf22の2つの電圧を一定のデューティ比及び
周期で印加する場合を示しているのに対し、ここではそ
の周期の途中の所望の位相で電圧の供給を一時停止し、
その後、供給を再開する場合を示す。
FIG. 11 shows another example of the driving voltage waveform capable of continuously changing the refractive index of the dual frequency driving liquid crystal.
Here, as in the case of FIG.
Two frequencies f21 (Δε <0) and f22 (Δε> 0)
, The frequency f of equal amplitude is shown in FIG.
While the case where two voltages of 21 and f22 are applied with a constant duty ratio and cycle is shown, here, the supply of voltage is temporarily stopped at a desired phase in the middle of the cycle,
After that, the case where the supply is restarted is shown.

【0058】このように電圧の供給を一時停止すると、
2周波駆動液晶の分子は停止した位相に対応する傾きで
停止し、配向規制力や温度等によるゆらぎ等によって、
徐々にその配向が乱されるまでその状態を維持する。配
向規制力や温度等によるゆらぎ等によって配向が乱され
るまでの時間としては、通常、数秒以上かかる。従っ
て、この時間内に再び電圧供給を開始すれば、配向の乱
れを少なく保つことができ、しかもこの小さな配向の乱
れも一定時間の電圧供給の再開によりなくすことができ
る。このように駆動することにより、前述した乱れを直
すための一定のリフレッシュ時間は定期的に必要である
が、必ずしも周期的変化ではない高速な屈折率変化をも
たらすことができる。
When the voltage supply is temporarily stopped in this way,
The molecules of the two-frequency drive liquid crystal stop at the tilt corresponding to the stopped phase, and due to the alignment regulation force, fluctuations due to temperature, etc.,
The state is maintained until the orientation is gradually disturbed. The time until the orientation is disturbed by the orientation regulating force, fluctuations due to temperature, etc., usually takes several seconds or more. Therefore, if the voltage supply is restarted within this time, the disorder of the alignment can be kept small, and the small disorder of the alignment can be eliminated by restarting the voltage supply for a certain period of time. By driving in this way, a constant refresh time for fixing the above-mentioned turbulence is periodically required, but it is possible to bring about a fast refractive index change that is not necessarily a periodic change.

【0059】図12は前述したような駆動方法を適用す
る装置の一例を示すもので、ここでは多くのセル31を
マトリックス状に配置した装置32を示す。駆動シーケ
ンスとしては、まず、(1)一定時間のリフレッシュ動作
(図8に示したような周期的動作)の後に、(2)各々の
セルにおいて必要とされる屈折率変化に対応した位相に
おいて各々のセルへの電圧供給を停止する。そして、各
セルにおいて一定時間後に再びリフレッシュ動作に入
る。このような駆動を繰り返すことにより、多くのセル
からなるマトリックス装置32を駆動できる。
FIG. 12 shows an example of a device to which the above-described driving method is applied, and here, a device 32 in which many cells 31 are arranged in a matrix is shown. The driving sequence is as follows: (1) refresh operation for a certain period of time (periodic operation as shown in FIG. 8), and (2) each in a phase corresponding to the change in the refractive index required in each cell. The voltage supply to the cell is stopped. Then, in each cell, the refresh operation is started again after a predetermined time. By repeating such driving, the matrix device 32 including many cells can be driven.

【0060】ここで、駆動電圧の波形は正弦波である必
要はなく、これらの周波数を主な周波数として含む矩形
波や鋸歯状波等でも良いことはいうまでもない。また、
振幅に周期的変化を持たせても良いことは明らかであ
る。さらにまた、本例では2つの周波数を用いたが、よ
り多くの周波数を用いても良いことはいうまでもない。
Here, it goes without saying that the waveform of the driving voltage does not have to be a sine wave, and may be a rectangular wave or a sawtooth wave containing these frequencies as main frequencies. Also,
Obviously, the amplitude may have a periodic change. Furthermore, although two frequencies are used in this example, it goes without saying that more frequencies may be used.

【0061】本例の駆動方法による屈折率変化は電界が
主要因であるため、その振幅を大きくすることにより、
さらに高速化を図ることが可能となる。即ち、本駆動方
法による屈折率変化の周期は従来の数秒から数ms〜数
10ms程度以上まで高速化できる。この速度は図6に
示したような構造における透明電極間が数100μm程
度に厚くなる場合であり、このような構造でも十分な速
度が得られることを示している。
Since the electric field is the main factor in the change in the refractive index by the driving method of this example, by increasing the amplitude,
It is possible to further increase the speed. That is, the cycle of the change of the refractive index by the present driving method can be accelerated from the conventional several seconds to several ms to several tens of ms or more. This speed is the case where the distance between the transparent electrodes in the structure as shown in FIG. 6 is increased to about several hundreds of μm, which shows that a sufficient speed can be obtained even with such a structure.

【0062】[0062]

【第3の形態】図13は請求項9に対応する本発明の光
学装置の実施の形態の一例を示すもので、図中、図6の
装置と同一構成部分は同一符号をもって表す。即ち、2
2は屈折率可変物質、23,24は透明電極、25は駆
動装置、41は透明物質の層である。
Third Embodiment FIG. 13 shows an example of an embodiment of an optical device according to the present invention corresponding to claim 9. In the figure, the same components as those of the device of FIG. 6 are designated by the same reference numerals. That is, 2
Reference numeral 2 is a variable refractive index material, 23 and 24 are transparent electrodes, 25 is a driving device, and 41 is a layer of transparent material.

【0063】前述したように、屈折率可変物質22は屈
折率異方性及び誘電率異方性を有しており、その誘電率
異方性としては周波数f11の時にΔε>0であり、周
波数f12の時にΔε<0であるものとする。また、屈
折率異方性としてはno(正常屈折率)が透明物質の層
41の屈折率とほぼ等しく、ne(異常屈折率)が透明
物質の層41より概ね大きいものとする。
As described above, the variable refractive index material 22 has a refractive index anisotropy and a dielectric anisotropy, and the dielectric anisotropy is Δε> 0 at the frequency f11, It is assumed that Δε <0 at the time of f12. As for the refractive index anisotropy, n o (normal refractive index) is substantially equal to the refractive index of the transparent material layer 41, and n e (abnormal refractive index) is generally larger than that of the transparent material layer 41.

【0064】透明物質の層41の表面形状は凸レンズを
なしており、周波数f11が印加された場合、屈折率可
変物質22の分子は電界方向に平行な向き、即ち透明電
極23,24に対してほぼ垂直に立つ。このため、前述
した透明物質の層41と屈折率可変物質22との屈折率
の関係から、屈折率可変物質22の屈折率は透明物質の
層41の屈折率とほぼ同じとなる。従って、本例の装置
に入射してきた光42はほとんど変化を受けずに出射光
43として透過する。
The surface shape of the transparent material layer 41 forms a convex lens, and when the frequency f11 is applied, the molecules of the refractive index variable material 22 are oriented parallel to the electric field direction, that is, with respect to the transparent electrodes 23 and 24. Stand almost vertically. Therefore, the refractive index of the variable refractive index material 22 is substantially the same as the refractive index of the transparent material layer 41 due to the relationship between the refractive index of the transparent material layer 41 and the refractive index variable material 22 described above. Therefore, the light 42 incident on the apparatus of this example is transmitted as the outgoing light 43 with almost no change.

【0065】一方、周波数f12が印加された場合、屈
折率可変物質22の分子は電界方向に垂直な向き、即ち
透明電極23,24にほぼ平行になる。このため、前述
した透明物質の層41と屈折率可変物質22との屈折率
の関係から、屈折率可変物質22の屈折率は透明物質の
層41の屈折率より大きくなる。ここで、屈折率可変物
質22の部分は凹レンズ形状となるため、本例の装置に
屈折率可変物質22の分子の長軸と平行の偏光で入射し
てきた光42に対しては凹レンズとして機能し、出射光
44のように発散する。
On the other hand, when the frequency f12 is applied, the molecules of the refractive index variable substance 22 are oriented perpendicular to the electric field direction, that is, substantially parallel to the transparent electrodes 23 and 24. Therefore, the refractive index of the variable refractive index material 22 is higher than the refractive index of the transparent material layer 41 due to the relationship between the refractive index of the transparent material layer 41 and the refractive index variable material 22 described above. Here, since the portion of the refractive index variable substance 22 has a concave lens shape, it functions as a concave lens for the light 42 incident on the device of this example with polarized light parallel to the long axis of the molecule of the refractive index variable substance 22. , And diverges like outgoing light 44.

【0066】このように本例では、屈折率可変物質22
の屈折率を変化させることにより、凹レンズの焦点距離
を変化させることができる。
As described above, in this example, the refractive index variable substance 22 is used.
The focal length of the concave lens can be changed by changing the refractive index of.

【0067】[0067]

【第4の形態】図14は請求項9に対応する本発明の光
学装置の実施の形態の他の例を示すもので、ここでは図
13の例において表面形状を凹レンズとした透明物質の
層45を用いた例を示す。
[Fourth Embodiment] FIG. 14 shows another example of the embodiment of the optical device of the present invention corresponding to the ninth aspect. Here, in the example of FIG. 13, a layer of a transparent material having a concave lens surface shape is used. An example using 45 is shown.

【0068】本装置に周波数f11が印加された場合、
図13の例と同様に、屈折率可変物質22の屈折率は透
明物質の層45の屈折率とほぼ同じとなり、入射光42
はほとんど変化を受けずに出射光43として透過する。
When a frequency f11 is applied to this device,
Similar to the example of FIG. 13, the refractive index of the variable refractive index material 22 is almost the same as the refractive index of the transparent material layer 45, and the incident light 42
Is transmitted as outgoing light 43 with almost no change.

【0069】一方、周波数f12が印加された場合、図
13の例と同様に、屈折率可変物質22の屈折率は透明
物質の層45の屈折率より大きくなる。ここで、屈折率
可変物質22の部分は凸レンズ形状となるため、本例の
装置に屈折率可変物質22の分子の長軸と平行の偏光で
入射してきた光42に対しては凸レンズとして機能し、
出射光46のように集束する。
On the other hand, when the frequency f12 is applied, the refractive index of the variable refractive index material 22 becomes larger than the refractive index of the transparent material layer 45, as in the example of FIG. Here, since the portion of the refractive index variable substance 22 has a convex lens shape, it functions as a convex lens for the light 42 incident on the device of this example with polarized light parallel to the long axis of the molecule of the refractive index variable substance 22. ,
It is focused like emitted light 46.

【0070】このように本例では、屈折率可変物質22
の屈折率を変化させることにより、凸レンズの焦点距離
を変化させることができる。
As described above, in this example, the refractive index variable substance 22 is used.
The focal length of the convex lens can be changed by changing the refractive index of.

【0071】[0071]

【第5の形態】図15は請求項9に対応する本発明の光
学装置の実施の形態のさらに他の例を示すもので、ここ
では図13の例において表面形状を凸フレネルレンズと
した透明物質の層47を用いた例を示す。
Fifth Embodiment FIG. 15 shows still another example of the embodiment of the optical device according to the present invention, which corresponds to claim 9. Here, in the example of FIG. 13, the transparent surface is a convex Fresnel lens. An example using a layer of material 47 is shown.

【0072】本装置に周波数f11が印加された場合、
図13の例と同様に、屈折率可変物質22の屈折率は透
明物質の層47の屈折率とほぼ同じとなり、入射光42
はほとんど変化を受けずに出射光43として透過する。
When the frequency f11 is applied to this device,
Similar to the example of FIG. 13, the refractive index of the refractive index variable material 22 is substantially the same as the refractive index of the transparent material layer 47, and the incident light 42
Is transmitted as outgoing light 43 with almost no change.

【0073】一方、周波数f12が印加された場合、図
13の例と同様に、屈折率可変物質22の屈折率は透明
物質の層47の屈折率より大きくなる。ここで、屈折率
可変物質22の部分は凹フレネルレンズ形状となるた
め、本例の装置に屈折率可変物質22の分子の長軸と平
行の偏光で入射してきた光42に対しては凹フレネルレ
ンズとして機能し、出射光48のように発散する。
On the other hand, when the frequency f12 is applied, the refractive index of the variable refractive index material 22 becomes larger than the refractive index of the layer 47 of transparent material, as in the example of FIG. Here, since the portion of the refractive index variable substance 22 has a concave Fresnel lens shape, the concave Fresnel is incident on the light 42 which is incident on the device of this example as polarized light parallel to the long axis of the molecule of the refractive index variable substance 22. It functions as a lens and diverges like emitted light 48.

【0074】このように本例では、屈折率可変物質22
の屈折率を変化させることにより、凹フレネルレンズの
焦点距離を変化させることができる。
As described above, in this example, the refractive index variable substance 22 is used.
The focal length of the concave Fresnel lens can be changed by changing the refractive index of.

【0075】[0075]

【第6の形態】図16は請求項9に対応する本発明の光
学装置の実施の形態のさらに他の例を示すもので、ここ
では図13の例において表面形状をプリズムアレイとし
た透明物質の層49を用いた例を示す。
[Sixth Embodiment] FIG. 16 shows still another example of the embodiment of the optical device according to the present invention, which corresponds to claim 9. Here, in the example of FIG. 13, a transparent material whose surface shape is a prism array is used. An example using the layer 49 of FIG.

【0076】本装置に周波数f11が印加された場合、
図13の例と同様に、屈折率可変物質22の屈折率は透
明物質の層49の屈折率とほぼ同じとなり、入射光42
はほとんど変化を受けずに出射光43として透過する。
When a frequency f11 is applied to this device,
Similar to the example of FIG. 13, the refractive index of the variable refractive index material 22 is almost the same as the refractive index of the layer 49 of transparent material, and the incident light 42
Is transmitted as outgoing light 43 with almost no change.

【0077】一方、周波数f12が印加された場合、図
13の例と同様に、屈折率可変物質22の屈折率は透明
物質の層49の屈折率より大きくなり、本例は、屈折率
可変物質22の分子の長軸と平行の偏光で入射してきた
光42に対しては、屈折率の差とプリズムの傾きに応じ
て光を偏向する偏向素子として機能し、出射光50のよ
うに偏向する。
On the other hand, when the frequency f12 is applied, the refractive index of the variable refractive index material 22 becomes larger than the refractive index of the transparent material layer 49, as in the example of FIG. The light 42 that is incident with the polarized light parallel to the long axis of the molecule of 22 functions as a deflecting element that deflects the light according to the difference in the refractive index and the inclination of the prism, and deflects like the emitted light 50. .

【0078】このように本例では、屈折率可変物質22
の屈折率を変化させることにより、偏向素子の偏向角を
変化させることができる。
As described above, in this example, the refractive index variable substance 22 is used.
The deflection angle of the deflecting element can be changed by changing the refractive index of.

【0079】[0079]

【第7の形態】図17は請求項9に対応する本発明の光
学装置の実施の形態のさらに他の例を示すもので、ここ
では図13の例において表面形状を凹レンチキュラレン
ズとした透明物質の層51を用いた例を示す。
[Seventh Embodiment] FIG. 17 shows still another example of the embodiment of the optical device of the present invention corresponding to claim 9. Here, in the example of FIG. 13, a transparent lenticular lens is used as the surface shape. An example using a layer of material 51 is shown.

【0080】本装置に周波数f11が印加された場合、
図13の例と同様に、屈折率可変物質22の屈折率は透
明物質の層51の屈折率とほぼ同じとなり、入射光42
はほとんど変化を受けずに出射光43として透過する。
When the frequency f11 is applied to this device,
Similar to the example of FIG. 13, the refractive index of the variable refractive index material 22 is almost the same as the refractive index of the transparent material layer 51, and the incident light 42
Is transmitted as outgoing light 43 with almost no change.

【0081】一方、周波数f12が印加された場合、図
13の例と同様に、屈折率可変物質22の屈折率は透明
物質の層51の屈折率より大きくなる。ここで、屈折率
可変物質22の部分は凸レンチキュラレンズ形状となる
ため、本例は、屈折率可変物質22の分子の長軸と平行
の偏光で入射してきた光42に対しては凸レンチキュラ
レンズとして機能し、出射光52のように発散する。
On the other hand, when the frequency f12 is applied, the refractive index of the variable refractive index material 22 becomes larger than the refractive index of the transparent material layer 51, as in the example of FIG. Here, since the portion of the refractive index variable substance 22 has a convex lenticular lens shape, in this example, a convex lenticular lens is applied to the light 42 incident with the polarized light parallel to the long axis of the molecule of the refractive index variable substance 22. And diverges like emitted light 52.

【0082】このように本例では、屈折率可変物質22
の屈折率を変化させることにより、凸レンチキュラレン
ズの焦点距離や発散角度を変化させることができる。
As described above, in this example, the refractive index variable material 22 is used.
The focal length and divergence angle of the convex lenticular lens can be changed by changing the refractive index of.

【0083】[0083]

【第8の形態】図18は請求項9に対応する本発明の光
学装置の実施の形態のさらに他の例を示すもので、ここ
では図13の例において表面形状を回折格子とした透明
物質の層53を用いた例を示す。
[Eighth Embodiment] FIG. 18 shows still another example of the embodiment of the optical device according to the present invention, which corresponds to claim 9. Here, in the example of FIG. 13, a transparent material whose surface shape is a diffraction grating is used. An example using the layer 53 of is shown.

【0084】本装置に周波数f11が印加された場合、
図13の例と同様に、屈折率可変物質22の屈折率は透
明物質の層53の屈折率とほぼ同じとなり、入射光42
はほとんど変化を受けずに出射光43として透過する。
When a frequency f11 is applied to this device,
Similar to the example of FIG. 13, the refractive index of the variable refractive index material 22 is almost the same as the refractive index of the layer 53 of transparent material, and the incident light 42
Is transmitted as outgoing light 43 with almost no change.

【0085】一方、周波数f12が印加された場合、図
13の例と同様に、屈折率可変物質22の屈折率は透明
物質の層53の屈折率より大きくなる。ここで、屈折率
可変物質22の部分は回折格子形状となるため、本例
は、屈折率可変物質22の分子の長軸と平行の偏光で入
射してきた光42に対しては回折格子として機能し、出
射光54のように回折する。
On the other hand, when the frequency f12 is applied, the refractive index of the variable refractive index material 22 becomes larger than the refractive index of the transparent material layer 53, as in the example of FIG. Here, since the portion of the refractive index variable substance 22 has a diffraction grating shape, this example functions as a diffraction grating with respect to the light 42 incident with the polarized light parallel to the long axis of the molecule of the refractive index variable substance 22. Then, it is diffracted like the emitted light 54.

【0086】このように本例では、屈折率可変物質22
の屈折率を変化させることにより、回折格子における屈
折率差を変化させることができ、回折光の強度を変化で
きる。
As described above, in this example, the refractive index variable substance 22 is used.
The refractive index difference in the diffraction grating can be changed by changing the refractive index of, and the intensity of the diffracted light can be changed.

【0087】[0087]

【第9の形態】図19は請求項10に対応する本発明の
光学装置の実施の形態の一例を示すもので、図中、図6
の装置と同一構成部分は同一符号をもって表す。即ち、
21は透明物質の層、22は屈折率可変物質、23,2
4は透明電極、25は駆動装置、61は配向膜である。
[Ninth Embodiment] FIG. 19 shows an example of an embodiment of an optical device according to the present invention, which corresponds to claim 10. In FIG.
The same components as those of the device are denoted by the same reference numerals. That is,
Reference numeral 21 is a transparent material layer, 22 is a refractive index variable material, and 23, 2
4 is a transparent electrode, 25 is a driving device, and 61 is an alignment film.

【0088】配向膜61はポリイミド、PVA、PV
B、斜方蒸着SiO等からなり、屈折率可変物質22側
の透明電極24の表面上に形成されている。この配向膜
61はラビング法等による処理を加えることにより、そ
の上の屈折率可変物質、ここでは液晶22を一定の方向
に配向させることができる。
The alignment film 61 is made of polyimide, PVA, PV
B, oblique vapor deposition SiO, etc., and is formed on the surface of the transparent electrode 24 on the refractive index variable substance 22 side. By subjecting the alignment film 61 to a treatment such as a rubbing method, the refractive index variable substance, here the liquid crystal 22, can be aligned in a fixed direction.

【0089】このような構成及び処理により、液晶22
が配向膜61に平行な配向となるような駆動状態におい
て、該液晶22を広いドメイン領域において均一な配向
状態とすることができる。これにより、液晶22の屈折
率変化を入射光に効率良く伝えることが可能となり、か
つ液晶22が種々の方向を向くことによって生ずる散乱
やこれに起因する白濁を防ぐことができる。
With such a configuration and processing, the liquid crystal 22
The liquid crystal 22 can be uniformly aligned in a wide domain region in a driving state in which is aligned parallel to the alignment film 61. This makes it possible to efficiently transmit the change in the refractive index of the liquid crystal 22 to the incident light, and prevent scattering and white turbidity caused by the liquid crystal 22 that are oriented in various directions.

【0090】また、液晶22側の透明物質の層21の表
面上にポリイミド、PVA、PVB、斜方蒸着SiO等
からなる配向膜を塗布し、ラビング法等による配向処理
を加えることにより、液晶22の透明物質の層21側の
配向性を向上させることができる。また、透明物質の層
21をレプリカ法(金属やガラス、プラスチック等の型
のレプリカをとる方法)によって形成する場合は、その
剥す方向によって液晶を直接配向させることも可能であ
る。この場合は特殊な膜を塗布したり、表面に凹凸のあ
る面を配向処理する必要がないため、本装置の作製が容
易になる。
On the surface of the transparent material layer 21 on the liquid crystal 22 side, an alignment film made of polyimide, PVA, PVB, oblique vapor deposition SiO or the like is applied, and an alignment treatment by a rubbing method or the like is applied to the liquid crystal 22. The orientation of the transparent substance on the layer 21 side can be improved. When the transparent material layer 21 is formed by a replica method (a method of replicating a mold of metal, glass, plastic, or the like), it is possible to directly orient the liquid crystal depending on the peeling direction. In this case, there is no need to apply a special film or to perform an orientation treatment on a surface having irregularities on the surface, so that the device can be easily manufactured.

【0091】また、液晶22側の透明物質の層21の表
面上に垂直配向材を塗布することにより、液晶22の透
明物質の層21側を垂直配向とすることも可能である。
また、垂直配向材以外にも、例えば弗素等の基を有しか
つ液晶材料との濡れ性が悪い材料を透明物質の層21の
表面上に塗布することにより、液晶22の透明物質の層
21側を垂直配向に近い配向とすることも可能である。
これらの場合は膜を塗布するだけで良く、表面に凹凸の
ある面を配向処理する必要がないため、本装置の作製が
容易となる。
It is also possible to vertically align the transparent substance layer 21 side of the liquid crystal 22 by applying a vertical alignment material on the surface of the transparent substance layer 21 on the liquid crystal 22 side.
In addition to the vertical alignment material, a material having a group such as fluorine and having a poor wettability with the liquid crystal material is applied on the surface of the transparent material layer 21 to form the transparent material layer 21 of the liquid crystal 22. It is also possible to make the side closer to the vertical alignment.
In these cases, it is only necessary to apply a film, and it is not necessary to perform an orientation treatment on a surface having irregularities on the surface, so that the device can be easily manufactured.

【0092】また、本発明の光学装置は、屈折率可変物
質として、例えば二周波駆動液晶を用い、かつ屈折率可
変物質側の透明電極上にポリイミド、PVA、PVB、
斜方蒸着SiO等からなる配向膜を含み、屈折率可変物
質側の透明物質の層上に前述したような特別な配向膜を
含まない構成もできる。
Further, the optical device of the present invention uses, for example, a dual frequency driving liquid crystal as the refractive index variable material, and polyimide, PVA, PVB, or PVB on the transparent electrode on the refractive index variable material side.
It is also possible to include a configuration including an alignment film made of oblique vapor deposition SiO or the like and not including the special alignment film as described above on the transparent material layer on the refractive index variable material side.

【0093】このような構成によれば、配向膜が配置さ
れた透明電極の近傍では、この配向膜にラビング法等に
よる配向処理を加えることにより、その付近の二周波駆
動液晶(屈折率可変物質)の分子を一定の方向に配向さ
せることができるが、透明物質の層の近傍では、特に配
向処理を加えないため、二周波駆動液晶が場所によって
異なった向きを向いた配向を示し、入射光に屈折率変化
を充分に伝えられず、可変焦点の効果が充分に発現しな
い可能性がある。
According to such a structure, in the vicinity of the transparent electrode on which the alignment film is arranged, the alignment film is subjected to an alignment treatment by a rubbing method or the like, so that the dual frequency drive liquid crystal (refractive index variable substance) in the vicinity thereof is added. ) Molecules can be oriented in a certain direction, but in the vicinity of the layer of transparent material, since no special alignment treatment is applied, the dual frequency drive liquid crystal shows different orientations depending on the location, and the incident light There is a possibility that the change in the refractive index cannot be sufficiently transmitted to the lens and the effect of the variable focus is not sufficiently expressed.

【0094】しかしながら、このような構成において
も、例えば入射光を液晶の配向がより均一な方向(例え
ば、配向膜が形成されている側)から入射させることに
より、この問題を解決できる。即ち、入射光の偏光状態
を前記配向方向と一致させることにより、屈折率可変物
質の屈折率変化を入射光に効率良く伝えることが可能と
なる。これは液晶の旋光性によるものであり、液晶分子
の配向方向が入射光の進行方向に、波長に比べてゆっく
りと変化する場合は、入射光の偏光方向はこの液晶分子
の配向方向の変化に追随して変化する(例えば、液晶の
配向方向が右回りに変化する場合は偏光方向も右回りに
変化する。)。このため、透明物質の層付近で液晶の配
向が場所により異なっても入射光は屈折率変化を充分に
感じることになる。
However, even in such a structure, this problem can be solved by, for example, making incident light incident from a direction in which the alignment of the liquid crystal is more uniform (for example, the side where the alignment film is formed). That is, by making the polarization state of the incident light coincide with the orientation direction, it becomes possible to efficiently transmit the change in the refractive index of the refractive index variable substance to the incident light. This is due to the optical rotation of the liquid crystal.If the orientation direction of the liquid crystal molecules changes slowly in comparison with the wavelength in the traveling direction of the incident light, the polarization direction of the incident light changes according to the change in the orientation direction of the liquid crystal molecules. It changes following (for example, when the alignment direction of the liquid crystal changes clockwise, the polarization direction also changes clockwise). For this reason, even if the orientation of the liquid crystal differs depending on the location near the transparent material layer, the incident light sufficiently feels a change in the refractive index.

【0095】このような構成によれば、特殊な膜を塗布
したり、表面に凹凸のある面を配向処理する必要がない
ため、本装置の作製が容易となる。
According to such a structure, it is not necessary to apply a special film or to perform an orientation treatment on a surface having irregularities, so that the present apparatus can be easily manufactured.

【0096】[0096]

【第10の形態】図20は請求項12に対応する本発明
の光学装置の実施の形態の一例を示すものである。即
ち、71,72は図19で説明した配向膜を備えた光学
装置であり、配向膜の配向方向が互いに直交する如く直
列に並べることにより、入射光の偏光状態によらず各種
の機能を実現できる。
[Tenth Embodiment] FIG. 20 shows an example of an embodiment of an optical device according to the present invention. That is, 71 and 72 are optical devices provided with the alignment film described in FIG. 19, and by arranging them in series so that the alignment directions of the alignment films are orthogonal to each other, various functions are realized regardless of the polarization state of incident light. it can.

【0097】[0097]

【第11の形態】図21は請求項4、7、8に対応する
本発明の光学装置の実施の形態の一例を示すもので、液
晶を含む透明物質等よりなる屈折率可変物質81と、該
屈折率可変物質81を挟んだITOやSnOxよりなる
複数の透明電極82,83と、これらを駆動するための
駆動装置84とから構成されている。ここで、本例で
は、能動的な光学装置の一つとして、例えば光の位相変
化装置の提供を目的とする場合を示す。
[Eleventh Embodiment] FIG. 21 shows an example of an embodiment of an optical device according to the present invention corresponding to claims 4, 7, and 8. The refractive index variable substance 81 is made of a transparent substance containing liquid crystal, and the like. It is composed of a plurality of transparent electrodes 82 and 83 made of ITO or SnO x sandwiching the refractive index variable substance 81, and a driving device 84 for driving these. Here, in this example, as one of the active optical devices, for example, a case of providing a light phase changing device is shown.

【0098】本例においては、屈折率可変物質81は、
屈折率異方性及び誘電率異方性を有しており、その誘電
率異方性としては、周波数f31の時に誘電率異方性Δ
ε(=ε‖(分子の長軸に平行な誘電率)−ε⊥(分子
の長軸に垂直な誘電率))がプラスであり、周波数f3
2の時に誘電率異方性Δεがマイナスである例を用い
る。さらに屈折率異方性としてはno(正常屈折率)が
e(異常屈折率)より概ね小さい例を用いる。
In this example, the refractive index variable substance 81 is
It has a refractive index anisotropy and a dielectric constant anisotropy. The dielectric constant anisotropy is the dielectric constant anisotropy Δ at the frequency f31.
ε (= ε‖ (dielectric constant parallel to the long axis of the molecule) -ε⊥ (dielectric constant perpendicular to the long axis of the molecule)) is positive, and the frequency f3
An example in which the dielectric anisotropy Δε is negative when 2 is used. Still refractive index anisotropy n o (ordinary index) is used generally smaller examples than n e (extraordinary refractive index).

【0099】駆動装置84より周波数f31の電界が透
明電極82,83間に印加された場合には、Δε>0な
ので、屈折率可変物質81の分子は電界方向に平行な向
き、即ち透明電極82,83に対してほぼ垂直に立つ。
このため、屈折率可変物質81の屈折率はnoとなり、
この屈折率と層の厚さとの積に対応した位相ずれを入射
光85に対してもたらす。
When an electric field of frequency f31 is applied between the transparent electrodes 82 and 83 by the driving device 84, Δε> 0. Therefore, the molecules of the refractive index variable substance 81 are oriented in the direction parallel to the electric field direction, that is, the transparent electrode 82. , 83 stands almost vertically.
Therefore, the refractive index of the index variable material 81 is n o, and the
A phase shift corresponding to the product of this refractive index and the layer thickness is introduced to the incident light 85.

【0100】一方、駆動装置84より周波数f32の電
界が透明電極82,83間に印加された場合には、Δε
<0なので、屈折率可変物質81の分子は電界方向に垂
直な向き、即ち透明電極82,83に対してほぼ平行に
なる。このため、屈折率可変物質81の屈折率はne
なり、屈折率が大きくなるため、入射光85にもたらさ
れる位相ずれは周波数f31の場合に比べて大きくな
る。
On the other hand, when an electric field of frequency f32 is applied between the transparent electrodes 82 and 83 from the driving device 84, Δε
Since <0, the molecules of the refractive index variable substance 81 are in a direction perpendicular to the electric field direction, that is, substantially parallel to the transparent electrodes 82 and 83. Therefore, the refractive index of the refractive index variable substance 81 becomes n e , and the refractive index becomes large. Therefore, the phase shift introduced to the incident light 85 becomes larger than that at the frequency f31.

【0101】このように本例では、屈折率可変物質81
の屈折率を変化させることにより、光学装置の光学的性
質のうち、光の位相ずれを変化させることができる。
Thus, in this example, the refractive index variable substance 81
Among the optical properties of the optical device, the phase shift of light can be changed by changing the refractive index of the optical device.

【0102】しかしながら、前述したようにΔε>0の
場合には分子の長軸が電界に沿って配向し、Δε<0の
場合には分子の長軸が電界に垂直に配向するため、周波
数を単純に変えるだけでは、光学装置の光学的性質にお
ける中間値、例えば屈折率noとneに対応する位相ずれ
の中間値に変化させることはできない(なお、配向規制
力と電界の力との釣合によって変化させることはできる
が、これは従来例で述べたように多くの欠点を有してい
る。)。
However, as described above, when Δε> 0, the long axis of the molecule is oriented along the electric field, and when Δε <0, the long axis of the molecule is oriented perpendicular to the electric field. than simply changing the intermediate values of the optical properties of the optical device, for example, can not be changed to an intermediate value of the corresponding phase shift in the refractive index n o and n e (Note that the alignment regulating force and the electric field force Although it can be changed depending on the balance, this has many drawbacks as described in the conventional example.)

【0103】図22、23は前記光学的性質を連続的に
変化できる駆動電圧波形の一例を示すもので、図22は
正弦波の場合を、また、図23は矩形波の場合をそれぞ
れ示す。本例では、周波数f31を主な周波数とする電
圧Vs1(正弦波の場合)またはVr1(矩形波の場
合)と、周波数f32を主な周波数とする電圧Vs2
(正弦波の場合)またはVr2(矩形波の場合)とを、
ある電圧比で重畳した電圧Vss(正弦波の場合)また
はVrr(矩形波の場合)を印加する。
22 and 23 show examples of drive voltage waveforms capable of continuously changing the optical characteristics. FIG. 22 shows a sine wave case and FIG. 23 shows a rectangular wave case. In the present example, the voltage Vs1 (in the case of a sine wave) or Vr1 (in the case of a rectangular wave) whose main frequency is the frequency f31 and the voltage Vs2 whose main frequency is the frequency f32
(For sine wave) or Vr2 (for rectangular wave),
A voltage Vss (in the case of a sine wave) or Vrr (in the case of a rectangular wave) superimposed at a certain voltage ratio is applied.

【0104】このように駆動すると、2周波駆動液晶の
分子は、その長軸を電界に沿って配向させる力(周波数
f31印加時)と、その長軸を電界に垂直に配向させる
力(周波数f32印加時)との相反する向きの力を前記
電圧比に応じて同時に感じることになる。このため、分
子は前記電圧比に応じて、この相反する向きの力が均衡
する角度で電界方向から傾くことになり、屈折率に高速
で連続的な変化をもたらすことができる。また、この作
用に液晶の結晶としての束縛力とが合わさり、広いドメ
イン領域に亘ってほぼ均一で高速な液晶の配向運動が可
能となる。
When driven in this way, the molecules of the dual-frequency driving liquid crystal have a force for orienting their long axes along the electric field (when frequency f31 is applied) and a force for orienting their long axes perpendicular to the electric field (frequency f32). A force in a direction opposite to (when applied) is sensed at the same time according to the voltage ratio. Therefore, the molecules are tilted from the direction of the electric field at an angle at which the forces in opposite directions are balanced according to the voltage ratio, and the refractive index can be continuously changed at high speed. In addition, this action is combined with the binding force of the liquid crystal as a crystal, which enables almost uniform and high-speed alignment movement of the liquid crystal over a wide domain region.

【0105】ここで、駆動電圧の波形は正弦波や矩形波
である必要はなく、これらの周波数を主な周波数として
含む鋸歯状波等でも良いことはいうまでもない。また、
振幅に時間的変化を持たせても良いことは明らかであ
る。さらにまた、本例では2つの周波数を用いたが、よ
り多くの周波数を用いても良いことはいうまでもない。
Here, it goes without saying that the waveform of the drive voltage does not have to be a sine wave or a rectangular wave, and may be a sawtooth wave containing these frequencies as main frequencies. Also,
Obviously, the amplitude may be changed with time. Furthermore, although two frequencies are used in this example, it goes without saying that more frequencies may be used.

【0106】本例の駆動方法による屈折率変化は電界が
主要因であるため、その振幅を大きくすることにより、
さらに高速化を図ることが可能となる。即ち、透明電極
間が数100μm程度と厚い場合であっても、屈折率可
変物質としての2周波駆動液晶の屈折率変化の応答速度
として数10ms程度以下に高速化できる。
Since the electric field is the main factor in the change in the refractive index by the driving method of this example, the amplitude can be increased to
It is possible to further increase the speed. That is, even when the distance between the transparent electrodes is as thick as about several 100 μm, the response speed of the change in the refractive index of the dual-frequency driving liquid crystal as the refractive index variable substance can be increased to about several tens ms or less.

【0107】[0107]

【第12の形態】図24、25は請求項5、7、8に対
応する本発明の光学装置の実施の形態の一例を示すもの
で、図中、図21の装置と同一構成部分は同一符号をも
って表す。即ち、81は屈折率可変物質、82,83は
透明電極、84は駆動装置、86は透明物質の層であ
る。
Twelfth Embodiment FIGS. 24 and 25 show an example of an embodiment of an optical device of the present invention corresponding to claims 5, 7, and 8. In the figure, the same components as those of the device of FIG. 21 are the same. It is represented by a sign. That is, 81 is a variable refractive index material, 82 and 83 are transparent electrodes, 84 is a driving device, and 86 is a layer of transparent material.

【0108】透明物質の層86は所望の曲面の表面形状
を有する透明な高分子やガラス等からなり、透明電極8
2,83間に配置されている。
The transparent material layer 86 is made of a transparent polymer or glass having a desired curved surface shape, and the transparent electrode 8
It is arranged between 2 and 83.

【0109】ここでは能動的な光学装置の一つとして、
焦点距離が可変な平凸レンズ(焦点距離がプラス)の提
供を目的とし、例えば屈折率可変物質81の屈折率の方
が透明物質の層86の屈折率よりも概ね大きい場合に
は、屈折率可変物質81を凸レンズ形状とすれば良い。
従って、屈折率可変物質81側の透明物質の層86の表
面形状を、図示したような凹フレネルレンズ形状等とす
れば良い。むろん、屈折率可変物質81の屈折率の方が
透明物質の層86の屈折率よりも概ね小さい場合には、
屈折率可変物質81側の透明物質の層86の表面形状
を、例えば凸フレネルレンズ形状とすれば良いことは明
らかである。
Here, as one of the active optical devices,
For the purpose of providing a plano-convex lens with a variable focal length (positive focal length), for example, when the refractive index of the variable refractive index material 81 is generally larger than the refractive index of the transparent material layer 86, the refractive index variable The substance 81 may have a convex lens shape.
Therefore, the surface shape of the transparent material layer 86 on the refractive index variable material 81 side may be a concave Fresnel lens shape as shown in the figure. Of course, if the refractive index of the refractive index variable substance 81 is smaller than the refractive index of the transparent material layer 86,
It is clear that the surface shape of the transparent material layer 86 on the refractive index variable material 81 side may be, for example, a convex Fresnel lens shape.

【0110】本例においては、屈折率可変物質81は、
屈折率異方性及び誘電率異方性を有しており、その誘電
率異方性としては、周波数f31の時にΔε>0であ
り、周波数f32の時にΔε<0である例を用いる。さ
らに屈折率異方性としてはnoが透明物質の層86の屈
折率とほぼ等しく、neが透明物質の層86より概ね大
きい例を用いる。
In this example, the refractive index variable substance 81 is
It has a refractive index anisotropy and a dielectric anisotropy, and as the dielectric anisotropy, an example is used in which Δε> 0 at the frequency f31 and Δε <0 at the frequency f32. Still refractive index anisotropy substantially equal to the refractive index of the layer 86 of n o transparent material, n e is used generally greater example than the layer 86 of transparent material.

【0111】駆動装置84より周波数f31の電界が透
明電極82,83間に印加された場合には、Δε>0な
ので、屈折率可変物質81の分子は電界方向に平行な向
き、即ち透明電極82,83に対してほぼ垂直に立つ。
このため、前述した透明物質の層86と屈折率可変物質
81との屈折率の関係から、屈折率可変物質81の屈折
率は透明物質の層86の屈折率とほぼ同じとなる。従っ
て、本発明の光学装置に入射してきた光85はほとんど
変化を受けずに出射光87として透過する。
When an electric field of frequency f31 is applied between the transparent electrodes 82 and 83 from the driving device 84, Δε> 0. Therefore, the molecules of the refractive index variable substance 81 are oriented in the direction parallel to the electric field direction, that is, the transparent electrode 82. , 83 stands almost vertically.
Therefore, the refractive index of the variable refractive index material 81 is substantially the same as the refractive index of the transparent material layer 86 due to the relationship between the refractive index of the transparent material layer 86 and the refractive index variable material 81 described above. Therefore, the light 85 incident on the optical device of the present invention is transmitted as the outgoing light 87 with almost no change.

【0112】一方、駆動装置84より周波数f32の電
界が透明電極82,83間に印加された場合には、Δε
<0なので、屈折率可変物質81の分子は電界方向に垂
直な向き、即ち透明電極82,83にほぼ平行になる。
このため、前述した透明物質の層86と屈折率可変物質
81との屈折率の関係から、屈折率可変物質81の屈折
率は透明物質の層86の屈折率よりも大きくなる。ここ
で、屈折率可変物質81の部分は凸フレネルレンズ形状
となるため、本光学装置は、屈折率可変物質81の分子
の長軸と平行の偏光で入射してきた光85に対しては凸
フレネルレンズとして機能し、出射光88のように集束
する。
On the other hand, when an electric field of frequency f32 is applied between the transparent electrodes 82 and 83 from the driving device 84, Δε
Since <0, the molecules of the refractive index variable substance 81 are in a direction perpendicular to the electric field direction, that is, substantially parallel to the transparent electrodes 82 and 83.
Therefore, the refractive index of the variable refractive index material 81 is higher than the refractive index of the transparent material layer 86 due to the relationship between the refractive index of the transparent material layer 86 and the refractive index variable material 81 described above. Here, since the portion of the refractive index variable substance 81 has a convex Fresnel lens shape, the present optical device has a convex Fresnel lens for the light 85 incident with polarized light parallel to the long axis of the molecule of the refractive index variable substance 81. It functions as a lens and focuses like outgoing light 88.

【0113】このように本例では、屈折率可変物質81
の屈折率を変化させることにより、光学装置の光学的性
質のうち、レンズの焦点距離を変化させることができ
る。
As described above, in this example, the refractive index variable substance 81
Among the optical properties of the optical device, the focal length of the lens can be changed by changing the refractive index of.

【0114】しかしながら、前述したように、周波数を
単純に変えるだけでは屈折率可変物質の屈折率をno
eとの中間の値に変化させることができず、レンズの
焦点距離のような光学装置の光学的性質も中間的な値に
変化させることはできない。
However, as described above, the refractive index of the variable refractive index material cannot be changed to an intermediate value between n o and n e by simply changing the frequency. The optical properties of the optical device also cannot be changed to intermediate values.

【0115】この光学的性質の連続的な変化は、例えば
図22または23に示したような、周波数f31を主な
周波数とする電圧V31と、周波数f32を主な周波数と
する電圧V32とを、ある電圧比で重畳して印加すること
により可能となる。この時、2周波駆動液晶の分子は前
記電圧比に応じて、この相反する向きの力が均衡する角
度で電界方向から傾くことになる。これにより、屈折率
に高速で連続的な変化をもたらすことができる。また、
この作用に液晶の結晶としての束縛力とが合わさり、広
いドメイン領域に亘ってほぼ均一で高速な液晶の配向運
動が可能となり、均一な光学的性質の変化が達成でき
る。
The continuous change of the optical property is caused by a voltage V 31 having a frequency f31 as a main frequency and a voltage V 32 having a frequency f32 as a main frequency as shown in FIG. 22 or 23, for example. Can be applied by superimposing with a certain voltage ratio. At this time, the molecules of the liquid crystal driven by two frequencies are inclined from the direction of the electric field at an angle at which the forces in opposite directions are balanced according to the voltage ratio. This can bring about a rapid and continuous change in the refractive index. Also,
This action is combined with the binding force of the liquid crystal as a crystal, which enables a substantially uniform and high-speed alignment movement of the liquid crystal over a wide domain region, and can achieve a uniform change in optical properties.

【0116】図25は前記光学的性質の連続的な変化の
一例を示すものである。この例では、透明物質の層の表
面形状としてプリズム形状を用いている。横軸は周波数
f31を主な周波数とする電圧V31と、周波数f32を
主な周波数とする電圧V32における電圧比V32/(V31
+V32)であり、縦軸は屈折率変化に伴う出射光の偏向
角度である。同図から、電圧比V32/(V31+V32)が
増加するにつれて偏向角度がアナログ的に変化すること
が分かる。なお、本例における出射光の形も、図10に
示したものと同様であり、液晶が広い領域においてほぼ
均一な配向運動を行っていることは明らかである。
FIG. 25 shows an example of continuous changes in the optical properties. In this example, a prism shape is used as the surface shape of the transparent material layer. The horizontal axis indicates the voltage ratio V 32 / (V 31 between the voltage V 31 having the frequency f31 as the main frequency and the voltage V 32 having the frequency f32 as the main frequency.
+ V 32 ), and the vertical axis represents the deflection angle of the emitted light due to the change in the refractive index. From the figure, it can be seen that the deflection angle changes in an analog manner as the voltage ratio V 32 / (V 31 + V 32 ) increases. The shape of the emitted light in this example is also the same as that shown in FIG. 10, and it is clear that the liquid crystal makes almost uniform alignment movement in a wide region.

【0117】ここで、駆動電圧の波形は正弦波である必
要はなく、これらの周波数を主な周波数として含む矩形
波や鋸歯状波等でも良いことはいうまでもない。また、
振幅に時間的変化を持たせても良いことは明らかであ
る。さらにまた、本例では2つの周波数を用いたが、よ
り多くの周波数を用いても良いことはいうまでもない。
Here, it goes without saying that the waveform of the drive voltage does not have to be a sine wave, and may be a rectangular wave or a sawtooth wave having these frequencies as main frequencies. Also,
Obviously, the amplitude may be changed with time. Furthermore, although two frequencies are used in this example, it goes without saying that more frequencies may be used.

【0118】本例の駆動方法による屈折率変化は電界が
主要因であるため、その振幅を大きくすることにより、
さらに高速化を図ることが可能となる。即ち、透明電極
間が数100μm程度と厚い場合であっても、屈折率可
変物質としての2周波駆動液晶の屈折率変化の応答速度
として数10ms程度以下に高速化できる。
Since the electric field is the main factor in the change in the refractive index by the driving method of this example, by increasing the amplitude,
It is possible to further increase the speed. That is, even when the distance between the transparent electrodes is as thick as about several 100 μm, the response speed of the change in the refractive index of the dual-frequency driving liquid crystal as the refractive index variable substance can be increased to about several tens ms or less.

【0119】また、電界の及ぼす力によって屈折率可変
物質81の配向を変化させ、かつ透明電極82を透明物
質の層86の屈折率可変物質側に設けないため、屈折率
可変物質がいずれの配向状態の場合でも、図1乃至5に
示した従来例に比べて透明物質の層86の表面形状の影
響を受けにくい。
Further, since the orientation of the refractive index variable substance 81 is changed by the force exerted by the electric field, and the transparent electrode 82 is not provided on the refractive index variable substance side of the transparent substance layer 86, the orientation of the refractive index variable substance is not limited. Even in the state, it is less affected by the surface shape of the transparent material layer 86 as compared with the conventional example shown in FIGS.

【0120】また、透明電極82を透明物質の層86の
屈折率可変物質側に設けないため、複雑な形状の部分に
膜を形成する必要がなく、図1乃至5に示した従来例に
比べて、製作が容易となる。
Further, since the transparent electrode 82 is not provided on the refractive index variable material side of the transparent material layer 86, it is not necessary to form a film on a portion having a complicated shape, and compared with the conventional example shown in FIGS. Therefore, it becomes easy to manufacture.

【0121】さらにまた、透明電極82を透明物質の層
86の屈折率可変物質側に設けないため、透明電極8
2,83間の距離を概ね同じ距離とすることも容易であ
り、しかも透明電極82,83間に常に透明物質の層8
6が存在するため、図1乃至5に示した従来例と異な
り、絶縁性の劣化や短絡等が起こり難い。
Furthermore, since the transparent electrode 82 is not provided on the refractive index variable material side of the transparent material layer 86, the transparent electrode 8
It is easy to make the distance between the transparent electrodes 82 and 83 substantially the same, and the transparent material layer 8 is always provided between the transparent electrodes 82 and 83.
6 is present, unlike the conventional examples shown in FIGS. 1 to 5, deterioration of insulation properties, short circuiting, etc. are unlikely to occur.

【0122】このように、本例では、従来例に比べて、
駆動の高速化を図れ、均一性、製作の容易化、駆動上の
問題点を解決できることが明らかである。
Thus, in this example, as compared with the conventional example,
It is apparent that the driving speed can be increased, the uniformity, the ease of manufacture, and the driving problem can be solved.

【0123】[0123]

【第13の形態】図26は請求項6に対応する本発明の
光学装置の実施の形態の一例を示すものである。例とし
て、Δεの符号が異なる2つの周波数f31(Δε>
0)、f32(Δε<0)を用い、屈折率可変物質とし
て2周波駆動液晶を用いる場合を示す。また、例として
正弦波を用いる場合と、矩形波を用いる場合とをそれぞ
れ示す。
[Thirteenth Embodiment] FIG. 26 shows an example of the embodiment of the optical apparatus according to the present invention. As an example, two frequencies f31 with different signs of Δε (Δε>
0) and f32 (Δε <0) are used, and a dual-frequency driving liquid crystal is used as the refractive index variable substance. Further, as an example, a case of using a sine wave and a case of using a rectangular wave are shown.

【0124】本例の駆動方法では、周波数f31を主な
周波数とする電圧と、周波数f32を主な周波数とする
電圧とを、ある電圧比で重畳して印加し、さらにある瞬
間に電圧の供給を一時停止し、その後、供給を再開す
る。
In the driving method of this example, the voltage having the frequency f31 as the main frequency and the voltage having the frequency f32 as the main frequency are superimposed and applied at a certain voltage ratio, and the voltage is supplied at a certain moment. Pause and then resume supply.

【0125】このように電圧の供給を一旦停止すると、
2周波駆動液晶の分子は前記電圧比に対応する傾きで停
止し、配向規制力や温度等によるゆらぎ等によって、徐
々にその配向が乱されるまでその状態を維持する。配向
規制力や温度等によるゆらぎ等によって配向が乱される
までの時間としては、通常、数秒以上かかる。従って、
この時間内に再び電圧供給を開始すれば、配向の乱れを
少なく保つことができ、しかもこの小さな配向の乱れも
一定時間の電圧供給の再開によりなくすことができる。
このように駆動することにより、前述した乱れを直すた
めの一定のリフレッシュ時間は定期的に必要であるが、
常に電圧を印加する必要のない高速な屈折率変化をもた
らすことができる。
When the supply of voltage is once stopped in this way,
The molecules of the two-frequency driving liquid crystal stop at an inclination corresponding to the voltage ratio, and the state is maintained until the orientation is gradually disturbed due to the orientation regulating force, fluctuations due to temperature, and the like. The time until the orientation is disturbed by the orientation regulating force, fluctuations due to temperature, etc., usually takes several seconds or more. Therefore,
If the voltage supply is restarted within this time, the disorder of the orientation can be kept small, and the small disorder of the orientation can be eliminated by restarting the voltage supply for a certain period of time.
By driving in this way, a constant refresh time for fixing the above-mentioned disturbance is regularly required.
It is possible to bring about a fast refractive index change that does not require constant voltage application.

【0126】この駆動方法も、図12に示したような多
くのセルをマトリックス状に配置した装置に適用するこ
とができる。駆動シーケンスとしては、まず、(1)一定
時間のリフレッシュ動作(図22または23に示したよ
うな動作)の後に、(2)各々のセルにおいて必要とされ
る屈折率変化に対応した位相において各々のセルへの電
圧供給を停止する。そして、各セルにおいて一定時間後
に再びリフレッシュ動作に入る。このような駆動を繰り
返すことにより、多くのセルからなるマトリックス装置
を駆動できる。
This driving method can also be applied to a device having many cells arranged in a matrix as shown in FIG. The drive sequence is as follows: (1) refresh operation for a certain period of time (operation as shown in FIG. 22 or 23), and (2) each in a phase corresponding to the change in the refractive index required in each cell. The voltage supply to the cell is stopped. Then, in each cell, the refresh operation is started again after a predetermined time. By repeating such driving, a matrix device including many cells can be driven.

【0127】ここで、駆動電圧の波形は正弦波である必
要はなく、これらの周波数を主な周波数として含む矩形
波や鋸歯状波等でも良いことはいうまでもない。また、
振幅に周期的変化を持たせても良いことは明らかであ
る。さらにまた、本例では2つの周波数を用いたが、よ
り多くの周波数を用いても良いことはいうまでもない。
Here, it goes without saying that the waveform of the drive voltage does not have to be a sine wave, and may be a rectangular wave or a sawtooth wave having these frequencies as main frequencies. Also,
Obviously, the amplitude may have a periodic change. Furthermore, although two frequencies are used in this example, it goes without saying that more frequencies may be used.

【0128】本例の駆動方法による屈折率変化は電界が
主要因であるため、その振幅を大きくすることにより、
さらに高速化を図ることが可能となる。即ち、本駆動方
法による屈折率変化の周期は従来の数秒から数ms〜数
10ms程度以上まで高速化できる。この速度は図21
に示したような構造における透明電極間が数100μm
程度に厚くなる場合であり、このような構造でも十分な
速度が得られることを示している。
Since the electric field is the main factor in the change in the refractive index by the driving method of this example, by increasing the amplitude,
It is possible to further increase the speed. That is, the cycle of the change of the refractive index by the present driving method can be accelerated from the conventional several seconds to several ms to several tens of ms or more. This speed is shown in Figure 21.
Between the transparent electrodes in the structure shown in Fig.
This is a case where the thickness is moderate, which shows that a sufficient speed can be obtained even with such a structure.

【0129】なお、前述した第4乃至第10の形態にお
いても、第11、第12の形態で説明した、周波数f3
1を主な周波数とする電圧と周波数f32を主な周波数
とする電圧とをある電圧比で重畳した電圧で駆動しても
良く、また、第13の形態で説明した、周波数f31を
主な周波数とする電圧と周波数f32を主な周波数とす
る電圧とをある電圧比で重畳して印加し、さらにある瞬
間に電圧の供給を一時停止し、その後、供給を再開する
方法で駆動しても良い。
In the fourth to tenth embodiments described above, the frequency f3 described in the eleventh and twelfth embodiments is also used.
1 may be driven by a voltage obtained by superimposing a voltage having a main frequency of 1 and a voltage having a main frequency of f32 at a certain voltage ratio. Further, the frequency f31 described in the thirteenth mode may be a main frequency. May be applied by superimposing a voltage having a frequency f32 and a voltage having a frequency f32 as a main frequency at a certain voltage ratio, further temporarily stopping the supply of the voltage, and then restarting the supply. .

【0130】[0130]

【第14の形態】これまでの説明では、屈折率可変物質
を駆動するための2つの電極を両方とも透明電極とした
が、このうちの一方を鏡面を形成する電極とすることも
用途によっては、例えば焦点距離や光偏向角等の光学特
性が変化するアクティブなミラーを必要とするような場
合等には有益となる。また、この電極をハーフミラーを
形成する電極とし、焦点距離や光偏向角等の光学特性が
変化するアクティブなハーフミラーとして用いることも
有益である。
[Fourteenth Embodiment] In the above description, both of the two electrodes for driving the variable refractive index material are transparent electrodes, but it is also possible to use one of them as an electrode forming a mirror surface depending on the application. This is useful when, for example, an active mirror whose optical characteristics such as focal length and light deflection angle change is required. It is also useful to use this electrode as an electrode forming a half mirror and to use it as an active half mirror whose optical characteristics such as focal length and light deflection angle change.

【0131】図27は請求項13に対応する本発明の光
学装置の実施の形態の一例を示すもので、図中、図6の
装置と同一構成部分は同一符号をもって表す。即ち、2
1は透明物質の層、22は屈折率可変物質、23は透明
電極、91は電極である。
FIG. 27 shows an example of an embodiment of an optical device of the present invention corresponding to claim 13. In the figure, the same components as those of the device of FIG. 6 are represented by the same symbols. That is, 2
Reference numeral 1 is a transparent material layer, 22 is a refractive index variable material, 23 is a transparent electrode, and 91 is an electrode.

【0132】電極91は、図6の装置における透明電極
24の代わりに配置された鏡面を形成する電極であり、
例えばアルミ膜やクロム膜等からなる金属電極で構成さ
れる。
The electrode 91 is an electrode forming a mirror surface, which is arranged in place of the transparent electrode 24 in the device of FIG.
For example, it is composed of a metal electrode made of an aluminum film or a chromium film.

【0133】前記構成において、図示しない駆動装置か
ら周波数f11が印加されると、第1の形態の場合と同
様に透明物質の層21の屈折率と屈折率可変物質22の
屈折率とはほぼ同じであるから、透明電極23側から入
射した入射光92は、ほとんど変化を受けずに電極91
に達し、ここで反射されて透明電極23側から出射光9
3として出射される。
In the above structure, when the frequency f11 is applied from the driving device (not shown), the refractive index of the transparent material layer 21 and the refractive index variable material 22 are substantially the same as in the first embodiment. Therefore, the incident light 92 incident from the transparent electrode 23 side is hardly changed and the incident light 92 is not changed.
And is reflected here and emitted from the transparent electrode 23 side.
It is emitted as 3.

【0134】一方、周波数f12が印加されると、屈折
率可変物質22の屈折率の変化に応じた光学効果、例え
ばレンズ効果や偏向効果等を受けて電極91に達し、こ
こで反射されて再び同様な光学効果を受け、透明電極2
3側から出射光94として出射される。
On the other hand, when the frequency f12 is applied, it reaches the electrode 91 due to an optical effect corresponding to the change of the refractive index of the refractive index variable substance 22, such as a lens effect or a deflection effect, where it is reflected and reflected again. The transparent electrode 2 receives the same optical effect.
The emitted light 94 is emitted from the 3 side.

【0135】このように本例では、屈折率可変物質22
の屈折率を変化させることにより、焦点可変なミラーや
偏向角可変なミラーを実現できる。
As described above, in this example, the refractive index variable substance 22 is used.
By changing the refractive index of, it is possible to realize a mirror with a variable focus and a mirror with a variable deflection angle.

【0136】[0136]

【第15の形態】図28は請求項13に対応する本発明
の光学装置の実施の形態の他の例を示すもので、ここで
は図27の例において電極91の代わりにハーフミラー
を形成する電極95を用いた例を示す。即ち、電極95
は、ITO膜と金属の薄い膜との積層膜、金属の薄い膜
と絶縁膜との多層膜等からなり、入射光の一部を透過
し、残りを反射する。
Fifteenth Embodiment FIG. 28 shows another example of the embodiment of the optical device of the present invention corresponding to the thirteenth aspect. Here, a half mirror is formed instead of the electrode 91 in the example of FIG. An example using the electrode 95 is shown. That is, the electrode 95
Consists of a laminated film of an ITO film and a thin film of metal, a multilayer film of a thin film of metal and an insulating film, and transmits part of the incident light and reflects the rest.

【0137】前記構成において、図示しない駆動装置か
ら周波数f11が印加されると、第1の形態の場合と同
様に透明物質の層21の屈折率と屈折率可変物質22の
屈折率とはほぼ同じであるから、透明電極23側から入
射した入射光92は、ほとんど変化を受けずに電極95
に達する。電極95に達した光の一部は該電極95を透
過し、出射光96aとして出射され、残りの光は反射さ
れて透明電極23側から出射光96bとして出射され
る。
In the above structure, when the frequency f11 is applied from the driving device (not shown), the refractive index of the transparent material layer 21 and the refractive index variable material 22 are almost the same as in the first embodiment. Therefore, the incident light 92 incident from the transparent electrode 23 side is hardly changed, and
Reach A part of the light reaching the electrode 95 is transmitted through the electrode 95 and is emitted as emitted light 96a, and the remaining light is reflected and emitted from the transparent electrode 23 side as emitted light 96b.

【0138】一方、周波数f12が印加されると、屈折
率可変物質22の屈折率の変化に応じた光学効果、例え
ばレンズ効果や偏向効果等を受けて電極95に達する
が、該達した光の一部は該電極95を透過し、出射光9
7aとして出射され、残りの光は反射されて再び同様な
光学効果を受け、透明電極23側から出射光97bとし
て出射される。
On the other hand, when the frequency f12 is applied, it reaches the electrode 95 due to an optical effect corresponding to the change in the refractive index of the refractive index variable substance 22, for example, a lens effect or a deflection effect. Part of the light passes through the electrode 95, and the emitted light 9
7a is emitted, and the remaining light is reflected and again receives the same optical effect, and emitted from the transparent electrode 23 side as emitted light 97b.

【0139】このように本例では、屈折率可変物質22
の屈折率を変化させることにより、焦点可変なレンズ及
びミラー、偏向角可変な透過性光学素子及びミラー等を
同時に実現できる。また、電極95側から入射光を入射
すれば、焦点可変なレンズ及び単純なミラー、偏向角可
変な透過性光学素子及び単純なミラー等を同時に実現で
きる。
As described above, in this example, the refractive index variable substance 22 is used.
By changing the refractive index of, it is possible to realize a lens and a mirror with variable focus, a transmissive optical element with a variable deflection angle, and a mirror at the same time. Further, when incident light is incident from the electrode 95 side, it is possible to simultaneously realize a lens having a variable focus and a simple mirror, a transmissive optical element having a variable deflection angle, a simple mirror and the like.

【0140】[0140]

【第16の形態】図29は請求項13に対応する本発明
の光学装置の実施の形態のさらに他の例を示すもので、
ここでは図27の例において透明電極23の代わりにハ
ーフミラーを形成する電極98を用いた例を示す。即
ち、電極98は、電極95と同様、ITO膜と金属の薄
い膜との積層膜、金属の薄い膜と絶縁膜との多層膜等か
らなり、入射光の一部を透過し、残りを反射する。
[Sixteenth Embodiment] FIG. 29 shows still another example of the embodiment of the optical device according to the present invention, which corresponds to claim 13.
Here, an example is shown in which an electrode 98 forming a half mirror is used instead of the transparent electrode 23 in the example of FIG. That is, like the electrode 95, the electrode 98 is composed of a laminated film of an ITO film and a thin metal film, a multilayer film of a thin metal film and an insulating film, and transmits part of incident light and reflects the rest. To do.

【0141】前記構成において、電極98側から入射光
92を入射すると、その一部は該電極98で反射され、
残りは透明物質の層21及び屈折率可変物質22側に入
射する。
In the above structure, when the incident light 92 enters from the electrode 98 side, a part of it is reflected by the electrode 98,
The rest is incident on the transparent material layer 21 and the refractive index variable material 22 side.

【0142】この際、図示しない駆動装置から周波数f
11が印加されると、第1の形態の場合と同様に透明物
質の層21の屈折率と屈折率可変物質22の屈折率とは
ほぼ同じであるから、入射した光はほとんど変化を受け
ずに電極91に達し、ここで反射される。該反射された
光は再び電極98に達し、再度、その一部が反射され、
残りが外部に出射し、以下、同様な工程を繰り返すが、
この場合は何ら光学効果を受けないので、出射光は入射
光92の単なる反射光となる。
At this time, the frequency f
When 11 is applied, the refractive index of the transparent material layer 21 and the refractive index of the variable refractive index material 22 are substantially the same as in the case of the first embodiment, so that the incident light is hardly changed. To the electrode 91, where it is reflected. The reflected light reaches the electrode 98 again, and a part thereof is reflected again,
The rest is emitted to the outside, and the same process is repeated thereafter,
In this case, since no optical effect is exerted, the emitted light is simply the reflected light of the incident light 92.

【0143】一方、周波数f12が印加されると、電極
98を透過した光は屈折率可変物質22の屈折率の変化
に応じた光学効果、例えばレンズ効果や偏向効果等を受
けて電極91に達し、ここで反射される。該反射された
光は再び同様な光学効果を受けて電極98に達し、再
度、その一部が反射され、残りが外部に出射し、以下、
同様な工程を繰り返すが、この繰り返しの度に光学効果
を受けるため、繰り返す回数に応じて大きな光学効果が
加えられた出射光99として出射される。
On the other hand, when the frequency f12 is applied, the light transmitted through the electrode 98 reaches the electrode 91 under the optical effect according to the change of the refractive index of the refractive index variable substance 22, for example, the lens effect or the deflection effect. , Reflected here. The reflected light again receives the same optical effect and reaches the electrode 98, and a part of the reflected light is reflected again, and the rest is emitted to the outside.
The same process is repeated, but since the optical effect is received each time this process is repeated, it is emitted as the emitted light 99 to which a large optical effect is added according to the number of repetitions.

【0144】このように本例では、屈折率可変物質22
の屈折率を変化させることにより、多数の焦点を同時に
有しかつその焦点を可変なレンズ、多数の偏向角を同時
に有しかつその偏向角を可変な光学素子等を実現でき
る。この際、同時に具備し得る焦点や偏向角の数は、電
極98の透過/反射の割合を調節することにより実質的
に決定できる。
As described above, in this example, the refractive index variable substance 22 is used.
It is possible to realize a lens having a large number of focal points at the same time and a variable focal point thereof, an optical element having a large number of deflection angles at the same time and a variable deflection angle thereof, etc. At this time, the number of focal points and deflection angles that can be simultaneously provided can be substantially determined by adjusting the transmission / reflection ratio of the electrode 98.

【0145】[0145]

【発明の効果】以上説明したように、本発明の請求項1
によれば、屈折率可変物質に印加する電圧の周波数を変
えることによってその屈折率を変化させ、これにより所
望の曲面の表面形状を有する透明物質の層とともに構成
する装置の光学的性質を変化させるため、従来の電圧の
オン・オフによってその屈折率を変化させる物質を用い
たものの如く電圧オフ時の屈折率の変化(回復)に長い
時間を要し、その分、高速駆動ができなかった装置と異
なり、高速な駆動が可能であり、しかも常に電界の及ぼ
す力を利用できるため、電界強度を大きくすることによ
りその速度をさらに高めることができる。また、電界の
及ぼす力によって屈折率可変物質の屈折率を変化させ、
しかも透明電極を透明物質の層の屈折率可変物質側に設
けないため、屈折率可変物質がいずれの状態の場合で
も、従来の装置に比べて透明物質の層の表面形状の影響
を受け難く、光学的性質の変化量を均一化し易い。ま
た、透明電極を透明物質の層の屈折率可変物質側に設け
ないため、複雑な形状の部分に膜を形成する必要がな
く、従来の装置に比べて製作が容易となる。さらにま
た、透明電極を透明物質の層の屈折率可変物質側に設け
ないため、透明電極間の距離を概ね同じ距離とすること
も容易であり、しかも透明電極間には常に透明物質の層
が存在するため、従来の装置と異なり、絶縁性の劣化や
短絡等が起こり難い。
As described above, according to the first aspect of the present invention.
According to the method, the refractive index is changed by changing the frequency of the voltage applied to the refractive index variable substance, thereby changing the optical property of the device configured with the layer of the transparent substance having the desired curved surface shape. For this reason, it takes a long time to change (recover) the refractive index when the voltage is off, as in the case of using a conventional material that changes the refractive index by turning the voltage on and off, and the device that cannot be driven at high speed correspondingly. Unlike the above, since high-speed driving is possible and the force exerted by the electric field can always be utilized, the speed can be further increased by increasing the electric field strength. Also, the refractive index of the refractive index variable substance is changed by the force exerted by the electric field,
Moreover, since the transparent electrode is not provided on the refractive index variable substance side of the transparent substance layer, in any state of the refractive index variable substance, it is less affected by the surface shape of the transparent substance layer as compared with the conventional device, It is easy to make the amount of change in optical properties uniform. Further, since the transparent electrode is not provided on the refractive index variable material side of the transparent material layer, it is not necessary to form a film on a portion having a complicated shape, and the manufacturing is easier than that of the conventional device. Furthermore, since the transparent electrode is not provided on the refractive index variable material side of the transparent material layer, it is easy to make the distance between the transparent electrodes substantially the same, and moreover, the transparent material layer is always provided between the transparent electrodes. Since it exists, unlike the conventional device, deterioration of insulation property, short circuit, etc. are unlikely to occur.

【0146】また、本発明の請求項2によれば、屈折率
可変物質の屈折率が各電圧の周波数に応じて周期的に変
化し、疑似的にそれらの中間的な値をとることが可能と
なり、光学的性質を連続的に変化できる。
According to the second aspect of the present invention, the refractive index of the refractive index variable substance periodically changes according to the frequency of each voltage, and pseudo intermediate values can be taken. Therefore, the optical properties can be continuously changed.

【0147】また、本発明の請求項3によれば、屈折率
可変物質における状態の維持特性を利用して所望の屈折
率を電圧を停止したまま維持でき、必ずしも周期的変化
ではない高速な屈折率変化をもたらすことができる。
According to the third aspect of the present invention, the desired refractive index can be maintained while the voltage is stopped by utilizing the state maintaining property of the refractive index variable substance, and high-speed refraction that is not necessarily periodical change. It can bring about rate changes.

【0148】また、本発明の請求項4によれば、屈折率
可変物質に印加する複数の重畳した互いに周波数の異な
る電圧の電圧比によってその屈折率を連続的に変化さ
せ、これにより装置の光学的性質を連続的変化させるた
め、従来の電圧のオン・オフによってその屈折率を変化
させる物質を用いたものの如く電圧オフ時の屈折率の変
化(回復)に長い時間を要し、その分、高速駆動ができ
なかった装置と異なり、高速でかつ連続的な変化をもた
らす駆動が可能であり、しかも常に電界の及ぼす力を利
用できるため、電界強度を大きくすることによりその速
度をさらに高めることができる。
Further, according to claim 4 of the present invention, the refractive index is continuously changed by the voltage ratio of a plurality of superimposed voltages having different frequencies applied to the refractive index variable substance, whereby the optical index of the device is changed. In order to continuously change the physical properties, it takes a long time to change (recover) the refractive index when the voltage is off, as in the case of using a conventional substance that changes the refractive index by turning the voltage on and off. Unlike devices that could not be driven at high speed, it is possible to drive at high speed and to bring about continuous changes, and because the force exerted by the electric field can always be utilized, the speed can be further increased by increasing the electric field strength. it can.

【0149】また、本発明の請求項5によれば、屈折率
可変物質が所望の曲面の表面形状を有する透明物質の層
とともに構成する装置の光学的性質を変化させることが
でき、また、電界の及ぼす力によって屈折率可変物質の
屈折率を変化させ、しかも透明電極を透明物質の層の屈
折率可変物質側に設けないため、屈折率可変物質がいず
れの状態の場合でも、従来の装置に比べて透明物質の層
の表面形状の影響を受け難く、光学的性質の変化量を均
一化し易い。また、透明電極を透明物質の層の屈折率可
変物質側に設けないため、複雑な形状の部分に膜を形成
する必要がなく、従来の装置に比べて製作が容易とな
る。さらにまた、透明電極を透明物質の層の屈折率可変
物質側に設けないため、透明電極間の距離を概ね同じ距
離とすることも容易であり、しかも透明電極間には常に
透明物質の層が存在するため、従来の装置と異なり、絶
縁性の劣化や短絡等が起こり難い。
Further, according to claim 5 of the present invention, it is possible to change the optical properties of the device in which the variable refractive index substance is formed together with the layer of the transparent substance having a desired curved surface shape, and the electric field is changed. The refractive index of the variable refractive index substance is changed by the force exerted by the transparent electrode, and the transparent electrode is not provided on the refractive index variable substance side of the transparent material layer. In comparison, it is less affected by the surface shape of the transparent material layer, and the amount of change in optical properties is easily made uniform. Further, since the transparent electrode is not provided on the refractive index variable material side of the transparent material layer, it is not necessary to form a film on a portion having a complicated shape, and the manufacturing is easier than that of the conventional device. Furthermore, since the transparent electrode is not provided on the refractive index variable material side of the transparent material layer, it is easy to make the distance between the transparent electrodes substantially the same, and moreover, the transparent material layer is always provided between the transparent electrodes. Since it exists, unlike the conventional device, deterioration of insulation property, short circuit, etc. are unlikely to occur.

【0150】また、本発明の請求項6によれば、屈折率
可変物質における状態の維持特性を利用して所望の屈折
率を電圧を停止したまま維持でき、必ずしも周期的変化
ではない高速な屈折率変化をもたらすことができる。
Further, according to claim 6 of the present invention, a desired refractive index can be maintained while the voltage is stopped by utilizing the state maintaining property of the refractive index variable substance, and high-speed refraction that is not necessarily periodical change. It can bring about rate changes.

【0151】また、本発明の請求項10によれば、液晶
の配向が配向膜に平行な方向となる駆動状態において広
いドメイン領域において均一な配向状態とすることがで
き、液晶の屈折率変化を入射光に効率良く伝えることが
可能となり、かつ液晶が種々の方向を向くことによって
生ずる散乱やこれに起因する白濁を防ぐことができる。
According to the tenth aspect of the present invention, in the driving state in which the liquid crystal is oriented in the direction parallel to the alignment film, a uniform alignment state can be obtained in a wide domain region, and the change in the refractive index of the liquid crystal It is possible to efficiently transmit the incident light, and it is possible to prevent scattering caused by the liquid crystal being oriented in various directions and white turbidity caused by the scattering.

【0152】また、本発明の請求項11によれば、屈折
率可変物質の屈折率変化を入射光に効率良く伝えること
が可能となる。
According to the eleventh aspect of the present invention, the change in the refractive index of the refractive index variable substance can be efficiently transmitted to the incident light.

【0153】また、本発明の請求項12によれば、入射
光の偏光状態によらず各種の機能を実現できる。
According to the twelfth aspect of the present invention, various functions can be realized regardless of the polarization state of incident light.

【0154】また、本発明の請求項13によれば、光学
特性が変化するアクティブなミラーやハーフミラー、そ
の他各種の光学装置を実現できる。
According to the thirteenth aspect of the present invention, it is possible to realize an active mirror or a half mirror whose optical characteristics change and other various optical devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の液晶レンズの一例を示す構成図FIG. 1 is a configuration diagram showing an example of a conventional liquid crystal lens.

【図2】図1の装置における焦点距離と印加電圧との関
係図
FIG. 2 is a diagram showing a relationship between a focal length and an applied voltage in the apparatus shown in FIG.

【図3】図1の装置における反応時間と印加電圧との関
係図
FIG. 3 is a diagram showing a relationship between a reaction time and an applied voltage in the apparatus of FIG.

【図4】図1の装置における配向規制力による液晶分子
の配列の概念図
FIG. 4 is a conceptual diagram of alignment of liquid crystal molecules by an alignment regulating force in the apparatus of FIG.

【図5】図1の装置における電圧印加時の液晶分子の配
列の概念図
FIG. 5 is a conceptual diagram of the arrangement of liquid crystal molecules when a voltage is applied in the device of FIG.

【図6】本発明の光学装置の第1の実施の形態を示す構
成図
FIG. 6 is a configuration diagram showing a first embodiment of the optical device of the present invention.

【図7】本発明の光学装置の第2の実施の形態を説明す
る液晶の誘電率と周波数との関係図
FIG. 7 is a diagram showing the relationship between the dielectric constant of liquid crystal and the frequency for explaining the second embodiment of the optical device of the present invention.

【図8】本発明の光学装置の第2の実施の形態を説明す
る駆動電圧波形図
FIG. 8 is a drive voltage waveform diagram for explaining the second embodiment of the optical device of the present invention.

【図9】本発明の光学装置の第2の実施の形態を説明す
る液晶の連続的な周期的運動の説明図
FIG. 9 is an explanatory diagram of a continuous periodic movement of liquid crystal for explaining the second embodiment of the optical device of the present invention.

【図10】本発明の光学装置の第2の実施の形態を説明
する出射光の輝度の平面分布グラフ
FIG. 10 is a plane distribution graph of the brightness of emitted light for explaining the second embodiment of the optical device of the present invention.

【図11】本発明の光学装置の第2の実施の形態を説明
する他の駆動電圧波形図
FIG. 11 is another drive voltage waveform diagram for explaining the second embodiment of the optical device of the present invention.

【図12】本発明の光学装置の第2の実施の形態を説明
するマトリックス装置の構成図
FIG. 12 is a configuration diagram of a matrix device for explaining a second embodiment of the optical device of the present invention.

【図13】本発明の光学装置の第3の実施の形態を示す
構成図
FIG. 13 is a configuration diagram showing a third embodiment of an optical device of the present invention.

【図14】本発明の光学装置の第4の実施の形態を示す
構成図
FIG. 14 is a configuration diagram showing a fourth embodiment of an optical device of the present invention.

【図15】本発明の光学装置の第5の実施の形態を示す
構成図
FIG. 15 is a configuration diagram showing a fifth embodiment of an optical device of the present invention.

【図16】本発明の光学装置の第6の実施の形態を示す
構成図
FIG. 16 is a configuration diagram showing a sixth embodiment of an optical device of the present invention.

【図17】本発明の光学装置の第7の実施の形態を示す
構成図
FIG. 17 is a configuration diagram showing a seventh embodiment of an optical device of the present invention.

【図18】本発明の光学装置の第8の実施の形態を示す
構成図
FIG. 18 is a configuration diagram showing an eighth embodiment of an optical device of the present invention.

【図19】本発明の光学装置の第9の実施の形態を示す
構成図
FIG. 19 is a configuration diagram showing a ninth embodiment of an optical device of the present invention.

【図20】本発明の光学装置の第10の実施の形態を示
す構成図
FIG. 20 is a configuration diagram showing a tenth embodiment of an optical device of the present invention.

【図21】本発明の光学装置の第11の実施の形態を示
す構成図
FIG. 21 is a configuration diagram showing an eleventh embodiment of an optical device of the present invention.

【図22】本発明の光学装置の第11の実施の形態を説
明する駆動電圧波形図
FIG. 22 is a drive voltage waveform diagram for explaining an eleventh embodiment of the optical device of the present invention.

【図23】本発明の光学装置の第11の実施の形態を説
明する駆動電圧波形図
FIG. 23 is a drive voltage waveform diagram for explaining an eleventh embodiment of the optical device of the present invention.

【図24】本発明の光学装置の第12の実施の形態を示
す構成図
FIG. 24 is a configuration diagram showing a twelfth embodiment of an optical device of the invention.

【図25】本発明の光学装置の第12の実施の形態を説
明する光学的性質の連続的な変化の説明図
FIG. 25 is an explanatory diagram of continuous changes in optical properties for explaining the twelfth embodiment of the optical device of the present invention.

【図26】本発明の光学装置の第13の実施の形態を説
明する駆動電圧波形図
FIG. 26 is a drive voltage waveform diagram for explaining an optical device according to a thirteenth embodiment of the invention.

【図27】本発明の光学装置の第14の実施の形態を示
す構成図
FIG. 27 is a configuration diagram showing a fourteenth embodiment of the optical device of the present invention.

【図28】本発明の光学装置の第15の実施の形態を示
す構成図
FIG. 28 is a structural diagram showing a fifteenth embodiment of the optical device of the present invention.

【図29】本発明の光学装置の第16の実施の形態を示
す構成図
FIG. 29 is a configuration diagram showing a sixteenth embodiment of an optical device of the present invention.

【符号の説明】[Explanation of symbols]

21,41,45,47,49,51,53,86…透
明物質の層、22,81…屈折率可変物質、23,2
4,82,83…透明電極、25,84…駆動装置、6
1…配向膜、31…セル、71,72…光学装置、9
1,95,98…電極。
21, 41, 45, 47, 49, 51, 53, 86 ... Transparent material layer, 22, 81 ... Refractive index variable material, 23, 2
4, 82, 83 ... Transparent electrodes, 25, 84 ... Driving device, 6
1 ... Alignment film, 31 ... Cell, 71, 72 ... Optical device, 9
1, 95, 98 ... Electrodes.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02F 1/133 555 G02F 1/133 555 1/29 1/29 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location G02F 1/133 555 G02F 1/133 555 1/29 1/29

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 所望の曲面の表面形状を有する透明物質
の層と、 誘電率異方性を有しかつ異なる誘電率の差Δεが異なる
駆動周波数f1及びf2で逆符号となる性質を有する屈折
率可変物質を含む層と、 前記透明物質の層と屈折率可変物質を含む層とを挟んで
配置される少なくとも2つの透明電極と、 前記駆動周波数f1あるいはこれを主な周波数とする電
圧及び駆動周波数f2あるいはこれを主な周波数とする
電圧を前記透明電極間に供給する駆動装置とを備えたこ
とを特徴とする光学装置。
1. A layer of a transparent material having a desired curved surface shape, and a property of having a dielectric anisotropy and a difference Δε of different dielectric constants having opposite signs at different driving frequencies f 1 and f 2. A layer containing the variable refractive index material, and at least two transparent electrodes arranged between the transparent material layer and the layer containing the variable refractive index material; and the driving frequency f 1 or the main frequency thereof. An optical device comprising: a drive device for supplying a voltage and a drive frequency f 2 or a voltage having a drive frequency f 2 as a main frequency between the transparent electrodes.
【請求項2】 周波数f1〜fN(N≧2)をそれぞれ主
な周波数とする電圧V1〜VNを、一定の印加時間及び一
定の周期で順次供給する駆動装置を備えたことを特徴と
する請求項1記載の光学装置。
2. A method frequency f 1 ~f N voltage (N ≧ 2) of the main frequency respectively V 1 ~V N, further comprising a sequentially supplies drive at a constant application time and fixed cycle The optical device according to claim 1, wherein the optical device is an optical device.
【請求項3】 周波数f1〜fN(N≧2)をそれぞれ主
な周波数とする電圧V1〜VNを、一定の印加時間及び一
定の周期で順次供給する際、前記周期の所望の位相で供
給を一時停止し、その後、再開する駆動装置を備えたこ
とを特徴とする請求項2記載の光学装置。
The 3. A frequency f 1 ~f N (N ≧ 2 ) the voltage V 1 ~V N whose main frequency, respectively, when sequentially supplying a constant application time and constant period, desired of the periodic The optical device according to claim 2, further comprising a drive device that temporarily stops the supply in a phase and then restarts the supply.
【請求項4】 誘電率異方性を有しかつ異なる誘電率の
差Δεが異なる駆動周波数f1及びf2で逆符号となる性
質を有する屈折率可変物質を含む層と、 該屈折率可変物質を含む層を挟んで配置される少なくと
も2つの透明電極と、 周波数f1〜fN(N≧2)をそれぞれ主な周波数とする
電圧V1〜VNを重畳した電圧を前記透明電極間に供給す
る駆動装置とを備えたことを特徴とする光学装置。
4. A layer containing a refractive index variable substance having a dielectric anisotropy and having a property that the difference Δε of different dielectric constants has opposite signs at different driving frequencies f 1 and f 2 , and the variable refractive index. and at least two transparent electrodes are disposed to sandwich the layer containing a substance, the frequency f 1 ~f N (N ≧ 2 ) , respectively between the main frequency to voltage V 1 ~V N the transparent electrode a voltage obtained by superimposing an An optical device comprising:
【請求項5】 少なくとも2つの透明電極間に所望の曲
面の表面形状を有する透明物質の層を、屈折率可変物質
を含む層に隣接して配置したことを特徴とする請求項4
記載の光学装置。
5. A layer of a transparent material having a desired curved surface shape between at least two transparent electrodes is disposed adjacent to a layer containing a variable refractive index material.
The optical device according to any one of the preceding claims.
【請求項6】 周波数f1〜fN(N≧2)をそれぞれ主
な周波数とする電圧V1〜VNを重畳した電圧を供給する
際、所望の時刻で供給を一時停止し、その後、再開する
駆動装置を備えたことを特徴とする請求項4または5記
載の光学装置。
6. When supplying the voltage obtained by superimposing the voltage V 1 ~V N for frequency f 1 ~f N a (N ≧ 2) as the main frequencies each, pauses the supply at a desired time, then, The optical device according to claim 4, further comprising a driving device that restarts.
【請求項7】 屈折率可変物質として、屈折率異方性及
び誘電率異方性を有しかつ異なる誘電率の差Δεが異な
る駆動周波数f1及びf2で逆符号となる2周波駆動液晶
を用いたことを特徴とする請求項1または4または5記
載の光学装置。
7. A two-frequency driving liquid crystal having a refractive index anisotropy and a dielectric anisotropy, and having different dielectric constant differences Δε with opposite driving frequencies f 1 and f 2 as the refractive index variable substance. The optical device according to claim 1, 4 or 5, characterized in that.
【請求項8】 透明電極として、概ね平行な透明電極を
用いたことを特徴とする請求項1または4または5記載
の光学装置。
8. The optical device according to claim 1, wherein the transparent electrodes are substantially parallel transparent electrodes.
【請求項9】 屈折率可変物質を含む層側の透明物質の
層の表面形状が、凸レンズまたは凹レンズまたはフレネ
ルレンズまたはプリズムアレイまたはレンズアレイまた
はレンチキュラレンズまたは回折格子あるいはこれらを
任意に組み合わせた曲面であることを特徴とする請求項
1または5記載の光学装置。
9. The surface shape of the transparent material layer on the layer side including the variable refractive index material is a convex lens, a concave lens, a Fresnel lens, a prism array, a lens array, a lenticular lens, a diffraction grating, or a curved surface in which these are arbitrarily combined. The optical device according to claim 1, wherein the optical device is provided.
【請求項10】 屈折率可変物質を含む層側の透明電極
の表面上に、液晶を一方向に配向させる配向膜を設けた
ことを特徴とする請求項7記載の光学装置。
10. The optical device according to claim 7, wherein an alignment film for aligning liquid crystals in one direction is provided on the surface of the transparent electrode on the layer side containing the variable refractive index substance.
【請求項11】 液晶の配向がより均一な面を光の入射
側に向けて配置したことを特徴とする請求項7または1
0記載の光学装置。
11. The liquid crystal display device according to claim 7, wherein the surface of the liquid crystal having a more uniform orientation is arranged toward the light incident side.
0. The optical device according to item 0.
【請求項12】 請求項10または11記載の光学装置
を複数個、配向膜の配向方向が互いに直交するように直
列に並べたことを特徴とする光学装置。
12. An optical device comprising a plurality of the optical devices according to claim 10 or 11, arranged in series so that the alignment directions of the alignment films are orthogonal to each other.
【請求項13】 透明電極のいずれか一方を入射光の少
なくとも一部を反射する電極と置き換えたことを特徴と
する請求項1乃至12いずれか記載の光学装置。
13. The optical device according to claim 1, wherein one of the transparent electrodes is replaced with an electrode that reflects at least a part of incident light.
JP18222296A 1996-01-17 1996-07-11 Optical element and optical device using the element Expired - Fee Related JP3303275B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP18222296A JP3303275B2 (en) 1996-01-17 1996-07-11 Optical element and optical device using the element
US08/784,353 US6469683B1 (en) 1996-01-17 1997-01-16 Liquid crystal optical device
EP06077207A EP1798592A3 (en) 1996-01-17 1997-01-16 Optical device and three-dimensional display device
EP97300262A EP0785457A3 (en) 1996-01-17 1997-01-16 Optical device and three-dimensional display device
US10/011,638 US6714174B2 (en) 1996-01-17 2001-12-11 Optical device and three-dimensional display device
US10/782,972 US7209097B2 (en) 1996-01-17 2004-02-23 Optical device and three-dimensional display device
US10/782,979 US7336244B2 (en) 1996-01-17 2004-02-23 Optical device and three-dimensional display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-6011 1996-01-17
JP601196 1996-01-17
JP18222296A JP3303275B2 (en) 1996-01-17 1996-07-11 Optical element and optical device using the element

Publications (2)

Publication Number Publication Date
JPH09258271A true JPH09258271A (en) 1997-10-03
JP3303275B2 JP3303275B2 (en) 2002-07-15

Family

ID=26340074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18222296A Expired - Fee Related JP3303275B2 (en) 1996-01-17 1996-07-11 Optical element and optical device using the element

Country Status (1)

Country Link
JP (1) JP3303275B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352445A (en) * 1998-06-09 1999-12-24 Olympus Optical Co Ltd Variable focus spectacles
US6525699B1 (en) 1998-05-21 2003-02-25 Nippon Telegraph And Telephone Corporation Three-dimensional representation method and an apparatus thereof
JP2004511017A (en) * 2000-09-29 2004-04-08 ロックウェル・サイエンティフィック・ライセンシング・エルエルシー Frequency modulated liquid crystal beam steering device
JP2005003757A (en) * 2003-06-10 2005-01-06 Stanley Electric Co Ltd Method for manufacturing dielectric film with controlled thickness, liquid crystal element and method for manufacturing liquid crystal element
WO2006022346A1 (en) * 2004-08-26 2006-03-02 The Akita Center To Implement Vigorous Enterprises Optical element
JP2006516753A (en) * 2003-02-05 2006-07-06 オキュイティ・リミテッド Switchable lens
JP2008523421A (en) * 2004-12-06 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 3D display device
JP2009528558A (en) * 2006-03-03 2009-08-06 ユニヴェルシテ ラヴァル Method and apparatus for generating spatially modulated electric fields and electro-optical tuning using liquid crystals
JP2009206831A (en) * 2008-02-27 2009-09-10 Kyocera Corp Imaging apparatus, method of generating image, and electronic equipment
JP2010532496A (en) * 2007-07-03 2010-10-07 ピクセルオプティクス, インコーポレイテッド Multifocal lens with diffractive optical power region
JP2011081210A (en) * 2009-10-07 2011-04-21 Toppan Printing Co Ltd Optical sheet, backlight unit and display apparatus
JP2011525251A (en) * 2008-06-21 2011-09-15 レンズベクター インコーポレーテッド Electro-optic device utilizing dynamic reconstruction of effective electrode structure
JP2012505430A (en) * 2008-10-09 2012-03-01 ノース・キャロライナ・ステイト・ユニヴァーシティ Polarization-independent liquid crystal display device having a plurality of polarization grating arrangements and related devices
JP2012123371A (en) * 2010-11-05 2012-06-28 Mie Univ Concave lens, optical member and illumination device using these
US8330806B2 (en) 2006-02-17 2012-12-11 Samsung Display Co., Ltd. Stereoscopic image conversion panel and stereoscopic image display apparatus having the same
JP2013109029A (en) * 2011-11-17 2013-06-06 Stanley Electric Co Ltd Image formation device
JP2014503845A (en) * 2010-12-10 2014-02-13 レンズヴェクター インコーポレイテッド High-speed tunable liquid crystal optical device and operation method
WO2016129267A1 (en) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 Optical device
US9541774B2 (en) 2011-12-16 2017-01-10 Mitsui Chemicals, Inc. Control device for variable focus lenses, control method for variable focus lenses, and electronic glasses

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148859B2 (en) 1998-05-21 2006-12-12 Nippon Telegraph And Telephone Corporation Three-dimensional representation method and an apparatus thereof
US7002532B2 (en) 1998-05-21 2006-02-21 Nippon Telegraph & Telephone Corporation Three-dimensional representation method and an apparatus thereof
US6525699B1 (en) 1998-05-21 2003-02-25 Nippon Telegraph And Telephone Corporation Three-dimensional representation method and an apparatus thereof
US6950078B2 (en) 1998-05-21 2005-09-27 Nippon Telegraph And Telephone Corporation Three-dimensional representation method and an apparatus thereof
US6940473B2 (en) 1998-05-21 2005-09-06 Nippon Telegraph And Telephone Corporation Three-dimensional representation method and an apparatus thereof
JPH11352445A (en) * 1998-06-09 1999-12-24 Olympus Optical Co Ltd Variable focus spectacles
JP2004511017A (en) * 2000-09-29 2004-04-08 ロックウェル・サイエンティフィック・ライセンシング・エルエルシー Frequency modulated liquid crystal beam steering device
US8004179B2 (en) 2003-02-05 2011-08-23 Au Optronics Corporation Switchable lens
JP2006516753A (en) * 2003-02-05 2006-07-06 オキュイティ・リミテッド Switchable lens
US8004621B2 (en) 2003-02-05 2011-08-23 Au Optronics Corporation Switchable lens
JP2005003757A (en) * 2003-06-10 2005-01-06 Stanley Electric Co Ltd Method for manufacturing dielectric film with controlled thickness, liquid crystal element and method for manufacturing liquid crystal element
WO2006022346A1 (en) * 2004-08-26 2006-03-02 The Akita Center To Implement Vigorous Enterprises Optical element
US8194228B2 (en) 2004-08-26 2012-06-05 Japan Science And Technology Agency Liquid crystal lens in which a voltage imparts optimal first-stage optical properties to the liquid crystal lens by influencing a liquid crystal layer
JP2008523421A (en) * 2004-12-06 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 3D display device
US8330806B2 (en) 2006-02-17 2012-12-11 Samsung Display Co., Ltd. Stereoscopic image conversion panel and stereoscopic image display apparatus having the same
US9046710B2 (en) 2006-02-17 2015-06-02 Samsung Display Co., Ltd. Stereoscopic image conversion panel and stereoscopic image display apparatus having the same
KR101241770B1 (en) * 2006-02-17 2013-03-14 삼성디스플레이 주식회사 Stereo-scopic image conversion panel and stereo-scopic image display apparatus having the same
JP2009528558A (en) * 2006-03-03 2009-08-06 ユニヴェルシテ ラヴァル Method and apparatus for generating spatially modulated electric fields and electro-optical tuning using liquid crystals
JP2010532496A (en) * 2007-07-03 2010-10-07 ピクセルオプティクス, インコーポレイテッド Multifocal lens with diffractive optical power region
US9411172B2 (en) 2007-07-03 2016-08-09 Mitsui Chemicals, Inc. Multifocal lens with a diffractive optical power region
JP2009206831A (en) * 2008-02-27 2009-09-10 Kyocera Corp Imaging apparatus, method of generating image, and electronic equipment
JP2014115659A (en) * 2008-06-21 2014-06-26 Lensvector Inc Electro-optical device using dynamic reconfiguration of effective electrode structure
JP2011525251A (en) * 2008-06-21 2011-09-15 レンズベクター インコーポレーテッド Electro-optic device utilizing dynamic reconstruction of effective electrode structure
JP2012505430A (en) * 2008-10-09 2012-03-01 ノース・キャロライナ・ステイト・ユニヴァーシティ Polarization-independent liquid crystal display device having a plurality of polarization grating arrangements and related devices
JP2011081210A (en) * 2009-10-07 2011-04-21 Toppan Printing Co Ltd Optical sheet, backlight unit and display apparatus
JP2012123371A (en) * 2010-11-05 2012-06-28 Mie Univ Concave lens, optical member and illumination device using these
JP2014503845A (en) * 2010-12-10 2014-02-13 レンズヴェクター インコーポレイテッド High-speed tunable liquid crystal optical device and operation method
JP2013109029A (en) * 2011-11-17 2013-06-06 Stanley Electric Co Ltd Image formation device
US9541774B2 (en) 2011-12-16 2017-01-10 Mitsui Chemicals, Inc. Control device for variable focus lenses, control method for variable focus lenses, and electronic glasses
WO2016129267A1 (en) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 Optical device

Also Published As

Publication number Publication date
JP3303275B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
JP3303275B2 (en) Optical element and optical device using the element
Pishnyak et al. Electrically tunable lens based on a dual-frequency nematic liquid crystal
CN100595620C (en) Adaptive electro-active lens with variable focal length
KR101313007B1 (en) Method to reduce power consumption with electro-optic lenses
US6714174B2 (en) Optical device and three-dimensional display device
JPS6145812B2 (en)
JP2004004647A (en) Optical path deviation element and device, image display device, optical writing device, optical interconnection system, optical element, and its manufacturing method
JP2009528558A (en) Method and apparatus for generating spatially modulated electric fields and electro-optical tuning using liquid crystals
US5596430A (en) Distributed index light deflector and method of light deflection
GB2255193A (en) Electrically controllable waveplate.
JP3358150B2 (en) Optical device
Shi et al. 2D–3D switchable display based on a passive polymeric lenticular lens array and electrically suppressed ferroelectric liquid crystal
KR19990023660A (en) Projection type liquid crystal display device
KR0162680B1 (en) Liquid crystal optical modulation element
CN111913331B (en) Liquid crystal electric control light beam deflection device and method
WO1995022078A1 (en) Liquid crystal device alignment
JP3401760B2 (en) Optical device
Nose et al. Optical properties of a hybrid-aligned liquid crystal microlens
WO2021113963A1 (en) Electrode structure for creating electrical potential gradient
JP4194381B2 (en) Optical deflection device
Gu et al. Dual frequency liquid crystal devices for infrared electro-optical applications
Borel et al. NEW APPLICATIONS OF LIQUID CRYSTALS
Muravsky et al. 54.3: Invited Paper: Surface Control of LC Alignment for Creation of Liquid Crystal Lenses Arrays
CN116381999A (en) Liquid crystal lens device, liquid crystal lens display system and driving method
JP3943450B2 (en) Optical deflection apparatus, optical deflection method, and image display apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100510

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees