JPH09252217A - Monolithic antenna - Google Patents

Monolithic antenna

Info

Publication number
JPH09252217A
JPH09252217A JP6061196A JP6061196A JPH09252217A JP H09252217 A JPH09252217 A JP H09252217A JP 6061196 A JP6061196 A JP 6061196A JP 6061196 A JP6061196 A JP 6061196A JP H09252217 A JPH09252217 A JP H09252217A
Authority
JP
Japan
Prior art keywords
substrate
antenna
conductor
dielectric
monolithic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6061196A
Other languages
Japanese (ja)
Other versions
JP3471160B2 (en
Inventor
Yuji Izeki
裕二 井関
Hiroshi Yamada
浩 山田
Masayuki Saito
雅之 斉藤
Soichi Honma
荘一 本間
Jiyunko Onomura
純子 小野村
Eiji Takagi
映児 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP06061196A priority Critical patent/JP3471160B2/en
Publication of JPH09252217A publication Critical patent/JPH09252217A/en
Application granted granted Critical
Publication of JP3471160B2 publication Critical patent/JP3471160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress determination in the radiation characteristics of the mono lithic antenna used for microwave and millimeter bands. SOLUTION: A semiconductor board 21 and a dielectric board 12 are opposed to each other with a prescribed interval by means of bumps 20 and a strip conductor 16 is formed to a face of the semiconductor board 11 opposed to the dielectric board 12 and a ground conductor 13 is formed to the dielectric board 12 opposed to the strip conductor 16. A coupling hole 14 is made to the ground conductor 13 at a position corresponding to the strip conductor 16. A microwave circuit and the ground conductor 13 composed of the strip conductor 16 or the like form a microstrip line and the strip conductor 16 and the coupling hole 14 form a microstrip antenna.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はマイクロ波帯やミリ
波帯などにおいて使用されるモノリシックアンテナに関
する。
TECHNICAL FIELD The present invention relates to a monolithic antenna used in a microwave band, a millimeter wave band or the like.

【0002】[0002]

【従来の技術】近年の情報化社会の進展に伴って,高速
無線LANやパーソナル無線通信などの無線回線の需要
が増加している。この要求に応えるために,例えば電子
情報通信学会マイクロ波研究会資料MW94−128
「ミリ波応用システムの開発・実用動向」に記載されて
いるように,通信帯域が広く,チャンネル数が多くとれ
るマイクロ波帯やミリ波帯の利用に向けた研究開発が盛
んに行われている。
2. Description of the Related Art With the progress of information-oriented society in recent years, demand for wireless lines such as high-speed wireless LAN and personal wireless communication is increasing. In order to meet this requirement, for example, the Institute of Electronics, Information and Communication Engineers Microwave Study Group material MW94-128
As described in "Development / Practical Trends of Millimeter-Wave Application Systems", research and development for the use of microwave bands and millimeter-wave bands, which have a wide communication band and a large number of channels, are being actively conducted. .

【0003】このような研究開発の成果の1つとして,
アンテナとマイクロ波回路とを一体化したモノリシック
アンテナがある。これは例えば特開平4−160804
号公報や特開平6−77729号公報などに開示されて
いる。
As one of the results of such research and development,
There is a monolithic antenna that integrates an antenna and a microwave circuit. This is, for example, Japanese Patent Laid-Open No. 4-160804.
It is disclosed in Japanese Patent Laid-Open No. 6-77729 and the like.

【0004】これらのうち,特開平4−160804号
公報に開示されている構造を簡略化した構造を図14に
示す。これは特開平6−77729号公報の図9に開示
されているものである。また図14(a)は放射導体側
からみた図,図14(b)はその反対のマイクロ波回路
側からみた図である。
FIG. 14 shows a simplified structure of the structure disclosed in Japanese Patent Laid-Open No. 4-160804. This is disclosed in FIG. 9 of JP-A-6-77729. Further, FIG. 14 (a) is a view seen from the radiation conductor side, and FIG. 14 (b) is a view seen from the opposite microwave circuit side.

【0005】図において,1は半導体基板,2は誘電体
基板であり,半導体基板1と誘電体基板2との間には地
導体3が形成され,この地導体3には結合孔4が開いて
いる。また,誘電体基板2の地導体3側と反対側の面に
は放射導体5が形成され,半導体基板1の地導体3側と
反対側の面にはストリップ導体6が形成されている。そ
してストリップ導体6の入力端7と,ストリップ導体6
の結合孔4に対応する部分との間には,増幅器8と移相
器9とが形成されている。これらのストリップ導体6,
増幅器8,移相器9などによりマイクロ波回路が形成さ
れる。
In the figure, 1 is a semiconductor substrate, 2 is a dielectric substrate, a ground conductor 3 is formed between the semiconductor substrate 1 and the dielectric substrate 2, and a coupling hole 4 is opened in this ground conductor 3. ing. A radiation conductor 5 is formed on the surface of the dielectric substrate 2 opposite to the ground conductor 3 side, and a strip conductor 6 is formed on the surface of the semiconductor substrate 1 opposite to the ground conductor 3 side. The input end 7 of the strip conductor 6 and the strip conductor 6
An amplifier 8 and a phase shifter 9 are formed between the coupling hole 4 and a portion corresponding to the coupling hole 4. These strip conductors 6,
A microwave circuit is formed by the amplifier 8, the phase shifter 9, and the like.

【0006】入力端7に入力した高周波信号は移相器9
で所定の位相に設定され,増幅器8に入力する。増幅器
8で増幅された高周波信号は,ストリップ導体6と地導
体3とのマイクロストリップ線路および結合孔4を通っ
て放射導体5に入力される。ここで放射導体5と地導体
3とはマイクロストリップアンテナを構成しており,高
周波信号は放射導体5から空間に放射される。
The high frequency signal input to the input terminal 7 is transferred to the phase shifter 9
Is set to a predetermined phase and input to the amplifier 8. The high frequency signal amplified by the amplifier 8 is input to the radiation conductor 5 through the microstrip line between the strip conductor 6 and the ground conductor 3 and the coupling hole 4. Here, the radiation conductor 5 and the ground conductor 3 constitute a microstrip antenna, and the high frequency signal is radiated from the radiation conductor 5 to the space.

【0007】[0007]

【発明が解決しようとする課題】図14に示すような従
来のモノリシックアンテナは装置の小型化ができるとい
う利点を有するものの,まだ以下に述べるような問題点
があった。このようなモノリシックアンテナは半導体基
板1と誘電体基板2とを張り合わせることにより作製す
る。このとき,電子情報通信学会論文誌 C−I Vo
l.J77−C−I No.11の「MMIC一体化ミ
リ波帯マイクロストリップアンテナの設計と試作」(1
994年)に記載されているように,張り合わせに用い
る接着剤や粘着シートによりアンテナの放射特性が劣化
する。
Although the conventional monolithic antenna as shown in FIG. 14 has an advantage that the device can be downsized, it still has the following problems. Such a monolithic antenna is manufactured by bonding the semiconductor substrate 1 and the dielectric substrate 2 together. At this time, IEICE Transactions CI Vo
l. J77-CI No. 11 "Design and Prototype of MMIC Integrated Millimeter-Wave Band Microstrip Antenna" (1
As described in (1994), the radiation characteristics of the antenna are deteriorated by the adhesive or the adhesive sheet used for the bonding.

【0008】また2枚の基板を張り合わせるときに基板
の位置関係がずれると,ずれなかった場合と比較してマ
イクロストリップ線路における電磁結合の結合度が大幅
に低下し,この結果,アンテナの放射特性が劣化してし
まう。本発明は上記の問題点を解決するために,アンテ
ナの放射特性の劣化が少ないモノリシックアンテナを提
供することを目的とする。
Further, if the positional relationship between the substrates is deviated when the two substrates are bonded together, the degree of electromagnetic coupling in the microstrip line is significantly reduced as compared with the case where they are not deviated, and as a result, the radiation of the antenna is radiated. The characteristics deteriorate. In order to solve the above problems, it is an object of the present invention to provide a monolithic antenna with little deterioration in the radiation characteristics of the antenna.

【0009】[0009]

【課題を解決するための手段】上記の問題点を解決する
ために本発明は請求項1の発明として,誘電体または半
導体を含む第1の基板と,前記第1の基板の一主面に形
成されたマイクロ波回路と,前記マイクロ波回路が形成
された主面と所定の間隔を隔てて対向して形成された地
導体と,この地導体に設けられ前記マイクロ波回路と電
磁的に結合する結合孔とを備えたモノリシックアンテナ
を提供する。
In order to solve the above-mentioned problems, the present invention provides a first substrate including a dielectric or a semiconductor and a main surface of the first substrate as an invention according to claim 1. A formed microwave circuit, a ground conductor formed so as to face the main surface on which the microwave circuit is formed with a predetermined gap, and an electromagnetic coupling provided on the ground conductor with the microwave circuit. A monolithic antenna having a coupling hole for

【0010】また請求項2の発明として,前記地導体
が,前記第1の基板と所定の間隔を隔てて対向し誘電体
または半導体を含む第2の基板の,前記マイクロ波回路
が形成された主面に対向する主面に形成されているモノ
リシックアンテナを提供する。
According to a second aspect of the present invention, the microwave circuit of the second substrate, in which the ground conductor is opposed to the first substrate with a predetermined gap and includes a dielectric or a semiconductor, is formed. Provided is a monolithic antenna formed on a main surface opposite to the main surface.

【0011】また請求項3の発明として,誘電体または
半導体を含む第1の基板と,前記第1の基板の一主面に
形成されたマイクロ波回路と,前記第1の基板と所定の
間隔を隔てて対向し誘電体または半導体を含む第2の基
板と,前記マイクロ波回路が形成された主面に対向する
前記第2の基板の主面に形成された地導体と,この地導
体に設けられた結合孔と,前記第2の基板の前記地導体
を形成したのとは反対側の主面に形成され前記結合孔を
介して前記マイクロ波回路と電磁的に結合する放射導体
とを備えたモノリシックアンテナを提供する。
According to a third aspect of the present invention, there is provided a first substrate containing a dielectric or a semiconductor, a microwave circuit formed on one main surface of the first substrate, and a predetermined distance from the first substrate. A second substrate including a dielectric or a semiconductor facing each other with a space between them, a ground conductor formed on the main surface of the second substrate facing the main surface on which the microwave circuit is formed, and a ground conductor The coupling hole provided and a radiation conductor formed on the main surface of the second substrate on the side opposite to where the ground conductor is formed are electromagnetically coupled to the microwave circuit through the coupling hole. Provide a monolithic antenna with.

【0012】さらに請求項4の発明として,前記第1の
基板と前記第2の基板とがバンプによって接続されてい
る請求項1〜3記載のモノリシックアンテナを提供す
る。請求項1,3の発明によれば,第1の基板と地導体
とが所定の間隔を隔てて対向するようモノリシックアン
テナを形成するため,いわゆる基板同士の張り合わせは
行われない。このため接着剤や粘着テープは不要とな
り,アンテナの放射特性が劣化しない。
Further, as a fourth aspect of the present invention, there is provided the monolithic antenna according to the first to third aspects, wherein the first substrate and the second substrate are connected by bumps. According to the inventions of claims 1 and 3, since the monolithic antenna is formed so that the first substrate and the ground conductor face each other with a predetermined gap therebetween, so-called bonding between the substrates is not performed. Therefore, no adhesive or adhesive tape is needed, and the radiation characteristics of the antenna do not deteriorate.

【0013】また請求項1の発明の場合はマイクロ波回
路と結合孔とが電磁的に結合して,請求項3の発明の場
合にはマイクロ波回路と放射導体とが結合孔を介して電
磁的に結合してマイクロストリップアンテナを構成す
る。
In the case of the invention of claim 1, the microwave circuit and the coupling hole are electromagnetically coupled, and in the case of the invention of claim 3, the microwave circuit and the radiation conductor are electromagnetically coupled via the coupling hole. To form a microstrip antenna.

【0014】図14のような従来のモノリシックアンテ
ナは,請求項3の発明と同様にマイクロ波回路と放射導
体とが結合孔を介して結合するが,この場合,マイクロ
波回路と結合孔との間に半導体材料が介在することとな
る。半導体材料の場合その比誘電率が,例えばGaAs
は13,Siは11.7と高くなっている。
In the conventional monolithic antenna as shown in FIG. 14, the microwave circuit and the radiation conductor are coupled through the coupling hole as in the case of the invention of claim 3, but in this case, the microwave circuit and the coupling hole are coupled. The semiconductor material is interposed between them. In the case of a semiconductor material, its relative dielectric constant is GaAs
Is 13 and Si is as high as 11.7.

【0015】これに対して,請求項1,3の発明の場合
で,マイクロ波回路と結合孔との間の所定の間隔が何ら
かの物質によって埋められない場合には,この部分には
空気が存在することになる。空気の比誘電率は1であ
り,GaAsやSiなどの半導体材料と比較して低い。
On the other hand, in the case of the inventions of claims 1 and 3, when the predetermined gap between the microwave circuit and the coupling hole is not filled with any substance, air is present in this portion. Will be done. The relative permittivity of air is 1, which is lower than that of semiconductor materials such as GaAs and Si.

【0016】比誘電率が高いと,いわゆる基板同士の張
り合わせによって位置ずれが生じたときに,電磁結合の
結合度が低下する割合が大きくなってしまう。従って比
誘電率の低い空気の方が,結合度が低下する割合は小さ
くなる。結合度が余り低下しない結果,アンテナの放射
特性の劣化は少なくなる。
When the relative permittivity is high, when the so-called substrates are bonded to each other to cause a positional deviation, the degree of decrease in the degree of electromagnetic coupling increases. Therefore, the rate at which the degree of coupling decreases in air with a lower dielectric constant is smaller. As a result, the degree of coupling is not significantly reduced, and the radiation characteristics of the antenna are less degraded.

【0017】所定の間隔を樹脂で埋めた場合にも,一般
に樹脂の比誘電率は3〜4程度であるから,GaAsや
Siと比較すれば結合度が低下しないことになる。また
請求項1の発明においても,請求項3の発明と同様に第
2の基板を用いて,そのマイクロ波回路と体向する主面
に地導体を形成することが,製造の容易さを考えると最
も好ましい。これが本発明における請求項2の発明であ
る。
Even when the predetermined space is filled with resin, the relative permittivity of resin is generally about 3 to 4, so that the degree of coupling does not decrease as compared with GaAs or Si. Also in the invention of claim 1, as in the case of the invention of claim 3, the second substrate is used to form the ground conductor on the main surface facing the microwave circuit. And most preferred. This is the invention of claim 2 in the present invention.

【0018】さらに所定の間隔を設ける方法としては,
請求項4の発明のように2枚の基板をバンプによって接
続することが好ましい。これは,バンプを用いてフリッ
プチップ方式で接続すると,半田リフロー時のセルフア
ライン効果によって位置ずれを抑えることができ,アン
テナの放射特性の劣化を少なくできるためである。
Further, as a method for providing a predetermined interval,
It is preferable that the two substrates are connected by bumps as in the invention of claim 4. This is because when the flip-chip method is used to connect the bumps, the self-alignment effect during solder reflow can suppress misalignment and reduce the deterioration of the radiation characteristics of the antenna.

【0019】[0019]

【発明の実施の形態】以下,本発明の実施の形態を図面
を参照しつつ説明する。 (第1の実施形態)本発明の第1の実施形態に係るモノ
リシックアンテナの斜視図を図1,図1のA−B方向に
切った断面図を図2に示す。また図3は一部斜視図であ
る。このモノリシックアンテナは,周波数60GHz帯
のミリ波帯での使用を想定している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 2 is a sectional view of a perspective view of a monolithic antenna according to a first embodiment of the present invention, taken along the line AB in FIG. 1 and FIG. Further, FIG. 3 is a partial perspective view. This monolithic antenna is assumed to be used in the millimeter wave band with a frequency of 60 GHz.

【0020】図1〜3において,11は4mm角で厚さ
約250μmのGaAsを用いた半導体基板,12は比
誘電率2.5で厚さ約150μmのポリテトラフルオロ
エチレン(商品名:テフロン)を用いた誘電体基板であ
る。半導体基板11と誘電体基板12は,所定の間隔を
隔てて対向するよう形成されている。
In FIGS. 1 to 3, 11 is a 4 mm square semiconductor substrate using GaAs having a thickness of about 250 μm, and 12 is polytetrafluoroethylene having a relative dielectric constant of 2.5 and a thickness of about 150 μm (trade name: Teflon). It is a dielectric substrate using. The semiconductor substrate 11 and the dielectric substrate 12 are formed so as to face each other with a predetermined gap.

【0021】誘電体基板12の半導体基板11と対向す
る主面には厚さ約15μmのCuを用いた地導体13が
形成され,この地導体13には長方形状の結合孔4が開
いている。また,半導体基板11の誘電体基板12と対
向する主面には,地導体13と対向するように厚さ約1
μmで幅約100μm,特性インピーダンス50ΩのA
uを用いたストリップ導体16が形成されている。
A ground conductor 13 made of Cu and having a thickness of about 15 μm is formed on the main surface of the dielectric substrate 12 facing the semiconductor substrate 11, and a rectangular coupling hole 4 is formed in this ground conductor 13. . In addition, the main surface of the semiconductor substrate 11 facing the dielectric substrate 12 has a thickness of about 1 so as to face the ground conductor 13.
A with a width of about 100 μm and a characteristic impedance of 50Ω
A strip conductor 16 using u is formed.

【0022】そしてストリップ導体16の入力端17
と,ストリップ導体16の結合孔14に対向する部分1
6aとの間には,半導体素子を用いた増幅器18と,移
相器19とが形成されている。これらのストリップ導体
16,増幅器18,移相器19などによりマイクロ波回
路が形成される。
The input end 17 of the strip conductor 16
And a portion 1 of the strip conductor 16 facing the coupling hole 14
An amplifier 18 using a semiconductor element and a phase shifter 19 are formed between the amplifier 6a and 6a. The strip conductor 16, the amplifier 18, the phase shifter 19 and the like form a microwave circuit.

【0023】なお増幅器18および移相器19は図2の
断面図においては省略してあり,以下の実施形態の断面
図においても同様とする。また半導体基板11と誘電体
基板12とは直径約200μm,高さ約50μmの半田
を用いたバンプ20によって機械的および電気的に接続
されている。このバンプの高さをdで表す。
The amplifier 18 and the phase shifter 19 are omitted in the sectional view of FIG. 2, and the same applies to the sectional views of the following embodiments. Further, the semiconductor substrate 11 and the dielectric substrate 12 are mechanically and electrically connected to each other by bumps 20 using solder having a diameter of about 200 μm and a height of about 50 μm. The height of this bump is represented by d.

【0024】このような構成のモノリシックアンテナの
動作は以下のようになる。入力端17に入力した高周波
信号は移相器19において所定の位相に設定され,増幅
器18に入力する。この増幅器18によって高周波信号
は増幅され,増幅された高周波信号は,ストリップ導体
16と地導体13とのマイクロストリップ線路に入力さ
れる。そして本実施形態の場合,ストリップ導体16a
と結合孔14とが電磁的に結合してマイクロストリップ
アンテナを構成しており,高周波信号は結合孔14から
誘電体基板12を通って空間に放射される。
The operation of the monolithic antenna having such a configuration is as follows. The high frequency signal input to the input terminal 17 is set to a predetermined phase by the phase shifter 19 and input to the amplifier 18. The high frequency signal is amplified by the amplifier 18, and the amplified high frequency signal is input to the microstrip line between the strip conductor 16 and the ground conductor 13. In the case of this embodiment, the strip conductor 16a
And the coupling hole 14 are electromagnetically coupled to form a microstrip antenna, and a high frequency signal is radiated from the coupling hole 14 to the space through the dielectric substrate 12.

【0025】本実施形態の場合,ストリップ導体16a
と結合孔14との位置関係は図4に示すようになってい
る。すなわちストリップ導体16aの長手方向と結合孔
14の長手方向が直交するように,かつストリップ導体
16aが結合孔14のほぼ中心部に位置するように形成
されている。
In the case of this embodiment, the strip conductor 16a
The positional relationship between and the coupling hole 14 is as shown in FIG. That is, the strip conductor 16 a is formed so that the longitudinal direction of the strip conductor 16 a and the longitudinal direction of the coupling hole 14 are orthogonal to each other, and the strip conductor 16 a is located substantially at the center of the coupling hole 14.

【0026】そして,結合孔14の中心部からストリッ
プ導体16aの終端部までの距離Laが,高周波信号の
ストリップ導体16a上の波長をλaとしたとき,およ
そλa/4となるように設定されている。これは,この
長さのときにストリップ導体16aから結合孔14へ向
かう信号のエネルギーが最大となり,電磁的結合の結合
度が最大となるからである。
The distance La from the center of the coupling hole 14 to the end of the strip conductor 16a is set to be approximately λa / 4, where λa is the wavelength of the high frequency signal on the strip conductor 16a. There is. This is because the energy of the signal from the strip conductor 16a to the coupling hole 14 becomes maximum at this length, and the degree of electromagnetic coupling becomes maximum.

【0027】また結合孔14の長手方向の長さLbは,
高周波信号の地導体13上の波長をλbとしたとき,お
よそλb/2となるように設定されている。これは,こ
の長さのときに放射導体を用いることなくマイクロスト
リップアンテナを構成することができるからである。
Further, the length Lb in the longitudinal direction of the coupling hole 14 is
When the wavelength of the high frequency signal on the ground conductor 13 is λb, it is set to be approximately λb / 2. This is because a microstrip antenna can be constructed without using a radiation conductor at this length.

【0028】例えば周波数60GHzの場合には真空中
の波長λ0は5mmである。このときλaは2.85m
m程度,λbは3.8mm程度となる。これらによりL
a、Lbを算出すると,La=0.71mm程度,Lb
=1.9mm程度である。
For example, when the frequency is 60 GHz, the wavelength λ0 in vacuum is 5 mm. At this time, λa is 2.85 m
m is about 3.8 mm. By these, L
When a and Lb are calculated, La = 0.71 mm, Lb
= About 1.9 mm.

【0029】なお、λa、λbの波長の違いは,ストリ
ップ導体16aが形成されている比誘電率13のGaA
sを用いた半導体基板11と,地導体13が形成されて
いる比誘電率2.5のポリテトラフルオロエチレンを用
いた誘電体基板12との比誘電率の違いによるものであ
る。すなわち比誘電率が大きい基板上の導体の方が,波
長は低くなる。
The difference between the wavelengths of λa and λb is that GaA having a relative permittivity of 13 in which the strip conductor 16a is formed.
This is due to the difference in relative dielectric constant between the semiconductor substrate 11 using s and the dielectric substrate 12 using polytetrafluoroethylene having a relative dielectric constant of 2.5 on which the ground conductor 13 is formed. That is, the wavelength of the conductor on the substrate having a higher relative dielectric constant is lower.

【0030】La,Lbの位置関係のうちLa=λa/
4の関係がずれると,マイクロストリップアンテナにお
ける電磁結合の結合度が低下してしまい,アンテナの放
射特性が劣化する。しかしながら,本実施形態ではスト
リップ導体16aと結合孔14とが所定の間隔を隔てて
おり,この間に材料が介在していない,換言すれば空気
が介在しているため,結合度の低下を抑えることができ
る。
Of the positional relationships between La and Lb, La = λa /
If the relationship of 4 is deviated, the degree of electromagnetic coupling in the microstrip antenna decreases, and the radiation characteristics of the antenna deteriorate. However, in the present embodiment, the strip conductor 16a and the coupling hole 14 are separated by a predetermined distance, and there is no material therebetween, in other words, air is interposed, so that the decrease in the degree of coupling is suppressed. You can

【0031】仮に図4のような位置関係での結合度を1
とする。この位置関係がLa=λa/4から100μm
ずれた場合には,結合度の低下は約2.5%にとどま
る。これに対し、図14のような従来のモノリシックア
ンテナにおいて,放射導体を設けない本実施形態と同様
なマイクロストリップアンテナ構造を採用し,同様に1
00μmずれた場合には,この結合度の低下が約7%に
も達してしまい,アンテナの放射特性の劣化が本実施形
態と比較して大きくなる。
Let us assume that the degree of coupling in the positional relationship shown in FIG.
And This positional relationship is La = λa / 4 to 100 μm
When they are deviated, the degree of decrease in coupling is only about 2.5%. On the other hand, in the conventional monolithic antenna as shown in FIG. 14, a microstrip antenna structure similar to that of the present embodiment in which the radiation conductor is not provided is adopted, and 1
In the case of a shift of 00 μm, the decrease in the coupling degree reaches about 7%, and the deterioration of the radiation characteristic of the antenna becomes large as compared with the present embodiment.

【0032】結合度の低下が大きいのは,従来のモノリ
シックアンテナの場合,マイクロストリップアンテナ間
に用いられているのが,比誘電率13と高い比誘電率の
GaAs基板であるためである。これに対して本実施形
態の場合は,比誘電率1と低い比誘電率の空気であるた
め,結合度の低下が抑えられる。
The reason why the degree of coupling is greatly reduced is that, in the case of the conventional monolithic antenna, the GaAs substrate having a relative dielectric constant of 13 and a high relative dielectric constant is used between the microstrip antennas. On the other hand, in the case of the present embodiment, since the air having a relative permittivity as low as 1 is used, the decrease in the degree of coupling can be suppressed.

【0033】ここで結合度の低下を抑えることを考える
と,特に空気である必要はなく,比誘電率が4以下の材
料を用いてもよい。これは4以下であれば結合度の低下
は5%程度以下に抑えられ,アンテナの放射特性劣化に
ほとんど影響を及ぼさないからである。
In order to suppress the decrease in the degree of coupling, it is not necessary to use air, and a material having a relative dielectric constant of 4 or less may be used. This is because if it is 4 or less, the decrease in the coupling degree is suppressed to about 5% or less, and it hardly affects the radiation characteristic deterioration of the antenna.

【0034】また本実施形態では半導体基板11と誘電
体基板12とを接続するのに,バンプ20を用いたフリ
ップチップ方式を用いており,具体的には次のように接
続した。まず半導体基板11の上面にメッキ法を用いて
錫鉛の共晶半田からなるバンプ20を形成する。次に半
導体基板11と誘電体基板12とを,フリップチップマ
ウンタを用いて仮止めする。これをリフロー炉に入れ
て,半田リフロー法によってバンプ20を溶かし接続を
行う。
Further, in this embodiment, the flip chip method using the bumps 20 is used to connect the semiconductor substrate 11 and the dielectric substrate 12. Specifically, the connection is made as follows. First, a bump 20 made of tin-lead eutectic solder is formed on the upper surface of the semiconductor substrate 11 by a plating method. Next, the semiconductor substrate 11 and the dielectric substrate 12 are temporarily fixed using a flip chip mounter. This is put in a reflow furnace and the bumps 20 are melted and connected by a solder reflow method.

【0035】この際,半田リフロー前には最大50μm
程度あった半導体基板11と誘電体基板12とのずれ
が,半田リフロー時のセルフアライン効果により2〜3
μmにまで小さくなった。従って位置ずれが小さく,結
合度はほとんど低下しない。
At this time, 50 μm at maximum before solder reflow
The misalignment between the semiconductor substrate 11 and the dielectric substrate 12 which has been about 2 to 3 is caused by the self-alignment effect at the time of solder reflow.
It became as small as μm. Therefore, the displacement is small and the degree of coupling does not decrease.

【0036】これに対して従来のモノリシックアンテナ
の場合,基板同士を張り合わせるときに例えば100μ
mずれたとすると,そのずれがそのまま保存されてしま
い,結合度の低下が大きくなってしまう。このずれは用
いるマウンタの精度に依存するが,通常は100μm程
度である。
On the other hand, in the case of the conventional monolithic antenna, when the substrates are attached to each other, for example, 100 μm is used.
If there is a misalignment of m, the misalignment will be saved as it is, and the degree of decrease in coupling will increase. This deviation depends on the accuracy of the mounter used, but is usually about 100 μm.

【0037】さらに本実施形態の場合には,特性インピ
ーダンス50Ωで幅100μmのストリップ導体16に
おける,周波数60GHzでの信号の伝送損失が約0.
08dB/mmとなる。
Further, in the case of the present embodiment, the transmission loss of a signal at a frequency of 60 GHz in the strip conductor 16 having a characteristic impedance of 50Ω and a width of 100 μm is about 0.
It becomes 08 dB / mm.

【0038】これに対して従来のモノリシックアンテナ
において,GaAs基板の厚さを100μmとしたとき
にストリップ導体の特性インピーダンスを本実施形態と
同様に50Ωにするためには,幅65μmにする必要が
あり,伝送損失が約0.1dB/mmと大きくなってし
まう。
On the other hand, in the conventional monolithic antenna, when the thickness of the GaAs substrate is 100 μm, it is necessary to set the width to 65 μm in order to make the characteristic impedance of the strip conductor 50Ω as in this embodiment. However, the transmission loss increases to about 0.1 dB / mm.

【0039】この原因は以下のように考えられる。伝送
損失を決める要因は大きく分けて2つあり,1つが導体
損,もう1つは誘電体損である。これら2つの損失は,
使用する誘電体材料,配線材料,層構成などによって異
なってくるが,一般的には導体損の方が誘電体損の5〜
20倍大きい。
The cause is considered as follows. There are two main factors that determine the transmission loss: one is conductor loss and the other is dielectric loss. These two losses are
Although it depends on the dielectric material, wiring material, layer structure, etc. used, conductor loss is generally 5 to 5 of dielectric loss.
20 times bigger.

【0040】これらのうちで寄与の大きい導体損はスト
リップ導体の表面積が大きい方が少なくなるので,幅1
00μmとなる本実施形態の方が導体損は少ないという
ことになる。
Of these, the conductor loss with a large contribution is smaller when the surface area of the strip conductor is larger.
This means that the conductor loss is smaller in the present embodiment where the thickness is 00 μm.

【0041】この導体損の差のみでも伝送損失には差が
出てくるが,誘電体損も多少は関係してくる。誘電体損
は導体損とは逆に,ストリップ導体と誘電体の接する面
積が大きくなると増大する。しかし導体損が誘電体損の
5〜20倍大きいという条件を考えれば,ストリップ導
体層の面積は大きい方が好ましいことになる。
Although there is a difference in transmission loss only by the difference in the conductor loss, the dielectric loss is somewhat related. Contrary to conductor loss, dielectric loss increases as the area of contact between the strip conductor and the dielectric increases. However, considering the condition that the conductor loss is 5 to 20 times larger than the dielectric loss, it is preferable that the strip conductor layer has a large area.

【0042】また誘電体損はマイクロストリップ線路間
の物質によっても左右される。具体的には,その物質に
おける誘電正接が小さい方が誘電体損は小さくなる。本
実施形態の場合には誘電正接0の空気であり,従来の場
合には誘電正接0.001のGaAsであるから,本実
施形態の方が誘電体損は小さいことになり,これによっ
ても本実施形態の方が伝送損失が少なくなる。
The dielectric loss also depends on the material between the microstrip lines. Specifically, the smaller the dielectric loss tangent of the substance, the smaller the dielectric loss. In the case of the present embodiment, the air has a dielectric loss tangent of 0, and in the case of the conventional case, it is GaAs having a dielectric loss tangent of 0.001. Therefore, the dielectric loss is smaller in the present embodiment. The embodiment has a smaller transmission loss.

【0043】またバンプの高さdは結合度および伝送損
失に影響を与えるため,好ましい範囲が存在する。具体
的には10〜100μm程度が好ましい。これは,10
μmより小さいと,マイクロストリップ線路の特性イン
ピーダンスを一定に保つためにストリップ導体16の幅
を狭くしなければならなくなり,伝送損失が大きくなる
ためであり,100μmより大きいと,半導体基板のパ
ターンの影響を受けやすくなるためである。
Since the bump height d affects the coupling degree and the transmission loss, there is a preferable range. Specifically, it is preferably about 10 to 100 μm. This is 10
This is because if the thickness is smaller than μm, the width of the strip conductor 16 must be narrowed in order to keep the characteristic impedance of the microstrip line constant, and the transmission loss becomes large. This is because it becomes easier to receive.

