JPH09257446A - Method and apparatus for measurement of thickness by using x-rays - Google Patents

Method and apparatus for measurement of thickness by using x-rays

Info

Publication number
JPH09257446A
JPH09257446A JP6286396A JP6286396A JPH09257446A JP H09257446 A JPH09257446 A JP H09257446A JP 6286396 A JP6286396 A JP 6286396A JP 6286396 A JP6286396 A JP 6286396A JP H09257446 A JPH09257446 A JP H09257446A
Authority
JP
Japan
Prior art keywords
thickness
transmission density
measured
ray
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6286396A
Other languages
Japanese (ja)
Inventor
Akira Kajiwara
暁 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP6286396A priority Critical patent/JPH09257446A/en
Publication of JPH09257446A publication Critical patent/JPH09257446A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure a thickness simply and with high accuracy and to obtain visual information. SOLUTION: In a thickness measuring method by using X-rays, a plurality of standard objects 3 whose thickness is known are placed on an identical face together with an object 4 to be measured, the transmission density of X-rays from an X-ray irradiation device 1 is measured by a film 2, the function between a transmission density and a thickness is found on the basis of every known thickness and every known transmission density of the standard objects 3, and a corresponding thickness is measured on the basis of every transmission density of the object 4, to be measured, by using the function. An apparatus for the method is provided with an X-ray generation means, with an X-ray measuring means and with a measuring and computing means by which the function between a transmission density and a thickness is found on the basis of every known thickness and every known transmission density of the standard objects by using the transmission density of X-rays measured by the X-ray measuring means and by which a corresponding thickness is measured on the basis of every transmission density of the object to be measured by using the function.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被計測物体にX線
をあてその透過濃度から厚みの計測を行うX線を使った
厚み計測方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray thickness measuring method and apparatus for irradiating an object to be measured with X-rays and measuring the thickness from the transmission density of the X-rays.

【0002】[0002]

【従来の技術】非破壊で物体の厚みを計測する方法とし
ては、超音波を使う方法、電磁力を使う方法、放射線を
使う方法等がある。超音波を使う方法は、超音波を被計
測物体内に発射し、反射あるいは共振させて厚みを計測
する方法である。電磁力を使う方法は、交流電磁石を近
接させて励磁電流の変化を検出する方法であり、渦電流
を見る渦流探傷などがある。放射線を使う方法は、放射
線を照射してその透過線量により厚みを計測する方法で
あり、1回の撮影によりある程度の面積を持った透過視
覚情報が得られるX線撮影による方法やX線の透過時の
減衰をそのままに測ってこれから厚みを計測する方法等
がある。
2. Description of the Related Art Non-destructive methods for measuring the thickness of an object include a method using ultrasonic waves, a method using electromagnetic force, and a method using radiation. The method using ultrasonic waves is a method in which ultrasonic waves are emitted into the object to be measured and reflected or resonated to measure the thickness. The method of using electromagnetic force is a method of detecting a change in exciting current by bringing an AC electromagnet into close proximity, and there is eddy current flaw detection or the like in which eddy current is observed. The method of using radiation is a method of irradiating radiation and measuring the thickness by the transmitted dose, and a method by X-ray photography or X-ray transmission in which transmission visual information with a certain area can be obtained by one shot. There is a method of measuring the thickness as it is by measuring the time-dependent attenuation as it is.

【0003】[0003]

【発明が解決しようとする課題】しかし、超音波を使う
方法は、1回の計測で1点の計測しかできず、厚みに広
がりのある被計測物体の傾向を掴もうとすれば、スキャ
ンすることが必要になる。しかも、人力でやるにしても
機械化するにしても、平滑で周囲に空間のある平板をス
キャンするのであれば計測も容易であるが、被計測物体
が管状で内部を計測する場合や周囲が狭隘な条件下にあ
る場合には計測が困難なことが多かった。また、取得情
報が信号の減衰のように人間の五感では捉えられない情
報のために、親しみにくいあるいは納得しにくい傾向が
あった。しかも、視覚的にわかるような情報にするに
は、情報の加工が必要である。
However, in the method using ultrasonic waves, only one point can be measured in one measurement, and if the tendency of an object to be measured having a wide thickness is grasped, scanning is performed. Will be needed. Moreover, whether it is done manually or mechanized, it is easy to measure if it scans a flat plate with a smooth space around it, but if the object to be measured is tubular and the inside is narrow, the surroundings are narrow. In many cases, measurement was difficult under such conditions. In addition, since the acquired information is information that cannot be captured by the human senses, such as signal attenuation, it tends to be difficult or convincing. Moreover, in order to make the information visually understandable, it is necessary to process the information.

【0004】電磁力を使う方法は、おおまかに塗装やメ
ッキ、ライニング等の欠陥の有無を掴まえるのが主で、
細かい寸法を得るのは難しい。
The method of using electromagnetic force is to roughly grasp the presence or absence of defects such as painting, plating, and lining.
It is difficult to get fine dimensions.

【0005】また、放射線を使う方法のうち、X線撮影
による方法では、従来より透過物の厚みに因るフイルム
上の濃度の違いを隣接した標準厚みの検体と比べて見る
ことが広く行われており、この方法は、被計測物体と比
較物が近ければ有効であるが、これらが離れている場合
には、厚みの斜め入射による差がでてしまう欠点があ
る。また、被計測物体の厚みは比較するものの間の厚み
の大小関係がわかるだけであり、細かく厚みの計測をす
るには、比較物の厚みを細かく変えた物を使用しなけれ
ばならず、結果として形状が大きくなり、取り扱いが面
倒になるという欠点がある。
In addition, among the methods using radiation, the method using X-ray photography has conventionally been widely used to see the difference in the concentration on the film due to the thickness of the permeate as compared with the adjacent specimen having a standard thickness. This method is effective if the object to be measured and the comparison object are close to each other, but if they are far from each other, there is a drawback that a difference in thickness due to oblique incidence occurs. In addition, the thickness of the object to be measured can only be understood by comparing the thickness of the objects to be compared, and in order to measure the thickness in detail, it is necessary to use an object in which the thickness of the comparison object is changed finely. As a result, the shape becomes large and the handling becomes troublesome.

【0006】さらに、X線の透過時の減衰をそのままに
測ってこれから厚みを計測する方法は、工場などの定置
した施設では行われているが、点状の計測であるため超
音波と同じような欠点がある。
Further, the method of measuring the thickness by measuring the attenuation of X-ray transmission as it is, which is performed in a fixed facility such as a factory, is similar to the ultrasonic wave because it is a point-like measurement. There are some drawbacks.

【0007】CTのような大掛かりな装置も検査装置と
して使われており、断面を透過できる高い性能を持って
いるが、建築現場等の可搬で小型の装置が要求される場
所では、使うことが困難である。
A large-scale device such as a CT is also used as an inspection device and has a high performance capable of penetrating a cross section, but it should be used in a place such as a construction site where a portable and small device is required. Is difficult.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するものであって、厚み計測を簡単に且つ高精度で行
い、さらに視覚的な情報も得るものである。
DISCLOSURE OF THE INVENTION The present invention is to solve the above-mentioned problems, and is to perform thickness measurement easily and with high accuracy, and further obtain visual information.

【0009】そのために本発明は、X線を使った厚み計
測方法として、被計測物体と共に複数点の厚みが既知の
標準物体を同一面上に配置してX線の透過濃度を計測
し、前記標準物体の各既知の厚みの透過濃度から透過濃
度と厚みとの関数を求め、該関数を使って前記被計測物
体の各透過濃度から対応する厚みを計測することを特徴
とするものである。
To this end, the present invention provides a thickness measuring method using X-rays, in which a standard object whose thickness is known at a plurality of points is arranged on the same plane together with the object to be measured, and the X-ray transmission density is measured. It is characterized in that a function of the transmission density and the thickness is obtained from the transmission density of each known thickness of the standard object, and the corresponding thickness is measured from each transmission density of the measured object using the function.

【0010】本発明では、標準物体のX線源あるいは被
計測物体との距離や角度を知り、補正演算を行うことに
より、標準物体の位置や形にとらわれずに、最も作業し
やすい形態にフイルム、標準物体、X線源等を配置する
ことができる。したがって、検出器としては、フイルム
あるいはその他の面状検出器を使い、できるだけ小さな
扱いやすい標準物体をフイルム上に置くことで現場作業
を簡易化することができる。
According to the present invention, by knowing the distance and angle of the standard object from the X-ray source or the object to be measured and performing the correction calculation, the film can be put into the most convenient form without being restricted by the position and shape of the standard object. , A standard object, an X-ray source, etc. can be arranged. Therefore, a film or other planar detector is used as the detector, and the work on site can be simplified by placing a small and easy-to-handle standard object on the film.

【0011】標準物体の位置や形状は、後述するように
補正演算による定めにしたがって予め決められる。現場
のX線撮影作業により感光した検出器からの濃度信号読
み取り結果には距離あるいは角度の補正演算を加えるこ
とで、正確な計測結果を得ることができる。
The position and shape of the standard object are predetermined according to the determination by the correction calculation as described later. An accurate measurement result can be obtained by adding a distance or angle correction calculation to the concentration signal reading result from the detector exposed by the X-ray imaging work at the site.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。図1は本発明に係るX線を使っ
た厚み計測方法の実施の形態を示す図であり、1はX線
照射装置、2はフィルム、3はブロック、4は配管を示
す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a thickness measuring method using X-rays according to the present invention, where 1 is an X-ray irradiation device, 2 is a film, 3 is a block, and 4 is a pipe.

【0013】図1において、ブロック3は、それぞれ厚
みが既知の標準物体であり、配管4は、厚みを計測しよ
うとする被計測物体であり、フィルム2の同一面上に配
置してX線照射装置1からX線を照射し、それぞれの透
過濃度を検出してフィルム2に記録し、透過濃度による
視覚的な情報を得ると同時にこの透過濃度から配管4の
厚みを計測する。この配管4の厚みは、フィルム2に記
録された透過濃度に基づき、まず、標準物体の透過濃度
とその厚みから透過濃度と厚みとの関数(や曲線)を求
め、その関数を使って計測する。X線を使った撮影で
は、透過物体の厚みにより濃度が非線形に変化する性質
がある。例えば4点以上の既知の厚みデータがあればス
プライン曲線で補間し、3点の既知の厚みデータがあれ
ば2次曲線で補間するが、2点の既知の厚みデータしか
なければ、直線補間となる。
In FIG. 1, a block 3 is a standard object whose thickness is known, and a pipe 4 is an object to be measured whose thickness is to be measured. X-rays are radiated from the device 1, each transmission density is detected and recorded on the film 2, and visual information based on the transmission density is obtained, and at the same time, the thickness of the pipe 4 is measured from this transmission density. The thickness of the pipe 4 is calculated based on the transmission density recorded on the film 2 by first obtaining a function (or curve) between the transmission density and the thickness of the standard object and the thickness of the standard object. . In imaging using X-rays, there is a property that the density changes non-linearly depending on the thickness of the transparent object. For example, if there are known thickness data of 4 points or more, interpolation is performed with a spline curve, and if there are known thickness data of 3 points, interpolation is performed with a quadratic curve. Become.

【0014】さらに、厚み計測について詳述する。図2
はフイルムに記録された画像の例を示す図、図3は透過
濃度と厚みとの関係近似曲線の例を示す図、図4及び図
5はブロックの位置と透過厚みの関係を示す図である。
Further, the thickness measurement will be described in detail. FIG.
Is a diagram showing an example of an image recorded on a film, FIG. 3 is a diagram showing an example of an approximate curve of a relationship between transmission density and thickness, and FIGS. 4 and 5 are diagrams showing a relationship between a block position and a transmission thickness. .

【0015】1回の撮影により図2に示すようなフイル
ム2の大きさの面積の濃度が画像情報で得られたとき、
その濃度が厚みの大小を表している。ここで、4′は配
管4の透過濃度の画像、4″はその中の腐食部の透過濃
度の画像、3′がブロック3の透過濃度の画像である。
このようにブロック3は、基準の厚みを持つ物として例
えば最低4点の基準物体が用意され、この透過濃度の変
化を利用して図3に示すように透過濃度と厚みの関係の
点5を求め、さらにこれらの点間を補間して関係近似曲
線6を求める。逆にこの関係近似曲線6を利用して未知
の部分の濃度7から未知の厚み8を求める。このように
して1回の撮影により得られたフイルムからその画像情
報の処理により非破壊で厚みを計測することができるの
で、平板上の物、管状の物などの撮影範囲の厚みを計測
することができる。しかも、撮影装置とフイルム及び小
型の基準のブロックだけですむので、狭隘な場所あるい
は途中の運送路が狭い場所でも使用することができ、透
過濃度と厚みの関係近似曲線は、透過濃度の分かってい
ない厚みも補間して求めるので、単に透過濃度を比較す
るのに比べて細かく計測できる。即ち精度が上がる。
When the density of the area of the size of the film 2 as shown in FIG. 2 is obtained from the image information by one photographing,
The concentration represents the thickness. Here, 4'is an image of the transmission density of the pipe 4, 4 "is an image of the transmission density of the corroded portion therein, and 3'is an image of the transmission density of the block 3.
In this way, for the block 3, for example, at least four reference objects are prepared as objects having a reference thickness, and by utilizing the change in the transmission density, the point 5 of the relationship between the transmission density and the thickness is determined as shown in FIG. Then, the relational approximation curve 6 is obtained by further interpolating between these points. On the contrary, the unknown thickness 8 is obtained from the density 7 of the unknown portion by using the relational approximation curve 6. In this way, it is possible to measure the thickness non-destructively by processing the image information from the film obtained by one shot, so it is necessary to measure the thickness of the shooting range of flat objects, tubular objects, etc. You can Moreover, since it only requires a camera, a film, and a small-sized standard block, it can be used even in a narrow space or in a place where a transportation route is narrow along the way. Since the non-existent thickness is also interpolated and obtained, it is possible to make a finer measurement than simply comparing the transmission density. That is, the accuracy increases.

【0016】次に、フイルム上の透過濃度と厚みの位置
による補正処理について説明する。一般にX線を使った
厚み計測のフイルム濃度について観察すると、被計測物
体を透過したX線の線量による濃度と被計測物体の厚み
との関係は非線形である。しかも、その関係は、撮影の
条件あるいは現像の条件により変わる。従って、透過濃
度と厚みとの関係は撮影の都度に求める必要がある。
Next, the correction processing based on the positions of the transmission density and the thickness on the film will be described. Generally, when observing the film density of the thickness measurement using X-rays, the relationship between the density of the X-rays transmitted through the measured object and the thickness of the measured object is nonlinear. Moreover, the relationship changes depending on the shooting condition or the developing condition. Therefore, the relationship between the transmission density and the thickness needs to be obtained each time photographing is performed.

【0017】いま、図4に示すように空中の点oをX線
源とすると、その真下の平面に厚みt1のブロックA1
がある場合に対し、点oを回転の中心にして、αだけ回
転してブロックA2に移した場合には、そのX線が透過
する厚み(以後透過厚みという)t2は、図5に示すよ
うに
Assuming that the point o in the air is the X-ray source as shown in FIG. 4, a block A1 having a thickness t1 is formed on the plane directly below the point o.
In contrast to the case where there is, when the point o is the center of rotation and it is rotated by α and moved to the block A2, the thickness t2 through which the X-ray is transmitted (hereinafter referred to as transmission thickness) is as shown in FIG. To

【0018】[0018]

【数1】t2=t1/cosα となる。この関係はブロックがA1−A2の延長線上に
ある限り、αが変化するだけで変わらない。
## EQU1 ## t2 = t1 / cos α. This relationship does not change as long as the block is on the extension line of A1-A2, only α changes.

【0019】次に、図4に示すようにブロックの位置が
直線A1−A2に対して垂直方向に移動して平面o−A
1−A2の面から動いた場合にその角度をβとすると、
その時のブロックA2′におけるX線の透過厚みt2′
は、
Next, as shown in FIG. 4, the position of the block moves in the direction perpendicular to the straight line A1-A2 to move it to the plane o-A.
If the angle is β when moving from the 1-A2 plane,
The X-ray transmission thickness t2 'in the block A2' at that time
Is

【0020】[0020]

【数2】t2′=t2/cosβ=t1/(cosα・
cosβ) となる。以上のように如何なる点においても、透過厚み
は、その点の厚みと中心からの振れ角度で表される。し
たがって、透過濃度と厚みとの関係が分かっていれば、
フイルム上のある点では、その点の濃度を求めると、透
過濃度と厚みとの関係に当てはめて透過厚みを求め、次
いで、その位置から角度を求めて鉛直方向における厚
み、つまり、X線源の真下の位置における厚みd1に相
当するいわゆる真の厚みを求めることができる。この逆
の関係も全く同様に成り立つ。ある物体の厚みd1が分
かっていれば、その位置から角度を求めることにより、
透過厚みが分かる。従ってその点の透過濃度が分かれ
ば、厚みと透過濃度との関係が分かる。このような点を
4点以上設けることにより、スプライン曲線で補間する
ことができ、厚みと透過濃度との関係を関係近似曲線で
求めることができる。
## EQU2 ## t2 '= t2 / cos β = t1 / (cos α
cos β). As described above, at any point, the transmission thickness is represented by the thickness at that point and the deflection angle from the center. Therefore, if the relationship between transmission density and thickness is known,
At a certain point on the film, when the density at that point is obtained, the transmission thickness is obtained by applying the relationship between the transmission density and the thickness, and then the angle from that position is obtained to determine the thickness in the vertical direction, that is, the X-ray source A so-called true thickness corresponding to the thickness d1 at the position directly below can be obtained. The reverse relationship holds exactly as well. If the thickness d1 of a certain object is known, by calculating the angle from that position,
You can see the transmission thickness. Therefore, if the transmission density at that point is known, the relationship between the thickness and the transmission density can be known. By providing four or more such points, it is possible to interpolate with a spline curve, and the relationship between the thickness and the transmission density can be obtained with a relational approximation curve.

【0021】図6は本発明に係るX線を使った厚み計測
装置の実施の形態を示す図であり、11は標準物体、1
2は被計測物体、13はX線源、14は計測台、15は
検出器、16は走査制御部、17はX線検出部、18は
計測演算部、19は出力部、20はデータ記憶部を示
す。
FIG. 6 is a view showing an embodiment of a thickness measuring apparatus using X-rays according to the present invention, 11 is a standard object, 1
2 is an object to be measured, 13 is an X-ray source, 14 is a measurement stand, 15 is a detector, 16 is a scanning control unit, 17 is an X-ray detection unit, 18 is a measurement calculation unit, 19 is an output unit, and 20 is data storage. Indicates a part.

【0022】図6において、標準物体11は複数点の厚
みが既知の物体であり、被計測物体12は厚みが未知の
物体である。X線源13は、X線を真下に照射するもの
である。計測台14は、標準物体11及び被計測物体1
2を同一面上に載置してXY方向に移動するものであ
り、そのXY駆動を制御するのが走査制御部16であ
る。検出器15は、X線源13より真下に照射されたX
線が標準物体11や被計測物体12及び計測台14を透
過して到達する線量を検出するものであり、その検出デ
ータを透過濃度として取り込むのがX線検出部17であ
る。計測演算部18は、X線検出部17より取り込まれ
た透過濃度を走査制御部16による走査位置に対応させ
て、標準物体11の厚みとその透過濃度から厚みと透過
濃度との関係近似曲線を求め、この曲線を使って被計測
物体12の透過濃度からその厚みを計測するものであ
り、これらのデータを格納するのがデータ記憶部20、
表示画面や印刷用紙に出力するのが出力部19である。
この場合、予め計測台14における標準物体11と被計
測物体12の位置及び標準物体11の厚みが入力されて
データ記憶部20に格納しておくとすると、計測演算部
18としては、次のような処理を行う。まず、X線検出
部17より取り込まれた透過濃度を走査制御部16によ
る走査位置に対応させて2次元の透過濃度データとして
データ記憶部20に格納し、次に、標準物体11の位置
とその厚み対応する走査位置の透過濃度データをデータ
記憶部20から順次読み出して厚みと透過濃度との関係
近似曲線を求める。その後、被計測物体12の位置に対
応する透過濃度データを読み出して関係近似曲線から厚
みを求める。
In FIG. 6, the standard object 11 is an object whose thickness is known at a plurality of points, and the measured object 12 is an object whose thickness is unknown. The X-ray source 13 emits X-rays directly below. The measuring table 14 includes the standard object 11 and the measured object 1.
2 is placed on the same surface and moved in the XY directions, and the scanning control unit 16 controls the XY drive. The detector 15 emits X directly below the X-ray source 13.
The X-ray detection unit 17 detects the dose that the line reaches after passing through the standard object 11, the measured object 12, and the measurement table 14, and takes the detection data as the transmission density. The measurement calculation unit 18 correlates the transmission density captured by the X-ray detection unit 17 with the scanning position of the scan control unit 16 to obtain an approximate curve of the relationship between the thickness and the transmission density from the thickness of the standard object 11 and the transmission density thereof. The thickness is calculated from the transmission density of the measured object 12 using this curve, and the data storage unit 20 stores these data.
The output unit 19 outputs to a display screen or printing paper.
In this case, assuming that the positions of the standard object 11 and the measured object 12 on the measuring table 14 and the thickness of the standard object 11 are input and stored in the data storage unit 20, the measurement calculation unit 18 operates as follows. Performs various processing. First, the transmission density captured by the X-ray detection unit 17 is stored in the data storage unit 20 as two-dimensional transmission density data corresponding to the scanning position by the scan control unit 16, and then the position of the standard object 11 and its position are stored. Transmission density data at the scanning position corresponding to the thickness is sequentially read from the data storage unit 20 to obtain an approximate curve of the relationship between the thickness and the transmission density. After that, the transmission density data corresponding to the position of the measured object 12 is read out and the thickness is obtained from the relational approximation curve.

【0023】なお、図6に示す実施の形態では、計測台
14を走査することにより常に真下で透過濃度を検出し
ているので、図4や図5で説明したような計算をする必
要はなく、検出器15が面でなく点でよいというメリッ
トはある。しかし、このような走査ができるのは、広い
場所でゆとりのある場合に限られる。それがない場合
に、先に説明したようにその面に対応するサイズの検出
器を用いて、また、図4や図5で説明したような計算を
行うことで同等の機能が発揮できる。
In the embodiment shown in FIG. 6, since the transmission density is always detected directly below by scanning the measuring table 14, it is not necessary to perform the calculation as described with reference to FIGS. 4 and 5. However, there is an advantage that the detector 15 is not a surface but a point. However, such scanning is possible only when there is room in a wide area. If this is not the case, the same function can be achieved by using the detector having the size corresponding to the surface as described above and by performing the calculation as described with reference to FIGS. 4 and 5.

【0024】以上のような本発明を利用して例えば配管
のような中空の円筒物体の厚みを計測するときは、配管
が一様な厚みであれば、求めた厚みを半分にすることで
厚みを計測することができる。また、元々の厚みが分か
っていて、減量が一ケ所に集中している場合には、片側
の厚みを引いて求め、その減量がどちらに集中している
かが分からない場合でも、最大減量と平均減量を求める
ことができる。角形の中空体でも管と同様である。
When the thickness of a hollow cylindrical object such as a pipe is measured by utilizing the present invention as described above, if the pipe has a uniform thickness, the calculated thickness is halved. Can be measured. Also, if the original thickness is known and the weight loss is concentrated in one place, the thickness on one side is subtracted to obtain the maximum weight and the average even if it is not known where the weight loss is concentrated. You can ask for weight loss. A rectangular hollow body is similar to a tube.

【0025】図7乃至図10は標準物体の実施の形態を
示す図である。透過濃度と厚みの基準となる標準物体
(ブロック)としては種々の例が考えられる。例えば図
7に示すように面積の広い平板状物を重ねて作製したも
のであってもよいし、また、図8に示すように配管の両
側に設置するようにしたもの、図9に示すようにブロッ
クの長さを角棒状にしたもの、図10に示すようにテー
パ状に厚みが連続して変化するように作成したものであ
ってもよい。
7 to 10 are views showing an embodiment of a standard object. Various examples can be considered as a standard object (block) that serves as a reference for transmission density and thickness. For example, as shown in FIG. 7, it may be made by stacking flat plate members having a large area, or as shown in FIG. 8, installed on both sides of the pipe, as shown in FIG. In addition, the block may have a rectangular rod shape, or the block may be formed so that the thickness continuously changes as shown in FIG.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、本発明
によれば、複数点にわたり厚みが既知の標準物体を厚み
が未知の被計測物体と並べて配置し、標準物体の厚みと
その透過濃度から厚みと透過濃度との関係近似曲線を求
め、その関係近似曲線を使って被計測物体の透過濃度か
ら厚みを計測するので、精度の高い厚み計測を実現する
ことができる。また、同一面上での透過濃度をX線源と
の照射角度より鉛直方向の真の厚みに変換することによ
り、面の厚み計測を1回の透過濃度の計測で簡単に行う
ことができる。本発明では、1回の撮影により得られた
フイルムからその画像情報の処理により非破壊で厚みを
計測することができるので、平板上の物、管状の物など
の撮影範囲の厚みを計測することができる。しかも、撮
影装置とフイルム及び小型の基準のブロックだけですむ
ので、狭隘な場所あるいは途中の運送路が狭い場所でも
使用することができ、透過濃度と厚みの関係近似曲線
は、透過濃度の分かっていない厚みも補間して求めるの
で、単に透過濃度を比較するのに比べて細かく計測でき
る。即ち精度が上がる。
As is apparent from the above description, according to the present invention, a standard object having a known thickness is arranged side by side with an object to be measured whose thickness is unknown, and the thickness of the standard object and its transmission density are set. Since a relational approximation curve between the thickness and the transmission density is obtained from the above, and the thickness is measured from the transmission concentration of the object to be measured using the relational approximation curve, highly accurate thickness measurement can be realized. Further, by converting the transmission density on the same surface into the true thickness in the vertical direction from the irradiation angle with the X-ray source, it is possible to easily measure the thickness of the surface with one measurement of the transmission density. In the present invention, the thickness of a film obtained by one-time shooting can be measured non-destructively by processing the image information of the film, so that the thickness of the shooting range of an object such as a flat plate or a tubular object can be measured. You can Moreover, since it only requires a camera, a film, and a small-sized standard block, it can be used even in a narrow space or in a place where a transportation route is narrow along the way. Since the non-existent thickness is also interpolated and obtained, it is possible to make a finer measurement than simply comparing the transmission density. That is, the accuracy increases.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係るX線を使った厚み計測方法の実
施の形態を示す図である。
FIG. 1 is a diagram showing an embodiment of a thickness measuring method using X-rays according to the present invention.

【図2】 フイルムに記録された画像の例を示す図であ
る。
FIG. 2 is a diagram showing an example of an image recorded on a film.

【図3】 透過濃度と厚みとの関係近似曲線の例を示す
図である。
FIG. 3 is a diagram showing an example of a relational approximation curve between transmission density and thickness.

【図4】 ブロックの位置と透過厚みの関係を示す図で
ある。
FIG. 4 is a diagram showing a relationship between a block position and a transmission thickness.

【図5】 ブロックの位置と透過厚みの関係を示す図で
ある。
FIG. 5 is a diagram showing a relationship between a block position and a transmission thickness.

【図6】 本発明に係るX線を使った厚み計測装置の実
施の形態を示す図である。
FIG. 6 is a diagram showing an embodiment of a thickness measuring apparatus using X-rays according to the present invention.

【図7】 標準物体の実施の形態を示す図である。FIG. 7 is a diagram showing an embodiment of a standard object.

【図8】 標準物体の実施の形態を示す図である。FIG. 8 is a diagram showing an embodiment of a standard object.

【図9】 標準物体の実施の形態を示す図である。FIG. 9 is a diagram showing an embodiment of a standard object.

【図10】 標準物体の実施の形態を示す図である。FIG. 10 is a diagram showing an embodiment of a standard object.

【符号の説明】[Explanation of symbols]

1…X線照射装置、2…フィルム、3…ブロック、4…
配管
1 ... X-ray irradiation device, 2 ... film, 3 ... block, 4 ...
Plumbing

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被計測物体と共に複数点の厚みが既知の
標準物体を同一面上に配置してX線の透過濃度を計測
し、前記標準物体の各既知の厚みの透過濃度から透過濃
度と厚みとの関数を求め、該関数を使って前記被計測物
体の各透過濃度から対応する厚みを計測することを特徴
とするX線を使った厚み計測方法。
1. An X-ray transmission density is measured by arranging a standard object whose thickness is known at a plurality of points on the same plane together with an object to be measured, and measuring the transmission density of each known thickness of the standard object from the transmission density to the transmission density. A thickness measuring method using X-rays, characterized in that a function with the thickness is obtained and the corresponding thickness is measured from each transmission density of the measured object using the function.
【請求項2】 4点以上の厚みの透過濃度からスプライ
ン曲線で補間して透過濃度と厚みとの関数を求めること
を特徴とする請求項1記載のX線を使った厚み計測方
法。
2. The thickness measuring method using X-rays according to claim 1, wherein the function of the transmission density and the thickness is obtained by interpolating the transmission density of four or more points with a spline curve.
【請求項3】 X線発生手段と、該X線発生手段から発
生したX線により被計測物体と共に複数点の厚みが既知
の標準物体を同一面上に配置してX線の透過濃度を計測
するX線計測手段と、該X線計測手段により計測したX
線の透過濃度を使い前記標準物体の各既知の厚みの透過
濃度から透過濃度と厚みとの関数を求め、該関数を使っ
て前記被計測物体の各透過濃度から対応する厚みを計測
する計測演算手段とを備えたことを特徴とするX線を使
った厚み計測装置。
3. The X-ray transmission density is measured by arranging an X-ray generation means and a standard object whose thickness is known at a plurality of points together with the object to be measured by the X-ray generated from the X-ray generation means. X-ray measuring means and X measured by the X-ray measuring means
A measurement calculation for obtaining a function of the transmission density and the thickness from the transmission density of each known thickness of the standard object using the transmission density of the line, and measuring the corresponding thickness from each transmission density of the measured object using the function. A thickness measuring device using X-rays, which is provided with:
【請求項4】 前記計測演算手段は、各透過濃度の計測
位置に対するX線発生手段からのX線の角度により補正
演算を行うことを特徴とする請求項3記載のX線を使っ
た厚み計測装置。
4. The thickness measurement using X-rays according to claim 3, wherein the measurement calculation unit performs the correction calculation based on the angle of the X-ray from the X-ray generation unit with respect to the measurement position of each transmission density. apparatus.
JP6286396A 1996-03-19 1996-03-19 Method and apparatus for measurement of thickness by using x-rays Pending JPH09257446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6286396A JPH09257446A (en) 1996-03-19 1996-03-19 Method and apparatus for measurement of thickness by using x-rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6286396A JPH09257446A (en) 1996-03-19 1996-03-19 Method and apparatus for measurement of thickness by using x-rays

Publications (1)

Publication Number Publication Date
JPH09257446A true JPH09257446A (en) 1997-10-03

Family

ID=13212567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6286396A Pending JPH09257446A (en) 1996-03-19 1996-03-19 Method and apparatus for measurement of thickness by using x-rays

Country Status (1)

Country Link
JP (1) JPH09257446A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10318444A1 (en) * 2003-04-24 2004-11-11 Endress + Hauser Gmbh + Co. Kg Image quality indicator (IQI) for radiographic material testing, especially non-destructive testing of industrial components, comprises a series of spheres of diameter less than 1mm mounted on a support film
JP2010512525A (en) * 2006-12-15 2010-04-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Method and apparatus for thickness measurement
KR102234196B1 (en) * 2020-09-10 2021-03-31 대한민국 Methods for non-destructive testing of wooden cultural assets that can be evaluated on image quality

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10318444A1 (en) * 2003-04-24 2004-11-11 Endress + Hauser Gmbh + Co. Kg Image quality indicator (IQI) for radiographic material testing, especially non-destructive testing of industrial components, comprises a series of spheres of diameter less than 1mm mounted on a support film
JP2010512525A (en) * 2006-12-15 2010-04-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Method and apparatus for thickness measurement
KR102234196B1 (en) * 2020-09-10 2021-03-31 대한민국 Methods for non-destructive testing of wooden cultural assets that can be evaluated on image quality

Similar Documents

Publication Publication Date Title
US4056970A (en) Ultrasonic velocity and thickness gage
US5864601A (en) Method and apparatus for inspecting pipes using a digitized radiograph
JP2000515629A (en) 2D imaging backscatter probe
JP2008275352A (en) Inspection method and device of pipe
US10539515B2 (en) Computed tomographic system calibration
EP0971318B1 (en) Device for extrapolation from cone beam projection data
JPH09257446A (en) Method and apparatus for measurement of thickness by using x-rays
KR100936746B1 (en) Characterization of three-dimensional distribution of defects by x-ray topography
US5524038A (en) Method of non-destructively inspecting a curved wall portion
US11604152B2 (en) Fast industrial computed tomography for large objects
JPH0792111A (en) Method and system for determining depth of defect
JP2594835B2 (en) A method of extracting the thinned part of a double-walled pipe made of dissimilar materials and measuring the thickness of the thinned part
JPS58117445A (en) Steel pipe detecting method by radiation penetration
JPS5819240A (en) Inspecting apparatus using nuclear magnetic resonance phenomenon
JP2642459B2 (en) Ultrasonic inspection image processing equipment
JP7008325B2 (en) Radiation fluoroscopy non-destructive inspection method and radiation fluoroscopy non-destructive inspection equipment
JP2002207015A (en) Method and apparatus for measuring thickness of each member constituting double-layered structure by x-rays
JPH0750074B2 (en) Eddy current flaw detector capable of thinning inspection
JP4676300B2 (en) RT three-dimensional sizing device
JP7260996B2 (en) Pipe thickness estimation method and pipe thickness estimation device
Case et al. Orion Heat Shield Bond Quality Inspection: Engineering a Technique
JP2888367B2 (en) Measuring method of thickness of deposits in pipe
JP2761928B2 (en) Non-destructive inspection method and device
JPS59197854A (en) Ultrasonic flaw detector
JP3454445B2 (en) Defect size measurement method for mobile flaw detector