JPH09253943A - Electrical discharge machine for forming shape - Google Patents

Electrical discharge machine for forming shape

Info

Publication number
JPH09253943A
JPH09253943A JP6046396A JP6046396A JPH09253943A JP H09253943 A JPH09253943 A JP H09253943A JP 6046396 A JP6046396 A JP 6046396A JP 6046396 A JP6046396 A JP 6046396A JP H09253943 A JPH09253943 A JP H09253943A
Authority
JP
Japan
Prior art keywords
processing
machining
electrode
area
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6046396A
Other languages
Japanese (ja)
Inventor
Hideyoshi Yoshizawa
秀良 吉沢
Yusuke Tonogi
裕介 殿木
Yasuari Shimizu
康有 清水
Tomotsugu Katou
友嗣 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP6046396A priority Critical patent/JPH09253943A/en
Publication of JPH09253943A publication Critical patent/JPH09253943A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the most-suitable machining conduction to be determined even if a machining electrode has a complex shape and increase an assumed degree of precision of machining time. SOLUTION: In an electrical discharge machine for firming a shape with a shape electrode 1, there is provided means 8 for measuring a height of liquid surface 7 of processing liquid 4 and then a machining area is calculated in reference to a feeding amount of the shape electrode 1 and a varying amount of height of the liquid surface 7. In addition, there is provided means 5 for parting a part of a processing tank 3 into a small region 6 and then means 8 for measuring the height of the liquid surface 7 is arranged in the small region 6. With such an arrangement as above, even if the processing electrode has a complex shape, it is possible to determine the most-suitable processing condition and also it shows an effect that an estimating precision of the processing time is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被加工物と形状電
極との間に放電を発生させて被加工物を加工する形彫り
放電加工機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a die-sinking electric discharge machine for machining a workpiece by generating an electric discharge between the workpiece and a shaped electrode.

【0002】[0002]

【従来の技術】形彫り放電加工機は、被加工物と形状電
極との間に放電を発生させて被加工物に形状電極とほぼ
同一の形状を形成する装置である。このような放電加工
においては、加工面積に対して過大な放電エネルギーで
加工をすると電極消耗が多くなり、加工も不安定にな
る。また、小さなエネルギーで加工すると加工能率が低
下する。すなわち、単位面積あたりに供給する放電エネ
ルギーの大きさには適切な条件範囲があり、加工面積に
応じて適切な加工条件範囲を選定する必要がある。
2. Description of the Related Art A die-sinking electric discharge machine is an apparatus for generating an electric discharge between a work piece and a shape electrode to form a shape substantially the same as that of the shape electrode on the work piece. In such an electric discharge machining, if machining is performed with an electric discharge energy which is excessive with respect to the machining area, the electrode is consumed much and the machining becomes unstable. In addition, processing with a small amount of energy reduces the processing efficiency. That is, there is an appropriate condition range for the magnitude of the discharge energy supplied per unit area, and it is necessary to select an appropriate processing condition range according to the processing area.

【0003】[0003]

【発明が解決しようとする課題】そこで、電極を加工深
さ方向に細分化し、机上で演算して加工面積を求めてい
た。また、求めた加工面積から加工条件を選定し、その
時の加工速度から加工時間を算出していた。しかし、形
状が複雑な場合、演算に多大な時間を要した。また、形
状を簡略化して概算で求める場合、最適の加工条件を選
定できるとは限らなかった。さらに加工時間の推定精度
が低下した。
Therefore, the electrode has been subdivided in the working depth direction, and the working area has been calculated by calculating on the desk. Further, the processing conditions were selected from the calculated processing area, and the processing time was calculated from the processing speed at that time. However, when the shape is complicated, it takes a lot of time for calculation. Further, when the shape is simplified and an approximate value is obtained, the optimum processing condition cannot always be selected. In addition, the accuracy of processing time estimation decreased.

【0004】本発明の目的は、上記従来技術における課
題を解決し、形状が複雑な形状電極であっても、最適な
加工条件を決定することができ、加工時間の推定精度が
高い形彫り放電加工機を提供することにある。
The object of the present invention is to solve the above-mentioned problems in the prior art, and it is possible to determine the optimum machining conditions even for an electrode having a complicated shape, and a die-sinking discharge with which the machining time is highly accurately estimated. Providing processing machines.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、形状電極を用いて加工をする形彫り放電
加工機において、加工液の液面高さを測定する手段を設
け、形状電極の送り込み量と液面高さの変化量とから加
工面積を算出するようにしたことを特徴とする。また、
加工槽の一部を小領域に仕切る手段設け、液面高さを測
定する手段を上記小領域に配置しさらに加工面積の演算
手段と、求めた加工面積から最適な加工条件を設定する
手段とを設けることを特徴とする。
In order to achieve the above object, the present invention provides a die-sinking electric discharge machine for machining using a shape electrode, which is provided with a means for measuring the liquid level of a machining liquid. It is characterized in that the processing area is calculated from the feed amount of the shaped electrode and the change amount of the liquid level height. Also,
A means for partitioning a part of the processing tank into a small area is provided, a means for measuring the liquid level height is arranged in the small area, and a processing area calculation means and a means for setting optimum processing conditions from the obtained processing area are provided. Is provided.

【0006】[0006]

【本発明の実施の形態】以下、本発明を図示の実施の形
態に基づいて説明する。図1は、本発明の一実施の形態
を示す全体構成図である。この図で、1は形状電極。2
は送り機構で、形状電極1を上下に移動させる。3は加
工槽。4は加工液で、必要量が加工槽3に入れられてい
る。5は仕切で、加工槽3の一部を小領域6に仕切る。
なお、仕切5は加工槽3に着脱可能である。そして、仕
切5を加工槽3に装着すると、小領域6内の加工液4
は、他の領域から完全に遮断される。7は加工液4の液
面。8は液面測定装置。9は数値制御装置で、加工面積
に応じた最適加工条件等のデータベースを予め登録して
ある。そして、数値制御装置9は送り機構2の制御だけ
でなく、液面測定装置8の測定値から形状電極1の断面
積を演算し、内部の加工条件テーブルを参照して最適な
加工条件を選定するとともに、加工時間を推定する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on the illustrated embodiments. FIG. 1 is an overall configuration diagram showing an embodiment of the present invention. In this figure, 1 is a shape electrode. Two
Is a feed mechanism that moves the shaped electrode 1 up and down. 3 is a processing tank. Reference numeral 4 is a working liquid, and the necessary amount is put in the working tank 3. A partition 5 partitions a part of the processing tank 3 into small areas 6.
The partition 5 is attachable to and detachable from the processing tank 3. When the partition 5 is attached to the processing tank 3, the processing liquid 4 in the small area 6
Are completely shielded from other areas. 7 is the surface of the working fluid 4. 8 is a liquid level measuring device. Reference numeral 9 denotes a numerical control device in which a database of optimum processing conditions and the like corresponding to the processing area is registered in advance. Then, the numerical control device 9 calculates not only the control of the feed mechanism 2 but also the cross-sectional area of the shape electrode 1 from the measurement value of the liquid level measuring device 8 and refers to the internal processing condition table to select the optimum processing condition. At the same time, the processing time is estimated.

【0007】次に、本実施の形態の動作を説明する。先
ず、加工面積Sを求める手順を説明する。送り機構2に
より、形状電極1の先端を液面7に接触させ、その位置
を深さ0として加工深さを数値制御装置9に入力し、数
値制御装置9を動作させる。すると数値制御装置9は送
り機構2を動作させ、加工深さになるまで予め定める送
り込み量aごとに液面検出装置8の測定値を記憶しなが
ら形状電極1を加工液4に送り込む。
Next, the operation of this embodiment will be described. First, the procedure for obtaining the processing area S will be described. The tip of the shaped electrode 1 is brought into contact with the liquid surface 7 by the feeding mechanism 2, the machining depth is input to the numerical controller 9 with the position set as a depth of 0, and the numerical controller 9 is operated. Then, the numerical control device 9 operates the feed mechanism 2 to feed the shaped electrode 1 into the machining liquid 4 while storing the measured value of the liquid level detection device 8 for each predetermined feed amount a until the machining depth is reached.

【0008】アルキメデスの原理として知られているよ
うに、形状電極1を加工液4内に入れると、液面7の高
さは、送り込んだ形状電極1の体積に応じて上昇する。
そこで、数値制御装置9は送り込み量aごとの形状電極
1の平均断面積(すなわち平均加工面積)Sを次式によ
り求める。 S=hA/a…………(1) ここで、hは液面7の変化量。また、Aは加工槽3の表
面積で、加工槽3に固有の定数である。
As is known as the Archimedes principle, when the shaped electrode 1 is put into the working fluid 4, the height of the liquid surface 7 rises according to the volume of the fed shaped electrode 1.
Therefore, the numerical controller 9 obtains the average cross-sectional area (that is, the average processing area) S of the shaped electrode 1 for each feed amount a by the following equation. S = hA / a (1) where h is the amount of change in the liquid level 7. A is the surface area of the processing tank 3, which is a constant specific to the processing tank 3.

【0009】次に、数値制御装置9が加工条件を選定す
る手順と加工時間tを求める手順を説明する。図2は加
工面積Sと加工エネルギー(JT:図示しない加工電源
が供給するエネルギーの割合。)との関係を示す加工条
件図である。この図で、曲線qと曲線rに挾まれる範囲
が加工条件範囲であり、曲線pが最も適正な条件であ
る。なお、曲線qの上側の領域は形状電極1の消耗が激
しく、曲線rの下側の領域では能率が上がらず、いずれ
も適正な加工ができない。また、図3は加工エネルギー
(JT)と加工速度との関係を示す図である。そして、
図2および図3は予め数値制御装置9に登録されてい
る。
Next, a procedure for the numerical controller 9 to select a machining condition and a procedure for obtaining the machining time t will be described. FIG. 2 is a processing condition diagram showing the relationship between the processing area S and the processing energy (JT: ratio of energy supplied by a processing power source (not shown)). In this figure, the range between the curve q and the curve r is the processing condition range, and the curve p is the most appropriate condition. In the region above the curve q, the shape electrode 1 is heavily consumed, and in the region below the curve r, the efficiency does not increase, and neither can be properly machined. Further, FIG. 3 is a diagram showing the relationship between the processing energy (JT) and the processing speed. And
2 and 3 are registered in the numerical controller 9 in advance.

【0010】いま、i番目の区間における平均断面積S
iが500mm2であったとすると、数値制御装置9は、
図2に示す曲線pから加工条件として加工エネルギーJ
T=24を選択する。そして、図3から加工エネルギー
JT=24の時の体積加工速度viが102mm3/mi
nであることを確認し、加工時間tiを次式により求め
る。
Now, the average cross-sectional area S in the i-th section
If i is 500 mm 2 , the numerical controller 9
From the curve p shown in FIG.
Select T = 24. From FIG. 3, the volume processing speed v i when the processing energy JT = 24 is 102 mm 3 / mi.
After confirming that it is n, the processing time t i is calculated by the following equation.

【0011】ti=Sia/vi…………(2) そして、全加工時間をtiの総和として求め、送り込み
量aごとに加工条件を変えながら加工をする。
T i = S i a / v i (2) Then, the total machining time is obtained as the sum of t i , and machining is performed while changing the machining conditions for each feed amount a.

【0012】ところで、形状電極1の断面積が加工槽3
の表面積に比べて小さい場合、送り込み量aを小さい値
に設定すると、液面7の変化量hの測定が困難になる。
このような場合には、仕切5を加工槽3に装着し、形状
電極1を小領域6に送り込む。すると、(1)式におけ
る表面積Aの値が小さくなるから、液面7の変化量hが
相対的に大きくなり、測定が容易になって測定精度を向
上させることができる。
By the way, the sectional area of the shape electrode 1 is equal to that of the processing tank 3.
If the feed amount a is set to a small value when it is smaller than the surface area of, the measurement of the change amount h of the liquid surface 7 becomes difficult.
In such a case, the partition 5 is attached to the processing tank 3 and the shaped electrode 1 is fed into the small region 6. Then, since the value of the surface area A in the equation (1) becomes small, the amount of change h of the liquid surface 7 becomes relatively large, which facilitates the measurement and improves the measurement accuracy.

【0013】なお、上記では液面検出装置8の検出値を
直接数値制御装置9に入力するように構成したが、作業
者が液面検出装置8の変化量を読み取って、数値制御装
置9に入力するようにしてもよい。また、加工条件の設
定も作業者が入力するようにしてもよい。
Although the detection value of the liquid level detection device 8 is directly input to the numerical control device 9 in the above description, the operator reads the change amount of the liquid level detection device 8 and the numerical control device 9 reads it. You may input it. The operator may also input the setting of the processing conditions.

【0014】[0014]

【発明の効果】本発明によれば、形状が複雑な加工電極
であっても、最適な加工条件を決定することができ、加
工時間の推定精度も高くなるという効果がある。
According to the present invention, even for a machining electrode having a complicated shape, the optimum machining conditions can be determined, and the estimation accuracy of the machining time can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る全体構成図であ
る。
FIG. 1 is an overall configuration diagram according to an embodiment of the present invention.

【図2】加工面積Sに対する加工エネルギーの関係を示
す加工条件図である。
FIG. 2 is a processing condition diagram showing the relationship between the processing area S and the processing energy.

【図3】加工エネルギーと加工速度との関係を示す図で
ある。
FIG. 3 is a diagram showing a relationship between processing energy and processing speed.

【符号の説明】[Explanation of symbols]

1 形状電極 2 送り機構 3 加工槽 4 加工液 5 仕切 6 小領域 7 液面 8 液面検出装置 9 数値制御装置 1 Shaped electrode 2 Feed mechanism 3 Processing tank 4 Processing liquid 5 Partition 6 Small area 7 Liquid level 8 Liquid level detection device 9 Numerical control device

フロントページの続き (72)発明者 加藤 友嗣 神奈川県海老名市上今泉2100番地 日立精 工株式会社内Front page continuation (72) Inventor Tomoji Kato 2100 Kamiimaizumi, Ebina City, Kanagawa Prefecture Hitachi Seiko Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】形状電極を用いて加工をする形彫り放電加
工機において、加工液の液面高さを測定する手段を設
け、形状電極の送り込み量と液面高さの変化量とから加
工面積を算出するようにしたことを特徴とする形彫り放
電加工機。
1. A die-sinking electric discharge machine for machining using a shape electrode is provided with means for measuring the liquid level of a machining liquid, and machining is performed based on the feed amount of the shape electrode and the variation in the liquid level. A die-sinking electric discharge machine characterized by calculating the area.
【請求項2】加工槽の一部を小領域に仕切る手段設け、
液面高さを測定する手段を上記小領域に配置したことを
特徴とする請求項1に記載の形彫り放電加工機。
2. A means for partitioning a part of the processing tank into small areas,
The die-sinking electric discharge machine according to claim 1, wherein means for measuring a liquid level height is arranged in the small area.
【請求項3】加工面積の演算手段と、求めた加工面積か
ら最適な加工条件を設定する手段とを設けたことを特徴
とする請求項1または請求項2に記載の形彫り放電加工
機。
3. The die-sinking electric discharge machine according to claim 1, further comprising a machining area calculating means and a means for setting an optimum machining condition from the obtained machining area.
JP6046396A 1996-03-18 1996-03-18 Electrical discharge machine for forming shape Withdrawn JPH09253943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6046396A JPH09253943A (en) 1996-03-18 1996-03-18 Electrical discharge machine for forming shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6046396A JPH09253943A (en) 1996-03-18 1996-03-18 Electrical discharge machine for forming shape

Publications (1)

Publication Number Publication Date
JPH09253943A true JPH09253943A (en) 1997-09-30

Family

ID=13142998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6046396A Withdrawn JPH09253943A (en) 1996-03-18 1996-03-18 Electrical discharge machine for forming shape

Country Status (1)

Country Link
JP (1) JPH09253943A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103625A1 (en) * 2003-05-20 2004-12-02 Mitsubishi Denki Kabushiki Kaisha Electric discharge machine
US7202438B2 (en) * 2004-03-01 2007-04-10 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machining apparatus
KR20160117257A (en) * 2015-03-30 2016-10-10 화낙 코퍼레이션 Electrical discharge machine of which axis feeding properties are changeable
CN110026630A (en) * 2019-04-23 2019-07-19 安徽理工大学 A kind of variable tool cathode in the inner cavity of Electrolyzed Processing Big-Twisted blades integral blade disk

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103625A1 (en) * 2003-05-20 2004-12-02 Mitsubishi Denki Kabushiki Kaisha Electric discharge machine
US7259347B2 (en) 2003-05-20 2007-08-21 Mitsubishi Denki Kabushiki Kaisha Electric discharge machine that calculates and displays the machining time
CN100343005C (en) * 2003-05-20 2007-10-17 三菱电机株式会社 Discharge processing apparatus
DE10393400B4 (en) * 2003-05-20 2009-02-26 Mitsubishi Denki K.K. Electric discharge device
US7202438B2 (en) * 2004-03-01 2007-04-10 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machining apparatus
CN100417485C (en) * 2004-03-01 2008-09-10 三菱电机株式会社 Electrical discharge machining apparatus
KR20160117257A (en) * 2015-03-30 2016-10-10 화낙 코퍼레이션 Electrical discharge machine of which axis feeding properties are changeable
CN106001805A (en) * 2015-03-30 2016-10-12 发那科株式会社 Electrical discharge machine of which axis feeding properties are changeable
EP3078440A1 (en) * 2015-03-30 2016-10-12 Fanuc Corporation Electrical discharge machine of which axis feeding properties are changeable
US10086458B2 (en) 2015-03-30 2018-10-02 Fanuc Corporation Electrical discharge machine of which axis feeding properties are changeable
CN110026630A (en) * 2019-04-23 2019-07-19 安徽理工大学 A kind of variable tool cathode in the inner cavity of Electrolyzed Processing Big-Twisted blades integral blade disk
CN110026630B (en) * 2019-04-23 2020-04-14 安徽理工大学 Inner cavity variable tool cathode for electrochemical machining of large-distortion blade blisk

Similar Documents

Publication Publication Date Title
KR960031041A (en) Discharge machining method and apparatus thereof
CN102078990A (en) Wire-cut electric discharge machine and electric discharge machining method
JP2004142027A (en) Wire electric discharge machine
JPH09253943A (en) Electrical discharge machine for forming shape
US4415791A (en) Breakthrough detection means for electric discharge machining apparatus
JP4565523B1 (en) EDM machine
US6723941B2 (en) Wire electric-discharge machining apparatus
JPS5652129A (en) Control of wire-cut electric spark machining
JPS578035A (en) Wire cutting type electrospark machining method
US5224048A (en) Electric discharge machine including electrode configuration sensor
CA1321978C (en) Electrolytic finishing system
CN208067513U (en) Process the EDM shaping machine intelligent depth control system of PCD composite sheets
JPH03478A (en) Method and device for plasma cutting
US4688179A (en) Tracer control system
JPH05305517A (en) Wire electric discharge machine
JP3496542B2 (en) Numerical control unit for wire electric discharge machine
CN207772116U (en) ceramic cutter
US4880509A (en) Electrolytic finishing method and apparatus
JP2001170820A (en) Fine hole electric discharge machining method and fine hole electric discharge machine
JPS54128879A (en) Compensation of tool for numerical control machine tools and system therefor
JPH066246B2 (en) Electric discharge machine
JPH01216725A (en) Method for controlling wire electric discharge machine
KR100564162B1 (en) Jet-type cnc small hole electric discharge machine in which work piece half submerged
CN217964957U (en) Planer-type milling machine for numerical control machining of large castings
JP4017292B2 (en) Machining condition setting method and apparatus for electric discharge machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603