【0044】さらに本実施形態においては,誘電体基板
12は電磁的結合には関与しないものの,その厚みや比
誘電率はアンテナの放射特性に影響を与える。厚みが厚
くなるほど誘電体損が大きくなるため,厚みは100μ
m程度以下が好ましい。またアンテナの帯域は比誘電率
に反比例するため,比誘電率は10以下が好ましい。
Further, in the present embodiment, although the dielectric substrate 12 does not participate in electromagnetic coupling, its thickness and relative permittivity affect the radiation characteristics of the antenna. Since the dielectric loss increases as the thickness increases, the thickness is 100μ.
m or less is preferable. Since the band of the antenna is inversely proportional to the relative permittivity, the relative permittivity is preferably 10 or less.

【0045】(第2の実施形態)本発明の第2の実施形
態に係るモノリシックアンテナの斜視図を図5,図5の
A−B方向に切った断面図を図6に示す。図5および図
6では図1〜4と同一部分および相似する部分には同一
符号を付けてあり,その部分に関しての詳細な説明は省
略して,以下同様とする。
(Second Embodiment) FIG. 6 shows a sectional view of a monolithic antenna according to a second embodiment of the present invention taken along the line AB in FIGS. 5 and 5. In FIGS. 5 and 6, the same parts as those in FIGS. 1 to 4 and similar parts are designated by the same reference numerals, and detailed description of those parts will be omitted and the same applies below.

【0046】図5および図6のモノリシックアンテナが
第1の実施形態のモノリシックアンテナと異なる点は,
誘電体基板12の地導体13を形成したのと反対側の主
面に,図14の従来のモノリシックアンテナと同様な放
射導体15を用いた点である。この放射導体15は直径
約1.8mmで厚さ約15μmのCuを用いている。
The monolithic antennas of FIGS. 5 and 6 differ from the monolithic antenna of the first embodiment in that
A radiating conductor 15 similar to that of the conventional monolithic antenna of FIG. 14 is used on the main surface of the dielectric substrate 12 on the side opposite to where the ground conductor 13 is formed. The radiation conductor 15 is made of Cu having a diameter of about 1.8 mm and a thickness of about 15 μm.

【0047】そして本実施形態の場合,ストリップ導体
16と放射導体15とが結合孔14を介して電磁的に結
合し,これがマイクロストリップアンテナを構成する。
従って結合孔14の長さLbは第1の実施形態とは異な
ってλb/2より小さくなり,300μm×100μm
の長方形となる。λb/2よりも小さくするのは結合孔
14自体の共振を抑えるためである。
In the case of this embodiment, the strip conductor 16 and the radiation conductor 15 are electromagnetically coupled to each other through the coupling hole 14, which constitutes a microstrip antenna.
Therefore, the length Lb of the coupling hole 14 is smaller than λb / 2 unlike the first embodiment, and is 300 μm × 100 μm.
Becomes a rectangle. The reason why it is smaller than λb / 2 is to suppress resonance of the coupling hole 14 itself.

【0048】このモノリシックアンテナでも第1の実施
形態のモノリシックアンテナと同様な効果が得られる
他,放射導体15を用いているので第1の実施形態のモ
ノリシックアンテナと比較して,所望の指向性が容易に
得られるという利点を有する。
This monolithic antenna has the same effects as the monolithic antenna of the first embodiment, and since the radiation conductor 15 is used, the desired directivity is better than that of the monolithic antenna of the first embodiment. It has the advantage of being easily obtained.

【0049】また,このモノリシックアンテナでは誘電
体基板12もマイクロストリップアンテナの電磁的結合
に関与するので,その厚みの好ましい範囲は50〜20
0μm程度となる。これは、50μmより小さいと使用
帯域が狭くなってしまうためであり,また使用帯域は基
板厚200μm程度で飽和してしまうからである。
Further, in this monolithic antenna, the dielectric substrate 12 also participates in the electromagnetic coupling of the microstrip antenna, so that the preferable thickness range is 50 to 20.
It is about 0 μm. This is because if the thickness is smaller than 50 μm, the used band becomes narrow, and the used band is saturated at a substrate thickness of about 200 μm.

【0050】(第3の実施形態)本発明の第3の実施形
態に係るモノリシックアンテナの斜視図を図7,図7の
A−B方向に切った断面図を図8に示す。
(Third Embodiment) FIG. 7 is a perspective view of a monolithic antenna according to a third embodiment of the present invention, and FIG. 8 is a sectional view taken along the line AB of FIG.

【0051】このモノリシックアンテナが第1の実施形
態のモノリシックアンテナと異なる点は,半導体基板1
1と誘電体基板12との間に,封止樹脂21として比誘
電率2.7で誘電正接0.0008のベンゾシクロブテ
ン樹脂を封入している点である。
This monolithic antenna is different from the monolithic antenna of the first embodiment in that the semiconductor substrate 1
The point is that a benzocyclobutene resin having a relative dielectric constant of 2.7 and a dielectric loss tangent of 0.0008 is sealed as the sealing resin 21 between 1 and the dielectric substrate 12.

【0052】このため,ストリップ導体16の特性イン
ピーダンスを50Ωとするための幅が60μmと小さく
なり,伝送損失に関しては約0.1dB/mmとなって
しまうものの,La=λa/4から100μmずれた場
合における結合度の低下に関しては、約4%と従来のモ
ノリシックアンテナと比較すると小さくなり,アンテナ
の放射特性の劣化は抑えられる。
Therefore, the width for setting the characteristic impedance of the strip conductor 16 to 50Ω is as small as 60 μm, and the transmission loss is about 0.1 dB / mm, but deviates from La = λa / 4 by 100 μm. In this case, the degree of coupling is about 4%, which is smaller than that of the conventional monolithic antenna, and the deterioration of the radiation characteristic of the antenna is suppressed.

【0053】(第4の実施形態)本発明の第4の実施形
態に係るモノリシックアンテナの斜視図を図9,図9の
A−B方向に切った断面図を図10に示す。
(Fourth Embodiment) FIG. 10 is a sectional view of a monolithic antenna according to a fourth embodiment of the present invention, taken in the direction of the arrows A and B in FIG. 9 and FIG.

【0054】このモノリシックアンテナは第2の実施形
態と第3の実施形態のモノリシックアンテナを組み合わ
せたものである。すなわち,放射導体15が形成され,
封止樹脂21が半導体基板11と誘電体基板12との間
に封止されている。
This monolithic antenna is a combination of the monolithic antennas of the second and third embodiments. That is, the radiation conductor 15 is formed,
The sealing resin 21 is sealed between the semiconductor substrate 11 and the dielectric substrate 12.

【0055】よって,このモノリシックアンテナでは第
2の実施形態および第3の実施形態を組み合わせた効果
が得られる。
Therefore, in this monolithic antenna, the effect obtained by combining the second embodiment and the third embodiment can be obtained.

【0056】(第5の実施形態)図11に本発明の第5
の実施形態に係るモノリシックアンテナの断面図を示
す。このモノリシックアンテナが第1の実施形態のモノ
リシックアンテナと異なる点は,地導体13がリードフ
レームを兼ねているため誘電体基板を用いていない点,
および半導体基板11とこれに対応する地導体13の部
分が封止樹脂21で覆われている,すなわちモールド封
止されている点である。
(Fifth Embodiment) FIG. 11 shows a fifth embodiment of the present invention.
2 is a sectional view of the monolithic antenna according to the embodiment of FIG. The difference between this monolithic antenna and the monolithic antenna of the first embodiment is that the ground conductor 13 also serves as a lead frame, so that no dielectric substrate is used.
Also, the semiconductor substrate 11 and the portion of the ground conductor 13 corresponding thereto are covered with the sealing resin 21, that is, mold-sealed.

【0057】このモノリシックアンテナでは第3の実施
形態と同様な効果が得られる他,生産性が高いという効
果も有する。
This monolithic antenna has the same effect as that of the third embodiment, and also has the effect of high productivity.

【0058】(第6の実施形態)図12に本発明の第6
の実施形態に係るモノリシックアンテナの断面図を示
す。このモノリシックアンテナが第1の実施形態のモノ
リシックアンテナと異なる点は,地導体13の上に層間
絶縁膜22および金属層23が積層され,これらによっ
て、周辺部に入出力用パッド24が設けられ,かつ半導
体基板11側に折り曲げられたメタルコア基板25が形
成されている点,折り曲げられたメタルコア基板25の
凹部に半導体基板11とは別のチップ部品26が形成さ
れている点である。
(Sixth Embodiment) FIG. 12 shows a sixth embodiment of the present invention.
2 is a sectional view of the monolithic antenna according to the embodiment of FIG. This monolithic antenna is different from the monolithic antenna of the first embodiment in that an interlayer insulating film 22 and a metal layer 23 are laminated on the ground conductor 13, whereby an input / output pad 24 is provided in the peripheral portion, In addition, a bent metal core substrate 25 is formed on the semiconductor substrate 11 side, and a chip component 26 different from the semiconductor substrate 11 is formed in the recess of the bent metal core substrate 25.

【0059】このモノリシックアンテナでは,マイクロ
ストリップアンテナから放射される信号が第1の実施形
態のモノリシックアンテナとは異なって誘電体基板を通
らないため誘電体損が少なくなり,その結果アンテナの
放射特性がさらに向上する。また,入出力用パッド24
が形成されているため他の基板に実装することができ,
また金属層23の存在によりシールド性が高くなるとい
う効果も有する。
In this monolithic antenna, unlike the monolithic antenna of the first embodiment, the signal radiated from the microstrip antenna does not pass through the dielectric substrate, so that the dielectric loss is reduced, and as a result, the radiation characteristic of the antenna is reduced. Further improve. Also, the input / output pad 24
Since it is formed, it can be mounted on other boards,
In addition, the presence of the metal layer 23 also has the effect of improving the shielding property.

【0060】(第7の実施形態)図13に本発明の第7
の実施形態に係るモノリシックアンテナの断面図を示
す。
(Seventh Embodiment) FIG. 13 shows a seventh embodiment of the present invention.
2 is a sectional view of the monolithic antenna according to the embodiment of FIG.

【0061】このモノリシックアンテナは上述したよう
なモノリシックアンテナとは異なって,バンプによる接
続を行っていない点に特徴がある。すなわち半導体基板
11内に少なくとも一端が開口した空洞を設け,空洞内
の対向する面の片側に地導体13を,反対側の面にスト
リップ導体16を設けたものである。
This monolithic antenna is different from the above-mentioned monolithic antenna in that it is not connected by bumps. That is, a cavity having at least one end opened is provided in the semiconductor substrate 11, the ground conductor 13 is provided on one side of the facing surface in the cavity, and the strip conductor 16 is provided on the opposite side.

【0062】このような構成としても第1の実施形態と
同様な効果を得ることができる。以上,本発明の実施の
形態を説明したが,本発明は以上の実施形態に限定され
るものではない。
Even with such a configuration, the same effect as that of the first embodiment can be obtained. Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments.

【0063】例えば半導体基板11としてGaAsを用
いたが,Siを用いてもよい。また誘電体基板12とし
てポリテトラフルオロエチレンを用いたがポリクロロト
リフルオロエチレンなどの他のフッ素樹脂を用いても良
いし,ベンゾシクロブテン樹脂,エポキシ系樹脂,ポリ
イミド樹脂,アルミナ,石英などを用いてもよい。誘電
体基板の材料が選択できるため,アンテナの指向性,周
波数帯域の選択性は高くなる。
For example, GaAs is used as the semiconductor substrate 11, but Si may be used. Although polytetrafluoroethylene is used as the dielectric substrate 12, other fluororesins such as polychlorotrifluoroethylene may be used, or benzocyclobutene resin, epoxy resin, polyimide resin, alumina, quartz, etc. may be used. May be. Since the material of the dielectric substrate can be selected, the antenna directivity and frequency band selectivity are high.

【0064】さらに地導体13や放射導体15,ストリ
ップ導体16にCu,Auを用いたが,Al,Ti,N
iなどを用いてもよい。封止樹脂21にはベンゾシクロ
ブテン樹脂を用いたが,エポキシ系樹脂やビフィニル系
樹脂などを用いてもよい。
Further, Cu and Au are used for the ground conductor 13, the radiation conductor 15 and the strip conductor 16, but Al, Ti, N
You may use i etc. Although the benzocyclobutene resin is used as the sealing resin 21, an epoxy resin, a bifinyl resin, or the like may be used.

【0065】また半導体基板11の代わりに誘電体基板
を用い,その表面に半導体素子などを形成してもよい
し,その逆に誘電体基板12の代わりに半導体基板を用
いてもよい。
A dielectric substrate may be used instead of the semiconductor substrate 11 and a semiconductor element or the like may be formed on the surface thereof, or conversely, a semiconductor substrate may be used instead of the dielectric substrate 12.

【0066】さらに以上の実施形態では送信アンテナと
して用いた場合について説明したが,例えば図3におけ
る入力端7の代わりに出力端を設け,受信アンテナとし
て用いてもよいし,入力端および出力端共に設け送受信
アンテナとして用いてもよい。また以上の実施形態の組
み合わせも当然可能であり,その他,本発明の要旨を逸
脱しない範囲で種々の変形ができる。
Further, in the above embodiments, the case where the antenna is used as the transmitting antenna has been described. However, for example, an output terminal may be provided instead of the input terminal 7 in FIG. It may be provided and used as a transmitting / receiving antenna. Further, it is naturally possible to combine the above-described embodiments, and other various modifications can be made without departing from the scope of the present invention.

【0067】[0067]

【発明の効果】以上説明したように本発明によれば,ア
ンテナの放射特性の劣化が少ないモノリシックアンテナ
を提供することが可能となる。
As described above, according to the present invention, it is possible to provide a monolithic antenna with little deterioration in radiation characteristics of the antenna.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施形態に係るモノリシック
アンテナの斜視図。
FIG. 1 is a perspective view of a monolithic antenna according to a first embodiment of the present invention.

【図2】 本発明の第1の実施形態に係るモノリシック
アンテナの断面図。
FIG. 2 is a sectional view of the monolithic antenna according to the first embodiment of the present invention.

【図3】 本発明の第1の実施形態に係るモノリシック
アンテナの一部斜視図。
FIG. 3 is a partial perspective view of the monolithic antenna according to the first embodiment of the present invention.

【図4】 本発明の第1の実施形態に係るモノリシック
アンテナにおける結合孔とストリップ導体の位置関係を
表す図。
FIG. 4 is a diagram showing a positional relationship between a coupling hole and a strip conductor in the monolithic antenna according to the first embodiment of the present invention.

【図5】 本発明の第2の実施形態に係るモノリシック
アンテナの斜視図。
FIG. 5 is a perspective view of a monolithic antenna according to a second embodiment of the present invention.

【図6】 本発明の第2の実施形態に係るモノリシック
アンテナの断面図。
FIG. 6 is a sectional view of a monolithic antenna according to a second embodiment of the present invention.

【図7】 本発明の第3の実施形態に係るモノリシック
アンテナの斜視図。
FIG. 7 is a perspective view of a monolithic antenna according to a third embodiment of the present invention.

【図8】 本発明の第3の実施形態に係るモノリシック
アンテナの断面図。
FIG. 8 is a sectional view of a monolithic antenna according to a third embodiment of the present invention.

【図9】 本発明の第4の実施形態に係るモノリシック
アンテナの斜視図。
FIG. 9 is a perspective view of a monolithic antenna according to a fourth embodiment of the present invention.

【図10】 本発明の第4の実施形態に係るモノリシッ
クアンテナの断面図。
FIG. 10 is a sectional view of a monolithic antenna according to a fourth embodiment of the present invention.

【図11】 本発明の第5の実施形態に係るモノリシッ
クアンテナの断面図。
FIG. 11 is a sectional view of a monolithic antenna according to a fifth embodiment of the present invention.

【図12】 本発明の第6の実施形態に係るモノリシッ
クアンテナの断面図。
FIG. 12 is a sectional view of a monolithic antenna according to a sixth embodiment of the present invention.

【図13】 本発明の第7の実施形態に係るモノリシッ
クアンテナの断面図。
FIG. 13 is a sectional view of a monolithic antenna according to a seventh embodiment of the present invention.

【図14】 従来のモノリシックアンテナの斜視図。FIG. 14 is a perspective view of a conventional monolithic antenna.

【符号の説明】[Explanation of symbols]

11…半導体基板;12…誘電体基板;13…地導体;
14…結合孔;15…放射導体;16…ストリップ導
体;17…入力端;18…増幅器;19…位相器;20
…バンプ;21…封止樹脂
11 ... Semiconductor substrate; 12 ... Dielectric substrate; 13 ... Ground conductor;
14 ... Coupling hole; 15 ... Radiating conductor; 16 ... Strip conductor; 17 ... Input end; 18 ... Amplifier; 19 ... Phaser; 20
... bumps; 21 ... sealing resin

フロントページの続き (72)発明者 本間 荘一 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 小野村 純子 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 高木 映児 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内Front page continued (72) Inventor Shoichi Honma 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Inside the Toshiba Research and Development Center, Inc. (72) Inventor Junko Onomura Komukai-shishi, Kawasaki-shi, Kanagawa No. 1 Incorporated Toshiba Corporation R & D Center (72) Inventor Eiji Takagi No. 1 Komukai Toshiba-cho, Kawasaki-shi, Kanagawa Kanagawa Prefecture In-house Toshiba R & D Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 誘電体または半導体を含む第1の基板
と,前記第1の基板の一主面に形成されたマイクロ波回
路と,前記マイクロ波回路が形成された主面と所定の間
隔を隔てて対向して形成された地導体と,この地導体に
設けられ前記マイクロ波回路と電磁的に結合する結合孔
とを備えたモノリシックアンテナ。
1. A first substrate containing a dielectric or a semiconductor, a microwave circuit formed on one main surface of the first substrate, and a predetermined distance from the main surface on which the microwave circuit is formed. A monolithic antenna comprising a ground conductor formed to face each other at a distance, and a coupling hole provided in the ground conductor and electromagnetically coupled to the microwave circuit.
【請求項2】 前記地導体が,前記第1の基板と所定の
間隔を隔てて対向し誘電体または半導体を含む第2の基
板の,前記マイクロ波回路が形成された主面に対向する
主面に形成されているモノリシックアンテナ。
2. A main surface of the second substrate, which is opposed to the first substrate at a predetermined distance and is opposed to a main surface of the second substrate including a dielectric or a semiconductor, on which the microwave circuit is formed. A monolithic antenna formed on the surface.
【請求項3】 誘電体または半導体を含む第1の基板
と,前記第1の基板の一主面に形成されたマイクロ波回
路と,前記第1の基板と所定の間隔を隔てて対向し誘電
体または半導体を含む第2の基板と,前記マイクロ波回
路が形成された主面に対向する前記第2の基板の主面に
形成された地導体と,この地導体に設けられた結合孔
と,前記第2の基板の前記地導体を形成したのとは反対
側の主面に形成され前記結合孔を介して前記マイクロ波
回路と電磁的に結合する放射導体とを備えたモノリシッ
クアンテナ。
3. A first substrate containing a dielectric material or a semiconductor, a microwave circuit formed on one main surface of the first substrate, and a dielectric substrate which is opposed to the first substrate at a predetermined interval. A second substrate including a body or a semiconductor, a ground conductor formed on the main surface of the second substrate facing the main surface on which the microwave circuit is formed, and a coupling hole formed in the ground conductor A monolithic antenna provided with a radiation conductor formed on the main surface of the second substrate opposite to the surface on which the ground conductor is formed and electromagnetically coupled to the microwave circuit through the coupling hole.
【請求項4】 前記第1の基板と前記第2の基板とがバ
ンプによって接続されている請求項1〜3記載のモノリ
シックアンテナ。
4. The monolithic antenna according to claim 1, wherein the first substrate and the second substrate are connected by bumps.
JP06061196A 1996-03-18 1996-03-18 Monolithic antenna Expired - Fee Related JP3471160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06061196A JP3471160B2 (en) 1996-03-18 1996-03-18 Monolithic antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06061196A JP3471160B2 (en) 1996-03-18 1996-03-18 Monolithic antenna

Publications (2)

Publication Number Publication Date
JPH09252217A true JPH09252217A (en) 1997-09-22
JP3471160B2 JP3471160B2 (en) 2003-11-25

Family

ID=13147246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06061196A Expired - Fee Related JP3471160B2 (en) 1996-03-18 1996-03-18 Monolithic antenna

Country Status (1)

Country Link
JP (1) JP3471160B2 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7518558B2 (en) 2006-04-14 2009-04-14 Murata Manufacturing Co., Ltd. Wireless IC device
US7519328B2 (en) 2006-01-19 2009-04-14 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
JP2009528713A (en) * 2006-01-23 2009-08-06 シュレイダー エレクトロニクス リミテッド Tire monitoring system with tire valve antenna
US7612728B2 (en) * 2004-03-19 2009-11-03 Forschungsverbund Berlin E.V. Microwave antenna for flip-chip semiconductor modules
US7762472B2 (en) 2007-07-04 2010-07-27 Murata Manufacturing Co., Ltd Wireless IC device
US7786949B2 (en) 2006-04-14 2010-08-31 Murata Manufacturing Co., Ltd. Antenna
US7830311B2 (en) 2007-07-18 2010-11-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic device
US7932730B2 (en) 2006-06-12 2011-04-26 Murata Manufacturing Co., Ltd. System for inspecting electromagnetic coupling modules and radio IC devices and method for manufacturing electromagnetic coupling modules and radio IC devices using the system
US7990337B2 (en) 2007-12-20 2011-08-02 Murata Manufacturing Co., Ltd. Radio frequency IC device
US8009101B2 (en) 2007-04-06 2011-08-30 Murata Manufacturing Co., Ltd. Wireless IC device
US8081541B2 (en) 2006-06-30 2011-12-20 Murata Manufacturing Co., Ltd. Optical disc
US8081119B2 (en) 2006-04-26 2011-12-20 Murata Manufacturing Co., Ltd. Product including power supply circuit board
US8081125B2 (en) 2006-07-11 2011-12-20 Murata Manufacturing Co., Ltd. Antenna and radio IC device
JP2012044402A (en) * 2010-08-18 2012-03-01 Sharp Corp Antenna device and electrical apparatus comprising the same
US8193939B2 (en) 2007-07-09 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8228075B2 (en) 2006-08-24 2012-07-24 Murata Manufacturing Co., Ltd. Test system for radio frequency IC devices and method of manufacturing radio frequency IC devices using the same
US8228252B2 (en) 2006-05-26 2012-07-24 Murata Manufacturing Co., Ltd. Data coupler
US8235299B2 (en) 2007-07-04 2012-08-07 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US8384547B2 (en) 2006-04-10 2013-02-26 Murata Manufacturing Co., Ltd. Wireless IC device
US8544754B2 (en) 2006-06-01 2013-10-01 Murata Manufacturing Co., Ltd. Wireless IC device and wireless IC device composite component
JP2013247493A (en) * 2012-05-25 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> Integrated patch antenna
WO2014013806A1 (en) * 2012-07-20 2014-01-23 株式会社デンソー Radar device
US8690070B2 (en) 2009-04-14 2014-04-08 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8692718B2 (en) 2008-11-17 2014-04-08 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8847831B2 (en) 2009-07-03 2014-09-30 Murata Manufacturing Co., Ltd. Antenna and antenna module
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US8870077B2 (en) 2008-08-19 2014-10-28 Murata Manufacturing Co., Ltd. Wireless IC device and method for manufacturing same
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8905316B2 (en) 2010-05-14 2014-12-09 Murata Manufacturing Co., Ltd. Wireless IC device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US8915448B2 (en) 2007-12-26 2014-12-23 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US8960561B2 (en) 2011-02-28 2015-02-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8960557B2 (en) 2008-05-21 2015-02-24 Murata Manufacturing Co., Ltd. Wireless IC device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8994605B2 (en) 2009-10-02 2015-03-31 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US9077067B2 (en) 2008-07-04 2015-07-07 Murata Manufacturing Co., Ltd. Radio IC device
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9123996B2 (en) 2010-05-14 2015-09-01 Murata Manufacturing Co., Ltd. Wireless IC device
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9178279B2 (en) 2009-11-04 2015-11-03 Murata Manufacturing Co., Ltd. Wireless IC tag, reader-writer, and information processing system
US9231305B2 (en) 2008-10-24 2016-01-05 Murata Manufacturing Co., Ltd. Wireless IC device
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US9444143B2 (en) 2009-10-16 2016-09-13 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9460376B2 (en) 2007-07-18 2016-10-04 Murata Manufacturing Co., Ltd. Radio IC device
US9461363B2 (en) 2009-11-04 2016-10-04 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9460320B2 (en) 2009-10-27 2016-10-04 Murata Manufacturing Co., Ltd. Transceiver and radio frequency identification tag reader
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9325056B2 (en) * 2012-09-11 2016-04-26 Alcatel Lucent Radiation efficient integrated antenna

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612728B2 (en) * 2004-03-19 2009-11-03 Forschungsverbund Berlin E.V. Microwave antenna for flip-chip semiconductor modules
US7519328B2 (en) 2006-01-19 2009-04-14 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US7764928B2 (en) 2006-01-19 2010-07-27 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
JP2009528713A (en) * 2006-01-23 2009-08-06 シュレイダー エレクトロニクス リミテッド Tire monitoring system with tire valve antenna
US8384547B2 (en) 2006-04-10 2013-02-26 Murata Manufacturing Co., Ltd. Wireless IC device
US7518558B2 (en) 2006-04-14 2009-04-14 Murata Manufacturing Co., Ltd. Wireless IC device
US7786949B2 (en) 2006-04-14 2010-08-31 Murata Manufacturing Co., Ltd. Antenna
US8081119B2 (en) 2006-04-26 2011-12-20 Murata Manufacturing Co., Ltd. Product including power supply circuit board
US9165239B2 (en) 2006-04-26 2015-10-20 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US8228252B2 (en) 2006-05-26 2012-07-24 Murata Manufacturing Co., Ltd. Data coupler
US8544754B2 (en) 2006-06-01 2013-10-01 Murata Manufacturing Co., Ltd. Wireless IC device and wireless IC device composite component
US7932730B2 (en) 2006-06-12 2011-04-26 Murata Manufacturing Co., Ltd. System for inspecting electromagnetic coupling modules and radio IC devices and method for manufacturing electromagnetic coupling modules and radio IC devices using the system
US8081541B2 (en) 2006-06-30 2011-12-20 Murata Manufacturing Co., Ltd. Optical disc
US8081125B2 (en) 2006-07-11 2011-12-20 Murata Manufacturing Co., Ltd. Antenna and radio IC device
US8228075B2 (en) 2006-08-24 2012-07-24 Murata Manufacturing Co., Ltd. Test system for radio frequency IC devices and method of manufacturing radio frequency IC devices using the same
US8009101B2 (en) 2007-04-06 2011-08-30 Murata Manufacturing Co., Ltd. Wireless IC device
US8235299B2 (en) 2007-07-04 2012-08-07 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US7762472B2 (en) 2007-07-04 2010-07-27 Murata Manufacturing Co., Ltd Wireless IC device
US8193939B2 (en) 2007-07-09 2012-06-05 Murata Manufacturing Co., Ltd. Wireless IC device
US9830552B2 (en) 2007-07-18 2017-11-28 Murata Manufacturing Co., Ltd. Radio IC device
US9460376B2 (en) 2007-07-18 2016-10-04 Murata Manufacturing Co., Ltd. Radio IC device
US7830311B2 (en) 2007-07-18 2010-11-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic device
US7990337B2 (en) 2007-12-20 2011-08-02 Murata Manufacturing Co., Ltd. Radio frequency IC device
US8915448B2 (en) 2007-12-26 2014-12-23 Murata Manufacturing Co., Ltd. Antenna device and radio frequency IC device
US8973841B2 (en) 2008-05-21 2015-03-10 Murata Manufacturing Co., Ltd. Wireless IC device
US9022295B2 (en) 2008-05-21 2015-05-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8960557B2 (en) 2008-05-21 2015-02-24 Murata Manufacturing Co., Ltd. Wireless IC device
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US9077067B2 (en) 2008-07-04 2015-07-07 Murata Manufacturing Co., Ltd. Radio IC device
US8870077B2 (en) 2008-08-19 2014-10-28 Murata Manufacturing Co., Ltd. Wireless IC device and method for manufacturing same
US9231305B2 (en) 2008-10-24 2016-01-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8692718B2 (en) 2008-11-17 2014-04-08 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8917211B2 (en) 2008-11-17 2014-12-23 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8876010B2 (en) 2009-04-14 2014-11-04 Murata Manufacturing Co., Ltd Wireless IC device component and wireless IC device
US8690070B2 (en) 2009-04-14 2014-04-08 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US9203157B2 (en) 2009-04-21 2015-12-01 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US9564678B2 (en) 2009-04-21 2017-02-07 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8847831B2 (en) 2009-07-03 2014-09-30 Murata Manufacturing Co., Ltd. Antenna and antenna module
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US9117157B2 (en) 2009-10-02 2015-08-25 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US8994605B2 (en) 2009-10-02 2015-03-31 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US9444143B2 (en) 2009-10-16 2016-09-13 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9460320B2 (en) 2009-10-27 2016-10-04 Murata Manufacturing Co., Ltd. Transceiver and radio frequency identification tag reader
US9178279B2 (en) 2009-11-04 2015-11-03 Murata Manufacturing Co., Ltd. Wireless IC tag, reader-writer, and information processing system
US9461363B2 (en) 2009-11-04 2016-10-04 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US9123996B2 (en) 2010-05-14 2015-09-01 Murata Manufacturing Co., Ltd. Wireless IC device
US8905316B2 (en) 2010-05-14 2014-12-09 Murata Manufacturing Co., Ltd. Wireless IC device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8884827B2 (en) 2010-08-18 2014-11-11 Sharp Kabushiki Kaisha Antenna unit and electric apparatus including the same
JP2012044402A (en) * 2010-08-18 2012-03-01 Sharp Corp Antenna device and electrical apparatus comprising the same
CN102377021B (en) * 2010-08-18 2014-07-09 夏普株式会社 Antenna unit and electric apparatus including the same
CN102377021A (en) * 2010-08-18 2012-03-14 夏普株式会社 Antenna unit and electric apparatus including the same
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
US8960561B2 (en) 2011-02-28 2015-02-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag
JP2013247493A (en) * 2012-05-25 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> Integrated patch antenna
WO2014013806A1 (en) * 2012-07-20 2014-01-23 株式会社デンソー Radar device
JP2014020998A (en) * 2012-07-20 2014-02-03 Denso Corp Radar device
US9684073B2 (en) 2012-07-20 2017-06-20 Denso Corporation Radar apparatus
CN104395775A (en) * 2012-07-20 2015-03-04 株式会社电装 Radar device

Also Published As

Publication number Publication date
JP3471160B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
JP3471160B2 (en) Monolithic antenna
US5757074A (en) Microwave/millimeter wave circuit structure with discrete flip-chip mounted elements
US6181278B1 (en) Antenna-integral high frequency circuit electromagnetically coupling feeder circuit connected to high frequency circuit to microstrip antenna via slot coupling hole
EP1515389B1 (en) Multilayer high frequency device with planar antenna thereon and manufacturing method thereof
JP3378435B2 (en) Ultra-high frequency band wireless communication device
US7911292B2 (en) Mode transition between a planar line and a waveguide with a low loss RF substrate and a high loss low frequency substrate
US6794961B2 (en) High frequency circuit module
JP3500268B2 (en) High frequency input / output terminal and high frequency semiconductor element storage package using the same
JP3629399B2 (en) Microwave / millimeter wave module with integrated antenna
US6483406B1 (en) High-frequency module using slot coupling
WO2002003499A1 (en) Radio communication device with integrated antenna, transmitter, and receiver
JP2000278009A (en) Microwave/millimeter wave circuit device
JP3427040B2 (en) High frequency package
JP3472678B2 (en) Antenna integrated microwave / millimeter wave circuit
JP3305589B2 (en) Mounting structure of high frequency semiconductor device
JP3570887B2 (en) High frequency wiring board
JPH1117063A (en) Circuit board for mounting semiconductor chip, package for accommodating semiconductor chip, and semiconductor device
JP2624159B2 (en) Monolithic antenna module
JP3140385B2 (en) High frequency semiconductor device
JP3439967B2 (en) High frequency semiconductor device package
JP3071761B2 (en) Mounting structure of high frequency semiconductor device
JP3181036B2 (en) Mounting structure of high frequency package
JP2000164764A (en) Mounting structure for high-frequency wiring board
JPH04352505A (en) Microwave circuit with integrated antenna
JP3145670B2 (en) Mounting structure of high frequency semiconductor package

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees