JPH09252776A - Thermally stable dna polymerase derived from thermococcus peptonophilus, gene encoding the same enzyme and use therefor - Google Patents

Thermally stable dna polymerase derived from thermococcus peptonophilus, gene encoding the same enzyme and use therefor

Info

Publication number
JPH09252776A
JPH09252776A JP8063112A JP6311296A JPH09252776A JP H09252776 A JPH09252776 A JP H09252776A JP 8063112 A JP8063112 A JP 8063112A JP 6311296 A JP6311296 A JP 6311296A JP H09252776 A JPH09252776 A JP H09252776A
Authority
JP
Japan
Prior art keywords
glu
lys
leu
ile
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8063112A
Other languages
Japanese (ja)
Other versions
JP4217922B2 (en
Inventor
Hidesuke Komatsubara
小松原  秀介
Kazumi Yamamoto
和巳 山本
Fumikiyo Kawakami
川上  文清
Yoshihisa Kawamura
川村  良久
Koki Horikoshi
弘毅 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP06311296A priority Critical patent/JP4217922B2/en
Publication of JPH09252776A publication Critical patent/JPH09252776A/en
Application granted granted Critical
Publication of JP4217922B2 publication Critical patent/JP4217922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a new DNA polymerase, derived from Theremococcus peptonophilus, excellent in thermal stability, high in DNA synthesis rate, and suitable for the amplification of nucleic acids such as a polymerase chain reaction(PCR), etc. SOLUTION: This thermally stable DNA polymerase, high in DNA synthesis rate and suitable for a nucleic acid amplifying method, etc., such as a polymerase chain reaction(PCR), is derived from Thermococcus peptonophilus, catalyzes a polymerase reaction for forming a complementary nucleic acid chain to a nucleic acid mold chain from a nucleoside triphosphate, and has 3'-5' exonuclease activity and an approximately 60% residual activity by treating at 100 deg.C for 30min and amino acid sequences of the formula. The DNA polymerase is obtained by isolating a chromosomal DNA from an OG-1 strain of Thermococcus peptonophilus, performing the PCR amplification of the DNA, and expressing the obtained gene in host cells.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規なサーモコッ
カス・ペプトノフィラス(Thermococcus peptonophilus)
由来の熱安定性DNAポリメラーゼおよび該熱安定性D
NAポリメラーゼをコ−ドする遺伝子、該遺伝子を含む
DNA組換え発現ベクター、該組換え発現ベクターで形
質転換された組換え宿主細胞ならびに該組換え宿主細胞
を使用する熱安定性DNAポリメラーゼの製造法に関す
る。
TECHNICAL FIELD The present invention relates to a novel Thermococcus peptonophilus.
Derived thermostable DNA polymerase and said thermostable D
Gene encoding NA polymerase, recombinant DNA expression vector containing the gene, recombinant host cell transformed with the recombinant expression vector, and method for producing thermostable DNA polymerase using the recombinant host cell Regarding

【0002】[0002]

【従来の技術】従来から、大腸菌のような中温性細菌の
DNAポリメラーゼおよび中温性細菌に感染するファ−
ジ由来のDNAポリメラーゼに関しては、既に多くの研
究がなされている。また、最近、ポリメラーゼ連鎖反応
(PCRと略記する)等の核酸増幅を用いる組換えDN
A技術に有用な耐熱性DNAポリメラーゼに関する研究
も多くなされている。PCRに用いられる耐熱性DNA
ポリメラーゼは、主としてサーマス・サーモフィラス(T
hermus thermophilus)由来のDNAポリメラ−ゼ(Tth D
NAポリメラーゼ) や、サーマス・アクアチカス(Thermus
aquaticus) 由来のDNAポリメラ−ゼ(Taq DNAポリメ
ラーゼ) などが用いられてきた。
2. Description of the Related Art Conventionally, DNA polymerases of mesophilic bacteria such as Escherichia coli and mesogenic bacteria that infect mesophilic bacteria.
Many studies have already been conducted on DNA polymerases derived from di. Also, recently, recombinant DN using nucleic acid amplification such as polymerase chain reaction (abbreviated as PCR)
There have been many studies on thermostable DNA polymerases useful in the A technique. Thermostable DNA used for PCR
The polymerase is mainly used in Thermus thermophilus (T
DNA polymerase from hermus thermophilus (Tth D
NA polymerase) and Thermus aquaticus (Thermus
Aquaticus-derived DNA polymerase (Taq DNA polymerase) and the like have been used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来か
ら知られている耐熱性DNAポリメラーゼには、耐熱性
を有するものの、その熱安定性や、有機溶媒に対する安
定性に若干、問題を残しているものがある。また、核酸
の取り込みの際の正確性に欠ける点も有し、DNA配列
決定やポリメラーゼ連鎖反応に、これらの酵素を用いる
にあたり、解決すべき課題が残っている。そのため、こ
れらの課題を解消する新規な耐熱性DNAポリメラーゼ
が待ち望まれていた。
However, conventionally known thermostable DNA polymerases have heat resistance, but have some problems in their thermal stability and stability against organic solvents. There is. In addition, there is a lack of accuracy when incorporating nucleic acids, and there remain problems to be solved when using these enzymes in DNA sequencing and polymerase chain reaction. Therefore, a novel thermostable DNA polymerase that solves these problems has been desired.

【0004】また、パイロコッカス・フリオサス(Pyroc
occus furiosus) 由来の耐熱性DNAポリメラーゼ(Pfu
ポリメラーゼ、WO92/09689、特開平 5-328969 号公
報)、サーモコッカス・リトラリス(Termococcus litor
alis) 由来の耐熱性DNAポリメラ−ゼ(Tliポリメラー
ゼ、特開平 6-7160 号公報)なども知られている。しか
しながら、これらの熱安定性DNAポリメラーゼは、核
酸の取り込みの際の正確性はTaqDNAポリメラーゼ
やTthDNAポリメラーゼに比べて優れているが、T
aqDNAポリメラーゼに比べて、合成速度が遅いな
ど、完全なものではなく、新規な耐熱性DNAポリメラ
ーゼが望まれていた。
In addition, Pyrococcus furiosus (Pyroc
occus furiosus) thermostable DNA polymerase (Pfu
Polymerase, WO92 / 09689, JP-A-5-328969), Thermococcus litoralis (Termococcus litor)
A heat-resistant DNA polymerase derived from alis (Tli polymerase, JP-A-6-7160) is also known. However, although these thermostable DNA polymerases are superior to Taq DNA polymerase and Tth DNA polymerase in the accuracy of nucleic acid uptake,
A novel thermostable DNA polymerase has been desired, which is not perfect as compared with aq DNA polymerase and has a slower synthesis rate.

【0005】[0005]

【課題を解決するための手段】本発明者らは鋭意検討し
た結果、熱安定性が高く、かつ、DNA合成速度が高い
熱安定性DNAポリメラーゼを生産する新規な超好熱古
細菌を得ることに成功し、さらに、その遺伝子を解明し
て、本発明に到達した。
Means for Solving the Problems As a result of intensive investigations by the present inventors, a novel hyperthermophilic archaea which produces a thermostable DNA polymerase having high thermostability and high DNA synthesis rate is obtained. And succeeded in elucidating the gene, and arrived at the present invention.

【0006】すなわち、本発明はサーモコッカス・ペプ
トノフィラス(Thermococcus peptonophilus)由来の熱安
定性DNAポリメラーゼである。
That is, the present invention is a thermostable DNA polymerase derived from Thermococcus peptonophilus.

【0007】また、本発明はサーモコッカス・ペプトノ
フィラス(Thermococcus peptonophilus)由来のDNAポ
リメラーゼをコードする単離されたDNAである。
The present invention is also an isolated DNA encoding a DNA polymerase derived from Thermococcus peptonophilus.

【0008】さらに、本発明はサーモコッカス・ペプト
ノフィラス(Thermococcus peptonophilus)由来のDNA
ポリメラーゼをコードする単離されたDNAをベクター
に挿入したDNA組換え発現ベクターである。
Further, the present invention provides a DNA derived from Thermococcus peptonophilus.
It is a DNA recombinant expression vector in which an isolated DNA encoding a polymerase is inserted into the vector.

【0009】本発明は、サーモコッカス・ペプトノフィ
ラス(Thermococcus peptonophilus)由来のDNAポリメ
ラーゼをコードする単離されたDNAをベクターに挿入
したDNA組換え発現ベクターを用いて形質転換された
組換え宿主細胞である。
The present invention is a recombinant host cell transformed with a DNA recombinant expression vector in which an isolated DNA encoding a DNA polymerase derived from Thermococcus peptonophilus is inserted into a vector. .

【0010】また、本発明はサーモコッカス・ペプトノ
フィラス(Thermococcus peptonophilus)由来のDNAポ
リメラーゼをコードする単離されたDNAをベクターに
挿入したDNA組換え発現ベクターを用いて形質転換さ
れた組換え宿主細胞を栄養培地で培養し、該培養物から
熱安定性DNAポリメラーゼを採取することを特徴とす
る熱安定性DNAポリメラーゼの製造法である。
The present invention also relates to a recombinant host cell transformed with a DNA recombinant expression vector in which the isolated DNA encoding a DNA polymerase derived from Thermococcus peptonophilus is inserted into the vector. A method for producing a thermostable DNA polymerase, which comprises culturing in a nutrient medium and collecting the thermostable DNA polymerase from the culture.

【0011】さらに、本発明はサーモコッカス・ペプト
ノフィラス(Thermococcus peptonophilus)由来のDNA
ポリメラーゼをコードする単離されたDNAをベクター
に挿入したDNA組換え発現ベクターを用いて形質転換
された組換え宿主細胞を栄養培地で培養し、(a)該組
換え宿主細胞を集めた後、破砕し、細胞抽出物を調製
し、(b)組換え宿主細胞由来の不純蛋白質を除去する
工程を含むことを特徴とする熱安定性DNAポリメラー
ゼを製造する方法である。
Further, the present invention provides a DNA derived from Thermococcus peptonophilus.
A recombinant host cell transformed with the DNA recombinant expression vector in which the isolated DNA encoding the polymerase is inserted into the vector is cultured in a nutrient medium, and (a) after collecting the recombinant host cell, A method for producing a thermostable DNA polymerase, which comprises the steps of crushing, preparing a cell extract, and (b) removing an impure protein derived from a recombinant host cell.

【0012】[0012]

【発明の実施態様】本発明の好ましい熱安定性DNAポ
リメラーゼは、超好熱古細菌の1種であるサーモコッカ
ス・ペプトノフィラス(Thermococcus peptonophilus)
OG1(JCM番号9653)または、サーモコッカス
・ペプトノフィラス(Thermococcuspeptonophilus)S
M−2(JCM番号9654)から入手可能なDNAポ
リメラーゼである。
The preferred thermostable DNA polymerase of the present invention is Thermococcus peptonophilus, which is one of the hyperthermophilic archaea.
OG1 (JCM No. 9653) or Thermococcus peptonophilus S
It is a DNA polymerase available from M-2 (JCM No. 9654).

【0013】サーモコッカス・ペプトノフィラス(Ther
mococcus peptonophilus)OG1は伊豆小笠原沖の熱水
鉱床から、また、サーモコッカス・ペプチトフィラス
(Thermococcus peptonophilus)SM−2は、南マリア
ナトラフの熱水鉱床から単離した菌株である。これら菌
株の菌学的性質は、Arch Microbiol(1995) 164: 159-16
4, Gonzalez et al.に詳しく記載されている。また、こ
れらの菌株は、JCM(理化学研究所微生物系統保存施
設)から入手可能である。
Thermococcus peptonophyllus (Ther
mococcus peptonophilus) OG1 is a strain isolated from the hydrothermal deposit off Izu-Ogasawara, and Thermococcus peptonophilus SM-2 is a strain isolated from the hydrothermal deposit of the South Mariana Trough. The mycological properties of these strains are described in Arch Microbiol (1995) 164: 159-16.
4, Gonzalez et al. In addition, these strains are available from JCM (RIKEN Institute for Preservation of Microbial Strains).

【0014】本発明の熱安定性DNAポリメラーゼ遺伝
子のクローニングは、以下の方法により行う。クローニ
ングの方法は、PfuDNAポリメラ−ゼ(Nucleic Ac
ids Research、1993, vol.21, 259-265)、TliDNA
ポリメラーゼ(VentDNAポリメラーゼ)(Proc. Natl.
Acad. Sci. USA,1992, vol.89, 5577-5581)の保存領域
のアミノ酸配列に基づき、プライマーを設計し、合成す
る。
The thermostable DNA polymerase gene of the present invention is cloned by the following method. The cloning method was performed using Pfu DNA polymerase (Nucleic Ac
ids Research, 1993, vol.21, 259-265), TliDNA
Polymerase (Vent DNA Polymerase) (Proc. Natl.
Acad. Sci. USA, 1992, vol.89, 5577-5581), based on the amino acid sequence of the conserved region, a primer is designed and synthesized.

【0015】まず、サーモコッカス・ペプトノフィラス
(Thermococcus peptonophilus)の染色体DNAを鋳型
に、上記調製したプライマー(例えば、配列番号6およ
び7、8および9に記載)を用いて、PCRを行い、D
NA断片を増幅させる。増幅されたDNA断片のDNA
配列を決定し、当初設定したアミノ酸配列をコードして
いることを確認した後、該DNA断片をプローブとし、
染色体DNAの染色体DNAの制限酵素分解産物に対
し、サザンハイブリダイゼーションを実施する。目的と
するDNAポリメラーゼ遺伝子を含むDNA断片のおお
よその大きさを約4〜7Kbpに限定することが好まし
い。
First, Thermococcus peptonophilus
(Thermococcus peptonophilus) chromosomal DNA as a template and PCR using the above-prepared primers (for example, described in SEQ ID NOs: 6 and 7, 8 and 9), and D
Amplify the NA fragment. DNA of amplified DNA fragment
After determining the sequence and confirming that it encodes the initially set amino acid sequence, the DNA fragment is used as a probe,
Southern hybridization is carried out on the restriction enzyme degradation product of the chromosomal DNA. It is preferable to limit the approximate size of the DNA fragment containing the DNA polymerase gene of interest to about 4 to 7 Kbp.

【0016】更に、約4〜7KbpのDNA断片をゲル
から回収し、これを用いて、大腸菌にてDNAライブラ
リーを作製し、上記したPCR増幅DNA断片をプロー
ブにしてプラークハイブリダイゼーションまたはコロニ
ーハイブリダイゼーションを行い、クローン株を取得す
る。
Further, a DNA fragment of about 4 to 7 Kbp is recovered from the gel, and using this, a DNA library is prepared in Escherichia coli, and the above PCR amplified DNA fragment is used as a probe for plaque hybridization or colony hybridization. To obtain a clone strain.

【0017】本発明においてクローン化したサーモコッ
カス・ペプトノフィラス(Thermococcus peptonophilus)
OG1株のDNAポリメラーゼ遺伝子は、2325塩基
(推定アミノ酸774個)から構成されている(配列番
号1)。また、サーモコッカス・ペプトノフィラス(Th
ermococcus peptonophilus)SM−2は、3492塩基
(推定アミノ酸1164個)から構成されている(配列
番号3)。SM−2株由来の遺伝子には介在配列が1個
存在しており、かつ、オープンリーディングフレーム
(ORF)が保存された形でつながっている。他のDN
Aポリメラーゼと比較したところ、これらの遺伝子には
真核生物型であるα−DNAポリメラ−ゼの保存領域、
Region1〜5が存在している。また、これらの遺
伝子のN末端側に3’→5’エキソヌクレアーゼモチー
フであるEXO1〜3が存在している。
Thermococcus peptonophilus cloned in the present invention
The DNA polymerase gene of the OG1 strain is composed of 2325 bases (774 deduced amino acids) (SEQ ID NO: 1). In addition, Thermococcus peptonophyllus (Th
ermococcus peptonophilus) SM-2 is composed of 3492 bases (1164 deduced amino acids) (SEQ ID NO: 3). There is one intervening sequence in the gene derived from the SM-2 strain, and the open reading frame (ORF) is connected in a conserved form. Other DN
Compared to A polymerase, these genes contain a conserved region of eukaryotic type α-DNA polymerase,
Regions 1 to 5 are present. In addition, EXO1 to 3 which are 3 ′ → 5 ′ exonuclease motifs are present on the N-terminal side of these genes.

【0018】サーモコッカス・ペプトノフィラス(Therm
ococcus peptonophilus)OG−1株およびサーモコッカ
ス・ペプチトフィラス(Thermococcus peptonophilus)S
M−2株の耐熱性DNAポリメラ−ゼ遺伝子を、同じサ
ーモコッカス(Termococcus)属由来の既知酵素であるサ
ーモコッカス・リトラリス(Thermococcus litoralis)由
来のTli(Vent)DNAポリメラ−ゼ遺伝子と比
較したところ、TliDNAポリメラ−ゼ遺伝子には、
2種の介在配列が存在するが、サーモコッカス・ペプト
ノフィラス(Thermococcus peptonophilus)OG−1株由
来の遺伝子には、このような介在配列が存在せず、ま
た、サーモコッカス・ペプトノフィラス(Thermococcus
peptonophilus)SM−2株由来の遺伝子には介在配列が
1個存在する。
Thermococcus peptonophilus (Therm
ococcus peptonophilus) OG-1 strain and Thermococcus peptonophilus S
The thermostable DNA polymerase gene of the M-2 strain was compared with a Tli (Vent) DNA polymerase gene derived from Thermococcus litoralis, which is a known enzyme derived from the same Thermococcus (Termococcus) genus. , TliDNA polymerase gene,
Although there are two intervening sequences, the gene derived from the Thermococcus peptonophilus OG-1 strain does not have such intervening sequences, and the Thermococcus peptonophilus (Thermococcus) is not present.
There is one intervening sequence in the gene derived from peptonophilus) SM-2 strain.

【0019】本発明の遺伝子は、サーモコッカス・ペプ
トノフィラス(Thermococcus peptonophilus)由来のDN
AポリメラーゼをコードするDNAである。該DNAの
一例は、配列番号2または5に記載されるアミノ酸配列
をコードする塩基配列を含有する。また、このようなD
NAは、配列番号1または3に記載される塩基配列また
はその一部分を含有する。本発明の1例であるサーモコ
ッカス・ペプトノフィラス(Thermococcus peptonophilu
s)SM−2株由来の耐熱性DNAポリメラ−ゼを大腸菌
で発現させるため、配列番号3に示される塩基配列の1
621〜2790bpの介在配列をPCR融合法により
取り除き、完全な形のDNAポリメラ−ゼ遺伝子を構築
する。具体的には、介在配列を含むクロ−ン化した遺伝
子を2組のプライマ−の組み合わせによりPCRを行
い、介在配列により分断される2断片を増幅する。さら
に各々断片を結合することによって、介在配列を含まな
い完全な形のサーモコッカス・ペプトノフィラス(Therm
ococcus peptonophilus)SM−2株由来のDNAポリメ
ラ−ゼ遺伝子を得る(配列番号4参照)。
The gene of the present invention is DN derived from Thermococcus peptonophilus.
It is a DNA encoding A polymerase. An example of the DNA contains a nucleotide sequence encoding the amino acid sequence set forth in SEQ ID NO: 2 or 5. Also, such D
NA contains the base sequence shown in SEQ ID NO: 1 or 3, or a part thereof. Thermococcus peptonophilu which is one example of the present invention
s) In order to express the thermostable DNA polymerase derived from the SM-2 strain in Escherichia coli, 1 of the nucleotide sequence shown in SEQ ID NO: 3
The 621 to 2790 bp intervening sequence is removed by PCR fusion to construct a complete DNA polymerase gene. Specifically, a cloned gene containing an intervening sequence is subjected to PCR with a combination of two sets of primers to amplify two fragments that are separated by the intervening sequence. Furthermore, by joining each fragment, the complete form of Thermococcus peptonophyllus (Therm
A DNA polymerase gene derived from the ococcus peptonophilus) SM-2 strain is obtained (see SEQ ID NO: 4).

【0020】本発明において使用するベクターは、サー
モコッカス・ペプトノフィラス(Thermococcus peptonop
hilus)由来の耐熱性DNAポリメラーゼのクローニング
およびその発現を可能とするものであれば、いかなるも
のでもよく、たとえばファージまたはプラスミドがあげ
られる。プラスミドとしてはpUC18、pBR32
2、pBluescript、pLED−M1、p7
3、pGW7、pET3A、pET8cなどがあげられ
る。ファージとしてはたとえばλgt11、λZAPI
Iなどがあげられる。
The vector used in the present invention is a Thermococcus peptonop
(hilus) -derived thermostable DNA polymerase can be cloned and expressed, and examples thereof include phages or plasmids. As a plasmid, pUC18, pBR32
2, pBluescript, pLED-M1, p7
3, pGW7, pET3A, pET8c and the like. Examples of phages include λgt11 and λZAPI.
I, etc.

【0021】本発明において使用する宿主細胞として
は、大腸菌、酵母などがあげられる。大腸菌としては、
例えばJM109、HB101、XL1Blue、PR
1、LE392、BL21(DE3)などがあげられ
る。本発明では上記サーモコッカス・ペプトノフィラス
(Thermococcus peptonophilus)由来の耐熱性DNAポ
リメラーゼをコードする遺伝子を上記ベクターに挿入し
て組換え発現ベクターとし、さらにこの組換え発現ベク
ターにて宿主細胞を形質転換する。
Examples of the host cell used in the present invention include Escherichia coli and yeast. As Escherichia coli,
For example, JM109, HB101, XL1Blue, PR
1, LE392, BL21 (DE3) and the like. In the present invention, a gene encoding a thermostable DNA polymerase derived from Thermococcus peptonophilus is inserted into the above vector to give a recombinant expression vector, and a host cell is transformed with this recombinant expression vector.

【0022】本発明の製造方法では、上記組換え宿主細
胞を培養して、サーモコッカス・ペプトノフィラス(Th
ermococcus peptonophilus)由来の耐熱性DNAポリメ
ラ−ゼ遺伝子を誘導発現させる。組換え宿主細胞の培養
に使用する培地ならびに条件は常法に従う。具体例とし
ては、サーモコッカス・ペプトノフィラス(Thermococc
us peptonophilus)OG−1株由来のDNAポリメラー
ゼ遺伝子を含むpBluescriptプラスミド、ま
たはサーモコッカス・ペプトノフィラス(Thermococcus
peptonophilus)SM−2株由来の介在配列を含まない
完全な形のDNAポリメラ−ゼ遺伝子を含むpLED−
M1プラスミドにより形質転換された大腸菌を、例えば
TB培地にて培養する。
In the production method of the present invention, the above recombinant host cell is cultured to obtain Thermococcus peptonophyllus (Th
(ermococcus peptonophilus) -derived thermostable DNA polymerase gene is inducibly expressed. The medium and conditions used for culturing the recombinant host cell follow conventional methods. As a specific example, Thermococcus peptonophilus (Thermococc
us peptonophilus) OG-1 strain-derived DNA polymerase gene-containing pBluescript plasmid or Thermococcus peptonophilus (Thermococcus
peptonophilus) pLED containing a complete form of DNA polymerase gene containing no intervening sequence derived from strain SM-2
Escherichia coli transformed with the M1 plasmid is cultured in, for example, TB medium.

【0023】本発明の製造法の1つでは、(a)組換え
宿主を集めた後、破砕し、細胞抽出物を調製し、(b)
宿主細胞由来の不純蛋白質を除去する工程を含む。組換
え宿主細胞より産出された耐熱性DNAポリメラ−ゼ
は、宿主菌体を培地で培養後、培養液から遠心分離等に
て分離・回収する。該菌体を緩衝液に再懸濁した後、超
音波処理・ダイノミル・フレンチプレンス等により菌体
を破砕する。次いで、熱処理を実施し、上清より耐熱性
DNAポリメラ−ゼを回収する。菌体破砕方法は、超音
波処理・ダイノミル・フレンチプレス法などが好まし
い。宿主由来の不純蛋白質を除去する工程の1つとし
て、熱処理が好ましい。熱処理条件は、70℃以上、好
ましくは85℃以上である。他の不純タンパク質の除去
法としては各種クロマトグラフィーなどを実施する。
In one of the production methods of the present invention, (a) the recombinant hosts are collected and then crushed to prepare a cell extract, and (b)
The step of removing the impure protein derived from the host cell is included. The thermostable DNA polymerase produced from the recombinant host cell is separated and collected from the culture solution by centrifugation or the like after culturing the host cell in the medium. After resuspending the bacterial cells in a buffer solution, the bacterial cells are disrupted by ultrasonic treatment, dynomill, French presence and the like. Then, heat treatment is performed to recover the thermostable DNA polymerase from the supernatant. As a method for disrupting the cells, ultrasonic treatment, dynomill, French press method, etc. are preferable. Heat treatment is preferred as one of the steps for removing host-derived impure proteins. The heat treatment condition is 70 ° C. or higher, preferably 85 ° C. or higher. Other methods for removing impure proteins include various types of chromatography.

【0024】サーモコッカス・ペプトノフィラス(Ther
mococcus peptonophilus)OG−1由来の熱安定性DN
Aポリメラーゼは、下記理化学的性質を有する。 作用:(1)ヌクレオシドトリホスフェートから核酸鋳
型鎖に相補的な核酸鎖を形成するポリメラーゼ反応を触
媒する。 (2)3’−5’エキソヌクレアーゼ活性を有する。 熱安定性:100℃、30分間処理で約60%の残存活
性を有する。 分子量:約86〜92KDa 至適pH:約6.5〜9 至適温度:約70〜80℃ DNA合成速度:約60塩基/秒以上である。
Thermococcus peptonophilus (Ther
mococcus peptonophilus) OG-1 derived thermostable DN
A polymerase has the following physicochemical properties. Action: (1) Catalyze a polymerase reaction that forms a nucleic acid strand complementary to a nucleic acid template strand from nucleoside triphosphate. (2) It has a 3′-5 ′ exonuclease activity. Thermal stability: Residual activity of about 60% after treatment at 100 ° C. for 30 minutes. Molecular weight: about 86 to 92 KDa Optimum pH: about 6.5 to 9 Optimum temperature: about 70 to 80 ° C. DNA synthesis rate: about 60 bases / second or more.

【0025】サーモコッカス・ペプトノフィラス(Ther
mococcus peptono philus)SM−2由来の熱安定性D
NAポリメラーゼは、下記理化学的性質を有する。 作用:(1)ヌクレオシドトリホスフェートから核酸鋳
型鎖に相補的な核酸鎖を形成するポリメラーゼ反応を触
媒する。 (2)3’−5’エキソヌクレアーゼ活性を有する。 熱安定性:100℃、30分間処理で約60%の残存活
性を有する。 分子量:約86〜92KDa 至適pH:約6.5〜9 至適温度:約70〜80℃ DNA合成速度:約40塩基/秒以上である。
Thermococcus peptonophyllus (Ther
mococcus peptono philus) SM-2 derived thermostability D
NA polymerase has the following physicochemical properties. Action: (1) Catalyze a polymerase reaction that forms a nucleic acid strand complementary to a nucleic acid template strand from nucleoside triphosphate. (2) It has a 3′-5 ′ exonuclease activity. Thermal stability: Residual activity of about 60% after treatment at 100 ° C. for 30 minutes. Molecular weight: about 86 to 92 KDa Optimum pH: about 6.5 to 9 Optimum temperature: about 70 to 80 ° C. DNA synthesis rate: about 40 bases / second or more.

【0026】[0026]

【発明の効果】本発明のサーモコッカス・ペプトノフィ
ラス(Thermococcus peptonophilus)由来の熱安定性DN
Aポリメラ−ゼは、100℃、30分の処理で、60%
以上の残存活性を示し、ポリメラ−ゼ連鎖反応(PC
R)などに適した酵素である(図3参照)。
INDUSTRIAL APPLICABILITY Thermostable DN derived from Thermococcus peptonophilus of the present invention
A polymerase is 60% at 100 ° C for 30 minutes.
It shows the above residual activity and shows the polymerase chain reaction (PC
R) and the like (see FIG. 3).

【0027】[0027]

【実施例】次に本発明を実施例を用いて説明する。実施例1 サーモコッカス・ペプトノフィラス(Thermo
coccus peptonophilus)OG−1株由来DNAポリメラ
−ゼ遺伝子のクロ−ニング サーモコッカス・ペプトノフィラス(Thermococcus pep
tonophilus)OG−1株(JCM番号9653)を85
℃にて培養後、菌体を回収した。得られた菌体から常法
に従い、染色体DNAを調製した(Arch Microbiol(199
5) 164: 159-164, Gonzalez et al.参照)。
EXAMPLES The present invention will be described below with reference to examples. Example 1 Thermococcus peptonophylla (Thermo
Cloning of DNA polymerase gene derived from OG-1 strain of Thermococcus peptonophilus (Thermococcus pep)
tonophilus) OG-1 strain (JCM No. 9653) 85
After culturing at ℃, the bacterial cells were collected. Chromosomal DNA was prepared from the obtained bacterial cells according to a conventional method (Arch Microbiol (199
5) 164: 159-164, Gonzalez et al.).

【0028】PfuDNAポリメラ−ゼ、TliDNA
ポリメラーゼの保存領域のアミノ酸配列に基づき、4種
のプライマ−(配列番号6、配列番号7、配列番号8、
配列番号9)を合成した。このプライマーの配列番号
6、配列番号7および配列番号8、配列番号9をそれぞ
れ1組とし、調製した染色体DNAを鋳型として、PC
R(94℃、30秒、55℃、30秒、75℃、2分3
0秒、25サイクル。プライマー100ピコモル、鋳型
DNA100ng使用した。酵素はTaqplus(ス
トラタジーン社製)5ユニット用いた)を行った。その
結果、配列番号6および配列番号7を用いた場合、約7
40bpの予想された長さの増幅産物、配列番号8およ
び配列番号9を用いた場合、約400bpの予想された
長さの増幅産物が得られた。
PfuDNA polymerase, TliDNA
Based on the amino acid sequence of the conserved region of polymerase, four primers (SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8,
SEQ ID NO: 9) was synthesized. The primers SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8, SEQ ID NO: 9 were set as one set, respectively, and the prepared chromosomal DNA was used as a template for PC
R (94 ℃, 30 seconds, 55 ℃, 30 seconds, 75 ℃, 2 minutes 3
0 seconds, 25 cycles. 100 pmol of primer and 100 ng of template DNA were used. As the enzyme, 5 units of Taqplus (manufactured by Stratagene) was used. As a result, when using SEQ ID NO: 6 and SEQ ID NO: 7, about 7
With the 40 bp expected length amplicon, SEQ ID NO: 8 and SEQ ID NO: 9, an expected length amplicon of approximately 400 bp was obtained.

【0029】このPCR増幅DNA断片の部分的な塩基
配列を決定し、目的とする領域の増幅産物であることを
確認し、この増幅断片をプロ−ブとして、制限酵素Ec
oRI(東洋紡製)で処理した該染色体DNAに対して
サザンハイブリダイゼ−ションを行った結果、約4.4
kbの断片中にDNAポリメラ−ゼをコ−ドする断片が
存在することを確認した。更に、この大きさのDNA断
片をアガロ−スゲルから回収し、λZAPII(ストラ
タジーン社製)に挿入し、これらの混合物により大腸菌
(E.coliXL1blue)に形質導入し、ライブ
ラリ−を作製した。
The partial nucleotide sequence of this PCR-amplified DNA fragment was determined, and it was confirmed that it was an amplification product of the target region. Using this amplified fragment as a probe, the restriction enzyme Ec was used.
As a result of Southern hybridization performed on the chromosomal DNA treated with oRI (manufactured by Toyobo), about 4.4
It was confirmed that a fragment encoding the DNA polymerase was present in the kb fragment. Furthermore, a DNA fragment of this size was recovered from agarose gel, inserted into λZAPII (manufactured by Stratagene), and E. coli (E. coli XL1blue) was transduced with a mixture of these to prepare a library.

【0030】次にサザンハイブリダイゼ−ションで使用
したプロ−ブを用いて、プラークハイブリダイゼ−ショ
ンを行った。約5000個のプラークをスクリーニング
した結果、10個のポジティブクローンが得られた。ポ
ジティブクローンからヘルパーファージR408を用い
て常法に従い、プラスミドをレスキューし、部分的に塩
基配列を決定したところ、DNAポリメラ−ゼ遺伝子の
5’側をコードするクローン(pO5’1、挿入断片約
4.4kbp)と3’側をコードするクローン(pOG
7、挿入断片4.4kbp)を取得した。
Next, plaque hybridization was carried out using the probe used in Southern hybridization. As a result of screening about 5000 plaques, 10 positive clones were obtained. The plasmid was rescued from the positive clone using the helper phage R408 in accordance with a conventional method, and the nucleotide sequence was partially determined. As a result, a clone (pO5'1, insert fragment about 4) encoding the 5'side of the DNA polymerase gene was obtained. .4 kbp) and a clone encoding the 3'side (pOG
7, insert fragment 4.4 kbp) was obtained.

【0031】実施例2 組換え発現ベクターの構築 完全なDNAポリメラ−ゼ遺伝子を作製するため、上記
で得られた2種のクローンのDNAポリメラーゼ遺伝子
のコード部分を図1に示した構築図に従い連結した。p
O5’1を制限酵素SalIとEcoRIで切断し、ア
ガロースゲル電気泳動によって分画した後、約2kbp
のDNA断片を回収した。次にpOG7を制限酵素Ec
oRIとBglIIで切断し、アガロースゲル電気泳動
によって分画した後、約1.8kbpのDNA断片を回
収した。得られた2種類の断片を制限酵素SalIとB
amHIで切断したプラスミドベクターpBluesc
ript SK(−)(ストラタジーン社製)に連結
し、完全なDNAポリメラ−ゼ遺伝子を含有する発現組
換えベクターpOGSB(6.64kb)を得た。
Example 2 Construction of Recombinant Expression Vector In order to prepare a complete DNA polymerase gene, the coding portions of the DNA polymerase genes of the two clones obtained above were ligated according to the construction diagram shown in FIG. did. p
O5′1 was cleaved with restriction enzymes SalI and EcoRI, and fractionated by agarose gel electrophoresis.
Was recovered. Next, pOG7 is used as a restriction enzyme Ec.
After cutting with oRI and BglII and fractionating by agarose gel electrophoresis, a DNA fragment of about 1.8 kbp was recovered. The obtained two kinds of fragments were digested with restriction enzymes SalI and B
Plasmid vector pBluesc cleaved with amHI
By ligating to ript SK (-) (manufactured by Stratagene), an expression recombinant vector pOGSB (6.64 kb) containing a complete DNA polymerase gene was obtained.

【0032】実施例3 クローン化されたDNA断片の
塩基配列の決定 実施例2で取得したプラスミドDNApOGSBを大量
調製し、常法に従い塩基配列の決定を行った。更に、求
められた塩基配列よりアミノ酸配列を推定した(配列表
1、配列表2)。サーモコッカス・ペプトノフィラス
(Thermococcus peptonophilus)OG−1株由来DNA
ポリメラ−ゼ遺伝子は2325塩基からなり、774個
のアミノ酸がコ−ドされていた。アミノ酸配列から推定
されるタンパク質の分子量は約90000ダルトンであ
った。
Example 3 Determination of Nucleotide Sequence of Cloned DNA Fragment The plasmid DNA pOGSB obtained in Example 2 was prepared in a large amount and the nucleotide sequence was determined by a conventional method. Furthermore, the amino acid sequence was deduced from the determined base sequence (Sequence Listing 1 and Sequence Listing 2). DNA from Thermococcus peptonophilus OG-1 strain
The polymerase gene consisted of 2325 bases and was coded for 774 amino acids. The molecular weight of the protein estimated from the amino acid sequence was about 90,000 daltons.

【0033】実施例4 形質転換体の作製 大腸菌JM109のコンピテントセルを実施例2で作製
したpOGSBで形質転換し、形質転換体大腸菌JM1
09(pOGSB)を得た。
Example 4 Preparation of Transformant The competent cell of Escherichia coli JM109 was transformed with pOGSB prepared in Example 2 to obtain the transformant Escherichia coli JM1.
09 (pOGSB) was obtained.

【0034】実施例5 サーモコッカス・ペプトノフィ
ラス(Thermococcus peptonophilus)OG−1株由来の
DNAポリメラ−ゼの活性確認 滅菌処理した100μg/mlのアンピシリンを含んだ
TB培地(MolecularCloning 、p.A. 2に記載)5ml
を20ml容の試験管に分注した。この培地に100μ
g/mlのアンピシリンを含んだLB寒天培地(1%バ
クトトリプトン、0.5%イーストエキストラクト、
0.5%塩化ナトリウム、1.5%寒天、ギブコ社製)
で生育させた大腸菌JM109(pOGSB)を1白金
時接種し、35℃で16時間振蕩培養した。この培養培
養液1.5mlをエッペンドルフチューブに移し、遠心
分離により菌体を回収した。この菌体を、0.6mlの
破砕緩衝液(10mM Tris-HCl(pH8.0), 80mM KCl, 5mM 2-
メルカプトエタノール、1mMEDTA) に懸濁後、超音波処
理によって菌体を破砕し、細胞抽出物を得た。更に、宿
主細胞由来のDNAポリメラーゼを不活化するために、
細胞破砕液を85℃にて30分処理した。遠心処理にて
不溶画分を除去し、以下に示す方法にて熱処理液のDN
Aポリメラーゼ活性を測定した。
Example 5 Activity Confirmation of DNA Polymerase Derived from Thermococcus peptonophilus OG-1 Strain 5 ml of TB medium containing 100 μg / ml ampicillin (Molecular Cloning, described in pA 2)
Was dispensed into a 20 ml test tube. 100μ in this medium
LB agar medium containing 1 g / ml of ampicillin (1% bactotryptone, 0.5% yeast extract,
(0.5% sodium chloride, 1.5% agar, manufactured by Gibco)
Escherichia coli JM109 (pOGSB) grown in 1. was inoculated for 1 platinum and cultured at 35 ° C. for 16 hours with shaking. 1.5 ml of this culture medium was transferred to an Eppendorf tube, and cells were collected by centrifugation. 0.6 ml of crushing buffer (10 mM Tris-HCl (pH8.0), 80 mM KCl, 5 mM 2-
After suspending in mercaptoethanol and 1 mM EDTA), the cells were disrupted by ultrasonic treatment to obtain a cell extract. Furthermore, in order to inactivate the DNA polymerase derived from the host cell,
The cell lysate was treated at 85 ° C for 30 minutes. The insoluble fraction was removed by centrifugation and the DN of the heat-treated liquid was removed by the method described below.
A polymerase activity was measured.

【0035】(試薬) A: 40mM Tris-HCl(pH7.5) 16mM 塩化マグネシウム 15mM ジチオスレイトール 100μg/ml BSA B: 2μg/ml 活性化仔牛胸腺DNA C: 1.5mM dNTP (250cpm/pmol [3H]dTTP) D: 20%トリクロロ酢酸(2mM ピロリン酸) E: 1μg/ml キャリアーDNA(Reagent) A: 40 mM Tris-HCl (pH 7.5) 16 mM magnesium chloride 15 mM dithiothreitol 100 μg / ml BSA B: 2 μg / ml activated calf thymus DNA C: 1.5 mM dNTP (250 cpm / pmol [ 3 H ] dTTP) D: 20% trichloroacetic acid (2 mM pyrophosphate) E: 1 μg / ml carrier DNA

【0036】(方法)A液25μl、B液およびC液の
各5μlおよび滅菌水10μlをエッペンドルフチュー
ブに加えて攪拌混合した後、上記熱処理液5μlを加え
て75℃で10分間反応する。その後、氷冷し、E液5
0μl、D液100μlを加えて、攪拌後、さらに10
分間氷冷する。この液をガラスフィルター(ワットマン
GF/Cフィルター)で濾過し、D液及びエタノールで
充分洗浄し、フィルターの放射活性を液体シンチレーシ
ョンカウンター(パッカード社製)で計測し、鋳型DN
Aへのヌクレオチドの取り込みを測定した。酵素活性の
1単位はこの条件下で30分あたり、10ナノモル(n
M)の全ヌクレオチドを酸不溶性画分に取り込む酵素量
とした。
(Method) Solution A (25 μl), solution B and solution C (5 μl) and sterilized water (10 μl) were added to an Eppendorf tube and mixed by stirring, and then the heat treatment solution (5 μl) was added and reacted at 75 ° C. for 10 minutes. Then, cool with ice, and use solution E 5
Add 0 μl and 100 μl of D solution, stir, and then add 10
Cool on ice for a minute. This solution was filtered through a glass filter (Whatman GF / C filter), thoroughly washed with solution D and ethanol, the radioactivity of the filter was measured with a liquid scintillation counter (made by Packard), and template DN was used.
The incorporation of nucleotides into A was measured. One unit of enzyme activity is 10 nanomoles (n
The amount of the enzyme that incorporated all the nucleotides of M) into the acid-insoluble fraction was used.

【0037】上記方法により熱処理液の酵素活性を測定
したところ、熱処理液1mlあたり75単位のDNAポ
リメラーゼ活性が得られた。この力価は培養液1mlあ
たり30単位のDNAポリメラーゼが発現したことを示
す。比較として熱安定性DNAポリメラーゼをコードし
ていないベクターpBluescript SK(−)
で形質転換した大腸菌JM109を上記と同様の操作に
供し、DNAポリメラーゼ活性を測定したが検出できな
かった。
When the enzyme activity of the heat-treated solution was measured by the above method, 75 units of DNA polymerase activity were obtained per 1 ml of the heat-treated solution. This titer indicates that 30 units of DNA polymerase were expressed per ml of culture. For comparison, a vector pBluescript SK (-) that does not encode a thermostable DNA polymerase.
The Escherichia coli JM109 transformed with 1. was subjected to the same operation as above to measure the DNA polymerase activity, but it was not detected.

【0038】実施例6 サーモコッカス・ペプトノフィ
ラス(Thermococcus peptonophilus)OG−1株由来のD
NAポリメラ−ゼの精製 滅菌処理した100μg/mlのアンピシリンを含んだ
TB培地(MolecularCloning 、p.A.2 に記載)6Lを
10Lジャーファーメンターに分注した。この培地に予
め100μg/mlのアンピシリンを含んだ50mlの
LB培地(1%バクトトリプトン、0.5%イーストエ
キストラクト、0.5%塩化ナトリウム、ギブコ社製)
で30℃、16時間培養した大腸菌JM109(pOG
SB)(500ml坂口フラスコ使用)を接種し、35
℃で12時間通気攪拌培養した。培養液より菌体を遠心
分離により回収し、実施例5で使用した破砕緩衝液40
0mlに懸濁後、超音波処理によって菌体を破砕し、細
胞破砕液を得た。
Example 6 D from Thermococcus peptonophilus OG-1 strain
Purification of NA polymerase 6 L of TB medium (Molecular Cloning, described in pA2) containing 100 μg / ml ampicillin that had been sterilized was dispensed into a 10 L jar fermenter. 50 ml of LB medium containing 100 μg / ml of ampicillin in advance in this medium (1% bactotryptone, 0.5% yeast extract, 0.5% sodium chloride, manufactured by Gibco)
E. coli JM109 (pOG
SB) (using 500 ml Sakaguchi flask), 35
The culture was performed at 12 ° C. for 12 hours with aeration and stirring. The disruption buffer solution 40 used in Example 5 was prepared by collecting bacterial cells from the culture solution by centrifugation.
After suspending in 0 ml, the cells were disrupted by ultrasonic treatment to obtain a cell disruption solution.

【0039】次に細胞破砕液を85℃にて30分処理し
た後、遠心分離にて不溶性画分を除去した。さらにポリ
エチレンイミンを用いた除核酸処理、硫安分画、ヘパリ
ンセファロースクロマトグラフィーを行い、最後に保存
緩衝液(50mM Tris-pH8.0, 50mM 塩化カリウム、1mM ジ
チオスレイトール、0.1%Tween20、0.1%ノニデエト
P40、50%グリセリン)に置換し、高度に精製され
たサーモコッカス・ペプトノフィラス(Thermococcus pe
ptonophilus)OG−1由来の耐熱性DNAポリメラ−ゼ
を得た。上記精製工程のDNAポリメラーゼ活性は実施
例5と同様の操作で行った。また、酵素活性が高い場合
には、保存緩衝液でサンプルを希釈して測定を行った。
Next, the cell lysate was treated at 85 ° C. for 30 minutes, and the insoluble fraction was removed by centrifugation. Nucleic acid removal treatment with polyethyleneimine, ammonium sulfate fractionation, and heparin sepharose chromatography were performed, and finally storage buffer (50 mM Tris-pH8.0, 50 mM potassium chloride, 1 mM dithiothreitol, 0.1% Tween 20, 0.1% nonideto). P40, 50% glycerin) and highly purified Thermococcus peptonophyllus (Thermococcus pe
A thermostable DNA polymerase derived from ptonophilus OG-1 was obtained. The DNA polymerase activity in the above purification step was the same as in Example 5. When the enzyme activity was high, the sample was diluted with a storage buffer and measured.

【0040】実施例7 サーモコッカス・ペプトノフィ
ラス(Thermococcus peptonophilus)SM−2株由来DN
Aポリメラ−ゼ遺伝子のクロ−ニング サーモコッカス・ペプトノフィラス(Thermococcus pept
onophilus)SM−2株(JCM番号9654)を85℃
にて培養後、菌体を回収した。得られた菌体から常法に
従い、染色体DNAを調製した(Arch Microbiol(1995)
164: 159-164,Gonzalez et al.参照)。調製した染色
体DNAを鋳型として、実施例1で用いたプライマー
で、PCRを行った。その結果、配列番号6、配列番号
7を用いた場合、約740bpの予想された長さの増幅
産物、配列番号8、配列番号9を用いた場合、約400
bpの予想された長さの増幅産物が得られた。
Example 7 DN from Thermococcus peptonophilus SM-2 strain
Cloning of the A polymerase gene Thermococcus peptonophilus
onophilus) SM-2 strain (JCM No. 9654) at 85 ° C.
After culturing in, the bacterial cells were collected. Chromosomal DNA was prepared from the obtained bacterial cells by a conventional method (Arch Microbiol (1995)).
164: 159-164, Gonzalez et al.). PCR was carried out using the prepared chromosomal DNA as a template and the primers used in Example 1. As a result, when using SEQ ID NO: 6 and SEQ ID NO: 7, an amplification product of an expected length of about 740 bp, and when using SEQ ID NO: 8 and SEQ ID NO: 9, about 400 were used.
An amplification product of the expected length of bp was obtained.

【0041】このPCR増幅DNA断片の部分的な塩基
配列を決定し、目的とする領域の増幅産物であることを
確認し、この増幅断片をプロ−ブとして、制限酵素Ec
oRI(東洋紡製)で処理した該染色体DNAに対して
サザンハイブリダイゼ−ションを行った結果、約5kb
pの断片中にDNAポリメラ−ゼをコ−ドする断片が存
在することを確認した。更に、この大きさのDNA断片
をアガロ−スゲルから回収し、λZAPII(ストラタ
ジーン社製)に挿入し、これらの混合物により大腸菌
(E.coli XL1blue)に形質導入し、ライブラリ−
を作製した。次にサザンハイブリダイゼ−ションで使用
したプロ−ブを用いて、プラークハイブリダイゼ−ショ
ンを行った。約5000個のプラークをスクリーニング
した結果、8個のポジティブクローンが得られた。ポジ
ティブクローンからヘルパーファージR408を用いて
常法に従いプラスミドをレスキューし、部分的に塩基配
列を決定したところ。プローブに用いた領域をカバーし
ているクローン(pSM3、挿入断片約5kbp)が得
られた。しかしながらこのクローンはDNAポリメラ−
ゼ遺伝子の3’端約100bpがカバーできていなかっ
た。
The partial base sequence of this PCR-amplified DNA fragment was determined, and it was confirmed that it was an amplification product of the desired region. Using this amplified fragment as a probe, the restriction enzyme Ec was used.
As a result of Southern hybridization performed on the chromosomal DNA treated with oRI (manufactured by Toyobo), about 5 kb
It was confirmed that a fragment encoding the DNA polymerase was present in the p fragment. Further, a DNA fragment of this size was recovered from agarose gel, inserted into λZAPII (manufactured by Stratagene), and mixed with E. coli.
(E.coli XL1blue) and the library
Was produced. Next, plaque hybridization was carried out using the probe used in Southern hybridization. As a result of screening about 5000 plaques, 8 positive clones were obtained. A plasmid was rescued from a positive clone using a helper phage R408 according to a conventional method, and the base sequence was partially determined. A clone (pSM3, insert about 5 kbp) covering the region used for the probe was obtained. However, this clone is a DNA polymerase.
About 100 bp at the 3'end of the ze gene was not covered.

【0042】そこで実施例2で得られたpOGSBのD
NAポリメラーゼ遺伝子領域をプローブとして再度プラ
ークハイブリダイゼ−ションを行い上記と同様の操作を
行った結果、DNAポリメラ−ゼ遺伝子の3’側をカバ
ーするクローン(pS3’1挿入断片約3kb)を取得
した。
Then, D of pOGSB obtained in Example 2
After performing plaque hybridization again using the NA polymerase gene region as a probe and performing the same operation as above, a clone (pS3'1 insertion fragment of about 3 kb) covering the 3'side of the DNA polymerase gene was obtained. did.

【0043】実施例8 クロ−ン化されたDNA断片の
塩基配列の決定 実施例7で取得したプラスミドDNApSM3及びpS
3’1を大量調製し、常法に従い、DNAポリメラ−ゼ
遺伝子領域の塩基配列の決定を行った。更に、求められ
た塩基配列よりアミノ酸配列を推定した(配列表3、配
列表4、配列表5)。サーモコッカス・ペプトノフィラ
ス(Thermococcus peptonophilus)SM−2株由来DNA
ポリメラ−ゼ遺伝子は3492塩基(推定アミノ酸11
64個)から構成されている。SM−2株由来のDNA
ポリメラーゼ遺伝子は介在配列(ivs2)が1個存在
しており、かつオープンリーディングフレーム(OR
F)が保存された形でつながっていた。アミノ酸配列か
ら推定される完全な形のDNAポリメラーゼタンパク質
の分子量は約90000ダルトンであった。
Example 8 Determination of nucleotide sequence of cloned DNA fragment Plasmid DNAs pSM3 and pS obtained in Example 7
A large amount of 3'1 was prepared and the nucleotide sequence of the DNA polymerase gene region was determined according to a conventional method. Furthermore, the amino acid sequence was deduced from the determined nucleotide sequence (Sequence Listing 3, Sequence Listing 4, Sequence Listing 5). DNA derived from Thermococcus peptonophilus SM-2 strain
The polymerase gene has 3492 bases (deduced amino acid 11
64). DNA derived from SM-2 strain
The polymerase gene has one intervening sequence (ivs2) and has an open reading frame (OR).
F) was connected in a preserved form. The molecular weight of the complete DNA polymerase protein deduced from the amino acid sequence was about 90,000 daltons.

【0044】実施例9 組換え発現ベクターの構築 完全なDNAポリメラ−ゼ遺伝子を作製するため、図2
に示したフローに従い介在配列を取り除いた組換え発現
ベクターpSpolMTを構築した。pSM3を制限酵
素EcoRVで切断し、アガロースゲル電気泳動によっ
て分画した後、約3.5kbpのDNA断片を回収し、
セルフ・ライゲーションさせ、プラスミドpolVを構
築した。次にpSM3’の挿入断片約3kbをpolV
のEcoRIサイトに挿入し、polEVを構築した。
挿入断片及び挿入方向は部分的に塩基配列を決定し、確
認した。
Example 9 Construction of Recombinant Expression Vector To construct a complete DNA polymerase gene, FIG.
A recombinant expression vector pSpolMT with the intervening sequence removed was constructed according to the flow shown in FIG. After cleaving pSM3 with restriction enzyme EcoRV and fractionating by agarose gel electrophoresis, a DNA fragment of about 3.5 kbp was recovered,
Self-ligation was performed to construct the plasmid polV. Next, insert about 3 kb of the pSM3 'insert into polV
Was inserted into the EcoRI site to construct polEV.
The insert fragment and insertion direction were confirmed by partially determining the nucleotide sequence.

【0045】次にpSM3を鋳型として配列番号10及
び配列番号11のプライマーを用いてPCRを行った。
この増幅産物を制限酵素NdeIとEcoRVで切断
し、アガロースゲル電気泳動によって分画し、約1. 6
kbpのDNA を回収した。次にpolEVを鋳型として
配列番号12および配列番号13のプライマーを用いて
PCRを行った。この増幅産物をT4DNAポリメラー
ゼを用いた平滑化処理及び、制限酵素SalIで切断し
アガロースゲル電気泳動によって分画し、約0.7kb
pのDNAを回収した。PCRはPCR中の変異を抑え
るため、鋳型DNAを1μg使用し、サイクル数は10
回行った。
Next, PCR was carried out using pSM3 as a template and the primers of SEQ ID NO: 10 and SEQ ID NO: 11.
The amplified product was cleaved with restriction enzymes NdeI and EcoRV and fractionated by agarose gel electrophoresis to give about 1.6
The kbp DNA was recovered. Next, PCR was performed using polEV as a template and the primers of SEQ ID NO: 12 and SEQ ID NO: 13. This amplification product was blunted with T4 DNA polymerase, cleaved with restriction enzyme SalI, and fractionated by agarose gel electrophoresis to give about 0.7 kb.
p DNA was recovered. In PCR, 1 μg of template DNA was used to suppress mutations during PCR, and the number of cycles was 10
I went there.

【0046】上記で得られた2つのDNA断片を制限酵
素NdeIとSalIで切断したプラスミドベクターp
LED−M1に連結し、完全なDNAポリメラ−ゼ遺伝
子を含有する発現組換えベクターpSpolMT(5.
02kb)を得た。
A plasmid vector p obtained by digesting the two DNA fragments obtained above with restriction enzymes NdeI and SalI
Expression recombinant vector pSpolMT (5. ligation to LED-M1 and containing the complete DNA polymerase gene).
02 kb) was obtained.

【0047】実施例10 形質転換体の作製 大腸菌JM109のコンピテントセルを実施例9で作製
したpSolMTで形質転換し、形質転換体大腸菌JM
109(pSpolMT)を得た。
Example 10 Preparation of Transformant The competent cell of Escherichia coli JM109 was transformed with pSolMT prepared in Example 9 to obtain the transformant Escherichia coli JM.
109 (pSpolMT) was obtained.

【0048】実施例11 サーモコッカス・ペプトノフ
ィラス(Thermococcus peptonophilus) SMー2株由来
のDNAポリメラ−ゼの活性確認 滅菌処理した100μg/mlのアンピシリンを含んだ
TB培地(MolecularCloning 、p.A.2 に記載)5ml
を20mlの試験管に分注した。この培地に100μg
/mlのアンピシリンを含んだLB寒天培地(1%バク
トトリプトン、0.5%イーストエキストラクト、0.
5%塩化ナトリウム、1.5%寒天、ギブコ社製)で生
育させた大腸菌JM109(pSpolMT)を1白金
時接種し、35℃で16時間振蕩培養した。この培養培
養液1.5mlをエッペンドルフチューブに移し、遠心
分離により菌体を回収した。この菌体を、0.6mlの
破砕緩衝液(10mM Tris-HCl(pH8.0), 80mM KCl, 5mM 2-
メルカプトエタノール)に懸濁後、超音波処理によって
菌体を破砕し、細胞抽出物を得た。更に、宿主細胞由来
のDNAポリメラーゼを不活化するために、細胞破砕液
を85℃にて30分処理した。遠心処理にて不溶画分を
除去し、実施例5と同様の方法で熱処理液のDNAポリ
メラーゼ活性を測定した。
Example 11 Activity Confirmation of DNA Polymerase from Thermococcus peptonophilus SM-2 Strain 5 ml of TB medium (Molecular Cloning, described in pA2) containing 100 μg / ml of ampicillin sterilized
Was dispensed into a 20 ml test tube. 100 μg in this medium
Agar containing 1 ml / ml ampicillin (1% bactotryptone, 0.5% yeast extract, 0.
Escherichia coli JM109 (pSpolMT) grown in 5% sodium chloride, 1.5% agar, manufactured by Gibco) was inoculated for 1 platinum and cultured at 35 ° C. for 16 hours with shaking. 1.5 ml of this culture medium was transferred to an Eppendorf tube, and cells were collected by centrifugation. 0.6 ml of crushing buffer (10 mM Tris-HCl (pH8.0), 80 mM KCl, 5 mM 2-
After suspension in mercaptoethanol), the cells were disrupted by ultrasonication to obtain a cell extract. Further, in order to inactivate the DNA polymerase derived from the host cell, the cell lysate was treated at 85 ° C. for 30 minutes. The insoluble fraction was removed by centrifugation, and the DNA polymerase activity of the heat-treated solution was measured by the same method as in Example 5.

【0049】上記方法により熱処理液の酵素活性を測定
したところ熱処理液1mlあたり100単位のDNAポ
リメラーゼ活性が得られた。この力価は培養液1mlあ
たり40単位のDNAポリメラーゼが発現したことを示
す。比較として熱安定性DNAポリメラーゼをコードし
ていないベクターpLED−M1で形質転換した大腸菌
JM109を上記と同様の操作に供し、DNAポリメラ
ーゼ活性を測定したが検出できなかった。
When the enzyme activity of the heat-treated solution was measured by the above method, 100 units of DNA polymerase activity were obtained per 1 ml of the heat-treated solution. This titer indicates that 40 units of DNA polymerase were expressed per ml of culture. As a comparison, Escherichia coli JM109 transformed with the vector pLED-M1 which does not encode a thermostable DNA polymerase was subjected to the same operation as described above, and the DNA polymerase activity was measured but could not be detected.

【0050】実施例12 サーモコッカス・ペプトノフ
ィラス(Thermococcus peptonophilus) SMー2株由来
のDNAポリメラ−ゼの精製 滅菌処理した100μg/mlのアンピシリンを含んだ
TB培地(MolecularCloning 、p.A.2 に記載)6Lを
10Lジャーファーメンターに分注した。この培地に予
め100μg/mlのアンピシリンを含んだ50mlの
LB培地(1%バクトトリプトン、0.5%イーストエ
キストラクト、0.5%塩化ナトリウム、ギブコ社製)
で30℃16時間培養した大腸菌JM109(pSpo
lMT)(500ml坂口フラスコ使用)を接種し35
℃で12時間通気攪拌培養した。培養液より菌体を遠心
分離により回収し、400mlの実施例5で使用した破
砕緩衝液に懸濁後、超音波処理によって菌体を破砕し、
細胞破砕液を得た。次に細胞破砕液を85℃にて30分
処理した後、遠心分離にて不溶性画分を除去した。さら
にポリエチレンイミンを用いた除核酸処理、硫安分画、
ヘパリンセファロースクロマトグラフィーを行い、最後
に保存緩衝液(50mM Tris-pH8.0, 50mM 塩化カリウム、
1mM ジチオスレイトール、0.1%Tween20、0.1%ノニ
デエトP40)に置換し、高度に精製されたサーモコッ
カス・ペプトノフィラス(Thermococcus peptonophilus)
SMー2由来の耐熱性DNAポリメラ−ゼを得た。
Example 12 Purification of DNA polymerase derived from Thermococcus peptonophilus strain SM-2 6 L of TB medium (Molecular Cloning, described in pA2) containing 100 μg / ml ampicillin was sterilized. Dispensed to the fermenter. 50 ml of LB medium containing 100 μg / ml of ampicillin in advance in this medium (1% bactotryptone, 0.5% yeast extract, 0.5% sodium chloride, manufactured by Gibco)
E. coli JM109 (pSpo
1 MT) (using 500 ml Sakaguchi flask) and inoculate 35
The culture was performed at 12 ° C. for 12 hours with aeration and stirring. The cells were recovered from the culture solution by centrifugation, suspended in 400 ml of the disruption buffer used in Example 5, and then disrupted by sonication,
A cell lysate was obtained. Next, the cell lysate was treated at 85 ° C. for 30 minutes, and the insoluble fraction was removed by centrifugation. Nucleic acid removal treatment using polyethyleneimine, ammonium sulfate fractionation,
Heparin sepharose chromatography is performed, and finally storage buffer (50 mM Tris-pH8.0, 50 mM potassium chloride,
1 mM dithiothreitol, 0.1% Tween 20, 0.1% nonideto P40) and highly purified Thermococcus peptonophilus
A thermostable DNA polymerase derived from SM-2 was obtained.

【0051】実施例13 熱安定性の確認 実施例5及び実施例12に記載のごとく精製したサーモ
コッカス・ペプトノフィラス(Thermococcus peptonophi
lus)のDNAポリメラ−ゼの熱安定性を以下の方法で測
定した。精製したサーモコッカス・ペプトノフィラス(T
hermococcus peptonophilus)SMー2株およびサーモコ
ッカス・ペプトノフィラス(Thermococcus peptonophilu
s)OG−1株由来のDNAポリメラ−ゼ(それぞれSM
−2ポリメラーゼ及びOG−1ポリメラーゼと称する)
各5単位を100μlの緩衝液(20mM Tris-HCl,pH8.8,
25℃、10mM塩化カリウム、10mM硫酸アンモニウム、2mM
硫酸マグネシウム、0.1% Triton X-100, 0.1mg/ml BS
A, 5mm 2- メルカプトエタノール)に混合し、100℃
でプレインキュベーとした。この混合液から経時的に試
料を採取し、実施例5記載の方法にてポリメラーゼ活性
を測定した。比較として、Taqポリメラーゼ(東洋紡
製)およびTliポリメラーゼ(Ventポリメラーゼ、N
EB社製)も同様の操作を行った。図4に示したよう
に、SM−2ポリメラーゼ及びOG−1ポリメラーゼは
Tliポリメラーゼと同様、100℃、30分の処理で
60%以上活性が残存していたのに対し、Taqポリメ
ラーゼは5%しか活性が残存していなかった。
Example 13 Confirmation of Thermostability Thermococcus peptonophi purified as described in Examples 5 and 12.
The thermal stability of the DNA polymerase of lus) was measured by the following method. Purified Thermococcus peptonophyllus (T
hermococcus peptonophilus strain SM-2 and Thermococcus peptonophilu
s) DNA polymerase derived from OG-1 strain (each SM
-2 polymerase and OG-1 polymerase)
5 units of each was added to 100 μl of buffer solution (20 mM Tris-HCl, pH 8.8,
25 ° C, 10 mM potassium chloride, 10 mM ammonium sulfate, 2 mM
Magnesium sulfate, 0.1% Triton X-100, 0.1mg / ml BS
A, 5mm 2-mercaptoethanol) and mix at 100 ℃
It was a pre-incubation. Samples were taken from this mixed solution over time, and the polymerase activity was measured by the method described in Example 5. For comparison, Taq polymerase (manufactured by Toyobo) and Tli polymerase (Vent polymerase, N
The same operation was performed for EB). As shown in FIG. 4, SM-2 polymerase and OG-1 polymerase had 60% or more of the activity remaining after treatment at 100 ° C. for 30 minutes like Tli polymerase, whereas Taq polymerase had only 5%. No activity remained.

【0052】実施例14 DNA合成速度測定 サーモコッカス・ペプトノフィラス(Thermococcus pept
onophilus)のDNAポリメラ−ゼのDNA合成速度を以
下の方法で測定した。SM−2ポリメラーゼおよびOG
−1ポリメラーゼ5単位を10μlの反応液(20mM Tris
-HCl, (pH7.5), 8mM塩化マグネシウム, 7.5mM ジチオス
レイトール、100μg/ml BSA, 0.1mM dNTP、0.2 μCi
[α-32P]dCTP)で0.2μgの配列番号14のプライマ
ーをアニーリングさせたM13mp181本鎖DNAと
75℃で30秒、60秒、90秒間反応させた。反応停
止は等量の反応停止液(50mM 水酸化ナトリウム、10mM
EDTA 、5%フィコール、0.05% ブロムフェノールブル
ー)を加えることにより行なった。
Example 14 Measurement of DNA synthesis rate Thermococcus peptonophilus
onophilus) DNA polymerase rate of DNA polymerase was measured by the following method. SM-2 polymerase and OG
-1 Polymerase 5 units 10 μl of reaction solution (20 mM Tris
-HCl, (pH7.5), 8 mM magnesium chloride, 7.5 mM dithiothreitol, 100 μg / ml BSA, 0.1 mM dNTP, 0.2 μCi
0.2 µg of the primer of SEQ ID NO: 14 was annealed with [α- 32 P] dCTP) and reacted with M13mp181 single-stranded DNA at 75 ° C for 30 seconds, 60 seconds, and 90 seconds. To stop the reaction, use the same amount of reaction stop solution (50 mM sodium hydroxide, 10 mM
This was done by adding EDTA, 5% Ficoll, 0.05% bromphenol blue).

【0053】上記ゲルを乾燥させオートラジオグラフィ
ーを行った。DNAサイズマーカーとしてはラベルした
λ/HindIII を用いた。このマーカーのバンドを指
標として、合成されたDNAのサイズを測定することに
よって、DNA合成速度を求めた。その結果、SMー2
ポリメラーゼは約40塩基/秒、OG−1ポリメラーゼ
は約60塩基/秒の合成速度を有していた。これは同じ
サーモコッカス(Thermococcus)属のTliポリメラーゼ
の約2倍の速度であった。
The gel was dried and subjected to autoradiography. Labeled λ / HindIII was used as a DNA size marker. The DNA synthesis rate was determined by measuring the size of the synthesized DNA using the band of this marker as an index. As a result, SM-2
The polymerase had a synthesis rate of about 40 bases / second, and the OG-1 polymerase had a synthesis rate of about 60 bases / second. This was approximately twice as fast as Tli polymerase from the same Thermococcus genus.

【0054】[0054]

【配列表】[Sequence list]

配列番号1 配列の長さ:3731 配列の型:核酸(DNA) 鎖の数:2本鎖 トポロジー:直鎖状 配列の種類:cDNA 起源:Thermococcus peptonophilus 株名:OG−1(JCM番号9653) 配列の特徴:962-3283 CDS 配列 GTCGACGGCC ACGATTTCTC CTTTATTCTC CATCAGCGCC GCAGCATGGA AGGTCTTGGA 60 GCCAGGAGCT GCCGCCAGAT CGAGCAACCT TTCACCAGCC TCTGGCTTTA AAACGTGGGC 120 GACGTAGGGC CTGGCCAAGT CTTGAATTAC AAATTTGCCT TCCTTGTACC AGCCAAGCCT 180 TGTAACCGGC GTTTTGTACT CAAGAACCTT TAAAACGTCT GGAACTGGAG TTAGTGCAGT 240 TCTAACGCCG TTCTCTTCAA GGTAGTCGCG GAGGGAATCA ACGTCTGTCT TTAGCGTGTT 300 GGCCCTCACG TAATACCTCT GGGGCCGGTT GTTGCTGAGA AGGAGCCTTA CGGCCTCGTC 360 GTAGCCGAAG AGGTTTATAA CGTACTCCAC ATACCAGCGG GGGTGGGAAA AGCGGACGGA 420 GAGCCACTCA ATTCTGTCCT TCTCTTTGAG TCTCTTTAAA GCCCTCTCTA TGTTGAACTT 480 CTCTATCTCG TGCATTAGGG CGTTGACGAA CTTGGCTCTG GAGAAGTCGA ACTTCTCCTT 540 GACGACGCGA ACTATCGAGT CCGTTGCCAC AGCGGGCGGC ACTTTGCGGA AGTGTATTTC 600 GAAAGTCCCT ATGCGAAGGA GGTTCGCAAG ATAGGGGTCA AGGTCTTCAA CCTTTGAACC 660 CTTGAGGACT GAGTTTATTA TGAAGTCTAT CTTCGCGCGC CACTTCTCGA TCTCGAAGAC 720 GTAGGCATGC GCCAAACCGC GAGCCTTCTC GCGGTCTCTT CCGGCCACCC TCTTAAAGAC 780 CCTCTCAAGG GCGTGCTTCG ATGACAGCTC ACGCTCCTCC ACAAGCATGA GCGCATCGGC 840 CACAACTTCC TGAAAAGCTC ACGCGGTAAA ACAGCTCCAT GAGGGGGCCT TTGAAAATTG 900 ACTTAAAAAG GTGGCGGTGA ATTTATTAGC CCTTAACTGT AATTGATTCT AGGTGTCCCT 960 T ATG ATC CTC GAC ACT GAC TAC ATA ACT GAG AAT GGA AAG CCC GTC 1006 Met Ile Leu Asp Thr Asp Tyr Ile Thr Glu Asn Gly Lys Pro Val 1 5 10 15 ATC AGG ATT TTC AAG AAG GAA AAC GGC GAG TTC AAG ATC GAG TAC GAC 1054 Ile Arg Ile Phe Lys Lys Glu Asn Gly Glu Phe Lys Ile Glu Tyr Asp 20 25 30 AGG ACT TTT GAG CCC TAT ATC TAC GCC CTC CTG AAG GAC GAT TCT GCA 1102 Arg Thr Phe Glu Pro Tyr Ile Tyr Ala Leu Leu Lys Asp Asp Ser Ala 35 40 45 ATA GAG GAA GTC AAG AAG ATA ACT GCC GAG AGA CAC GGG ACG GTT GTA 1150 Ile Glu Glu Val Lys Lys Ile Thr Ala Glu Arg His Gly Thr Val Val 50 55 60 ACT GTA AAG CGC GCC GAG AAA GTG GAG AAG AAG TTC CTC GGA AGG CCG 1198 Thr Val Lys Arg Ala Glu Lys Val Glu Lys Lys Phe Leu Gly Arg Pro 65 70 75 TTG GAG GTC TGG AAG CTC TAC TTT ACT CAC CCG CAG GAC GTT CCA GCG 1246 Leu Glu Val Trp Lys Leu Tyr Phe Thr His Pro Gln Asp Val Pro Ala 80 85 90 95 ATA AGG GAC AAG ATA CGA GAG CAT CCA GCA GTT ATT GAC ATC TAC GAG 1294 Ile Arg Asp Lys Ile Arg Glu His Pro Ala Val Ile Asp Ile Tyr Glu 100 105 110 TAC GAC ATA CCC TTC GCC AAG CGC TAC CTC ATA GAT AAG GGC CTG ATC 1342 Tyr Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Lys Gly Leu Ile 115 120 125 CCG ATG GAA GGC GAC GAG GAT CTG AAA ATG CTC GCC TTC GAC ATT GAA 1390 Pro Met Glu Gly Asp Glu Asp Leu Lys Met Leu Ala Phe Asp Ile Glu 130 135 140 ACG CTC TAC CAC GAG GGC GAG GAG TTT GCC GAG GGG CCA ATC CTT ATG 1438 Thr Leu Tyr His Glu Gly Glu Glu Phe Ala Glu Gly Pro Ile Leu Met 145 150 155 ATA AGC TAC GCC GAC GAA GAA GGA GCG AGG GTG ATA ACG TGG AAG AAC 1486 Ile Ser Tyr Ala Asp Glu Glu Gly Ala Arg Val Ile Thr Trp Lys Asn 160 165 170 175 ATA GAC CCC CCC TAC GTT GAC GTC GTC TCG ACG GAG AGG GAG ATG ATA 1534 Ile Asp Pro Pro Tyr Val Asp Val Val Ser Thr Glu Arg Glu Met Ile 180 185 190 AAG CGC TTT CTC AGG ATT GTG AAG GAG AAA GAC CCG GAT GTA CTG ATA 1582 L ys Arg Phe Leu Arg Ile Val Lys Glu Lys Asp Pro Asp Val Leu Ile 195 200 205 ACG TAC AAC GGT GAC AAC TTT GAC TTT GCC TAC CTC AAG AAG CGC TGT 1630 Thr Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys Lys Arg Cys 210 215 220 GAA AAG CTT GGA ATA AAC TTT GCC CTC GGA AGG GAC GGA AGC GAG CCT 1678 Glu Lys Leu Gly Ile Asn Phe Ala Leu Gly Arg Asp Gly Ser Glu Pro 225 230 235 AAG ATT CAG AGG ATG GGC GAT AGG TTT GCT GTC GAG GTT AAG GGC AGG 1726 Lys Ile Gln Arg Met Gly Asp Arg Phe Ala Val Glu Val Lys Gly Arg 240 245 250 255 ATA CAC TTT GAT CTC TAC CCC GTG ATA AGA CGG ACG ATA AAC CTC CCC 1774 Ile His Phe Asp Leu Tyr Pro Val Ile Arg Arg Thr Ile Asn Leu Pro 260 265 270 ACA TAT ACG CTT GAG GCC GTC TAT GAA GCG ATC TTT GGA AAG CCA AAG 1822 Thr Tyr Thr Leu Glu Ala Val Tyr Glu Ala Ile Phe Gly Lys Pro Lys 275 280 285 GAG AAA GTC TAC GCC GAG GAG ATA GCC ACC GCT TGG GAG AGC GGG GAG 1870 Glu Lys Val Tyr Ala Glu Glu Ile Ala Thr Ala Trp Glu Ser Gly Glu 290 295 300 GGG CTT GAG AGG GTA GCT AAA TAC TCT ATG GAG GAC GCC AAG GTT ACC 1918 Gly Leu Glu Arg Val Ala Lys Tyr Ser Met Glu Asp Ala Lys Val Thr 305 310 315 TAC GAG CTC GGA AAG GAA TTC TTC CCG ATG GAG GCC CAG CTT TCC CGC 1966 Tyr Glu Leu Gly Lys Glu Phe Phe Pro Met Glu Ala Gln Leu Ser Arg 320 325 330 335 TTG ATC GGC CAG TCC CTC TGG GAC GTT TCC CGC TCC AGC ACT GGC AAC 2014 Leu Ile Gly Gln Ser Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn 340 345 350 CTC GTC GAG TGG TTC CTC CTC CGG AAG GCC TAT GAG GGG AAC GAG CTG 2062 Leu Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Gly Asn Glu Leu 355 360 365 GCC CCG AAC AAG CCC GAT GAA AAG GAG CTG GCC AGA AGA CGG CAG AGC 2110 Ala Pro Asn Lys Pro Asp Glu Lys Glu Leu Ala Arg Arg Arg Gln Ser 370 375 380 TAT GAA GGG GGC TAC GTA AAA GAG CCG GAG AGA GGT CTA TGG GAG AAC 2158 Tyr Glu Gly Gly Tyr Val Lys Glu Pro Glu Arg Gly Leu Trp Glu Asn 385 390 395 ATA GTT TAT CTG GAT TTC CGT TCG CTG TAC CCC TCA ATC ATC ATC ACC 2206 I le Val Tyr Leu Asp Phe Arg Ser Leu Tyr Pro Ser Ile Ile Ile Thr 400 405 410 415 CAC AAC GTC TCG CCG GAT ACT CTC AAC AGG GAA GGA TGC AAG GAG TAT 2254 His Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Lys Glu Tyr 420 425 430 GAC ACC GCC CCC CAG GTT GGC CAC CGC TTC TGC AAG GAC TTC CCG GGC 2302 435 440 445 TTC ATT CCG AGC CTC CTT GGG GCC CTG CTT GAG GAG AGG CAG AAG ATA 2350 Phe Ile Pro Ser Leu Leu Gly Ala Leu Leu Glu Glu Arg Gln Lys Ile 450 455 460 AAG AAG AGA ATG AAG GCA ACG ATT GAT CCA CTT GAG AAG AAG CTC CTT 2398 Lys Lys Arg Met Lys Ala Thr Ile Asp Pro Leu Glu Lys Lys Leu Leu 465 470 475 GAT TAC AGA CAG CGG GCT ATC AAG ATC CTA GCA AAC AGT TTT TAC GGC 2446 Asp Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Phe Tyr Gly 480 485 490 495 TAC TAC GGC TAT GCA AAG GCC CGC TGG TAC TGC AAG GAG TGT GCG GAG 2494 Tyr Tyr Gly Tyr Ala Lys Ala Arg Trp Tyr Cys Lys Glu Cys Ala Glu 500 505 510 AGC GTC ACT GCC TGG GGA AGG GAG TAC ATA ACG ATG ACC ATC AGG GAG 2542 Ser Val Thr Ala Trp Gly Arg Glu Tyr Ile Thr Met Thr Ile Arg Glu 515 520 525 ATA GAG GAA AAG TAT GGC TTT AAA GTT CTG TAC GCG GAC ACA GAC GGT 2590 Ile Glu Glu Lys Tyr Gly Phe Lys Val Leu Tyr Ala Asp Thr Asp Gly 530 535 540 TTC TTC GCG ACA ATA CCT GGA GCT GAT GCC GAA ACC GTC AAA AAG AAA 2638 Phe Phe Ala Thr Ile Pro Gly Ala Asp Ala Glu Thr Val Lys Lys Lys 545 550 555 GCG ATG GAG TTC CTC AAG TAC ATC AAC GAT AAA CTT CCG GGC GCG CTT 2686 Ala Met Glu Phe Leu Lys Tyr Ile Asn Asp Lys Leu Pro Gly Ala Leu 560 565 570 575 GAG CTC GAG TAC GAG GGC TTC TAC AAG CGC GGC TTC TTC GTC ACT AAA 2734 Glu Leu Glu Tyr Glu Gly Phe Tyr Lys Arg Gly Phe Phe Val Thr Lys 580 585 590 AAG AAG TAC GCG GTG ATA GAC GAG GAA GGC AAG ATA ACA ACG CGC GGA 2782 Lys Lys Tyr Ala Val Ile Asp Glu Glu Gly Lys Ile Thr Thr Arg Gly 595 600 605 CTT GAG ATT GTG AGG CGC GAC TGG AGC GAG ATA GCT AAG GAG ACG CAG 2830 Leu Glu Ile Val Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln 610 615 620 GCT AGA GTT CTT GAA GCT TTA CTA AAG GAC GGT GAC GTT GAA GAG GCG 2878 Ala Arg Val Leu Glu Ala Leu Leu Lys Asp Gly Asp Val Glu Glu Ala 625 630 635 GTT AAA ATC GTT AAA GAA GTA ACG GAA AAG CTG AGC AAG TAC GAG GTT 2926 Val Lys Ile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Val 640 645 650 655 CCG CCG GAG AAA CTG GTG ATC CAC GAG CAG ATA ACA AGG GAT CTG AGC 2974 Pro Pro Glu Lys Leu Val Ile His Glu Gln Ile Thr Arg Asp Leu Ser 660 665 670 GAC TAC AAA GCG ACA GGA CCT CAC GTT GCC GTT GCT AAG AGA TTG GCC 3022 Asp Tyr Lys Ala Thr Gly Pro His Val Ala Val Ala Lys Arg Leu Ala 675 680 685 GCG AGG GGC GTC AAA ATA CGC CCT GGA ACG GTG ATA AGC TAC ATC GTG 3070 Ala Arg Gly Val Lys Ile Arg Pro Gly Thr Val Ile Ser Tyr Ile Val 690 695 700 CTA AAG GGC TCT GGA AGG ATT GGG GAC AGA GCT ATT CCA TTC GAC GAG 3118 Leu Lys Gly Ser Gly Arg Ile Gly Asp Arg Ala Ile Pro Phe Asp Glu 705 710 715 TTT GAC CCG ACA AAG CAC AAG TAC GAC GCT GAG TAC TAC ATT GAA AAC 3166 Phe Asp Pro Thr Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn 720 725 730 735 CAG GTT CTG CCT GCC GTT GAG AGA ATC CTG AGG GCC TTT GGC TAC CGC 3214 Gln Val Leu Pro Ala Val Glu Arg Ile Leu Arg Ala Phe Gly Tyr Arg 740 745 750 AAG GAA GAC CTG CGC TAC CAG AAG ACG AGA CAG GTT GGT TTG AGT GCT 3262 Lys Glu Asp Leu Arg Tyr Gln Lys Thr Arg Gln Val Gly Leu Ser Ala 755 760 765 TGG CTG AAG CCG AAG GGA ACT TGACCTTTCC ATTTGTTTTC CAGCGGATAA 3313 Trp Leu Lys Pro Lys Gly Thr 770 CCCTTTAACT TCCCTTTCAA AACTCTCCCT CAGAGGGAAG GCCATGAAAA TAGAAATCCG 3373 TCGAAGTCCC GTCAAGTATG CGAGGATAGA GGTGAAGCCG GACGGCAGGG TAGTCGTCAC 3433 CGCCCCCGAG GGGTTCAACG TTGAGGAGTT CATAGCAAAG AACGCCGCCT GGCTGGAGGG 3493 GAAGTTGGCC CAGATTGAAG ACCTGAAAGA GCTTGCAGAG TCGGGCTTCC CTCTGAACGG 3553 TGAGTTCTAC AAGGTCGTAC ATGGAAGGAG GGCTAAAGTC CATGACCGCT TTAAGACCGT 3613 TGTCCTTCCC CCTTATCCCG AAGACATGAG GGAAGAACTG AAAAGGCTTC TCCGACCTAA 3673 GTTAGTGGAG CTTATTGAGA AATACGCTGG AAAAATGGGT GTCTCCCCCA GTAAGATC 3731 SEQ ID NO: 1 Sequence length: 3731 Sequence type: Nucleic acid (DNA) Number of strands: Double strand Topology: Linear Sequence type: cDNA Origin: Thermococcus peptonophilus Strain name: OG-1 (JCM # 9653) Sequence features: 962-3283 CDS sequence GTCGACGGCC ACGATTTCTC CTTTATTCTC CATCAGCGCC GCAGCATGGA AGGTCTTGGA 60 GCCAGGAGCT GCCGCCAGAT CGAGCAACCT TTCACCAGCC TCTGGCTTTA AAACGTGGGC 120 GACGTAGGGC CTGGCCAAGT CTTGAATTAC AAATTTGCCT TCCTTGTACC AGCCAAGCCT 180 TGTAACCGGC GTTTTGTACT CAAGAACCTT TAAAACGTCT GGAACTGGAG TTAGTGCAGT 240 TCTAACGCCG TTCTCTTCAA GGTAGTCGCG GAGGGAATCA ACGTCTGTCT TTAGCGTGTT 300 GGCCCTCACG TAATACCTCT GGGGCCGGTT GTTGCTGAGA AGGAGCCTTA CGGCCTCGTC 360 GTAGCCGAAG AGGTTTATAA CGTACTCCAC ATACCAGCGG GGGTGGGAAA AGCGGACGGA 420 GAGCCACTCA ATTCTGTCCT TCTCTTTGAG TCTCTTTAAA GCCCTCTCTCTATA AG CCGT ACGAGTCGGG ACGTTCAGTCGA ACTCGATCGCGA ACCGCTGAGCGA GAAGGA GGTTCGCAAG ATAGGGGTCA AGGTCTTCAA CCTTTGAACC 660 CTTGAGGACT GAGTTTATTA TGAAGTCTAT CTTCGCGCGC CACTTCTCGA TCTCGAAGAC 720 GTAGGCATGC GCCAAACCGC GAGCCTTCTC GCGGTCTCTT CCGGCCACCC TCTTAAAGAC 780 CCTCTCAAGG GCGTGCTTCG ATGACAGCTC ACGCTCCTCC ACAAGCATGA GCGCATCGGC 840 CACAACTTCC TGAAAAGCTC ACGCGGTAAA ACAGCTCCAT GAGGGGGCCT TTGAAAATTG 900 ACTTAAAAAG GTGGCGGTGA ATTTATTAGC CCTTAACTGT AATTGATTCT AGGTGTCCCT 960 T ATG ATC CTC GAC ACT GAC TAC ATA ACT GAG AAT GGA AAG CCC GTC 1006 Met Ile Leu Asp Thr Asp Tyr Ile Thr Glu Asn Gly Lys Pro Val 1 5 10 15 ATC AGG ATT TTC AAG AAG GAA AAC GGC GAG TTC AAG ATC GAG TAC GAC 1054 Ile Arg Ile Phe Lys Lys Glu Asn Gly Glu Phe Lys Ile Glu Tyr Asp 20 25 30 AGG ACT TTT GAG CCC TAT ATC TAC GCC CTC CTG AAG GAC GAT TCT GCA 1102 Arg Thr Phe Glu Pro Tyr Ile Tyr Ala Leu Leu Lys Asp Asp Ser Ala 35 40 45 ATA GAG GAA GTC AAG AAG ATA ACT GCC GAG AGA CAC GGG ACG GTT GTA 1150 Ile Glu Glu Val Lys Lys Ile Thr Ala Glu Arg His Gly Thr Val Val 50 55 60 ACT GTA AAG CGC GCC GAG AAA GTG GAG AAG AAG TTC CTC GGA AGG CCG 1198 Thr Val Lys Arg Ala Glu Lys Val Glu Lys Lys Phe Leu Gly Arg Pro 65 70 75 TTG GAG GTC TGG AAG CTC TAC TTT ACT CAC CCG CAG GAC GTT CCA GCG 1246 Leu Glu Val Trp Lys Leu Tyr Phe Thr His Pro Gln Asp Val Pro Ala 80 85 90 95 ATA AGG GAC AAG ATA CGA GAG CAT CCA GCA GTT ATT GAC ATC TAC GAG 1294 Ile Arg Asp Lys Ile Arg Glu His Pro Ala Val Ile Asp Ile Tyr Glu 100 105 110 TAC GAC ATA CCC TTC GCC AAG CGC TAC CTC ATA GAT AAG GGC CTG ATC 1342 Tyr Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Lys Gly Leu Ile 115 120 125 CCG ATG GAA GGC GAC GAG GAT CTG AAA ATG CTC GCC TTC GAC ATT GAA 1390 Pro Met Glu Gly Asp Glu Asp Leu Lys Met Leu Ala Phe Asp Ile Glu 130 135 140 ACG CTC TAC CAC GAG GGC GAG GAG TTT GCC GAG GGG CCA ATC CTT ATG 1438 Thr Leu Tyr His Glu Gly Glu Glu Phe Ala Glu Gly Pro Ile Leu Met 145 150 155 ATA AGC TAC GCC GAC GAA GAA GGA GCG AGG GTG ATA ACG TGG AAG AAC 1486 Ile Ser Tyr Ala Asp Glu Glu Gly Ala Arg Val Ile Thr Trp Lys Asn 160 165 170 175 ATA GAC CCC CCC TAC GTT GAC GTC GTC TCG ACG GAG AGG GAG ATG ATA 1534 Ile Asp Pro Pro Tyr Val Asp Val Val Ser Thr Glu Arg Glu Met Ile 180 185 190 AAG CGC TTT CTC AGG ATT GTG AAG GAG AAA GAC CCG GAT GTA CTG ATA 1582 L ys Arg Phe Leu Arg Ile Val Lys Glu Lys Asp Pro Asp Val Leu Ile 195 200 205 ACG TAC AAC GGT GAC AAC TTT GAC TTT GCC TAC CTC AAG AAG CGC TGT 1630 Thr Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys Lys Arg Cys 210 215 220 GAA AAG CTT GGA ATA AAC TTT GCC CTC GGA AGG GAC GGA AGC GAG CCT 1678 Glu Lys Leu Gly Ile Asn Phe Ala Leu Gly Arg Asp Gly Ser Glu Pro 225 230 235 AAG ATT CAG AGG ATG GGC GAT AGG TTT GCT GTC GAG GTT AAG GGC AGG 1726 Lys Ile Gln Arg Met Gly Asp Arg Phe Ala Val Glu Val Lys Gly Arg 240 245 250 255 ATA CAC TTT GAT CTC TAC CCC GTG ATA AGA CGG ACG ATA AAC CTC CCC 1774 Ile His Phe Asp Leu Tyr Pro Val Ile Arg Arg Thr Ile Asn Leu Pro 260 265 270 ACA TAT ACG CTT GAG GCC GTC TAT GAA GCG ATC TTT GGA AAG CCA AAG 1822 Thr Tyr Thr Leu Glu Ala Val Tyr Glu Ala Ile Phe Gly Lys Pro Lys 275 280 285 GAG AAA GTC TAC GCC GAG GAG ATA GCC ACC GCT TGG GAG AGC GGG GAG 1870 Glu Lys Val Tyr Ala Glu Glu Ile Ala Thr Ala Trp Glu Ser Gly Glu 290 295 300 GGG CTT GAG AGG GTA GCT AAA TAC TCT ATG GAG GAC GCC AAG GTT ACC 1918 Gly Leu Glu Arg Val Ala Lys Tyr Ser Met Glu Asp Ala Lys Val Thr 305 310 315 TAC GAG CTC GGA AAG GAA TTC TTC CCG ATG GAG GCC CAG CTT TCC CGC 1966 Tyr Glu Leu Gly Lys Glu Phe Phe Pro Met Glu Ala Gln Leu Ser Arg 320 325 330 335 TTG ATC GGC CAG TCC CTC TGG GAC GTT TCC CGC TCC AGC ACT GGC AAC 2014 Leu Ile Gly Gln Ser Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn 340 345 350 CTC GTC GAG TGG TTC CTC CTC CGG AAG GCC TAT GAG GGG AAC GAG CTG 2062 Leu Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Gly Asn Glu Leu 355 360 365 GCC CCG AAC AAG CCC GAT GAA AAG GAG CTG GCC AGA AGA CGG CAG AGC 2110 Ala Pro Asn Lys Pro Asp Glu Lys Glu Leu Ala Arg Arg Arg Gln Ser 370 375 380 TAT GAA GGG GGC TAC GTA AAA GAG CCG GAG AGA GGT CTA TGG GAG AAC 2158 Tyr Glu Gly Gly Tyr Val Lys Glu Pro Glu Arg Gly Leu Trp Glu Asn 385 390 395 ATA GTT TAT CTG GAT TTC CGT TCG CTG TAC CCC TCA ATC ATC ATC ACC 2206 I le Val Tyr Leu Asp Phe Arg Ser Leu Tyr Pro Ser Ile Ile Ile Thr 400 405 410 415 CAC AAC GTC TCG CCG GAT ACT CTC AAC AGG GAA GGA TGC AAG GAG TAT 2254 His Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Lys Glu Tyr 420 425 430 GAC ACC GCC CCC CAG GTT GGC CAC CGC TTC TGC AAG GAC TTC CCG GGC 2302 435 440 445 445 TTC ATT CCG AGC CTC CTT GGG GCC CTG CTT GAG GAG AGG CAG AAG ATA 2350 Phe Ile Pro Ser Leu Leu Gly Ala Leu Leu Glu Glu Arg Gln Lys Ile 450 455 460 AAG AAG AGA ATG AAG GCA ACG ATT GAT CCA CTT GAG AAG AAG CTC CTT 2398 Lys Lys Arg Met Lys Ala Thr Ile Asp Pro Leu Glu Lys Lys Leu Leu 465 470 475 GAT TAC AGA CAG CGG GCT ATC AAG ATC CTA GCA AAC AGT TTT TAC GGC 2446 Asp Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ale Asn Ser Phe Tyr Gly 480 485 490 495 TAC TAC GGC TAT GCA AAG GCC CGC TGG TAC TGC AAG GAG TGT GCG GAG 2494 Tyr Tyr Gly Tyr Ala Lys Ala Arg Trp Tyr Cys Lys Glu Cys Ala Glu 500 505 510 AGC GTC ACT GCC TGG GGA AGG GAG TAC ATA ACG ATG ACC ATC AGG GAG 2542 Ser Val Thr Ala Trp Gly Arg Glu Tyr Ile Thr Met Thr Ile Arg Glu 515 520 525 ATA GAG GAA AAG TAT GGC TTT AAA GTT CTG TAC GCG GAC ACA GAC GGT 2590 Ile Glu Glu Lys Tyr Gly Phe Lys Val Leu Tyr Ala Asp Thr Asp Gly 530 535 540 TTC TTC GCG ACA ATA CCT GGA GCT GAT GCC GAA ACC GTC AAA AAG AAA 2638 Phe Phe Ala Thr Ile Pro Gly Ala Asp Ala Glu Thr Val Lys Lys Lys 545 550 555 GCG ATG GAG TTC CTC AAG TAC ATC AAC GAT AAA CTT CCG GGC GCG CTT 2686 Ala Met Glu Phe Leu Lys Tyr Ile Asn Asp Lys Leu Pro Gly Ala Leu 560 565 570 575 GAG CTC GAG TAC GAG GGC TTC TAC AAG CGC GGC TTC TTC GTC ACT AAA 2734 Glu Leu Glu Tyr Glu Gly Phe Tyr Lys Arg Gly Phe Phe Val Thr Lys 580 585 590 AAG AAG TAC GCG GTG ATA GAC GAG GAA GGC AAG ATA ACA ACG CGC GGA 2782 Lys Lys Tyr Ala Val Ile Asp Glu Glu Gly Lys Ile Thr Thr Arg Gly 595 600 605 CTT GAG ATT GTG AGG CGC GAC TGG AGC GAG ATA GCT AAG GAG ACG CAG 2830 Leu Glu Ile Val Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln 610 615 620 GCT AGA GTT CTT GAA GCT TTA CTA AAG GAC GGT GAC GTT GAA GAG GCG 2878 Ala Arg Val Leu Glu Ala Leu Leu Lys Asp Gly Asp Val Glu Glu Ala 625 630 635 GTT AAA ATC GTT AAA GAA GTA ACG GAA AAG CTG AGC AAG TAC GAG GTT 2926 Val Lys Ile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Val 640 645 650 655 CCG CCG GAG AAA CTG GTG ATC CAC GAG CAG ATA ACA AGG GAT CTG AGC 2974 Pro Pro Glu Lys Leu Val Ile His Glu Gln Ile Thr Arg Asp Leu Ser 660 665 670 GAC TAC AAA GCG ACA GGA CCT CAC GTT GCC GTT GCT AAG AGA TTG GCC 3022 Asp Tyr Lys Ala Thr Gly Pro His Val Ala Val Ala Lys Arg Leu Ala 675 680 685 GCG AGG GGC GTC AAA ATA CGC CCT GGA ACG GTG ATA AGC TAC ATC GTG 3070 Ala Arg Gly Val Lys Ile Arg Pro Gly Thr Val Ile Ser Tyr Ile Val 690 695 700 CTA AAG GGC TCT GGA AGG ATT GGG GAC AGA GCT ATT CCA TTC GAC GAG 3118 Leu Lys Gly Ser Gly Arg Ile Gly Asp Arg Ala Ile Pro Phe Asp Glu 705 710 715 TTT GAC CCG ACA AAG CAC AAG TAC GAC GCT GAG TAC TAC ATT GAA AAC 3166 Phe Asp Pro Thr Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn 720 725 730 735 CAG GTT CTG CCT GCC GTT GAG AGA ATC CTG AGG GCC TTT GGC TAC CGC 3214 Gln Val Leu Pro Ala Val Glu Arg Ile Leu Arg Ala Phe Gly Tyr Arg 740 745 750 AAG GAA GAC CTG CGC TAC CAG AAG ACG AGA CAG GTT GGT TTG AGT GCT 3262 Lys Glu Asp Leu Arg Tyr Gln Lys Thr Arg Gln Val Gly Leu Ser Ala 755 760 765 TGG CTG AAG CCG AAG GGA ACT TGACCTTTCC ATTTGTTTTC CAGCGGGGATAA 3313 Trp Leu LyTA TC CTT GCA AACTCTCCCT CAGAGGGAAG GCCATGAAAA TAGAAATCCG 3373 TCGAAGTCCC GTCAAGTATG CGAGGATAGA GGTGAAGCCG GACGGCAGGG TAGTCGTCAC 3433 CGCCCCCGAG GGGTTCAACG TTGAGGAGTT CATAGCAAAG AACGCCGCCT GGCTGGAGGG 3493 GAAGTTGGCC CAGATTGAAG ACCTGAAAGA GCTTGCAGAG TCGGGCTTCC CTCTGAACGG 3553 TGAGTTCTAC AAGGTCGTAC ATGGAAGGAG GGCTAAAGTC CATGACCGCT TTAAGACCGT 3613 TGTCCTTCCC CCTTATCCCG AAGACATGAG GGAAGAACTG AAAAGGCTTC TCCGACCTAA 3673 GTTAGTGGAG CTTATTGAGA AATACGCTGG AAAAATGGGT GTCTCCCCCA GTAAGATC 3731

【0055】配列番号2 配列の長さ:774 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Ile Leu Asp Thr Asp Tyr Ile Thr Glu Asn Gly Lys Pro Val Ile 1 5 10 15 Arg Ile Phe Lys Lys Glu Asn Gly Glu Phe Lys Ile Glu Tyr Asp Arg 20 25 30 Thr Phe Glu Pro Tyr Ile Tyr Ala Leu Leu Lys Asp Asp Ser Ala Ile 35 40 45 Glu Glu Val Lys Lys Ile Thr Ala Glu Arg His Gly Thr Val Val Thr 50 55 60 Val Lys Arg Ala Glu Lys Val Glu Lys Lys Phe Leu Gly Arg Pro Leu 65 70 75 80 Glu Val Trp Lys Leu Tyr Phe Thr His Pro Gln Asp Val Pro Ala Ile 85 90 95 Arg Asp Lys Ile Arg Glu His Pro Ala Val Ile Asp Ile Tyr Glu Tyr 100 105 110 Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Lys Gly Leu Ile Pro 115 120 125 Met Glu Gly Asp Glu Asp Leu Lys Met Leu Ala Phe Asp Ile Glu Thr 130 135 140 Leu Tyr His Glu Gly Glu Glu Phe Ala Glu Gly Pro Ile Leu Met Ile 145 150 155 160 Ser Tyr Ala Asp Glu Glu Gly Ala Arg Val Ile Thr Trp Lys Asn Ile 165 170 175 Asp Pro Pro Tyr Val Asp Val Val Ser Thr Glu Arg Glu Met Ile Lys 180 185 190 Arg Phe Leu Arg Ile Val Lys Glu Lys Asp Pro Asp Val Leu Ile Thr 195 200 205 Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys Lys Arg Cys Glu 210 215 220 Lys Leu Gly Ile Asn Phe Ala Leu Gly Arg Asp Gly Ser Glu Pro Lys 225 230 235 240 Ile Gln Arg Met Gly Asp Arg Phe Ala Val Glu Val Lys Gly Arg Ile 245 250 255 His Phe Asp Leu Tyr Pro Val Ile Arg Arg Thr Ile Asn Leu Pro Thr 260 265 270 Tyr Thr Leu Glu Ala Val Tyr Glu Ala Ile Phe Gly Lys Pro Lys Glu 275 280 285 Lys Val Tyr Ala Glu Glu Ile Ala Thr Ala Trp Glu Ser Gly Glu Gly 290 295 300 Leu Glu Arg Val Ala Lys Tyr Ser Met Glu Asp Ala Lys Val Thr Tyr 305 310 315 320 Glu Leu Gly Lys Glu Phe Phe Pro Met Glu Ala Gln Leu Ser Arg Leu 325 330 335 Ile Gly Gln Ser Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn Leu 340 345 350 Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Gly Asn Glu Leu Ala 355 360 365 Pro Asn Lys Pro Asp Glu Lys Glu Leu Ala Arg Arg Arg Gln Ser Tyr 370 375 380 Glu Gly Gly Tyr Val Lys Glu Pro Glu Arg Gly Leu Trp Glu Asn Ile 385 390 395 400 Val Tyr Leu Asp Phe Arg Ser Leu Tyr Pro Ser Ile Ile Ile Thr His 405 410 415 Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Lys Glu Tyr Asp 420 425 430 Thr Ala Pro Gln Val Gly His Arg Phe Cys Lys Asp Phe Pro Gly Phe 435 440 445 Ile Pro Ser Leu Leu Gly Ala Leu Leu Glu Glu Arg Gln Lys Ile Lys 450 455 460 Lys Arg Met Lys Ala Thr Ile Asp Pro Leu Glu Lys Lys Leu Leu Asp 465 470 475 480 Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Phe Tyr Gly Tyr 485 490 495 Tyr Gly Tyr Ala Lys Ala Arg Trp Tyr Cys Lys Glu Cys Ala Glu Ser 500 505 510 Val Thr Ala Trp Gly Arg Glu Tyr Ile Thr Met Thr Ile Arg Glu Ile 515 520 525 Glu Glu Lys Tyr Gly Phe Lys Val Leu Tyr Ala Asp Thr Asp Gly Phe 530 535 540 Phe Ala Thr Ile Pro Gly Ala Asp Ala Glu Thr Val Lys Lys Lys Ala 545 550 555 560 Met Glu Phe Leu Lys Tyr Ile Asn Asp Lys Leu Pro Gly Ala Leu Glu 565 570 575 Leu Glu Tyr Glu Gly Phe Tyr Lys Arg Gly Phe Phe Val Thr Lys Lys 580 585 590 Lys Tyr Ala Val Ile Asp Glu Glu Gly Lys Ile Thr Thr Arg Gly Leu 595 600 605 Glu Ile Val Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln Ala 610 615 620 Arg Val Leu Glu Ala Leu Leu Lys Asp Gly Asp Val Glu Glu Ala Val 625 630 635 640 Lys Ile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Val Pro 645 650 655 Pro Glu Lys Leu Val Ile His Glu Gln Ile Thr Arg Asp Leu Ser Asp 660 665 670 Tyr Lys Ala Thr Gly Pro His Val Ala Val Ala Lys Arg Leu Ala Ala 675 680 685 Arg Gly Val Lys Ile Arg Pro Gly Thr Val Ile Ser Tyr Ile Val Leu 690 695 700 Lys Gly Ser Gly Arg Ile Gly Asp Arg Ala Ile Pro Phe Asp Glu Phe 705 710 715 720 Asp Pro Thr Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn Gln 725 730 735 Val Leu Pro Ala Val Glu Arg Ile Leu Arg Ala Phe Gly Tyr Arg Lys 740 745 750 Glu Asp Leu Arg Tyr Gln Lys Thr Arg Gln Val Gly Leu Ser Ala Trp 755 760 765 Leu Lys Pro Lys Gly Thr 770 SEQ ID NO: 2 Sequence length: 774 Sequence type: Amino acid Topology: Linear Sequence type: Protein sequence Met Ile Leu Asp Thr Asp Tyr Ile Thr Glu Asn Gly Lys Pro Val Ile 1 5 10 15 Arg Ile Phe Lys Lys Glu Asn Gly Glu Phe Lys Ile Glu Tyr Asp Arg 20 25 30 Thr Phe Glu Pro Tyr Ile Tyr Ala Leu Leu Lys Asp Asp Ser Ala Ile 35 40 45 Glu Glu Val Lys Lys Ile Thr Ala Glu Arg His Gly Thr Val Val Thr 50 55 60 Val Lys Arg Ala Glu Lys Val Glu Lys Lys Phe Leu Gly Arg Pro Leu 65 70 75 80 Glu Val Trp Lys Leu Tyr Phe Thr His Pro Gln Asp Val Pro Ala Ile 85 90 95 Arg Asp Lys Ile Arg Glu His Pro Ala Val Ile Asp Ile Tyr Glu Tyr 100 105 110 Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Lys Gly Leu Ile Pro 115 120 125 Met Glu Gly Asp Glu Asp Leu Lys Met Leu Ala Phe Asp Ile Glu Thr 130 135 140 Leu Tyr His Glu Gly Glu Glu Phe Ala Glu Gly Pro Ile Leu Met Ile 145 150 155 160 Ser Tyr Ala Asp Glu Glu Gly Ala Arg Val Ile Thr Trp Lys Asn Ile 165 170 175 Asp Pro Pro Tyr Val A sp Val Val Ser Thr Glu Arg Glu Met Ile Lys 180 185 190 Arg Phe Leu Arg Ile Val Lys Glu Lys Asp Pro Asp Val Leu Ile Thr 195 200 205 Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys Lys Arg Cys Glu 210 215 220 Lys Leu Gly Ile Asn Phe Ala Leu Gly Arg Asp Gly Ser Glu Pro Lys 225 230 235 240 Ile Gln Arg Met Gly Asp Arg Phe Ala Val Glu Val Lys Gly Arg Ile 245 250 255 His Phe Asp Leu Tyr Pro Val Ile Arg Arg Thr Ile Asn Leu Pro Thr 260 265 270 Tyr Thr Leu Glu Ala Val Tyr Glu Ala Ile Phe Gly Lys Pro Lys Glu 275 280 285 Lys Val Tyr Ala Glu Glu Ile Ala Thr Ala Trp Glu Ser Gly Glu Gly 290 295 300 Leu Glu Arg Val Ala Lys Tyr Ser Met Glu Asp Ala Lys Val Thr Tyr 305 310 315 320 Glu Leu Gly Lys Glu Phe Phe Pro Met Glu Ala Gln Leu Ser Arg Leu 325 330 335 Ile Gly Gln Ser Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn Leu 340 345 350 Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Gly Asn Glu Leu Ala 355 360 365 Pro Asn Lys Pro Asp Glu Lys Glu Leu Ala Arg Arg Arg Gln Ser Tyr 370 375 380 Glu Gly Gly Tyr Val LysGlu Pro Glu Arg Gly Leu Trp Glu Asn Ile 385 390 395 400 Val Tyr Leu Asp Phe Arg Ser Leu Tyr Pro Ser Ile Ile Ile Thr His 405 410 415 Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Lys Glu Tyr Asp 420 425 430 Thr Ala Pro Gln Val Gly His Arg Phe Cys Lys Asp Phe Pro Gly Phe 435 440 445 Ile Pro Ser Leu Leu Gly Ala Leu Leu Glu Glu Arg Gln Lys Ile Lys 450 455 460 Lys Arg Met Lys Ala Thr Ile Asp Pro Leu Glu Lys Lys Leu Leu Asp 465 470 475 480 Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Phe Tyr Gly Tyr 485 490 495 Tyr Gly Tyr Ala Lys Ala Arg Trp Tyr Cys Lys Glu Cys Ala Glu Ser 500 505 510 Val Thr Ala Trp Gly Arg Glu Tyr Ile Thr Met Thr Ile Arg Glu Ile 515 520 525 Glu Glu Lys Tyr Gly Phe Lys Val Leu Tyr Ala Asp Thr Asp Gly Phe 530 535 540 Phe Ala Thr Ile Pro Gly Ala Asp Ala Glu Thr Val Lys Lys Lys Ala 545 550 555 560 Met Glu Phe Leu Lys Tyr Ile Asn Asp Lys Leu Pro Gly Ala Leu Glu 565 570 575 Leu Glu Tyr Glu Gly Phe Tyr Lys Arg Gly Phe Phe Val Thr Lys Lys 580 585 590 Lys Tyr Ala Val Ile AspGlu Glu Gly Lys Ile Thr Thr Arg Gly Leu 595 600 605 Glu Ile Val Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln Ala 610 615 620 Arg Val Leu Glu Ala Leu Leu Lys Asp Gly Asp Val Glu Glu Ala Val 625 630 635 640 Lys Ile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Val Pro 645 650 655 Pro Glu Lys Leu Val Ile His Glu Gln Ile Thr Arg Asp Leu Ser Asp 660 665 670 Tyr Lys Ala Thr Gly Pro His Val Ala Val Ala Lys Arg Leu Ala Ala 675 680 685 Arg Gly Val Lys Ile Arg Pro Gly Thr Val Ile Ser Tyr Ile Val Leu 690 695 700 Lys Gly Ser Gly Arg Ile Gly Asp Arg Ala Ile Pro Phe Asp Glu Phe 705 710 715 720 720 Asp Pro Thr Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn Gln 725 730 735 Val Leu Pro Ala Val Glu Arg Ile Leu Arg Ala Phe Gly Tyr Arg Lys 740 745 750 Glu Asp Leu Arg Tyr Gln Lys Thr Arg Gln Val Gly Leu Ser Ala Trp 755 760 765 Leu Lys Pro Lys Gly Thr 770

【0056】配列番号3 配列の長さ:3799 配列の型:核酸(DNA) 鎖の数:2本鎖 トポロジー:直鎖状 配列の種類:cDNA 起源:Thermococcus peptonophilus 株名:SM−2 配列の特徴 1−3492 CDS 1621−2790 介在配列 配列 ATG ATC CTC GAC ACT GAC TAC ATA ACT GAG AAT GGA AAG CCC GTC ATC 48 Met Ile Leu Asp Thr Asp Tyr Ile Thr Glu Asn Gly Lys Pro Val Ile 1 5 10 15 AGG ATT TTC AAG AAG GAA AAC GGC GAG TTC ACG ATC GAG TAC GAC AGG 96 Arg Ile Phe Lys Lys Glu Asn Gly Glu Phe Thr Ile Glu Tyr Asp Arg 20 25 30 ACT TTT GAG CCC TAT ATC TAC GCC CTC CTG AAG GAC GAT TCT GCA ATA 144 Thr Phe Glu Pro Tyr Ile Tyr Ala Leu Leu Lys Asp Asp Ser Ala Ile 35 40 45 GAG GAA GTC AAG AAG ATA ACT GCC GAG AGA CAC GGG ACG GTT GTA ACG 192 Glu Glu Val Lys Lys Ile Thr Ala Glu Arg His Gly Thr Val Val Thr 50 55 60 GTT AAG CGA GCT GAA AAG GTT CAG AAG AAG TTC CTC GGA AGA CCG TTG 240 Val Lys Arg Ala Glu Lys Val Gln Lys Lys Phe Leu Gly Arg Pro Leu 65 70 75 80 GAT GTC TGG AAG CTC TAC TTT ACT CAC CCG CAG GAC GTC CCA GCG ATA 288 Asp Val Trp Lys Leu Tyr Phe Thr His Pro Gln Asp Val Pro Ala Ile 85 90 95 AGG GAC AAG ATA CGA GAG CAT CCG GCA GTT ATT GAC ATC TAC GAG TAC 336 Arg Asp Lys Ile Arg Glu His Pro Ala Val Ile Asp Ile Tyr Glu Tyr 100 105 110 GAC ATA CCC TTC GCC AAG CGC TAT CTC ATT GAC AAG GGC CTA ATC CCG 384 Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Lys Gly Leu Ile Pro 115 120 125 ATG GAG GGC GAT GAA GAG CTG AAA ATG CTA GCC TTC GAC ATT GAA ACG 432 Met Glu Gly Asp Glu Glu Leu Lys Met Leu Ala Phe Asp Ile Glu Thr 130 135 140 CTC TAC CAC GAG GGC GAG GAG TTT GCC GAG GGG CCA ATC CTT ATG ATA 480 Leu Tyr His Glu Gly Glu Glu Phe Ala Glu Gly Pro Ile Leu Met Ile 145 150 155 160 AGC TAC GCC GAC GAA GAA GGA GCG AGG GTG ATA ACG TGG AAG AAC ATA 528 Ser Tyr Ala Asp Glu Glu Gly Ala Arg Val Ile Thr Trp Lys Asn Ile 165 170 175 GAC CTC CCC TAC GTT GAC GTC GTC TCG ACG GAG AGG GAG ATG ATA AAG 576 Asp Leu Pro Tyr Val Asp Val Val Ser Thr Glu Arg Glu Met Ile Lys 180 185 190 CGC TTT CTC AGG ATT GTG AAG GAG AAA GAC CCG GAC GTA CTG ATA ACG 624 Arg Phe Leu Arg Ile Val Lys Glu Lys Asp Pro Asp Val Leu Ile Thr 195 200 205 TAC AAC GGT GAC AAC TTT GAC TTT GCC TAC CTC AAG AAG CGC TGT GAA 672 Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys Lys Arg Cys Glu 210 215 220 AAG CTT GGA ATA AAC TTT GCC CTC GGA AGG GAC GGA AGC GAG CCT AAG 720 Lys Leu Gly Ile Asn Phe Ala Leu Gly Arg Asp Gly Ser Glu Pro Lys 225 230 235 240 ATT CAG AGG ATG GGC GAT AGG TTT GCT GTC GAG GTT AAG GGC AGG ATA 768 Ile Gln Arg Met Gly Asp Arg Phe Ala Val Glu Val Lys Gly Arg Ile 245 250 255 CAC TTT GAT CTC TAC CCC GTG ATA AGA CGG ACG ATA AAC CTC CCC ACA 816 His Phe Asp Leu Tyr Pro Val Ile Arg Arg Thr Ile Asn Leu Pro Thr 260 265 270 TAT ACG CTT GAG GCT GTC TAT GAA GCG ATC TTT GGA AAG CCA AAG GAG 864 Tyr Thr Leu Glu Ala Val Tyr Glu Ala Ile Phe Gly Lys Pro Lys Glu 275 280 285 AAA GTC TAC GCC GAG GAG ATA GCC ACC GCT TGG GAG AGC GGG GAG GGG 912 Lys Val Tyr Ala Glu Glu Ile Ala Thr Ala Trp Glu Ser Gly Glu Gly 290 295 300 CTT GAG AGG GTA GCT AAA TAC TCT ATG GAG GAC GCC AAG GTT ACC TAC 960 Leu Glu Arg Val Ala Lys Tyr Ser Met Glu Asp Ala Lys Val Thr Tyr 305 310 315 320 GAG CTC GGA AAG GAG TTC TTC CCG ATG GAG GCC CAG CTT TCC CGC TTG 1008 Glu Leu Gly Lys Glu Phe Phe Pro Met Glu Ala Gln Leu Ser Arg Leu 325 330 335 ATC GGC CAG TCC CTC TGG GAC GTT TCC CGC TCC AGC ACT GGC AAC CTC 1056 Ile Gly Gln Ser Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn Leu 340 345 350 GTC GAG TGG TTC CTC CTC CGG AAG GCC TAT GAG AGG AAC GAG CTG GCC 1104 Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Arg Asn Glu Leu Ala 355 360 365 CCG AAC AAG CCC GAT GAA AAG GAG CTG GCC AGA AGA CGG CAG AGC TAT 1152 Pro Asn Lys Pro Asp Glu Lys Glu Leu Ala Arg Arg Arg Gln Ser Tyr 370 375 380 GAA GGG GGC TAC GTA AAA GAG CCG GAG AGA GGT CTA TGG GAA AAC ATA 1200 Glu Gly Gly Tyr Val Lys Glu Pro Glu Arg Gly Leu Trp Glu Asn Ile 385 390 395 400 GTT TAT CTG GAT TTC CGT TCG CTG TAC CCC TCA ATC ATC ATC ACC CAC 1248 Val Tyr Leu Asp Phe Arg Ser Leu Tyr Pro Ser Ile Ile Ile Thr His 405 410 415 AAC GTC TCG CCG GAT ACT CTT AAC AGG GAA GGA TGC AAG GAG TAT GAC 1296 Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Lys Glu Tyr Asp 420 425 430 ACC TCC CCC CAG GTT GGC CAC CGC TTC TGC AAG GAC TTC CCG GGC TTC 1344 Thr Ser Pro Gln Val Gly His Arg Phe Cys Lys Asp Phe Pro Gly Phe 435 440 445 ATT CCG AGC CTC CTT GGG GCC CTG CTT GAG GAG AGG CAG AAG ATA AAG 1392 Ile Pro Ser Leu Leu Gly Ala Leu Leu Glu Glu Arg Gln Lys Ile Lys 450 455 460 AAG AGA ATG AAG GCA ACG ATT GAT CCA CTT GAG AAG AAG CTC CTT GAT 1440 Lys Arg Met Lys Ala Thr Ile Asp Pro Leu Glu Lys Lys Leu Leu Asp 465 470 475 480 TAC AGA CAG CGG GCT ATC AAG ATC CTA GCA AAC AGT TTT TAC GGC TAC 1488 Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Phe Tyr Gly Tyr 485 490 495 TAC GGC TAT GCA AAG GCC CGC TGG TAC TGC AAG GAG TGT GCA GAG AGC 1536 Tyr Gly Tyr Ala Lys Ala Arg Trp Tyr Cys Lys Glu Cys Ala Glu Ser 500 505 510 GTC ACT GCC TGG GGA AGG GAG TAC ATA ACG ATG ACC ATC AGG GAG ATA 1584 Val Thr Ala Trp Gly Arg Glu Tyr Ile Thr Met Thr Ile Arg Glu Ile 515 520 525 GAG GAA AAG TAC GGC TTT AAA GTG CTG TAC GCT GAC AGC GTT ACG GGT 1632 Glu Glu Lys Tyr Gly Phe Lys Val Leu Tyr Ala Asp Ser Val Thr Gly 530 535 540 GAC TCT GAG GTC ATC ATA AGA AGA AAT GGC CGC ATT GAG TTC ATT CCT 1680 Asp Ser Glu Val Ile Ile Arg Arg Asn Gly Arg Ile Glu Phe Ile Pro 545 550 555 560 ATC GAA AAG CTC TTC GAA AGA GTG GAC TAC ACA GTT GGG GAG AAG GAG 1728 Ile Glu Lys Leu Phe Glu Arg Val Asp Tyr Thr Val Gly Glu Lys Glu 565 570 575 TAT CAT GTT CTA TCA TCA AAT GTT GAA GCT CTA ACA CTC GAC GAC AAC 1776 Tyr His Val Leu Ser Ser Asn Val Glu Ala Leu Thr Leu Asp Asp Asn 580 585 590 GGA AAG CTT ACG TGG AGA AAA GTC CCT TAC GTA ATG AGA CAT AAA ACG 1824 Gly Lys Leu Thr Trp Arg Lys Val Pro Tyr Val Met Arg His Lys Thr 595 600 605 GAG AAG AAG ATT TAC CGC GTC TGG CTG ACC AAC AGC TGG TAC CTT GAT 1872 Glu Lys Lys Ile Tyr Arg Val Trp Leu Thr Asn Ser Trp Tyr Leu Asp 610 615 620 GTC ACG GAG GAC CAT TCT CTT ATA GGG TAC CTA AAC ACA TCA AGA GTA 1920 Val Thr Glu Asp His Ser Leu Ile Gly Tyr Leu Asn Thr Ser Arg Val 625 630 635 640 AGG GCT GGA AAG CCT CTA AAA GAC CGC CTT TGT GAG GTT AAG CCA CTG 1968 Arg Ala Gly Lys Pro Leu Lys Asp Arg Leu Cys Glu Val Lys Pro Leu 645 650 655 GAA CTT GGT AAA TCT GTG AAG TCC CTC ATA ACG CCA AGA GCA CCT CTC 2016 Glu Leu Gly Lys Ser Val Lys Ser Leu Ile Thr Pro Arg Ala Pro Leu 660 665 670 TCT AGG GGC ATA AAA CCC AAT GAA ATA GCC CTG AAA TTC TGG GAG CTG 2064 Ser Arg Gly Ile Lys Pro Asn Glu Ile Ala Leu Lys Phe Trp Glu Leu 675 680 685 GTT GGG CTT CTC GTT GGC GAT GGC AAT TGG GGA GGT ACA TCA AAC TGG 2112 Val Gly Leu Leu Val Gly Asp Gly Asn Trp Gly Gly Thr Ser Asn Trp 690 695 700 GCG AAG TAC TAC GTG GGA CTT GCA TGT GGA GAA GAC AAA GAA GAA ATC 2160 Ala Lys Tyr Tyr Val Gly Leu Ala Cys Gly Glu Asp Lys Glu Glu Ile 705 710 715 720 GCC GAG AAG GTA CTT GAC CCG CTA AAA CGT GCA GGA GTC ATA TCC AAC 2208 Ala Glu Lys Val Leu Asp Pro Leu Lys Arg Ala Gly Val Ile Ser Asn 725 730 735 TAC TAC GAC AAG AGC AAG AAG GGA GAC GTT TCG ATC TTA TCG AAG GGT 2256 Tyr Tyr Asp Lys Ser Lys Lys Gly Asp Val Ser Ile Leu Ser Lys Gly 740 745 750 CTC GCA AAG CTC ATG GTT AGA TAC TTT AAG GAT GAG GAC GGG AAC AAA 2304 Leu Ala Lys Leu Met Val Arg Tyr Phe Lys Asp Glu Asp Gly Asn Lys 755 760 765 AAG ATT CCA GAG TTT ATG TTC AAC CTC CCA AAA GAA TAC TTG GAG GCG 2352 Lys Ile Pro Glu Phe Met Phe Asn Leu Pro Lys Glu Tyr Leu Glu Ala 770 775 780 TTT CTC AGG GGA TTG TTC AGT GCA GAT GGT ACT GTT AGC GTG AAG AGA 2400 Phe Leu Arg Gly Leu Phe Ser Ala Asp Gly Thr Val Ser Val Lys Arg 785 790 795 800 GGT GTA CCT GAA GTC AGG CTC ACG ACG ATT AGT GAT AGA TTA GCT AGT 2448 Gly Val Pro Glu Val Arg Leu Thr Thr Ile Ser Asp Arg Leu Ala Ser 805 810 815 GAC GTT AGA AAA CTG CTT TGG CTT GTG GGA ATT TCA AAT TCC ATC TTC 2496 Asp Val Arg Lys Leu Leu Trp Leu Val Gly Ile Ser Asn Ser Ile Phe 820 825 830 AGG GAG CAA AAT CCC AAC AGG TAC AAT GGA AAG TCG AGT GGC ACT TAC 2544 Arg Glu Gln Asn Pro Asn Arg Tyr Asn Gly Lys Ser Ser Gly Thr Tyr 835 840 845 TCC AAG CAC GTC CGC ATA AAG GAC AAA CTC CAG TTT GCG CAG AGA ATT 2592 Ser Lys His Val Arg Ile Lys Asp Lys Leu Gln Phe Ala Gln Arg Ile 850 855 860 AGA TTC ATA ATC AAC AGA AAA CAA GAA AAG CTC ATT AAA AAT CTA AAG 2640 Arg Phe Ile Ile Asn Arg Lys Gln Glu Lys Leu Ile Lys Asn Leu Lys 865 870 875 880 GAG TCA CAG TAC AAG AGA ACG ACG TTT AAG TAC GAG TTT GAC ATC ACT 2688 Glu Ser Gln Tyr Lys Arg Thr Thr Phe Lys Tyr Glu Phe Asp Ile Thr 885 890 895 CCC GTC AAG AAA GTT GAA GAG GTA ACC TAT AAT GGG TAC GTC TAC GAT 2736 Pro Val Lys Lys Val Glu Glu Val Thr Tyr Asn Gly Tyr Val Tyr Asp 900 905 910 ATC GAG GTT GAA GGC ACT CAT AGG TTC TTC GCT AAC GGA ATA CTA GTT 2784 Ile Glu Val Glu Gly Thr His Arg Phe Phe Ala Asn Gly Ile Leu Val 915 920 925 CAT AAT ACA GAC GGT TTC TTC GCG ACA ATA CCT GGA GCC GAT GCT GAA 2832 His Asn Thr Asp Gly Phe Phe Ala Thr Ile Pro Gly Ala Asp Ala Glu 930 935 940 ACC GTC AAA AAG AAG GCA ATG GAG TTC ATC AAT TAC ATC AAC GAC AAG 2880 Thr Val Lys Lys Lys Ala Met Glu Phe Ile Asn Tyr Ile Asn Asp Lys 945 950 955 960 CTT CCA GGT GCG CTT GAG CTC GAG TAT GAG GGT TTC TAC AAA CGC GGC 2928 Leu Pro Gly Ala Leu Glu Leu Glu Tyr Glu Gly Phe Tyr Lys Arg Gly 965 970 975 TTC TTC GTC ACG AAG AAG AAG TAC GCG GTG ATA GAC GAG GAA GGC AAG 2976 Phe Phe Val Thr Lys Lys Lys Tyr Ala Val Ile Asp Glu Glu Gly Lys 980 985 990 ATA ACA ACG CGC GGA CTT GAG ATT GTG AGG CGC GAC TGG AGC GAG ATA 3024 Ile Thr Thr Arg Gly Leu Glu Ile Val Arg Arg Asp Trp Ser Glu Ile 995 1000 1005 GCG AAA GAG ACG CAG GCA AGG GTT CTT GAA GCT TTG CTA AAG GAC GGT 3072 Ala Lys Glu Thr Gln Ala Arg Val Leu Glu Ala Leu Leu Lys Asp Gly 1010 1015 1020 GAC GTC GAA AAG GCC GTG AGG ATA GTC AAG GAA GTC ACT GAA AAG CTG 3120 Asp Val Glu Lys Ala Val Arg Ile Val Lys Glu Val Thr Glu Lys Leu 1025 1030 1035 1040 AGC AAG TAC GAG GTT TCG CCG GAG AAG CTG GTG ATC CAC GAG CAG ATA 3168 Ser Lys Tyr Glu Val Ser Pro Glu Lys Leu Val Ile His Glu Gln Ile 1045 1050 1055 ACG AGG GAT TTA AAG GAC TAC AAG GCG ACG GGA CCC CAC GTT GCC GTT 3216 Thr Arg Asp Leu Lys Asp Tyr Lys Ala Thr Gly Pro His Val Ala Val 1060 1065 1070 GCC AAG AGG TTA GCC GCG AGA GGA GTC AAA ATA CGC CCT GGA ACG GTG 3264 Ala Lys Arg Leu Ala Ala Arg Gly Val Lys Ile Arg Pro Gly Thr Val 1075 1080 1085 ATA AGC TAC ATC GTG CTA AAG GGC TCT GGA AGG ATA GGC GAC AGG GCA 3312 Ile Ser Tyr Ile Val Leu Lys Gly Ser Gly Arg Ile Gly Asp Arg Ala 1090 1095 1100 ATA CCG TTC GAC GAG TTC GAC CCG ACG AAG CAC AAG TAC GAC GCC GAG 3360 Ile Pro Phe Asp Glu Phe Asp Pro Thr Lys His Lys Tyr Asp Ala Glu 1105 1110 1115 1120 TAC TAC ATT GAG AAC CAG GTT CTC CCA GCC GTT GAG AGA ATT CTG AGA 3408 Tyr Tyr Ile Glu Asn Gln Val Leu Pro Ala Val Glu Arg Ile Leu Arg 1125 1130 1135 GCC TTC GGT TAT CGC AAG GAA GAC CTG CGC TAC CAG AAG ACG AGA CAG 3456 Ala Phe Gly Tyr Arg Lys Glu Asp Leu Arg Tyr Gln Lys Thr Arg Gln 1140 1145 1150 GTT GGT TTG AGT GCT TGG CTG AAG CCG AAG GGA AAG TAGGGAATTA 3502 Val Gly Leu Ser Ala Trp Leu Lys Pro Lys Gly Lys 1155 1160 ACCCTTCCAG GTGAATGGAA TGGAACTAGA AATCCGTCGA AGTCCCGTCA AGTATGCGAG 3562 GATAGAAGTG AAGCCGGACG GCAGGGTAGT CGTCACCGCC CCCGAGGGGT TCAACGTTGA 3622 GGAGTTCATA GCAAAGAACG CCGCCTGGCT GGAGGGGAAG CTGGCCCAGA TTGAAGACCT 3682 GAAAGAGCTT GCAGAGTCGG GCTTCCCTCT GGACGGTGAG TTCTACAAGG TCGTACATGG 3742 AAGGAGGGCT AAGTCCATGA TCCGCTTTAA GACCGTTGTC CTTCCCTTAT CCCGAAG 3799SEQ ID NO: 3 Sequence length: 3799 Sequence type: Nucleic acid (DNA) Number of strands: Double strand Topology: Linear Sequence type: cDNA Origin: Thermococcus peptonophilus Strain name: SM-2 Sequence characteristics 1-3492 CDS 1621-2790 Intervening sequence Sequence ATG ATC CTC GAC ACT GAC TAC ATA ACT GAG AAT GGA AAG CCC GTC ATC 48 Met Ile Leu Asp Thr Asp Tyr Ile Thr Glu Asn Gly Lys Pro Val Ile 1 5 10 15 AGG ATT TTC AAG AAG GAA AAC GGC GAG TTC ACG ATC GAG TAC GAC AGG 96 Arg Ile Phe Lys Lys Glu Asn Gly Glu Phe Thr Ile Glu Tyr Asp Arg 20 25 30 ACT TTT GAG CCC TAT ATC TAC GCC CTC CTG AAG GAC GAT TCT GCA ATA 144 Thr Phe Glu Pro Tyr Ile Tyr Ala Leu Leu Lys Asp Asp Ser Ala Ile 35 40 45 GAG GAA GTC AAG AAG ATA ACT GCC GAG AGA CAC GGG ACG GTT GTA ACG 192 Glu Glu Val Lys Lys Ile Thr Ala Glu Arg His Gly Thr Val Val Thr 50 55 60 GTT AAG CGA GCT GAA AAG GTT CAG AAG AAG TTC CTC GGA AGA CCG TTG 240 Val Lys Arg Ala Glu Lys Val Gln Lys L ys Phe Leu Gly Arg Pro Leu 65 70 75 80 GAT GTC TGG AAG CTC TAC TTT ACT CAC CCG CAG GAC GTC CCA GCG ATA 288 Asp Val Trp Lys Leu Tyr Phe Thr His Pro Gln Asp Val Pro Ala Ile 85 90 95 AGG GAC AAG ATA CGA GAG CAT CCG GCA GTT ATT GAC ATC TAC GAG TAC 336 Arg Asp Lys Ile Arg Glu His Pro Ala Val Ile Asp Ile Tyr Glu Tyr 100 105 110 GAC ATA CCC TTC GCC AAG CGC TAT CTC ATT GAC AAG GGC CTA ATC CCG 384 Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Lys Gly Leu Ile Pro 115 120 125 ATG GAG GGC GAT GAA GAG CTG AAA ATG CTA GCC TTC GAC ATT GAA ACG 432 Met Glu Gly Asp Glu Glu Leu Lys Met Leu Ala Phe Asp Ile Glu Thr 130 135 140 CTC TAC CAC GAG GGC GAG GAG TTT GCC GAG GGG CCA ATC CTT ATG ATA 480 Leu Tyr His Glu Gly Glu Glu Phe Ala Glu Gly Pro Ile Leu Met Ile 145 150 155 160 AGC TAC GCC GAC GAA GAA GGA GCG AGG GTG ATA ACG TGG AAG AAC ATA 528 Ser Tyr Ala Asp Glu Glu Gly Ala Arg Val Ile Thr Trp Lys Asn Ile 165 170 175 GAC CTC CCC TAC GTT GAC GTC GTC TCG ACG GAG AGG GAG ATG ATA AAG 576 Asp Leu Pro Tyr Val Asp Val Val Ser Thr Glu Arg Glu Met Ile Lys 180 185 190 CGC TTT CTC AGG ATT GTG AAG GAG AAA GAC CCG GAC GTA CTG ATA ACG 624 Arg Phe Leu Arg Ile Val Lys Glu Lys Asp Pro Asp Val Leu Ile Thr 195 200 205 TAC AAC GGT GAC AAC TTT GAC TTT GCC TAC CTC AAG AAG CGC TGT GAA 672 Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys Lys Arg Cys Glu 210 215 220 AAG CTT GGA ATA AAC TTT GCC CTC GGA AGG GAC GGA AGC GAG CCT AGA 720 Lys Leu Gly Ile Asn Phe Ala Leu Gly Arg Asp Gly Ser Glu Pro Lys 225 230 235 240 ATT CAG AGG ATG GGC GAT AGG TTT GCT GTC GAG GTT AAG GGC AGG ATA 768 Ile Gln Arg Met Gly Asp Arg Phe Ala Val Glu Val Lys Gly Arg Ile 245 250 255 CAC TTT GAT CTC TAC CCC GTG ATA AGA CGG ACG ATA AAC CTC CCC ACA 816 His Phe Asp Leu Tyr Pro Val Ile Arg Arg Thr Ile Asn Leu Pro Thr 260 265 270 TAT ACG CTT GAG GCT GTC TAT GAA GCG ATC TTT GGA AAG CCA AAG GAG 864 Tyr Thr Leu Glu Ala Val Tyr Glu Ala Ile Phe Gly Lys Pro Lys Glu 275 280 285 AAA GTC TAC GCC GAG GAG ATA GCC ACC GCT TGG GAG AGC GGG GAG GGG 912 Lys Val Tyr Ala Glu Glu Ile Ala Thr Ala Trp Glu Ser Gly Glu Gly 290 295 300 CTT GAG AGG GTA GCT AAA TAC TCT ATG GAG GAC GCC AAG GTT ACC TAC 960 Leu Glu Arg Val Ala Lys Tyr Ser Met Glu Asp Ala Lys Val Thr Tyr 305 310 315 320 GAG CTC GGA AAG GAG TTC TTC CCG ATG GAG GCC CAG CTT TCC CGC TTG 1008 Glu Leu Gly Lys Glu Phe Phe Pro Met Glu Ala Gln Leu Ser Arg Leu 325 330 335 ATC GGC CAG TCC CTC TGG GAC GTT TCC CGC TCC AGC ACT GGC AAC CTC 1056 Ile Gly Gln Ser Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn Leu 340 345 350 GTC GAG TGG TTC CTC CTC CGG AAG GCC TAT GAG AGG AAC GAG CTG GCC 1104 Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Arg Asn Glu Leu Ala 355 360 365 CCG AAC AAG CCC GAT GAA AAG GAG CTG GCC AGA AGA CGG CAG AGC TAT 1152 Pro Asn Lys Pro Asp Glu Lys Glu Leu Ala Arg Arg Arg Gln Ser Tyr 370 375 380 GAA GGG GGC TAC GTA AAA GAG CCG GAG AGA GGT CTA TGG GAA AAC ATA 1200 Glu Gly Gly Tyr Val Lys Glu Pro Glu Arg Gly Leu Trp Glu Asn Ile 385 390 395 400 GTT TAT CTG GAT TTC CGT TCG CTG TAC CCC TCA ATC ATC ATC ACC CA C 1248 Val Tyr Leu Asp Phe Arg Ser Leu Tyr Pro Ser Ile Ile Ile Thr His 405 410 415 AAC GTC TCG CCG GAT ACT CTT AAC AGG GAA GGA TGC AAG GAG TAT GAC 1296 Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Lys Glu Tyr Asp 420 425 430 ACC TCC CCC CAG GTT GGC CAC CGC TTC TGC AAG GAC TTC CCG GGC TTC 1344 Thr Ser Pro Gln Val Gly His Arg Phe Cys Lys Asp Phe Pro Gly Phe 435 440 445 ATT CCG AGC CTC CTT GGG GCC CTG CTT GAG GAG AGG CAG AAG ATA AAG 1392 Ile Pro Ser Leu Leu Gly Ala Leu Leu Glu Glu Arg Gln Lys Ile Lys 450 455 460 AAG AGA ATG AAG GCA ACG ATT GAT CCA CTT GAG AAG AAG CTC CTT GAT 1440 Lys Arg Met Lys Ala Thr Ile Asp Pro Leu Glu Lys Lys Leu Leu Asp 465 470 475 480 TAC AGA CAG CGG GCT ATC AAG ATC CTA GCA AAC AGT TTT TAC GGC TAC 1488 Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Phe Tyr Gly Tyr 485 490 495 TAC GGC TAT GCA AAG GCC CGC TGG TAC TGC AAG GAG TGT GCA GAG AGC 1536 Tyr Gly Tyr Ala Lys Ala Arg Trp Tyr Cys Lys Glu Cys Ala Glu Ser 500 505 510 GTC ACT GCC TGG GGA AGG GAG TAC ATA ACG ATG ACC ATC AGG GAG ATA 1584 Val Thr Ala Trp Gly Arg Glu Tyr Ile Thr Met Thr Ile Arg Glu Ile 515 520 525 GAG GAA AAG TAC GGC TTT AAA GTG CTG TAC GCT GAC AGC GTT ACG GGT 1632 Glu Glu Lys Tyr Gly Phe Lys Val Leu Tyr Ala Asp Ser Val Thr Gly 530 535 540 GAC TCT GAG GTC ATC ATA AGA AGA AAT GGC CGC ATT GAG TTC ATT CCT 1680 Asp Ser Glu Val Ile Ile Arg Arg Asn Gly Arg Ile Glu Phe Ile Pro 545 550 555 560 ATC GAA AAG CTC TTC GAA AGA GTG GAC TAC ACA GTT GGG GAG AAG GAG 1728 Ile Glu Lys Leu Phe Glu Arg Val Asp Tyr Thr Val Gly Glu Lys Glu 565 570 575 TAT CAT GTT CTA TCA TCA AAT GTT GAA GCT CTA ACA CTC GAC GAC AAC 1776 Tyr His Val Leu Ser Ser Asn Val Glu Ala Leu Thr Leu Asp Asp Asn 580 585 590 GGA AAG CTT ACG TGG AGA AAA GTC CCT TAC GTA ATG AGA CAT AAA ACG 1824 Gly Lys Leu Thr Trp Arg Lys Val Pro Tyr Val Met Arg His Lys Thr 595 600 605 GAG AAG AAG ATT TAC CGC GTC TGG CTG ACC AAC AGC TGG TAC CTT GAT 1872 Glu Lys Lys Ile Tyr Arg Val Trp Leu Thr Asn Ser Trp Tyr Leu Asp 610 615 620 GTC ACG GAG GAC CAT TCT CTT ATA GGG TAC CTA AAC ACA TCA AGA GTA 1920 Val Thr Glu Asp His Ser Leu Ile Gly Tyr Leu Asn Thr Ser Arg Val 625 630 635 640 AGG GCT GGA AAG CCT CTA AAA GAC CGC CTT TGT GAG GTT AAG CCA CTG 1968 Arg Ala Gly Lys Pro Leu Lys Asp Arg Leu Cys Glu Val Lys Pro Leu 645 650 655 GAA CTT GGT AAA TCT GTG AAG TCC CTC ATA ACG CCA AGA GCA CCT CTC 2016 Glu Leu Gly Lys Ser Val Lys Ser Leu Ile Thr Pro Arg Ala Pro Leu 660 665 670 TCT AGG GGC ATA AAA CCC AAT GAA ATA GCC CTG AAA TTC TGG GAG CTG 2064 Ser Arg Gly Ile Lys Pro Asn Glu Ile Ala Leu Lys Phe Trp Glu Leu 675 680 685 GTT GGG CTT CTC GTT GGC GAT GGC AAT TGG GGA GGT ACA TCA AAC TGG 2112 Val Gly Leu Leu Val Gly Asp Gly Asn Trp Gly Gly Thr Ser Asn Trp 690 695 700 GCG AAG TAC TAC GTG GGA CTT GCA TGT GGA GAA GAC AAA GAA GAA ATC 2160 Ala Lys Tyr Tyr Val Gly Leu Ala Cys Gly Glu Asp Lys Glu Glu Ile 705 710 715 720 GCC GAG AAG GTA CTT GAC CCG CTA AAA CGT GCA GGA GTC ATA TCC AAC 2208 Ala Glu Lys Val Leu Asp Pro Leu Lys Arg Ala Gly Val Ile Ser Asn 725 730 735 TAC TAC GAC AAG AGC AAG AAG GGA GAC GTT TCG ATC TTA TCG AAG GGT 2256 Tyr Tyr Asp Lys Ser Lys Lys Gly Asp Val Ser Ile Leu Ser Lys Gly 740 745 750 CTC GCA AAG CTC ATG GTT AGA TAC TTT AAG GAT GAG GAC GGG AAC AAA 2304 Leu Ala Lys Leu Met Val Arg Tyr Phe Lys Asp Glu Asp Gly Asn Lys 755 760 765 AAG ATT CCA GAG TTT ATG TTC AAC CTC CCA AAA GAA TAC TTG GAG GCG 2352 Lys Ile Pro Glu Phe Met Phe Asn Leu Pro Lys Glu Tyr Leu Glu Ala 770 775 780 TTT CTC AGG GGA TTG TTC AGT GCA GAT GGT ACT GTT AGC GTG AAG AGA 2400 Phe Leu Arg Gly Leu Phe Ser Ala Asp Gly Thr Val Ser Val Lys Arg 785 790 795 800 GGT GTA CCT GAA GTC AGG CTC ACG ACG ATT AGT GAT AGA TTA GCT AGT 2448 Gly Val Pro Glu Val Arg Leu Thr Thr Ile Ser Asp Arg Leu Ala Ser 805 810 815 GAC GTT AGA AAA CTG CTT TGG CTT GTG GGA ATT TCA AAT TCC ATC TTC 2496 Asp Val Arg Lys Leu Leu Trp Leu Val Gly Ile Ser Asn Ser Ile Phe 820 825 830 AGG GAG CAA AAT CCC AAC AGG TAC AAT GGA AAG TCG AGT GGC ACT TAC 2544 Arg Glu Gln Asn Pro Asn Arg Tyr Asn Gly Lys Ser Ser Gly T hr Tyr 835 840 845 TCC AAG CAC GTC CGC ATA AAG GAC AAA CTC CAG TTT GCG CAG AGA ATT 2592 Ser Lys His Val Arg Ile Lys Asp Lys Leu Gln Phe Ala Gln Arg Ile 850 855 860 AGA TTC ATA ATC AAC AGA AAA CAA GAA AAG CTC ATT AAA AAT CTA AAG 2640 Arg Phe Ile Ile Asn Arg Lys Gln Glu Lys Leu Ile Lys Asn Leu Lys 865 870 875 880 GAG TCA CAG TAC AAG AGA ACG ACG TTT AAG TAC GAG TTT GAC ATC ACT 2688 Glu Ser Gln Tyr Lys Arg Thr Thr Phe Lys Tyr Glu Phe Asp Ile Thr 885 890 895 CCC GTC AAG AAA GTT GAA GAG GTA ACC TAT AAT GGG TAC GTC TAC GAT 2736 Pro Val Lys Lys Val Glu Glu Val Thr Tyr Asn Gly Tyr Val Tyr Asp 900 905 910 ATC GAG GTT GAA GGC ACT CAT AGG TTC TTC GCT AAC GGA ATA CTA GTT 2784 Ile Glu Val Glu Gly Thr His Arg Phe Phe Ala Asn Gly Ile Leu Val 915 920 925 CAT AAT ACA GAC GGT TTC TTC GCG ACA ATA CCT GGA GCC GAT GCT GAA 2832 His Asn Thr Asp Gly Phe Phe Ala Thr Ile Pro Gly Ala Asp Ala Glu 930 935 940 ACC GTC AAA AAG AAG GCA ATG GAG TTC ATC AAT TAC ATC AAC GAC AAG 2880 Thr Val Lys Lys Lys Ala Met Glu Phe I le Asn Tyr Ile Asn Asp Lys 945 950 955 960 CTT CCA GGT GCG CTT GAG CTC GAG TAT GAG GGT TTC TAC AAA CGC GGC 2928 Leu Pro Gly Ala Leu Glu Leu Glu Tyr Glu Gly Phe Tyr Lys Arg Gly 965 970 975 TTC TTC GTC GTC ACG AAG AAG AAG TAC GCG GTG ATA GAC GAG GAA GGC AAG 2976 Phe Phe Val Thr Lys Lys Lys Tyr Ala Val Ile Asp Glu Glu Gly Lys 980 985 990 ATA ACA ACG CGC GGA CTT GAG ATT GTG AGG CGC GAC TGG AGC GAG ATA 30 Ile Thr Thr Arg Gly Leu Glu Ile Val Arg Arg Asp Trp Ser Glu Ile 995 1000 1005 GCG AAA GAG ACG CAG GCA AGG GTT CTT GAA GCT TTG CTA AAG GAC GGT 3072 Ala Lys Glu Thr Gln Ala Arg Val Leu Glu Ala Leu Leu Lys Asp Gly 1010 1015 1020 GAC GTC GAA AAG GCC GTG AGG ATA GTC AAG GAA GTC ACT GAA AAG CTG 3120 Asp Val Glu Lys Ala Val Arg Ile Val Lys Glu Val Thr Glu Lys Leu 1025 1030 1035 1040 AGC AAG TAC GAG GTT TCG CCG GAG AAG CTG GTG ATC CAC GAG CAG ATA 3168 Ser Lys Tyr Glu Val Ser Pro Glu Lys Leu Val Ile His Glu Gln Ile 1045 1050 1055 ACG AGG GAT TTA AAG GAC TAC AAG GCG ACG GGA CCC CAC GTT GCC GTT 3216 Th r Arg Asp Leu Lys Asp Tyr Lys Ala Thr Gly Pro His Val Ala Val 1060 1065 1070 GCC AAG AGG TTA GCC GCG AGA GGA GTC AAA ATA CGC CCT GGA ACG GTG 3264 Ala Lys Arg Leu Ala Ala Arg Gly Val Lys Ile Arg Pro Gly Thr Val 1075 1080 1085 ATA AGC TAC ATC GTG CTA AAG GGC TCT GGA AGG ATA GGC GAC AGG GCA 3312 Ile Ser Tyr Ile Val Leu Lys Gly Ser Gly Arg Ile Gly Asp Arg Ala 1090 1095 1100 ATA CCG TTC GAC GAG TTC GAC CCG ACG AAG CAC AAG TAC GAC GCC GAG 3360 Ile Pro Phe Asp Glu Phe Asp Pro Thr Lys His Lys Tyr Asp Ala Glu 1105 1110 1115 1120 TAC TAC ATT GAG AAC CAG GTT CTC CCA GCC GTT GAG AGA ATT CTG AGA 3408 Tyr Tyr Ile Glu Asn Gln Val Leu Pro Ala Val Glu Arg Ile Leu Arg 1125 1130 1135 GCC TTC GGT TAT CGC AAG GAA GAC CTG CGC TAC CAG AAG ACG AGA CAG 3456 Ala Phe Gly Tyr Arg Lys Glu Asp Leu Arg Tyr Gln Lys Thr Arg Gln 1140 1145 1150 GTT GGT TTG AGT GCT TGG CTG AAG CCG AAG GGA AAG TAGGGAATTA 3502 Val Gly Leu Ser Ala Trp Leu Lys Pro Lys Gly Lys 1155 1160 ACCCTTCCAG GTGAATGGAA TGGAACTAGA AATCCGTCGA AGTCCCGTCA A GTATGCGAG 3562 GATAGAAGTG AAGCCGGACG GCAGGGTAGT CGTCACCGCC CCCGAGGGGT TCAACGTTGA 3622 GGAGTTCATA GCAAAGAACG CCGCCTGGCT GGGACTCCTGACATGACTAG 682GAAAGAGCTT ATCCCGGCGCCAG

【0057】配列番号4 配列の長さ:2376 配列の型:核酸(DNA) トポロジー:直鎖状 配列の種類:合成DNA 起源:Thermococcus peptonophilus 株名:SM−2 配列の特徴 1−2322 CDS ATG ATC CTC GAC ACT GAC TAC ATA ACT GAG AAT GGA AAG CCC GTC ATC 48 Met Ile Leu Asp Thr Asp Tyr Ile Thr Glu Asn Gly Lys Pro Val Ile 1 5 10 15 AGG ATT TTC AAG AAG GAA AAC GGC GAG TTC ACG ATC GAG TAC GAC AGG 96 Arg Ile Phe Lys Lys Glu Asn Gly Glu Phe Thr Ile Glu Tyr Asp Arg 20 25 30 ACT TTT GAG CCC TAT ATC TAC GCC CTC CTG AAG GAC GAT TCT GCA ATA 144 Thr Phe Glu Pro Tyr Ile Tyr Ala Leu Leu Lys Asp Asp Ser Ala Ile 35 40 45 GAG GAA GTC AAG AAG ATA ACT GCC GAG AGA CAC GGG ACG GTT GTA ACG 192 Glu Glu Val Lys Lys Ile Thr Ala Glu Arg His Gly Thr Val Val Thr 50 55 60 GTT AAG CGA GCT GAA AAG GTT CAG AAG AAG TTC CTC GGA AGA CCG TTG 240 Val Lys Arg Ala Glu Lys Val Gln Lys Lys Phe Leu Gly Arg Pro Leu 65 70 75 80 GAT GTC TGG AAG CTC TAC TTT ACT CAC CCG CAG GAC GTC CCA GCG ATA 288 Asp Val Trp Lys Leu Tyr Phe Thr His Pro Gln Asp Val Pro Ala Ile 85 90 95 AGG GAC AAG ATA CGA GAG CAT CCG GCA GTT ATT GAC ATC TAC GAG TAC 336 Arg Asp Lys Ile Arg Glu His Pro Ala Val Ile Asp Ile Tyr Glu Tyr 100 105 110 GAC ATA CCC TTC GCC AAG CGC TAT CTC ATT GAC AAG GGC CTA ATC CCG 384 Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Lys Gly Leu Ile Pro 115 120 125 ATG GAG GGC GAT GAA GAG CTG AAA ATG CTA GCC TTC GAC ATT GAA ACG 432 Met Glu Gly Asp Glu Glu Leu Lys Met Leu Ala Phe Asp Ile Glu Thr 130 135 140 CTC TAC CAC GAG GGC GAG GAG TTT GCC GAG GGG CCA ATC CTT ATG ATA 480 Leu Tyr His Glu Gly Glu Glu Phe Ala Glu Gly Pro Ile Leu Met Ile 145 150 155 160 AGC TAC GCC GAC GAA GAA GGA GCG AGG GTG ATA ACG TGG AAG AAC ATA 528 Ser Tyr Ala Asp Glu Glu Gly Ala Arg Val Ile Thr Trp Lys Asn Ile 165 170 175 GAC CTC CCC TAC GTT GAC GTC GTC TCG ACG GAG AGG GAG ATG ATA AAG 576 Asp Leu Pro Tyr Val Asp Val Val Ser Thr Glu Arg Glu Met Ile Lys 180 185 190 CGC TTT CTC AGG ATT GTG AAG GAG AAA GAC CCG GAC GTA CTG ATA ACG 624 Arg Phe Leu Arg Ile Val Lys Glu Lys Asp Pro Asp Val Leu Ile Thr 195 200 205 TAC AAC GGT GAC AAC TTT GAC TTT GCC TAC CTC AAG AAG CGC TGT GAA 672 Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys Lys Arg Cys Glu 210 215 220 AAG CTT GGA ATA AAC TTT GCC CTC GGA AGG GAC GGA AGC GAG CCT AAG 720 Lys Leu Gly Ile Asn Phe Ala Leu Gly Arg Asp Gly Ser Glu Pro Lys 225 230 235 240 ATT CAG AGG ATG GGC GAT AGG TTT GCT GTC GAG GTT AAG GGC AGG ATA 768 Ile Gln Arg Met Gly Asp Arg Phe Ala Val Glu Val Lys Gly Arg Ile 245 250 255 CAC TTT GAT CTC TAC CCC GTG ATA AGA CGG ACG ATA AAC CTC CCC ACA 816 His Phe Asp Leu Tyr Pro Val Ile Arg Arg Thr Ile Asn Leu Pro Thr 260 265 270 TAT ACG CTT GAG GCT GTC TAT GAA GCG ATC TTT GGA AAG CCA AAG GAG 864 Tyr Thr Leu Glu Ala Val Tyr Glu Ala Ile Phe Gly Lys Pro Lys Glu 275 280 285 AAA GTC TAC GCC GAG GAG ATA GCC ACC GCT TGG GAG AGC GGG GAG GGG 912 Lys Val Tyr Ala Glu Glu Ile Ala Thr Ala Trp Glu Ser Gly Glu Gly 290 295 300 CTT GAG AGG GTA GCT AAA TAC TCT ATG GAG GAC GCC AAG GTT ACC TAC 960 Leu Glu Arg Val Ala Lys Tyr Ser Met Glu Asp Ala Lys Val Thr Tyr 305 310 315 320 GAG CTC GGA AAG GAG TTC TTC CCG ATG GAG GCC CAG CTT TCC CGC TTG 1008 Glu Leu Gly Lys Glu Phe Phe Pro Met Glu Ala Gln Leu Ser Arg Leu 325 330 335 ATC GGC CAG TCC CTC TGG GAC GTT TCC CGC TCC AGC ACT GGC AAC CTC 1056 Ile Gly Gln Ser Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn Leu 340 345 350 GTC GAG TGG TTC CTC CTC CGG AAG GCC TAT GAG AGG AAC GAG CTG GCC 1104 Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Arg Asn Glu Leu Ala 355 360 365 CCG AAC AAG CCC GAT GAA AAG GAG CTG GCC AGA AGA CGG CAG AGC TAT 1152 Pro Asn Lys Pro Asp Glu Lys Glu Leu Ala Arg Arg Arg Gln Ser Tyr 370 375 380 GAA GGG GGC TAC GTA AAA GAG CCG GAG AGA GGT CTA TGG GAA AAC ATA 1200 Glu Gly Gly Tyr Val Lys Glu Pro Glu Arg Gly Leu Trp Glu Asn Ile 385 390 395 400 GTT TAT CTG GAT TTC CGT TCG CTG TAC CCC TCA ATC ATC ATC ACC CAC 1248 Val Tyr Leu Asp Phe Arg Ser Leu Tyr Pro Ser Ile Ile Ile Thr His 405 410 415 AAC GTC TCG CCG GAT ACT CTT AAC AGG GAA GGA TGC AAG GAG TAT GAC 1296 Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Lys Glu Tyr Asp 420 425 430 ACC TCC CCC CAG GTT GGC CAC CGC TTC TGC AAG GAC TTC CCG GGC TTC 1344 Thr Ser Pro Gln Val Gly His Arg Phe Cys Lys Asp Phe Pro Gly Phe 435 440 445 ATT CCG AGC CTC CTT GGG GCC CTG CTT GAG GAG AGG CAG AAG ATA AAG 1392 Ile Pro Ser Leu Leu Gly Ala Leu Leu Glu Glu Arg Gln Lys Ile Lys 450 455 460 AAG AGA ATG AAG GCA ACG ATT GAT CCA CTT GAG AAG AAG CTC CTT GAT 1440 Lys Arg Met Lys Ala Thr Ile Asp Pro Leu Glu Lys Lys Leu Leu Asp 465 470 475 480 TAC AGA CAG CGG GCT ATC AAG ATC CTA GCA AAC AGT TTT TAC GGC TAC 1488 Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Phe Tyr Gly Tyr 485 490 495 TAC GGC TAT GCA AAG GCC CGC TGG TAC TGC AAG GAG TGT GCA GAG AGC 1536 Tyr Gly Tyr Ala Lys Ala Arg Trp Tyr Cys Lys Glu Cys Ala Glu Ser 500 505 510 GTC ACT GCC TGG GGA AGG GAG TAC ATA ACG ATG ACC ATC AGG GAG ATA 1584 Val Thr Ala Trp Gly Arg Glu Tyr Ile Thr Met Thr Ile Arg Glu Ile 515 520 525 GAG GAA AAG TAC GGC TTT AAA GTG CTG TAC GCT GAT ACA GAC GGT TTC 1632 Glu Glu Lys Tyr Gly Phe Lys Val Leu Tyr Ala Asp Thr Asp Gly Phe 530 535 540 TTC GCG ACA ATA CCT GGA GCC GAT GCT GAA ACC GTC AAA AAG AAG GCA 1680 Phe Ala Thr Ile Pro Gly Ala Asp Ala Glu Thr Val Lys Lys Lys Ala 545 550 555 560 ATG GAG TTC ATC AAT TAC ATC AAC GAC AAG CTT CCA GGT GCG CTT GAG 1728 Met Glu Phe Ile Asn Tyr Ile Asn Asp Lys Leu Pro Gly Ala Leu Glu 565 570 575 CTC GAG TAT GAG GGT TTC TAC AAA CGC GGC TTC TTC GTC ACG AAG AAG 1776 Leu Glu Tyr Glu Gly Phe Tyr Lys Arg Gly Phe Phe Val Thr Lys Lys 580 585 590 AAG TAC GCG GTG ATA GAC GAG GAA GGC AAG ATA ACA ACG CGC GGA CTT 1824 Lys Tyr Ala Val Ile Asp Glu Glu Gly Lys Ile Thr Thr Arg Gly Leu 595 600 605 GAG ATT GTG AGG CGC GAC TGG AGC GAG ATA GCG AAA GAG ACG CAG GCA 1872 Glu Ile Val Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln Ala 610 615 620 AGG GTT CTT GAA GCT TTG CTA AAG GAC GGT GAC GTC GAA AAG GCC GTG 1920 Arg Val Leu Glu Ala Leu Leu Lys Asp Gly Asp Val Glu Lys Ala Val 625 630 635 640 AGG ATA GTC AAG GAA GTC ACT GAA AAG CTG AGC AAG TAC GAG GTT TCG 1968 Arg Ile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Val Ser 645 650 655 CCG GAG AAG CTG GTG ATC CAC GAG CAG ATA ACG AGG GAT TTA AAG GAC 2016 Pro Glu Lys Leu Val Ile His Glu Gln Ile Thr Arg Asp Leu Lys Asp 660 665 670 TAC AAG GCG ACG GGA CCC CAC GTT GCC GTT GCC AAG AGG TTA GCC GCG 2064 Tyr Lys Ala Thr Gly Pro His Val Ala Val Ala Lys Arg Leu Ala Ala 675 680 685 AGA GGA GTC AAA ATA CGC CCT GGA ACG GTG ATA AGC TAC ATC GTG CTA 2112 Arg Gly Val Lys Ile Arg Pro Gly Thr Val Ile Ser Tyr Ile Val Leu 690 695 700 AAG GGC TCT GGA AGG ATA GGC GAC AGG GCA ATA CCG TTC GAC GAG TTC 2160 Lys Gly Ser Gly Arg Ile Gly Asp Arg Ala Ile Pro Phe Asp Glu Phe 705 710 715 720 GAC CCG ACG AAG CAC AAG TAC GAC GCC GAG TAC TAC ATT GAG AAC CAG 2208 Asp Pro Thr Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn Gln 725 730 735 GTT CTC CCA GCC GTT GAG AGA ATT CTG AGA GCC TTC GGT TAT CGC AAG 2256 Val Leu Pro Ala Val Glu Arg Ile Leu Arg Ala Phe Gly Tyr Arg Lys 740 745 750 GAA GAC CTG CGC TAC CAG AAG ACG AGA CAG GTT GGT TTG AGT GCT TGG 2304 Glu Asp Leu Arg Tyr Gln Lys Thr Arg Gln Val Gly Leu Ser Ala Trp 755 760 765 CTG AAG CCG AAG GGA AAG TAGGGAATTA ACCCTTCCAG GTGAATGGAA 2352 Leu Lys Pro Lys Gly Lys 770 TGGAACTAGA AATCCGTCGT CGAC 2376 SEQ ID NO: 4 Sequence length: 2376 Sequence type: Nucleic acid (DNA) Topology: Linear Sequence type: Synthetic DNA Origin: Thermococcus peptonophilus Strain name: SM-2 Sequence characteristics 1-2322 CDS ATG ATC CTC GAC ACT GAC TAC ATA ACT GAG AAT GGA AAG CCC GTC ATC 48 Met Ile Leu Asp Thr Asp Tyr Ile Thr Glu Asn Gly Lys Pro Val Ile 1 5 10 15 AGG ATT TTC AAG AAG GAA AAC GGC GAG TTC ACG ATC GAG TAC GAC AGG 96 Arg Ile Phe Lys Lys Glu Asn Gly Glu Phe Thr Ile Glu Tyr Asp Arg 20 25 30 ACT TTT GAG CCC TAT ATC TAC GCC CTC CTG AAG GAC GAT TCT GCA ATA 144 Thr Phe Glu Pro Tyr Ile Tyr Ala Leu Leu Lys Asp Asp Ser Ala Ile 35 40 45 GAG GAA GTC AAG AAG ATA ACT GCC GAG AGA CAC GGG ACG GTT GTA ACG 192 Glu Glu Val Lys Lys Ile Thr Ala Glu Arg His Gly Thr Val Val Thr 50 55 60 GTT AAG CGA GCT GAA AAG GTT CAG AAG AAG TTC CTC GGA AGA CCG TTG 240 Val Lys Arg Ala Glu Lys Val Gln Lys Lys Phe Leu Gly Arg Pro Leu 65 70 75 80 GAT GTC TGG AAG CTC TAC TT T ACT CAC CCG CAG GAC GTC CCA GCG ATA 288 Asp Val Trp Lys Leu Tyr Phe Thr His Pro Gln Asp Val Pro Ala Ile 85 90 95 AGG GAC AAG ATA CGA GAG CAT CCG GCA GTT ATT GAC ATC TAC GAG TAC 336 Arg Asp Lys Ile Arg Glu His Pro Ala Val Ile Asp Ile Tyr Glu Tyr 100 105 110 GAC ATA CCC TTC GCC AAG CGC TAT CTC ATT GAC AAG GGC CTA ATC CCG 384 Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Lys Gly Leu Ile Pro 115 120 125 ATG GAG GGC GAT GAA GAG CTG AAA ATG CTA GCC TTC GAC ATT GAA ACG 432 Met Glu Gly Asp Glu Glu Leu Lys Met Leu Ala Phe Asp Ile Glu Thr 130 135 140 CTC TAC CAC GAG GGC GAG GAG TTT GCC GAG GGG CCA ATC CTT ATG ATA 480 Leu Tyr His Glu Gly Glu Glu Phe Ala Glu Gly Pro Ile Leu Met Ile 145 150 155 160 AGC TAC GCC GAC GAA GAA GGA GCG AGG GTG ATA ACG TGG AAG AAC ATA 528 Ser Tyr Ala Asp Glu Glu Gly Ala Arg Val Ile Thr Trp Lys Asn Ile 165 170 175 GAC CTC CCC TAC GTT GAC GTC GTC TCG ACG GAG AGG GAG ATG ATA AAG 576 Asp Leu Pro Tyr Val Asp Val Val Ser Thr Glu Arg Glu Met Ile Lys 180 185 190 CGC TTT CTC AGG A TT GTG AAG GAG AAA GAC CCG GAC GTA CTG ATA ACG 624 Arg Phe Leu Arg Ile Val Lys Glu Lys Asp Pro Asp Val Leu Ile Thr 195 200 205 TAC AAC GGT GAC AAC TTT GAC TTT GCC TAC CTC AAG AAG CGC TGT GAA 672 Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys Lys Arg Cys Glu 210 215 220 AAG CTT GGA ATA AAC TTT GCC CTC GGA AGG GAC GGA AGC GAG CCT AAG 720 Lys Leu Gly Ile Asn Phe Ala Leu Gly Arg Asp Gly Ser Glu Pro Lys 225 230 235 240 ATT CAG AGG ATG GGC GAT AGG TTT GCT GTC GAG GTT AAG GGC AGG ATA 768 Ile Gln Arg Met Gly Asp Arg Phe Ala Val Glu Val Lys Gly Arg Ile 245 250 255 CAC TTT GAT CTC TAC CCC GTG ATA AGA CGG ACG ATA AAC CTC CCC ACA 816 His Phe Asp Leu Tyr Pro Val Ile Arg Arg Thr Ile Asn Leu Pro Thr 260 265 270 TAT ACG CTT GAG GCT GTC TAT GAA GCG ATC TTT GGA AAG CCA AAG GAG 864 Tyr Thr Leu Glu Ala Val Tyr Glu Ala Ile Phe Gly Lys Pro Lys Glu 275 280 285 AAA GTC TAC GCC GAG GAG ATA GCC ACC GCT TGG GAG AGC GGG GAG GGG 912 Lys Val Tyr Ala Glu Glu Ile Ala Thr Ala Trp Glu Ser Gly Glu Gly 290 295 300 CTT G AG AGG GTA GCT AAA TAC TCT ATG GAG GAC GCC AAG GTT ACC TAC 960 Leu Glu Arg Val Ala Lys Tyr Ser Met Glu Asp Ala Lys Val Thr Tyr 305 310 315 320 GAG CTC GGA AAG GAG TTC TTC CCG ATG GAG GCC CAG CTT TCC CGC TTG 1008 Glu Leu Gly Lys Glu Phe Phe Pro Met Glu Ala Gln Leu Ser Arg Leu 325 330 335 ATC GGC CAG TCC CTC TGG GAC GTT TCC CGC TCC AGC ACT GGC AAC CTC 1056 Ile Gly Gln Ser Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn Leu 340 345 350 GTC GAG TGG TTC CTC CTC CGG AAG GCC TAT GAG AGG AAC GAG CTG GCC 1104 Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Arg Asn Glu Leu Ala 355 360 365 CCG AAC AAG CCC GAT GAA AAG GAG CTG GCC AGA AGA CGG CAG AGC TAT 1152 Pro Asn Lys Pro Asp Glu Lys Glu Leu Ala Arg Arg Arg Gln Ser Tyr 370 375 380 GAA GGG GGC TAC GTA AAA GAG CCG GAG AGA GGT CTA TGG GAA AAC ATA 1200 Glu Gly Gly Tyr Val Lys Glu Pro Glu Arg Gly Leu Trp Glu Asn Ile 385 390 395 400 GTT TAT CTG GAT TTC CGT TCG CTG TAC CCC TCA ATC ATC ATC ACC CAC 1248 Val Tyr Leu Asp Phe Arg Ser Leu Tyr Pro Ser Ile Ile Ile Thr His 405 410 415 AAC GTC TCG CCG GAT ACT CTT AAC AGG GAA GGA TGC AAG GAG TAT GAC 1296 Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Lys Glu Tyr Asp 420 425 430 ACC TCC CCC CAG GTT GGC CAC CGC TTC TGC AAG GAC TTC CCG GGC TTC 1344 Thr Ser Pro Gln Val Gly His Arg Phe Cys Lys Asp Phe Pro Gly Phe 435 440 445 ATT CCG AGC CTC CTT GGG GCC CTG CTT GAG GAG AGG CAG AAG ATA AAG 1392 Ile Pro Ser Leu Leu Gly Ala Leu Leu Glu Arg Gln Lys Ile Lys 450 455 460 AAG AGA ATG AAG GCA ACG ATT GAT CCA CTT GAG AAG AAG CTC CTT GAT 1440 Lys Arg Met Lys Ala Thr Ile Asp Pro Leu Glu Lys Lys Leu Leu Asp 465 470 475 480 TAC AGA CAG CGG GCT ATC AAG ATC CTA GCA AAC AGT TTT TAC GGC TAC 1488 Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Phe Tyr Gly Tyr 485 490 495 TAC GGC TAT GCA AAG GCC CGC TGG TAC TGC AAG GAG TGT GCA GAG TGT GCA AGC 1536 Tyr Gly Tyr Ala Lys Ala Arg Trp Tyr Cys Lys Glu Cys Ala Glu Ser 500 505 510 GTC ACT GCC TGG GGA AGG GAG TAC ATA ACG ATG ACC ATC AGG GAG ATA 1584 Val Thr Ala Trp Gly Arg Glu Tyr Ile Thr Met Thr Ile Arg Glu Ile 515 520 525 GAG GAA AAG TAC GGC TTT AAA GTG CTG TAC GCT GAT ACA GAC GGT TTC 1632 Glu Glu Lys Tyr Gly Phe Lys Val Leu Tyr Ala Asp Thr Asp Gly Phe 530 535 540 TTC GCG ACA ATA CCT GGA GCC GAT GCT GAA ACC GTC AAA AAG AAG GCA 1680 Phe Ala Thr Ile Pro Gly Ala Asp Ala Glu Thr Val Lys Lys Lys Ala 545 550 555 560 ATG GAG TTC ATC AAT TAC ATC AAC GAC AAG CTT CCA GGT GCG CTT GAG 1728 Met Glu Phe Ile Asn Tyr Ile Asn Asp Lys Leu Pro Gly Ala Leu Glu 565 570 575 CTC GAG TAT GAG GGT TTC TAC AAA CGC GGC TTC TTC GTC ACG AAG AAG 1776 Leu Glu Tyr Glu Gly Phe Tyr Lys Arg Gly Phe Phe Val Thr Lys Lys 580 585 590 AAG TAC GCG GTG ATA GAC GAG GAA GGC AAG ATA ACA ACG CGC GGA CTT 1824 Lys Tyr Ala Val Ile Asp Glu Glu Gly Lys Ile Thr Thr Arg Gly Leu 595 600 605 GAG ATT GTG AGG CGC GAC TGG AGC GAG ATA GCG AAA GAG ACG CAG GCA 1872 Glu Ile Val Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln Ala 610 615 620 AGG GTT CTT GAA GCT TTG CTA AAG GAC GGT GAC GTC GAA AAG GCC GTG 1920 Arg Val Leu Glu Ala Leu Leu Lys Asp Gly Asp Val Glu Lys Ala Val 625 630 635 640 AGG ATA GTC AAG GAA GTC ACT GAA AAG CTG AGC AAG TAC GAG GTT TCG 1968 Arg Ile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Val Ser 645 650 655 CCG GAG AAG CTG GTG ATC CAC GAG CAG ATA ACG AGG GAT TTA AAG GAC 2016 Pro Glu Lys Leu Val Ile His Glu Gln Ile Thr Arg Asp Leu Lys Asp 660 665 670 TAC AAG GCG ACG GGA CCC CAC GTT GCC GTT GCC AAG AGG TTA GCC GCG 2064 Tyr Lys Ala Thr Gly Pro His Val Ala Val Ala Lys Arg Leu Ala Ala 675 680 685 AGA GGA GTC AAA ATA CGC CCT GGA ACG GTG ATA AGC TAC ATC GTG CTA 2112 Arg Gly Val Lys Ile Arg Pro Gly Thr Val Ile Ser Tyr Ile Val Leu 690 695 700 AAG GGC TCT GGA AGG ATA GGC GAC AGG GCA ATA CCG TTC GAC GAG TTC 2160 Lys Gly Ser Gly Arg Ile Gly Asp Arg Ala Ile Pro Phe Asp Glu Phe 705 710 715 720 GAC CCG ACG AAG CAC AAG TAC GAC GCC GAG TAC TAC ATT GAG AAC CAG 2208 Asp Pro Thr Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn Gln 725 730 735 GTT CTC CCA GCC GTT GAG AGA ATT CTG AGA GCC TTC GGT TAT CGC AAG 22 56 Val Leu Pro Ala Val Glu Arg Ile Leu Arg Ala Phe Gly Tyr Arg Lys 740 745 750 GAA GAC CTG CGC TAC CAG AAG ACG AGA CAG GTT GGT TTG AGT GCT TGG 2304 Glu Asp Leu Arg Tyr Gln Lys Thr Arg Gln Val Gly Leu Ser Ala Trp 755 760 765 CTG AAG CCG AAG GGA AAG TAGGGAATTA ACCCTTCCAG GTGAATGGAA 2352 Leu Lys Pro Lys Gly Lys 770 TGGAACTAGA AATCCGTCGT CGAC 2376

【0058】配列番号5 配列の長さ:774 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Ile Leu Asp Thr Asp Tyr Ile Thr Glu Asn Gly Lys Pro Val Ile 1 5 10 15 Arg Ile Phe Lys Lys Glu Asn Gly Glu Phe Thr Ile Glu Tyr Asp Arg 20 25 30 Thr Phe Glu Pro Tyr Ile Tyr Ala Leu Leu Lys Asp Asp Ser Ala Ile 35 40 45 Glu Glu Val Lys Lys Ile Thr Ala Glu Arg His Gly Thr Val Val Thr 50 55 60 Val Lys Arg Ala Glu Lys Val Gln Lys Lys Phe Leu Gly Arg Pro Leu 65 70 75 80 Asp Val Trp Lys Leu Tyr Phe Thr His Pro Gln Asp Val Pro Ala Ile 85 90 95 Arg Asp Lys Ile Arg Glu His Pro Ala Val Ile Asp Ile Tyr Glu Tyr 100 105 110 Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Lys Gly Leu Ile Pro 115 120 125 Met Glu Gly Asp Glu Glu Leu Lys Met Leu Ala Phe Asp Ile Glu Thr 130 135 140 Leu Tyr His Glu Gly Glu Glu Phe Ala Glu Gly Pro Ile Leu Met Ile 145 150 155 160 Ser Tyr Ala Asp Glu Glu Gly Ala Arg Val Ile Thr Trp Lys Asn Ile 165 170 175 Asp Leu Pro Tyr Val Asp Val Val Ser Thr Glu Arg Glu Met Ile Lys 180 185 190 Arg Phe Leu Arg Ile Val Lys Glu Lys Asp Pro Asp Val Leu Ile Thr 195 200 205 Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys Lys Arg Cys Glu 210 215 220 Lys Leu Gly Ile Asn Phe Ala Leu Gly Arg Asp Gly Ser Glu Pro Lys 225 230 235 240 Ile Gln Arg Met Gly Asp Arg Phe Ala Val Glu Val Lys Gly Arg Ile 245 250 255 His Phe Asp Leu Tyr Pro Val Ile Arg Arg Thr Ile Asn Leu Pro Thr 260 265 270 Tyr Thr Leu Glu Ala Val Tyr Glu Ala Ile Phe Gly Lys Pro Lys Glu 275 280 285 Lys Val Tyr Ala Glu Glu Ile Ala Thr Ala Trp Glu Ser Gly Glu Gly 290 295 300 Leu Glu Arg Val Ala Lys Tyr Ser Met Glu Asp Ala Lys Val Thr Tyr 305 310 315 320 Glu Leu Gly Lys Glu Phe Phe Pro Met Glu Ala Gln Leu Ser Arg Leu 325 330 335 Ile Gly Gln Ser Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn Leu 340 345 350 Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Arg Asn Glu Leu Ala 355 360 365 Pro Asn Lys Pro Asp Glu Lys Glu Leu Ala Arg Arg Arg Gln Ser Tyr 370 375 380 Glu Gly Gly Tyr Val Lys Glu Pro Glu Arg Gly Leu Trp Glu Asn Ile 385 390 395 400 Val Tyr Leu Asp Phe Arg Ser Leu Tyr Pro Ser Ile Ile Ile Thr His 405 410 415 Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Lys Glu Tyr Asp 420 425 430 Thr Ser Pro Gln Val Gly His Arg Phe Cys Lys Asp Phe Pro Gly Phe 435 440 445 Ile Pro Ser Leu Leu Gly Ala Leu Leu Glu Glu Arg Gln Lys Ile Lys 450 455 460 Lys Arg Met Lys Ala Thr Ile Asp Pro Leu Glu Lys Lys Leu Leu Asp 465 470 475 480 Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Phe Tyr Gly Tyr 485 490 495 Tyr Gly Tyr Ala Lys Ala Arg Trp Tyr Cys Lys Glu Cys Ala Glu Ser 500 505 510 Val Thr Ala Trp Gly Arg Glu Tyr Ile Thr Met Thr Ile Arg Glu Ile 515 520 525 Glu Glu Lys Tyr Gly Phe Lys Val Leu Tyr Ala Asp Thr Asp Gly Phe 530 535 540 Phe Ala Thr Ile Pro Gly Ala Asp Ala Glu Thr Val Lys Lys Lys Ala 545 550 555 560 Met Glu Phe Ile Asn Tyr Ile Asn A Lys Leu Pro Gly Ala Leu Glu 565 570 575 Leu Glu Tyr Glu Gly Phe Tyr Lys Arg Gly Phe Phe Val Thr Lys Lys 580 585 590 Lys Tyr Ala Val Ile Asp Glu Glu Gly Lys Ile Thr Thr Arg Gly Leu 595 600 605 Glu Ile Val Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln Ala 610 615 620 Arg Val Leu Glu Ala Leu Leu Lys Asp Gly Asp Val Glu Lys Ala Val 625 630 635 640 Arg Ile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Val Ser 645 650 655 Pro Glu Lys Leu Val Ile His Glu Gln Ile Thr Arg Asp Leu Lys Asp 660 665 670 Tyr Lys Ala Thr Gly Pro His Val Ala Val Ala Lys Arg Leu Ala Ala 675 680 685 Arg Gly Val Lys Ile Arg Pro Gly Thr Val Ile Ser Tyr Ile Val Leu 690 695 700 Lys Gly Ser Gly Arg Ile Gly Asp Arg Ala Ile Pro Phe Asp Glu Phe 705 710 715 720 Asp Pro Thr Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn Gln 725 730 735 Val Leu Pro Ala Val Glu Arg Ile Leu Arg Ala Phe Gly Tyr Arg Lys 740 745 750 Glu Asp Leu Arg Tyr Gln Lys Thr Arg Gln Val Gly Leu Ser Ala Trp 755 760 765 Leu Lys Pro Lys Gly Lys 770 SEQ ID NO: 5 Sequence length: 774 Sequence type: Amino acid Topology: Linear Sequence type: Protein sequence Met Ile Leu Asp Thr Asp Tyr Ile Thr Glu Asn Gly Lys Pro Val Ile 1 5 10 15 Arg Ile Phe Lys Lys Glu Asn Gly Glu Phe Thr Ile Glu Tyr Asp Arg 20 25 30 Thr Phe Glu Pro Tyr Ile Tyr Ala Leu Leu Lys Asp Asp Ser Ala Ile 35 40 45 Glu Glu Val Lys Lys Ile Thr Ala Glu Arg His Gly Thr Val Val Thr 50 55 60 Val Lys Arg Ala Glu Lys Val Gln Lys Lys Phe Leu Gly Arg Pro Leu 65 70 75 80 Asp Val Trp Lys Leu Tyr Phe Thr His Pro Gln Asp Val Pro Ala Ile 85 90 95 Arg Asp Lys Ile Arg Glu His Pro Ala Val Ile Asp Ile Tyr Glu Tyr 100 105 110 Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Lys Gly Leu Ile Pro 115 120 125 Met Glu Gly Asp Glu Glu Leu Lys Met Leu Ala Phe Asp Ile Glu Thr 130 135 140 Leu Tyr His Glu Gly Glu Glu Phe Ala Glu Gly Pro Ile Leu Met Ile 145 150 155 160 Ser Tyr Ala Asp Glu Glu Gly Ala Arg Val Ile Thr Trp Lys Asn Ile 165 170 175 Asp Leu Pro Tyr Val Asp Val Val Ser Thr Glu Arg Glu Met Ile Lys 180 185 190 Arg Phe Leu Arg Ile Val Lys Glu Lys Asp Pro Asp Val Leu Ile Thr 195 200 205 Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys Lys Arg Cys Glu 210 215 220 Lys Leu Gly Ile Asn Phe Ala Leu Gly Arg Asp Gly Ser Glu Pro Lys 225 230 235 240 Ile Gln Arg Met Gly Asp Arg Phe Ala Val Glu Val Lys Gly Arg Ile 245 250 255 His Phe Asp Leu Tyr Pro Val Ile Arg Arg Thr Ile Asn Leu Pro Thr 260 265 270 Tyr Thr Leu Glu Ala Val Tyr Glu Ala Ile Phe Gly Lys Pro Lys Glu 275 280 285 Lys Val Tyr Ala Glu Glu Ile Ala Thr Ala Trp Glu Ser Gly Glu Gly 290 295 300 Leu Glu Arg Val Ala Lys Tyr Ser Met Glu Asp Ala Lys Val Thr Tyr 305 310 315 320 Glu Leu Gly Lys Glu Phe Phe Pro Met Glu Ala Gln Leu Ser Arg Leu 325 330 335 Ile Gly Gln Ser Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn Leu 340 345 350 Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Arg Asn Glu Leu Ala 355 360 365 Pro Asn Lys Pro Asp Glu Lys Glu Leu Ala Arg Arg Arg Gln Ser Tyr 370 375 380 Glu Gly Gly Tyr Va l Lys Glu Pro Glu Arg Gly Leu Trp Glu Asn Ile 385 390 395 400 Val Tyr Leu Asp Phe Arg Ser Leu Tyr Pro Ser Ile Ile Ile Thr His 405 410 415 Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Lys Glu Tlu Asp 420 425 430 Thr Ser Pro Gln Val Gly His Arg Phe Cys Lys Asp Phe Pro Gly Phe 435 440 445 Ile Pro Ser Leu Leu Gly Ala Leu Leu Glu Glu Arg Gln Lys Ile Lys 450 455 460 Lys Arg Met Lys Ala Thr Ile Asp Pro Leu Glu Lys Lys Leu Leu Asp 465 470 475 480 Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Phe Tyr Gly Tyr 485 490 495 Tyr Gly Tyr Ala Lys Ala Arg Trp Tyr Cys Lys Glu Cys Ala Glu Ser 500 505 510 Val Thr Ala Trp Gly Arg Glu Tyr Ile Thr Met Thr Ile Arg Glu Ile 515 520 525 Glu Glu Lys Tyr Gly Phe Lys Val Leu Tyr Ala Asp Thr Asp Gly Phe 530 535 540 Phe Ala Thr Ile Pro Gly Ala Asp Ala Glu Thr Val Lys Lys Lys Ala 545 550 555 560 Met Glu Phe Ile Asn Tyr Ile Asn A Lys Leu Pro Gly Ala Leu Glu 565 570 575 Leu Glu Tyr Glu Gly Phe Tyr Lys Arg Gly Phe Phe Val Thr Lys Lys 580 585 590 Lys Tyr Ala Val Ile Asp Glu Glu Gly Lys Ile Thr Thr Arg Gly Leu 595 600 605 Glu Ile Val Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln Ala 610 615 620 Arg Val Leu Glu Ala Leu Leu Lys Asp Gly Asp Val Glu Lys Ala Val 625 630 635 640 Arg Ile Val Lys Glu Val Thr Glu Lys Leu Ser Lys Tyr Glu Val Ser 645 650 655 Pro Glu Lys Leu Val Ile His Glu Gln Ile Thr Arg Asp Leu Lys Asp 660 665 670 Tyr Lys Ala Thr Gly Pro His Val Ala Val Ala Lys Arg Leu Ala Ala 675 680 685 Arg Gly Val Lys Ile Arg Pro Gly Thr Val Ile Ser Tyr Ile Val Leu 690 695 700 Lys Gly Ser Gly Arg Ile Gly Asp Arg Ala Ile Pro Phe Asp Glu Phe 705 710 715 720 720 Asp Pro Thr Lys His Lys Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn Gln 725 730 735 Val Leu Pro Ala Val Glu Arg Ile Leu Arg Ala Phe Gly Tyr Arg Lys 740 745 750 Glu Asp Leu Arg Tyr Gln Lys Thr Arg Gln Val Gly Leu Ser Ala Trp 755 760 765 Leu Lys Pro Lys Gly Lys 770

【0059】配列番号6 配列の長さ:23 配列の型:核酸(DNA) 鎖の数:1本鎖 配列の種類:合成DNA 配列の特徴 配列 CCITTCGCIA AGCGITA(CT)CT CAT 23SEQ ID NO: 6 Sequence length: 23 Sequence type: Nucleic acid (DNA) Number of strands: Single strand Sequence type: Synthetic DNA Sequence features Sequence CCITTCGCIA AGCGITA (CT) CT CAT 23

【0060】配列番号7 配列の長さ:23 配列の型:核酸(DNA) 鎖の数:1本鎖 配列の種類:合成DNA 配列 AG(CT)TACCACT CIACIAGGTT ICC 23SEQ ID NO: 7 Sequence length: 23 Sequence type: Nucleic acid (DNA) Number of strands: Single strand Sequence type: Synthetic DNA Sequence AG (CT) TACCACT CIACIAGGTT ICC 23

【0061】配列番号8 配列の長さ:26 配列の型:核酸(DNA) 鎖の数:1本鎖 配列の種類:合成DNA 配列 GTIAGGCGIG ACTGGAG(CT)GA (AG)ATIGC 26SEQ ID NO: 8 Sequence length: 26 Sequence type: Nucleic acid (DNA) Number of strands: Single strand Sequence type: Synthetic DNA Sequence GTIAGGCGIG ACTGGAG (CT) GA (AG) ATIGC 26

【0062】配列番号9 配列の長さ:23 配列の型:核酸(DNA) 鎖の数:1本鎖 配列の種類:合成DNA 配列 ACIGCIGGCA IAAC(CT)TGGTT (CT)TC 23SEQ ID NO: 9 Sequence length: 23 Sequence type: Nucleic acid (DNA) Number of strands: Single strand Sequence type: Synthetic DNA Sequence ACIGCIGGCA IAAC (CT) TGGTT (CT) TC 23

【0063】配列番号10 配列の長さ:23 配列の型:核酸(DNA) 鎖の数:1本鎖 配列の種類:合成DNA 配列 GGTGTCCCAT ATGATCCTCG ACA 23SEQ ID NO: 10 Sequence length: 23 Sequence type: Nucleic acid (DNA) Number of strands: Single strand Sequence type: Synthetic DNA Sequence GGTGTCCCAT ATGATCCTCG ACA 23

【0064】配列番号11 配列の長さ:24 配列の型:核酸(DNA) 鎖の数:1本鎖 配列の種類:合成DNA 配列 CGTAACGATA TCAGCGTACA GCAG 24SEQ ID NO: 11 Sequence length: 24 Sequence type: Nucleic acid (DNA) Number of strands: Single strand Sequence type: Synthetic DNA Sequence CGTAACGATA TCAGCGTACA GCAG 24

【0065】配列番号12 配列の長さ:26 配列の型:核酸(DNA) 鎖の数:1本鎖 配列の種類:合成DNA 配列 ACAGACGGTT TCTTCGCGAC AATACC 26SEQ ID NO: 12 Sequence length: 26 Sequence type: Nucleic acid (DNA) Number of strands: Single strand Sequence type: Synthetic DNA Sequence ACAGACGGTT TCTTCGCGAC AATACC 26

【0066】配列番号13 配列の長さ:24 配列の型:核酸(DNA) 鎖の数:1本鎖 配列の種類:合成DNA 配列 GGGTCGTCGA CGGATTTCTA GTTC 24SEQ ID NO: 13 Sequence length: 24 Sequence type: Nucleic acid (DNA) Number of strands: Single strand Sequence type: Synthetic DNA Sequence GGGTCGTCGA CGGATTTCTA GTTC 24

【0067】配列番号14 配列の長さ:24 配列の型:核酸(DNA) 鎖の数:1本鎖 配列の種類:合成DNA 配列 CGCCAGGGTT TTCCCAGTCA CGAC 24SEQ ID NO: 14 Sequence length: 24 Sequence type: Nucleic acid (DNA) Number of strands: Single strand Sequence type: Synthetic DNA Sequence CGCCAGGGTT TTCCCAGTCA CGAC 24

【図面の簡単な説明】[Brief description of drawings]

【図1】pOGSBの構築図である。FIG. 1 is a construction diagram of pOGSB.

【図2】pSpolMTの構築図である。FIG. 2 is a construction diagram of pSpolMT.

【図3】サーモコッカス・ペプトノフィラス(Thermoco
ccus peptonophilus)DNAポリメラーゼ、TliDN
Aポリメラーゼ及びTaqDNAポリメラーゼの100
℃における熱安定性を示すグラフである。
[Figure 3] Thermococcus peptonophilus (Thermoco
ccus peptonophilus) DNA polymerase, TliDN
100 of A polymerase and Taq DNA polymerase
It is a graph which shows heat stability in ° C.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 (C12N 1/21 C12R 1:19) (C12N 9/12 C12R 1:19) (72)発明者 川村 良久 福井県敦賀市東洋町10番24号 東洋紡績株 式会社敦賀バイオ研究所内 (72)発明者 堀越 弘毅 東京都練馬区桜台4丁目39番8号─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication (C12N 1/21 C12R 1:19) (C12N 9/12 C12R 1:19) (72) Inventor Yoshihisa Kawamura 10-24 Toyo-cho, Tsuruga City, Fukui Prefecture Toyobo Co., Ltd. Tsuruga Bio Research Institute (72) Inventor Hiroki Horikoshi 4-39-8 Sakuradai, Nerima-ku, Tokyo

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 サーモコッカス・ペプトノフィラス(The
rmococcus peptonophilus)由来の熱安定性DNAポリメ
ラーゼ。
1. A Thermococcus peptonophilus (The
rmococcus peptonophilus) thermostable DNA polymerase.
【請求項2】 下記理化学的性質を有する請求項1記載
の熱安定性DNAポリメラーゼ。 作用:(1)ヌクレオシドトリホスフェートから核酸鋳
型鎖に相補的な核酸鎖を形成するポリメラーゼ反応を触
媒する。 (2)3’−5’エキソヌクレアーゼ活性を有する。 熱安定性:100℃、30分間処理で約60%の残存活
性を有する。 分子量:約86〜92KDa
2. The thermostable DNA polymerase according to claim 1, which has the following physicochemical properties. Action: (1) Catalyze a polymerase reaction that forms a nucleic acid strand complementary to a nucleic acid template strand from nucleoside triphosphate. (2) It has a 3′-5 ′ exonuclease activity. Thermal stability: Residual activity of about 60% after treatment at 100 ° C. for 30 minutes. Molecular weight: about 86 to 92 KDa
【請求項3】 サーモコッカス・ペプトノフィラス(The
rmococcus peptonophilus)が、サーモコッカス・ペプト
ノフィラス(Thermococcus peptonophilus)OG−1ま
たはサーモコッカス・ペプトノフィラス(Thermococcus
peptonophilus)SM−2である請求項1記載の熱安定
性DNAポリメラーゼ。
3. Thermococcus peptonophilus (The
rmococcus peptonophilus) is Thermococcus peptonophilus OG-1 or Thermococcus peptonophilus (Thermococcus
peptonophilus) SM-2, The thermostable DNA polymerase according to claim 1.
【請求項4】 サーモコッカス・ペプトノフィラス(The
rmococcus peptonophilus)が、サーモコッカス・ペプト
ノフィラス(Thermococcus peptonophilus)OG−1で
ある請求項1記載の熱安定性DNAポリメラーゼ。
4. Thermococcus peptonophylla (The
The thermostable DNA polymerase according to claim 1, wherein the rmococcus peptonophilus is Thermococcus peptonophilus OG-1.
【請求項5】 下記理化学的性質を有する請求項4記載
の熱安定性DNAポリメラーゼ。 作用:(1)ヌクレオシドトリホスフェートから核酸鋳
型鎖に相補的な核酸鎖を形成するポリメラーゼ反応を触
媒する。 (2)3’−5’エキソヌクレアーゼ活性を有する。 熱安定性:100℃、30分間処理で約60%の残存活
性を有する。 分子量:約86〜92KDa 至適pH:約6.5〜9 至適温度:約70〜80℃ DNA合成速度:約60塩基/秒以上である。
5. The thermostable DNA polymerase according to claim 4, which has the following physicochemical properties. Action: (1) Catalyze a polymerase reaction that forms a nucleic acid strand complementary to a nucleic acid template strand from nucleoside triphosphate. (2) It has a 3′-5 ′ exonuclease activity. Thermal stability: Residual activity of about 60% after treatment at 100 ° C. for 30 minutes. Molecular weight: about 86 to 92 KDa Optimum pH: about 6.5 to 9 Optimum temperature: about 70 to 80 ° C. DNA synthesis rate: about 60 bases / second or more.
【請求項6】 サーモコッカス・ペプトノフィラス(The
rmococcus peptonophilus)が、サーモコッカス・ペプト
ノフィラス(Thermococcus peptonophilus)SM−2で
ある請求項1記載のDNAポリメラーゼ。
6. Thermococcus peptonophylla (The
The DNA polymerase according to claim 1, wherein the rmococcus peptonophilus) is Thermococcus peptonophilus SM-2.
【請求項7】 下記理化学的性質を有する請求項6記載
の熱安定性DNAポリメラーゼ。 作用:(1)ヌクレオシドトリホスフェートから核酸鋳
型鎖に相補的な核酸鎖を形成するポリメラーゼ反応を触
媒する。 (2)3’−5’エキソヌクレアーゼ活性を有する。 熱安定性:100℃、30分間処理で約60%の残存活
性を有する。 分子量:約86〜92KDa 至適pH:約6.5〜9 至適温度:約70〜80℃ DNA合成速度:約40塩基/秒以上である。
7. The thermostable DNA polymerase according to claim 6, which has the following physicochemical properties. Action: (1) Catalyze a polymerase reaction that forms a nucleic acid strand complementary to a nucleic acid template strand from nucleoside triphosphate. (2) It has a 3′-5 ′ exonuclease activity. Thermal stability: Residual activity of about 60% after treatment at 100 ° C. for 30 minutes. Molecular weight: about 86 to 92 KDa Optimum pH: about 6.5 to 9 Optimum temperature: about 70 to 80 ° C. DNA synthesis rate: about 40 bases / second or more.
【請求項8】 組換え宿主細胞を用いて生産される請求
項1〜7のいずれか1項の記載の熱安定性DNAポリメ
ラーゼ。
8. The thermostable DNA polymerase according to claim 1, which is produced using a recombinant host cell.
【請求項9】 配列表・配列番号2に記載されるアミノ
酸配列を含有する請求項1記載の熱安定性DNAポリメ
ラーゼ。
9. The thermostable DNA polymerase according to claim 1, which contains the amino acid sequence set forth in SEQ ID NO: 2 in the Sequence Listing.
【請求項10】 配列表・配列番号5に記載されるアミ
ノ酸配列を含有する請求項1記載の熱安定性DNAポリ
メラーゼ。
10. The thermostable DNA polymerase according to claim 1, which comprises the amino acid sequence set forth in SEQ ID NO: 5 in the Sequence Listing.
【請求項11】 サーモコッカス・ペプトノフィラス(T
hermococcus peptonophilus)由来のDNAポリメラーゼ
をコードする単離されたDNA。
11. Thermococcus peptonophyllus (T
isolated DNA encoding a DNA polymerase from hermococcus peptonophilus).
【請求項12】 配列表・配列番号2に記載されるアミ
ノ酸配列をコードする塩基配列を含有する請求項11に
記載される単離されたDNA。
12. The isolated DNA according to claim 11, which contains a base sequence encoding the amino acid sequence set forth in SEQ ID NO: 2 in the Sequence Listing.
【請求項13】 配列表・配列番号5に記載されるアミ
ノ酸配列をコードする塩基配列を含有する請求項11に
記載される単離されたDNA。
13. The isolated DNA according to claim 11, which contains a base sequence encoding the amino acid sequence set forth in SEQ ID NO: 5 in the Sequence Listing.
【請求項14】 サーモコッカス・ペプトノフィラス(T
hermococcus peptonophilus)由来のDNAポリメラーゼ
をコードする単離されたDNAをベクターに挿入したD
NA組換え発現ベクター。
14. Thermococcus peptonophyllus (T
D with the isolated DNA encoding a DNA polymerase from hermococcus peptonophilus) inserted into the vector
NA recombinant expression vector.
【請求項15】 ベクターが、pLED−M1またはp
Bluescript由来のベクターである請求項14
記載のDNA組換え発現ベクター。
15. The vector is pLED-M1 or pLED.
15. A vector derived from Bluescript.
The described DNA recombinant expression vector.
【請求項16】 サーモコッカス・ペプトノフィラス(T
hermococcus peptonophilus)由来のDNAポリメラーゼ
をコードする単離されたDNAをベクターに挿入したD
NA組換えベクターを用いて形質転換された組換え宿主
細胞。
16. Thermococcus peptonophyllus (T
D with the isolated DNA encoding a DNA polymerase from hermococcus peptonophilus) inserted into the vector
A recombinant host cell transformed with the NA recombinant vector.
【請求項17】 宿主細胞が大腸菌E.coliである
請求項16記載の組換え宿主細胞。
17. The host cell is Escherichia coli E. coli. The recombinant host cell according to claim 16, which is E. coli.
【請求項18】 サーモコッカス・ペプトノフィラス(T
hermococcus peptonophilus)由来のDNAポリメラーゼ
をコードする単離されたDNAをベクターに挿入したD
NA組換えベクターを用いて形質転換された組換え宿主
細胞を栄養培地で培養し、該培養物から熱安定性DNA
ポリメラーゼを採取することを特徴とする熱安定性DN
Aポリメラーゼの製造法。
18. Thermococcus peptonophyllus (T
D with the isolated DNA encoding a DNA polymerase from hermococcus peptonophilus) inserted into the vector
Recombinant host cells transformed with the NA recombinant vector are cultured in a nutrient medium, and the thermostable DNA is obtained from the culture.
Thermostable DN characterized by harvesting polymerase
Method for producing A polymerase.
【請求項19】 サーモコッカス・ペプトノフィラス(T
hermococcus peptonophilus)由来のDNAポリメラーゼ
をコードする単離されたDNAをベクターに挿入したD
NA組換えベクターを用いて形質転換された組換え宿主
細胞を栄養培地で培養し、(a)該組換え宿主細胞を集
めた後、破砕し、細胞抽出物を調製し、(b)組換え宿
主細胞由来の不純蛋白質を除去する工程を含むことを特
徴とする熱安定性DNAポリメラーゼを製造する方法。
19. Thermococcus peptonophyllus (T
D with the isolated DNA encoding a DNA polymerase from hermococcus peptonophilus) inserted into the vector
Recombinant host cells transformed with the NA recombinant vector are cultured in a nutrient medium, (a) the recombinant host cells are collected and then crushed to prepare a cell extract, and (b) recombinant A method for producing a thermostable DNA polymerase, which comprises a step of removing an impure protein derived from a host cell.
【請求項20】 (b)組換え宿主細胞由来の不純蛋白
質を除去する工程が高温熱処理である請求項19記載の
熱安定性DNAポリメラーゼを製造する方法。
20. The method for producing a thermostable DNA polymerase according to claim 19, wherein the step (b) of removing the impure protein derived from the recombinant host cell is a high temperature heat treatment.
【請求項21】 高温熱処理条件が、70℃以上、好ま
しくは85℃以上である請求項19記載の熱安定性DN
Aポリメラーゼを製造する方法。
21. The thermostable DN according to claim 19, wherein the high temperature heat treatment condition is 70 ° C. or higher, preferably 85 ° C. or higher.
A method for producing A polymerase.
JP06311296A 1996-03-19 1996-03-19 Thermostable DNA polymerase derived from Thermococcus peptonophyllus, gene encoding the enzyme, and use thereof Expired - Fee Related JP4217922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06311296A JP4217922B2 (en) 1996-03-19 1996-03-19 Thermostable DNA polymerase derived from Thermococcus peptonophyllus, gene encoding the enzyme, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06311296A JP4217922B2 (en) 1996-03-19 1996-03-19 Thermostable DNA polymerase derived from Thermococcus peptonophyllus, gene encoding the enzyme, and use thereof

Publications (2)

Publication Number Publication Date
JPH09252776A true JPH09252776A (en) 1997-09-30
JP4217922B2 JP4217922B2 (en) 2009-02-04

Family

ID=13219892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06311296A Expired - Fee Related JP4217922B2 (en) 1996-03-19 1996-03-19 Thermostable DNA polymerase derived from Thermococcus peptonophyllus, gene encoding the enzyme, and use thereof

Country Status (1)

Country Link
JP (1) JP4217922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124391B2 (en) 2000-10-05 2012-02-28 Qiagen Gmbh Thermostable polymerases from Thermococcus pacificus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124391B2 (en) 2000-10-05 2012-02-28 Qiagen Gmbh Thermostable polymerases from Thermococcus pacificus

Also Published As

Publication number Publication date
JP4217922B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
US5882904A (en) Thermococcus barossii DNA polymerase mutants
JP2885324B2 (en) DNA polymerase with improved heat resistance and improved primer extension length and efficiency
JP3112148B2 (en) Nucleic acid amplification method and reagent therefor
JP2000501616A (en) Thermostable DNA polymerase from Thermoanaerobacter thermohydrosulfuricas and its mutant enzymes with exonuclease activity removed
JPH10503381A (en) Purified Thermococcus barossi DNA polymerase
JP2863738B2 (en) DNA encoding thermostable pyrophosphatase
JP3132624B2 (en) DNA polymerase gene derived from hyperthermophilic archaeon and uses thereof
JP2002506626A (en) Thermostable DNA polymerase from Thermoanaerobacter thermohydrosulfricus
JP5617075B2 (en) enzyme
JP4399684B2 (en) Improved RNA polymerase
WO2007117331A2 (en) Novel dna polymerase from thermoanaerobacter tengcongenesis
JPH09252776A (en) Thermally stable dna polymerase derived from thermococcus peptonophilus, gene encoding the same enzyme and use therefor
JP6741061B2 (en) Nucleic acid amplification method
JP3498808B2 (en) DNA polymerase gene
JP2009508488A (en) Discovery, cloning and purification of Thermococcus sp. (9 ° N-7 strain) DNA ligase
JP3856162B2 (en) Thermostable DNA polymerase with reduced exonuclease activity and use thereof
JP3487394B2 (en) Modified thermostable DNA polymerase and use thereof
Kim et al. Cloning, expression, and characterization of thermostable DNA polymerase from Thermoanaerobacter yonseiensis
JP2009213499A (en) Improved rna polymerase
KR100969477B1 (en) Thermococcus guaymasensis DNA polymerase and Polymerase Chain Reaction method using it
JPH09275985A (en) Thermococcus profundus-derived thermostable dna polymerase, gene coding for the same and application thereof
JP3440954B2 (en) DNA polymerase gene
KR100372777B1 (en) Thermostable DNA Polymerase-encoding Gene from Aquifex pyrophilus and Amino Acid Sequence Deduced Therefrom
JPH11206375A (en) Thermostable mut protein
JP2009213497A (en) Improved rna polymerase

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081029

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees