JPH09253720A - Method for rolling shape - Google Patents

Method for rolling shape

Info

Publication number
JPH09253720A
JPH09253720A JP8064473A JP6447396A JPH09253720A JP H09253720 A JPH09253720 A JP H09253720A JP 8064473 A JP8064473 A JP 8064473A JP 6447396 A JP6447396 A JP 6447396A JP H09253720 A JPH09253720 A JP H09253720A
Authority
JP
Japan
Prior art keywords
rolling
load
temperature
length
rolling load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8064473A
Other languages
Japanese (ja)
Other versions
JP3397967B2 (en
Inventor
Kazunori Seki
和典 関
Yukio Noguchi
幸雄 野口
Hiroyasu Yamamoto
普康 山本
Takahito Akega
孝仁 明賀
Seitaro Kubo
誠太郎 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06447396A priority Critical patent/JP3397967B2/en
Publication of JPH09253720A publication Critical patent/JPH09253720A/en
Application granted granted Critical
Publication of JP3397967B2 publication Critical patent/JP3397967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the rolling method of shapes by which the variation in the dimensions of products is reduced and the products having high dimensional accuracy even when the length of the product and other rolling conditions are changed. SOLUTION: The rolling method is composed so that a roll gap is set based on predicted rolling load in a rolling stage including groove rolling, universal rolling and edger rolling. In such a case, the length of a rolled stock, rolling speed, rolling acceleration/deceleration, roll gap, measured rolling load and calculated value of rolling temp. for imparting the target dimension at every rolling pass are taken as reference values, the variation amount of rolling load from the reference rolling load is estimated based on the differences of the length of the rolled stock, rolling speed and rolling acceleration/deceleration against the reference value and the roll gap is corrected based on the estimated variation amount of the rolling load.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、H形鋼、I形
鋼、レールなどの形鋼の圧延方法、特にロール間隔のセ
ットアップ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for rolling shaped steel such as H-shaped steel, I-shaped steel and rails, and more particularly to a method for setting up roll intervals.

【0002】[0002]

【従来の技術】H形鋼などの形鋼の圧延に、ユニバーサ
ル圧延が広く用いられている。ユニバーサル圧延では、
水平ロールおよび垂直ロールのロール間隔を調整するこ
とにより、多種類の製品を製造することができる。製品
の寸法精度を向上するためには、圧延条件の変化に応じ
てロール間隔を精度高く設定する必要がある。
2. Description of the Related Art Universal rolling is widely used for rolling section steel such as H-section steel. In universal rolling,
A wide variety of products can be manufactured by adjusting the roll distance between the horizontal roll and the vertical roll. In order to improve the dimensional accuracy of the product, it is necessary to set the roll interval with high accuracy according to changes in rolling conditions.

【0003】特開昭63−13611号公報で開示され
たH形鋼の厚み制御方法は、ユニバーサル圧延機の直前
のパスがエッジャー圧延機か、ユニバーサル圧延機かを
区別して、実績荷重と予測荷重との差を学習し、次材の
ロール間隔を決定する。この厚み制御方法は、前パスが
ユニバーサル圧延かエッジャー圧延かによって学習区分
を分け、圧延荷重の学習精度を高めてセットアップを高
精度化し、製品の寸法精度を向上しようとするものであ
る。
The thickness control method for H-section steel disclosed in Japanese Patent Laid-Open No. 63-13611 distinguishes whether the pass immediately before the universal rolling mill is an edger rolling mill or a universal rolling mill, and determines the actual load and the predicted load. By learning the difference between and, the roll interval of the next material is determined. This thickness control method divides the learning classification depending on whether the previous pass is universal rolling or edger rolling, increases the learning accuracy of rolling load, improves the setup accuracy, and improves the dimensional accuracy of the product.

【0004】また、特公平5−73483号公報に開示
された圧延材の圧延制御方法は、先行圧延材の各パスご
との圧下量および圧延荷重の実績により、先行圧延材の
変形抵抗の実績値を求め、求めた変形抵抗により圧延ス
ケジュールを補正する。この技術も、予測圧延荷重に基
づいてロール間隔を設定することによって製品寸法のば
らつきを低減しようとするものである。
Further, the rolling control method for a rolled material disclosed in Japanese Patent Publication No. 5-73483 discloses an actual value of the deformation resistance of the preceding rolled material based on the actual amount of reduction and rolling load for each pass of the preceding rolled material. And the rolling schedule is corrected by the obtained deformation resistance. This technique also attempts to reduce variations in product dimensions by setting roll intervals based on the predicted rolling load.

【0005】[0005]

【発明が解決しようとする課題】前記特開昭63−13
611号公報のH形鋼の厚み制御方法は、予測圧延荷重
を求める式の作成が困難なためH形鋼以外には適用しに
くく、圧延荷重の予測誤差が大きいというという問題が
あった。また、加熱炉を出た圧延材は圧延終了までに温
度が大きく変動するが、前記特公平5−73483号公
報の圧延材の圧延制御方法は、その温度変動を考慮せず
に変形抵抗を求めている。その結果、圧延材間で温度変
動がある場合、求めた変形抵抗つまり予測圧延荷重の精
度が低くかった。たとえば、製品(レール)長さが10
0m から150m に変更になった場合、圧延時間が長く
なるので圧延材の温度が低下する。このため、圧延荷重
は200トンから220トンと約10%増加し、圧延荷
重の増加に従ってミル変形量も0.5 mm となる。レー
ル高さは、圧延による通常の寸法ばらつきを加えると、
許容上限寸法0.8 mm を超える。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The thickness control method for the H-section steel of Japanese Patent No. 611 is difficult to apply to other than the H-section steel because it is difficult to create an equation for obtaining the predicted rolling load, and there is a problem that the rolling load prediction error is large. Further, the temperature of the rolled material that leaves the heating furnace fluctuates greatly by the end of rolling, but the rolling control method of the rolled material of Japanese Patent Publication No. 5-73483 determines the deformation resistance without considering the temperature fluctuation. ing. As a result, the accuracy of the obtained deformation resistance, that is, the predicted rolling load, was low when the temperature varied between the rolled materials. For example, the product (rail) length is 10
When the length is changed from 0 m to 150 m, the rolling time becomes long and the temperature of the rolled material decreases. Therefore, the rolling load increases from 200 tons to 220 tons, which is about 10%, and the amount of mill deformation becomes 0.5 mm as the rolling load increases. The rail height, when adding the usual dimensional variation due to rolling,
The maximum allowable dimension exceeds 0.8 mm.

【0006】さらに、これら従来の形鋼の厚み制御方法
では、板圧延に用いられる次の式に従ってロール間隔を
設定していた。 S=S0 −P/M+P0 /M0 ここで、Sはロール間隔、S0 はロール間隔の目標値、
Pは圧延荷重、P0 はロール間隔の0設定時の圧延荷
重、およびM0 はロール間隔の0設定時のミル剛性であ
る。ミル剛性は、図4に示すように、荷重が小さい場合
は一定値とならない。板材の圧延では、ロール間隔の0
設定時にロールどうしが全面接触するので、十分大きな
荷重を作用させることができ、ミル剛性を一定値とする
ことが可能である。しかし、形鋼の圧延では、孔型ロー
ルは全面接触とはならないので、たとえば図4に示すよ
うに小さな荷重(15〜30トン)でロール間隔の0設
定を行っている。このために、板圧延で用いられる上式
によってロール間隔を設定すると、製品寸法はばらつき
を生じ、目標寸法から外れる。
Further, in these conventional thickness control methods for shaped steel, the roll interval is set according to the following formula used for sheet rolling. S = S 0 −P / M + P 0 / M 0 Here, S is the roll interval, S 0 is the target value of the roll interval,
P is the rolling load, P 0 is the rolling load when the roll interval is set to 0, and M 0 is the mill rigidity when the roll interval is set to 0. As shown in FIG. 4, the mill rigidity does not have a constant value when the load is small. When rolling plate material, the roll interval is 0
Since the rolls are in full contact with each other at the time of setting, a sufficiently large load can be applied, and the mill rigidity can be made a constant value. However, in the rolling of the shaped steel, the hole rolls do not come into contact with the entire surface, so that the roll interval is set to 0 with a small load (15 to 30 tons) as shown in FIG. 4, for example. For this reason, when the roll interval is set by the above formula used in plate rolling, the product dimensions vary and deviate from the target dimensions.

【0007】上述のように、従来の厚み制御方法では圧
延荷重の予測誤差が大きく、このためロール間隔の設定
精度、ひいては製品の寸法精度が低いという問題があっ
た。この発明は、製品長さ、その他圧延条件が変更にな
っても、製品の寸法のばらつきを低減し、寸法精度の高
い製品を得ることができる形鋼の圧延方法を提供しよう
とするものである。
As described above, the conventional thickness control method has a large error in predicting the rolling load, so that there is a problem in that the roll interval setting accuracy, and hence the product dimensional accuracy, is low. The present invention is intended to provide a rolling method of a shaped steel capable of reducing the product dimensional variation and obtaining a product with high dimensional accuracy even if the product length and other rolling conditions are changed. .

【0008】[0008]

【課題を解決するための手段】この発明の形鋼の圧延方
法は、孔型圧延、ユニバーサル圧延、およびエッジャー
圧延を含む圧延工程で、予測圧延荷重に基づきロール間
隔を設定する形鋼の圧延方法において、圧延パスごと
に、目標寸法を与える、圧延材長さ、圧延速度、圧延加
減速度、ロール間隔、実測圧延荷重、および圧延温度計
算値を基準値とし、圧延材長さ、圧延速度および圧延加
減速度の基準値に対する差に基づき、基準圧延荷重から
の圧延荷重変動量を推定し、圧延荷重の推定変動量に基
づいてロール間隔を修正する。
A method for rolling a shaped steel according to the present invention is a method for rolling a shaped steel in which a roll interval is set based on a predicted rolling load in a rolling process including a groove rolling, a universal rolling and an edger rolling. In, the target dimension is given for each rolling pass, the rolling material length, rolling speed, rolling acceleration / deceleration, roll interval, actual rolling load, and rolling temperature calculation value are used as reference values, and the rolling material length, rolling speed, and rolling The rolling load fluctuation amount from the standard rolling load is estimated based on the difference between the acceleration and deceleration with respect to the reference value, and the roll interval is corrected based on the estimated fluctuation amount of the rolling load.

【0009】上記形鋼の圧延方法において、前材までの
圧延荷重の推定変動量と実測変動量との差に基づいて、
圧延荷重の推定変動量を修正するようにしてもよい。
In the above rolling method for shaped steel, based on the difference between the estimated fluctuation amount and the measured fluctuation amount of the rolling load up to the preceding material,
The estimated fluctuation amount of the rolling load may be corrected.

【0010】この発明では、圧延材の温度変化を考慮す
るとともに、ロール間隔の絶対値によらず基準値との差
に基づいてロール間隔を修正するので、ロール間隔の設
定誤差は小さくなる。
According to the present invention, the temperature change of the rolled material is taken into consideration, and the roll interval is corrected based on the difference from the reference value regardless of the absolute value of the roll interval, so the setting error of the roll interval becomes small.

【0011】[0011]

【発明の実施の形態】形鋼がレールである場合を例とし
て、この発明の実施の形態を説明する。レールは高さに
ついて最も厳しい寸法精度が要求されるので、水平ロー
ルと垂直ロールとの間のロール間隔の制御について説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described by taking the case where the shaped steel is a rail as an example. Since the rail is required to have the strictest dimensional accuracy in height, the control of the roll distance between the horizontal roll and the vertical roll will be described.

【0012】図2は、レールの圧延工程を示している。
1〜14パスは粗圧延工程、15〜17パスは中間圧延
工程、17′〜19パスは仕上圧延工程である。この発
明の圧延方法は、16〜17パスの中間圧延工程に適用
される。1〜14パスは2ロール式粗圧延機(孔型圧延
機)列により、15パス以降はユニバーサル圧延機およ
びエッジャーにより圧延が行われる。15′〜17′パ
スは、エッジャー圧延である。形鋼の圧延では、図2に
示すレール圧延の例のように、ユニバーサル圧延とエッ
ジャー圧延の繰り返しによって、材料を製品材料に造り
込む。
FIG. 2 shows a rolling process of the rail.
1 to 14 passes are rough rolling processes, 15 to 17 passes are intermediate rolling processes, and 17 'to 19 passes are finish rolling processes. The rolling method of the present invention is applied to an intermediate rolling process of 16 to 17 passes. 1 to 14 passes are performed by a row of two-roll type rough rolling mills (hole rolling mills), and after 15 passes, rolling is performed by a universal rolling mill and an edger. The 15'-17 'pass is edger rolling. In the rolling of shaped steel, as in the example of rail rolling shown in FIG. 2, the material is built into the product material by repeating universal rolling and edger rolling.

【0013】図1は、孔型圧延機、ユニバーサル圧延機
およびエッジャーのロール間隔の決定手順を示してい
る。
FIG. 1 shows a procedure for determining a roll interval of a hole rolling mill, a universal rolling mill and an edger.

【0014】まず、圧延パスごとに、圧延材長さ、圧延
速度、および圧延加減速度を設定する。これら設定値に
基づき、各パスの延伸、および当該パスに圧延材が到達
するまでの所要時間(冷却時間)を計算する。加熱炉抽
出後、この冷却時間および各パスの圧延材寸法、物性
値、熱伝達率、初期温度からモデル計算によって、各パ
ス圧延時の材料温度(圧延温度)を計算する。圧延温度
は圧延材の先端部から後端部に向かってほぼ直線的に低
下するので、長手方向中心部の温度を代表温度として圧
延温度を計算する。圧延温度Tの計算方法の一例を以下
に示す。
First, the rolling material length, rolling speed, and rolling acceleration / deceleration are set for each rolling pass. Based on these set values, the stretching of each pass and the time required for the rolled material to reach the pass (cooling time) are calculated. After the heating furnace is extracted, the material temperature (rolling temperature) at each pass rolling is calculated by model calculation from the cooling time, the rolled material size of each pass, the physical property value, the heat transfer coefficient, and the initial temperature. Since the rolling temperature decreases almost linearly from the leading end portion to the trailing end portion of the rolled material, the rolling temperature is calculated with the temperature of the central portion in the longitudinal direction as the representative temperature. An example of the method of calculating the rolling temperature T is shown below.

【0015】圧延材の形状および圧延形式を考慮して、
レールを図3に示すように頭部A1、ウエブA2 、およ
び脚部A3 に3分割し、それぞれの断面内では温度が均
一と仮定する。この仮定によって、単位時間当たりの放
熱量dQ/dtは次の式(1)で表される。 dQ/dt=αl(T−Ta ) ……(1) ここで、αは熱伝達率、lは圧延材周長、Tは圧延材温
度、Ta は大気温度である。この微分方程式を解くこと
によって、t秒間の温度低下は式(2)で与えられる。 (T−Ta )/(T0 −Ta )= exp(−αl/ρCP AΔt) …(2) ここで、T0 は初期温度、TはΔt秒後の温度、ρは圧
延材の密度、CP は圧延材の比熱、Aは圧延材各部の断
面積である。
Considering the shape of the rolled material and the type of rolling,
As shown in FIG. 3, the rail is divided into three parts, a head A 1 , a web A 2 , and a leg A 3 , and it is assumed that the temperature is uniform in each cross section. Based on this assumption, the heat radiation amount dQ / dt per unit time is expressed by the following equation (1). dQ / dt = αl (T−T a ) (1) where α is the heat transfer coefficient, l is the rolled material circumference, T is the rolled material temperature, and T a is the atmospheric temperature. By solving this differential equation, the temperature drop for t seconds is given by equation (2). (T-T a) / ( T 0 -T a) = exp (-αl / ρC P AΔt) ... (2) where, T 0 is the initial temperature, T is temperature after Δt seconds, [rho is the rolled material Density, CP is the specific heat of the rolled material, and A is the cross-sectional area of each part of the rolled material.

【0016】つぎに、各パスのロール間隔を仮設定し、
圧延温度を求めた圧延材について、圧延を行う。圧延中
に、圧延荷重を測定する。すべてのパスを通過した圧延
材、すなわち製品について各部の寸法を測定する。製品
寸法が目標寸法となっている場合、このときの各パス毎
の圧延材長さ、圧延速度、圧延加減速度、ロール間隔、
実測圧延荷重、および圧延温度演算値をそれぞれの基準
値として設定し、たとえばプロセス制御コンピュータに
これら基準値を格納する。目標寸法が得られなかった場
合、再度圧延条件を変更して、圧延時間、圧延温度など
を計算し、ロール間隔を再度仮設定し、上記手順を繰り
返す。基準条件の設定のため、通常2本または3本の圧
延材を圧延する。
Next, the roll interval of each pass is provisionally set,
Rolling is performed on the rolled material whose rolling temperature is obtained. The rolling load is measured during rolling. The dimensions of each part of the rolled material that has passed all the passes, that is, the product, are measured. When the product dimensions are the target dimensions, the length of rolled material, rolling speed, rolling acceleration / deceleration, roll spacing,
The measured rolling load and the calculated rolling temperature are set as respective reference values, and these reference values are stored in, for example, a process control computer. When the target dimension is not obtained, the rolling conditions are changed again, the rolling time, the rolling temperature, etc. are calculated, the roll interval is provisionally set again, and the above procedure is repeated. In order to set the standard conditions, usually two or three rolled materials are rolled.

【0017】基準値が設定され、製品寸法および圧延条
件が変更されない限り、基準値に基づいて所定本数たと
えば100〜200本を圧延する。製品の長さ、圧延速
度等の圧延条件が変更になったり、圧延ロールを組み替
えたなどの場合、圧延開始前に、各パス毎の圧延材長
さ、ならびに各パスの圧延速度および圧延加減速度を、
基準値と比較する。各パス毎の圧延材長さ、ならびに各
パスの圧延速度および圧延加減速度が基準値と異なる場
合は、圧延開始前に、各パス毎の圧延材の長さ、ならび
に各パスの圧延速度および圧延加減速度から、当該圧延
材の長さ方向中央部の各ミルへのかみ込み時間を計算
し、パス間の冷却時間を求める。ついで、冷却時間に基
づいて、各パスの圧延温度を前記式(2)により計算
し、変形抵抗を次の手順で求める。
Unless a standard value is set and product dimensions and rolling conditions are changed, a predetermined number of rolls, for example 100 to 200, are rolled based on the standard value. When the rolling conditions such as product length and rolling speed are changed or the rolling rolls are recombined, the length of rolled material for each pass, and the rolling speed and rolling acceleration / deceleration of each pass before starting rolling To
Compare with the standard value. If the length of rolled material for each pass, and the rolling speed and rolling acceleration / deceleration of each pass differ from the reference values, the length of the rolled material for each pass, and the rolling speed and rolling of each pass before starting rolling From the acceleration / deceleration, the biting time into the respective mills at the central portion in the length direction of the rolled material is calculated, and the cooling time between passes is calculated. Then, based on the cooling time, the rolling temperature of each pass is calculated by the above equation (2), and the deformation resistance is obtained by the following procedure.

【0018】当該圧延材の圧延温度の計算値と、基準材
の圧延温度の計算値とから、変形抵抗の比(圧延荷重の
比)を計算する。変形抵抗kfmは、たとえば美坂の式を
用いると、次の式(3)で求めることができる。 kfm=1.15 exp{0.126−1.75C+0.594C2 +(2851+2968C−1120C2 )/T}ε0.21・ε′0.13 ……(3) ここで、Cは炭素量(%)、Tは材料温度(℃)、εは
歪み、ε′は歪み速度(sec-1)である。(3)式にお
いて、基準値から大きく変化するパラメータは温度Tの
みなので、基準材と当該圧延材との変形抵抗比は次式で
表せる。 kfm cal /kfm = exp{1120C2 (1/T−1/Tcal )} ……(4) 当該圧延材と基準材との変形抵抗比から、式(5)を用
いて、当該圧延材の圧延荷重Pcal を計算する。 Pcal =P×kfm cal /kfm ……(5) ここで、Pは圧延荷重、kfmは変形抵抗、添字cal は当
該圧延材の計算値、*は基準材の計算値を表している。
From the calculated value of the rolling temperature of the rolled material and the calculated value of the rolling temperature of the reference material, the deformation resistance ratio (rolling load ratio) is calculated. The deformation resistance k fm can be obtained by the following equation (3) using, for example, Misaka's equation. k fm = 1.15 exp {0.126-1.75C + 0.594C 2 + (2851 + 2968C-1120C 2) / T} ε 0.21 · ε '0.13 ...... (3) where, C is the carbon content (%), T is material temperature (° C.), ε is strain, and ε ′ is strain rate (sec −1 ). In the equation (3), since the only parameter that greatly changes from the reference value is the temperature T, the deformation resistance ratio between the reference material and the rolled material can be expressed by the following equation. k fm cal / k fm * = from exp {1120C 2 (1 / T * -1 / T cal)} ...... (4) deformation resistance ratio of the rolled material and the reference material, using equation (5), The rolling load P cal of the rolled material is calculated. P cal = P * × k fm cal / k fm * ...... (5) where, P is the rolling load, k fm deformation resistance, subscript cal calculated values of the rolled material, * the reference material calculated values It represents.

【0019】圧延荷重Pcal が求まると、圧延荷重の推
定変動量、すなわち基準圧延荷重と計算(予測)圧延荷
重との差に基づき、ロール間隔の基準値Sに対するロ
ール間隔修正量ΔSを、式(6)により求める。 ΔS=(P−Pcal )/M ……(6) ここで、Mはミル剛性、*は基準値である。
When the rolling load P cal is obtained, the roll gap correction amount ΔS with respect to the roll gap reference value S * is calculated based on the estimated fluctuation amount of the rolling load, that is, the difference between the reference rolling load and the calculated (predicted) rolling load. It is calculated by the equation (6). ΔS = (P * −P cal ) / M (6) Here, M is the mill rigidity and * is the reference value.

【0020】上記ロール間隔修正量ΔSにより修正した
ロール間隔により圧延を行う。
Rolling is performed with the roll spacing corrected by the roll spacing correction amount ΔS.

【0021】つぎに、寸法精度を高めるために圧延荷重
の推定変動量を各パスごとに学習し、学習に基づいて推
定変動量を修正する方法を説明する。
Next, a method of learning the estimated fluctuation amount of the rolling load for each pass in order to improve the dimensional accuracy and correcting the estimated fluctuation amount based on the learning will be described.

【0022】圧延荷重の推定誤差の要因として、入側
寸法の推定誤差、圧延温度の推定誤差、変形抵抗式
の推定誤差が考えられる。このうち、入側寸法の推定
誤差については、学習によって圧延荷重の予測精度が十
分になれば発生しなくなるので、圧延荷重の予測に用い
る圧延温度の推定誤差、および変形抵抗式の推定誤
差を学習させる。
As factors of the estimation error of the rolling load, the estimation error of the inlet side dimension, the estimation error of the rolling temperature, and the estimation error of the deformation resistance equation are considered. Among these, the estimation error of the entry side dimension will not occur if the prediction accuracy of the rolling load becomes sufficient by learning, so the estimation error of the rolling temperature used to predict the rolling load and the estimation error of the deformation resistance formula are learned. Let

【0023】変形抵抗の推定誤差が圧延温度の推定誤差
と比べて、無視できる場合は、実際の変形抵抗と、変形
抵抗の計算値の比(荷重の実測値と計算値との比)は、
次式で表される。 P/P=kfm/kfm = exp{1120C2 ζ(1/αT−1/αTcal )} ……(7) ここで、ζは温度の学習係数、αは定数であり、式
(7)を変形して、 1/ζ=ln(Pcal /P)/(1/T−1/Tcal )/1120C2
When the estimation error of the deformation resistance is negligible compared with the estimation error of the rolling temperature, the ratio between the actual deformation resistance and the calculated value of the deformation resistance (the ratio between the measured value of load and the calculated value) is
It is expressed by the following equation. P / P * = k fm / k fm * = exp {1120C 2 ζ (1 / αT * −1 / αT cal )} (7) where ζ is a learning coefficient of temperature and α is a constant, By modifying the equation (7), 1 / ζ = ln (P cal / P) / (1 / T * −1 / T cal ) / 1120C 2

【0024】一方、圧延温度の推定誤差が、変形抵抗の
推定誤差と比べて、無視できる場合は、実際の変形抵抗
と、変形抵抗の計算値の比(圧延荷重の実測値と計算値
との比)は、次式で表される。 P/P=kfm/kfm = exp{1120C2 η(1/T−1/Tcal )} ……(8) ここで、ηは変形抵抗の学習係数であり、式(8)を変
形して、 η=ln(Pcal /P)/(1/T−1/Tcal )/1120C2 ……(9)
On the other hand, when the rolling temperature estimation error is negligible as compared with the deformation resistance estimation error, the ratio of the actual deformation resistance and the calculated value of the deformation resistance (the measured value of the rolling load and the calculated value) The ratio) is expressed by the following equation. P / P * = k fm / k fm * = exp {1120C 2 η (1 / T * -1 / T cal)} ...... (8) where, eta is the learning coefficient of the deformation resistance, the formula (8 ) Is transformed into η = ln (P cal / P) / (1 / T * −1 / T cal ) / 1120C 2 (9)

【0025】式(7)および式(8)は同一の形で表さ
れ、また圧延荷重の実測値からは圧延温度の推定誤差
と、変形抵抗の推定誤差とを分離することは困難である
ことから、式(7)および式(8)をまとめて、 kfm/kfm = exp{θ(1/T−1/Tcal )} ……(10) あるいは、 θ=ln(Pcal /P)/(1/T−1/Tcal ) ……(11) とし、θを学習すればよい。
Equations (7) and (8) are expressed in the same form, and it is difficult to separate the rolling temperature estimation error and the deformation resistance estimation error from the measured values of the rolling load. From Equation (7) and Equation (8), k fm / k fm * = exp {θ (1 / T * −1 / T cal )} (10) or θ = ln (P cal / P) / (1 / T * -1 / Tcal ) (11) and θ can be learned.

【0026】圧延温度の推定計算については、より厳密
な計算方法、たとえば有限要素法による計算も考えられ
るが、設定計算に必要とされる計算時間との関係で選択
される。従来技術においては、圧延荷重の計算値を用い
て、前記板圧延の式によってロール隙を決定するので、
温度の推定誤差は変形抵抗の推定誤差を介して、圧延荷
重の推定誤差となり、ロール間隔の設定精度を悪化させ
る。しかし、この発明では、基準条件からの温度差のみ
を問題とするので、圧延温度計算の精度は上記例で示し
た簡易計算で十分である。
Regarding the estimation calculation of the rolling temperature, a more rigorous calculation method, for example, a finite element method may be considered, but it is selected in relation to the calculation time required for the setting calculation. In the prior art, using the calculated value of the rolling load, to determine the roll gap by the formula of the plate rolling,
The temperature estimation error becomes the rolling load estimation error via the deformation resistance estimation error, and deteriorates the roll interval setting accuracy. However, in the present invention, since only the temperature difference from the reference condition matters, the accuracy of the rolling temperature calculation can be achieved by the simple calculation shown in the above example.

【0027】[0027]

【実施例】レール(JIS 60 kg 級、高さ174 m
m 、頭幅65 mm 、脚幅145 mm )で、圧延材長さ1
50 m,125 m,100 mの三つのケースについて、
この発明を用いたセットアップでは、バー間変動は0.
3 mm であった。これに対して、セットアップを行わな
い場合は、製品高さのバー間変動は0.8 mm であっ
た。また、特公平5−73483号公報で開示された技
術を用いた場合、製品長さが一定の場合のバー間変動は
0.5 mm であったが、製品長さが変わった場合は高さ
変動は0.7 mm であった。
[Example] Rail (JIS 60 kg class, height 174 m)
m, head width 65 mm, leg width 145 mm), rolled material length 1
For the three cases of 50 m, 125 m and 100 m,
With the setup using this invention, the bar-to-bar variation is 0.
It was 3 mm. On the other hand, when the setup was not performed, the variation of the product height between bars was 0.8 mm. Further, when the technique disclosed in Japanese Patent Publication No. 5-73483 is used, the variation between the bars when the product length is constant is 0.5 mm, but when the product length is changed, the height is changed. The variation was 0.7 mm.

【0028】[0028]

【発明の効果】この発明では、圧延材の温度変化を考慮
するとともに、ロール間隔の絶対値によらず基準値との
差に基づいてロール間隔を修正するので、ロール間隔の
設定誤差は小さくなる。このため、高精度でロール間隔
をセットアップすることができ、製品の寸法精度の向上
が可能となる。また、精度を落とすことなく、簡単な計
算式を用いて圧延荷重の予測ができる。
According to the present invention, the temperature change of the rolled material is taken into consideration and the roll interval is corrected based on the difference from the reference value regardless of the absolute value of the roll interval, so that the setting error of the roll interval is reduced. . Therefore, the roll interval can be set up with high accuracy, and the dimensional accuracy of the product can be improved. Further, the rolling load can be predicted using a simple calculation formula without lowering the accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】ユニバーサル圧延機およびエッジャーのロール
間隔の決定手順を示すフローチャートである。
FIG. 1 is a flowchart showing a procedure for determining roll intervals of a universal rolling mill and an edger.

【図2】この発明が適用されるレールの圧延パスを示す
図面である。
FIG. 2 is a drawing showing a rolling pass of a rail to which the present invention is applied.

【図3】圧延温度を計算する際の、レール断面区分を示
す図面である。
FIG. 3 is a drawing showing rail cross-section sections when calculating a rolling temperature.

【図4】孔型圧延機のミル剛性の一例を示すグラフであ
る。
FIG. 4 is a graph showing an example of mill rigidity of a hole rolling mill.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B21B 37/16 B21B 37/12 114 (72)発明者 明賀 孝仁 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 久保 誠太郎 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location B21B 37/16 B21B 37/12 114 (72) Inventor Takahito Akiga No. 1 No. 1 Hibatacho, Tobata-ku, Kitakyushu, Fukuoka Inside Nippon Steel Co., Ltd. Yawata Works (72) Inventor Seitaro Kubo 1-1 1-1 Toibatacho, Tobata-ku, Kitakyushu City, Fukuoka Prefecture Inside Nippon Steel Co., Ltd. Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 孔型圧延、ユニバーサル圧延、およびエ
ッジャー圧延を含む圧延工程で、予測圧延荷重に基づき
ロール間隔を設定する形鋼の圧延方法において、圧延パ
スごとに、目標寸法を与える、圧延材長さ、圧延速度、
圧延加減速度、ロール間隔、実測圧延荷重、および圧延
温度計算値を基準値とし、圧延材長さ、圧延速度および
圧延加減速度の基準値に対する差に基づき、基準圧延荷
重からの圧延荷重変動量を推定し、圧延荷重の推定変動
量に基づいてロール間隔を修正することを特徴とする形
鋼の圧延方法。
1. A method for rolling a shaped steel in which a roll interval is set based on a predicted rolling load in a rolling process including a slot rolling, a universal rolling, and an edger rolling, and a rolling material which gives a target dimension for each rolling pass. Length, rolling speed,
Using the rolling acceleration / deceleration, roll spacing, measured rolling load, and rolling temperature calculation value as the reference values, the rolling load fluctuation amount from the standard rolling load is calculated based on the difference between the rolling material length, rolling speed, and rolling acceleration / deceleration with respect to the reference value. A method for rolling a shaped steel, which comprises estimating and correcting a roll interval based on an estimated fluctuation amount of rolling load.
【請求項2】 前材までの圧延荷重の推定変動量と実測
変動量との差に基づいて、圧延荷重の推定変動量を修正
する請求項1記載の形鋼の圧延方法。
2. The method for rolling a shaped steel according to claim 1, wherein the estimated fluctuation amount of the rolling load is corrected based on the difference between the estimated fluctuation amount of the rolling load up to the preceding material and the actually measured fluctuation amount.
JP06447396A 1996-03-21 1996-03-21 Rolling method for section steel Expired - Fee Related JP3397967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06447396A JP3397967B2 (en) 1996-03-21 1996-03-21 Rolling method for section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06447396A JP3397967B2 (en) 1996-03-21 1996-03-21 Rolling method for section steel

Publications (2)

Publication Number Publication Date
JPH09253720A true JPH09253720A (en) 1997-09-30
JP3397967B2 JP3397967B2 (en) 2003-04-21

Family

ID=13259243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06447396A Expired - Fee Related JP3397967B2 (en) 1996-03-21 1996-03-21 Rolling method for section steel

Country Status (1)

Country Link
JP (1) JP3397967B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989780A (en) * 2011-09-19 2013-03-27 宝山钢铁股份有限公司 Electricity-saving control device and control method for vertical mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989780A (en) * 2011-09-19 2013-03-27 宝山钢铁股份有限公司 Electricity-saving control device and control method for vertical mill

Also Published As

Publication number Publication date
JP3397967B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
AU760833B2 (en) Metal plate flatness controlling method and device
JPH0626723B2 (en) Plate shape control method
JP4349177B2 (en) Steel extraction temperature prediction method for continuous heating furnace
JP2839746B2 (en) Learning control method in process line
JP3397967B2 (en) Rolling method for section steel
JP3844280B2 (en) Reduction leveling setting method in sheet rolling
KR101050792B1 (en) Cooling Control Method Using Dynamic Reset
JP4123582B2 (en) Steel plate shape prediction method and apparatus
JPH1034215A (en) Method for controlling edge drop in cold rolling
EP0037834B1 (en) Method of controlling width of plate
JPH0615321A (en) Shape control method in thick plate rolling
JP4669376B2 (en) Manufacturing method of thick steel plate with high flatness
JP3397966B2 (en) Rolling method for section steel
JP2005059053A (en) Method for controlling width of sheet in cold tandem rolling
JP3355919B2 (en) Method and apparatus for rolling H-section steel
KR100423422B1 (en) Hot Rolling Method for Preparing Taper Bar
JPH0636929B2 (en) Method for controlling strip width of rolled material
JP3646622B2 (en) Sheet width control method
JP4275964B2 (en) Manufacturing method of hot steel strip
JP3271700B2 (en) Manufacturing method of mold steel
JP2002045907A (en) Method and device for controlling flatness of metallic sheet
JPH0938708A (en) Method for controlling plate thickness in hot rolling
JP2719216B2 (en) Edge drop control method for sheet rolling
JPH07178456A (en) Method for straightening steel plate by roller leveller
CA1155529A (en) Temperature control in hot strip mill

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees