JPH09243473A - System for analyzing contact stress - Google Patents

System for analyzing contact stress

Info

Publication number
JPH09243473A
JPH09243473A JP5288296A JP5288296A JPH09243473A JP H09243473 A JPH09243473 A JP H09243473A JP 5288296 A JP5288296 A JP 5288296A JP 5288296 A JP5288296 A JP 5288296A JP H09243473 A JPH09243473 A JP H09243473A
Authority
JP
Japan
Prior art keywords
contact
partial
data
boundary
partial area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5288296A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ezawa
良孝 江澤
Takahiro Satake
誉大 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5288296A priority Critical patent/JPH09243473A/en
Publication of JPH09243473A publication Critical patent/JPH09243473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently analyze a contact stress by dividing a structure to partial areas so that two confronting contact faces are in one partial area and data of each contact face required when a contact state of the contact face is to be corrected and calculated are on a memory device of one operational device. SOLUTION: In a process of analyzing a contact, if objects in contact with each other are allotted to different partial areas, i.e., different operational devices 6, it is necessary to transmit data between respective memory devices 7 of the operational devices 6 to estimate a contact state after a load is impressed. As such, the objects in contact with each other are allotted to the same memory device 7, thus eliminating the transmission of data between the memory devices 7. In a calculating process, at each initial stage of repetitions carried out until a surface force is balanced between the partial areas, the contact state analyzed immediately before is set as an initial value. Accordingly, the repeating number of times to calculate the contact is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は構造物の接触部分の
応力,変形を並列計算機を使って解析するシステムに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for analyzing stress and deformation of a contact portion of a structure by using a parallel computer.

【0002】[0002]

【従来の技術】構造物の変形,応力等を並列計算機を用
いて解析する手法は、大きく分けると二つある。方法の
一つは、全体の変形特性を一つの連立方程式として表
し、その一つの連立方程式を解く段階で、連立方程式の
成分を複数の演算装置とそれに付属する記憶装置に分配
し、それぞれの演算装置が振り分けられた成分を解く方
法である。この場合、連立方程式の変数は、通常、他の
演算装置に割り当てられた変数と相関関係があるので、
各演算装置は他の演算装置の計算結果をお互いに参照し
ながら計算を行う。もう一つの手法は、解析の対象であ
る構造物自体を複数の部分領域に分割し、各部分領域の
情報を別々の演算装置に振り分け、各演算装置はその割
り当てられた部分領域を解析する方法である。この手法
を通常、領域分割法と呼んでいる。接触解析では、接触
部分で相対する接触面の変位の適合性,力の平衡条件を
満たすようにする必要がある。その為、接触部分のこれ
らの条件を表す方程式を先の連立方程式に付加する必要
がある。付加の方法は種々の方法が考案されている。代
表的なのは接触の適合条件式を、直接、連立方程式に付
加する方法,ペナルティ関数法などにより間接的に適合
条件式を付加する方法などが代表的である。本発明は接
触部分を持つ構造物を複数の部分領域に分け、複数の演
算装置で解析する場合の高速化に関するものである。
2. Description of the Related Art There are roughly two methods for analyzing deformation and stress of a structure using a parallel computer. One of the methods is to represent the entire deformation characteristics as one simultaneous equation, and at the stage of solving the one simultaneous equation, distribute the components of the simultaneous equation to a plurality of arithmetic units and their associated storage devices, This is a method in which the device solves the distributed components. In this case, the variables in the system of equations are usually correlated with the variables assigned to other computing devices,
Each arithmetic unit performs calculation while referring to the calculation results of other arithmetic units. Another method is to divide the structure itself to be analyzed into a plurality of partial areas, distribute the information of each partial area to different arithmetic devices, and each arithmetic device analyzes the assigned partial area. Is. This method is usually called the area division method. In the contact analysis, it is necessary to satisfy the compatibility of the displacement of the contact surfaces facing each other at the contact portion and the force balance condition. Therefore, it is necessary to add the equations expressing these conditions of the contact part to the above simultaneous equations. Various addition methods have been devised. The representative ones are a method of directly adding the adaptive conditional expressions to the simultaneous equations, a method of indirectly adding the adaptive conditional expressions by a penalty function method, and the like. The present invention relates to speeding up when a structure having a contact portion is divided into a plurality of partial areas and analyzed by a plurality of arithmetic devices.

【0003】なお、参考となる文献には「R. Glowinsk
i, Q.V. Dinh, J. Periaux, DomainDecomposition Meth
ods for Nonlinear Problems in Fluid Dynamics, Comp
uterMethods in Applied Mechanics, Vol.40, pp.27 (1
983)」 「G. Yagawa, Parallel Techniques for Computational
Mechanics, Theoretical and Applied Mechanics, Vo
l. 39, pp.3 (1990) 」 「G. Yagawa, N. Soneda, S. Yoshimura, A Large Scal
e Finite ElementAnalysis Using Domain Decompositio
n Method on a Parallel Computer, Computers and
Structures, Vol. 38, No. 5/6, pp.615 (1991) 」 「吉岡,矢川,吉村,曽根田、大規模・超高速計算力学
のためのネットワーク・コンピューティング手法の開
発,日本機械学会論文集(A編),57巻,1964頁 (19
91) 」 「岡本、有限要素法による非線形接触問題の解析,日本
機械学会論文集(A編),43巻,3716頁 (1977) 」 「矢川、ペナルティ法による二次元およびはりの接触問
題の解析,日本機械学会論文集(A編),46巻,12
20頁 (1980) 」がある。
The reference document is "R. Glowinsk
i, QV Dinh, J. Periaux, DomainDecomposition Meth
ods for Nonlinear Problems in Fluid Dynamics, Comp
uterMethods in Applied Mechanics, Vol.40, pp.27 (1
983) '' `` G. Yagawa, Parallel Techniques for Computational
Mechanics, Theoretical and Applied Mechanics, Vo
l. 39, pp. 3 (1990) '' `` G. Yagawa, N. Soneda, S. Yoshimura, A Large Scal
e Finite ElementAnalysis Using Domain Decompositio
n Method on a Parallel Computer, Computers and
Structures, Vol. 38, No. 5/6, pp.615 (1991) "" Yoshioka, Yagawa, Yoshimura, Soneda, Development of network computing method for large-scale and ultrafast computational mechanics, The Japan Society of Mechanical Engineers Vol. (A), 57, 1964 (19
91) "" Okamoto, Analysis of Nonlinear Contact Problems by Finite Element Method, The Japan Society of Mechanical Engineers, Volume A, 43, 3716 (1977) "" Yagawa, Analysis of Two-Dimensional and Beam Contact Problems by Penalty Method , Transactions of the Japan Society of Mechanical Engineers (A), 46, 12
20 pages (1980) ".

【0004】[0004]

【発明が解決しようとする課題】解析対象の構造物を複
数の部分領域に分け、各部分領域を別々の演算装置で解
析する方法では、各部分領域の境界部は各部分領域の解
析結果だけからは定まらないので、通常境界部の未知変
数は適当な初期値を設定し、まずその初期値に基づいて
各部分領域の解析を行う。次に隣接する部分領域の解析
結果から境界部の設定値の妥当性を検証する。通常は各
部分領域間の力の釣り合いがとれていないので、力の釣
り合いがとれると予想される値に初期値を修正する。こ
の修正作業は通常複数回になる。接触解析では接触部分
の接触状態、具体的には接触する範囲,接触部の変位お
よび接触力は荷重の付加前には不明であり、負荷後の接
触状態を予測して計算することになる。この予測が妥当
でないときは修正を加えて再度解析を行う。この修正反
復も通常複数回になる。したがって、接触解析を領域分
割法で行う場合は、部分領域の境界部修正反復と、接触
部分の修正反復の両方が必要になる。修正反復時には各
演算装置間でのデータ転送が必要である。並列計算機で
は、演算装置間のデータ転送時間が計算時間に大きな影
響を与える。したがって、このデータ転送をいかに少な
くできるかが、トータルの計算時間の低減に関係する課
題となる。本発明の目的は、この接触構造物を領域分割
法で行う場合の計算の高速化を図ることにある。
In the method in which the structure to be analyzed is divided into a plurality of partial areas and each partial area is analyzed by a different computing device, the boundary of each partial area is only the analysis result of each partial area. Since it is not determined from, the usual unknown variables at the boundary are set to appropriate initial values, and then each partial region is analyzed based on the initial values. Next, the validity of the set value at the boundary is verified from the analysis result of the adjacent partial areas. Normally, the forces are not balanced among the partial regions, so the initial value is corrected to a value that is expected to be balanced. This correction work is usually performed multiple times. In the contact analysis, the contact state of the contact portion, specifically, the contact range, the displacement of the contact portion, and the contact force are unknown before the load is applied, and the contact state after the load is predicted and calculated. If this prediction is not valid, correct it and analyze again. This correction iteration will also typically be multiple. Therefore, when the contact analysis is performed by the area division method, it is necessary to perform both the boundary part correction iteration of the partial area and the contact part correction iteration. It is necessary to transfer data between the arithmetic units during the correction iteration. In a parallel computer, the data transfer time between arithmetic units has a great influence on the calculation time. Therefore, how to reduce the data transfer is an issue related to the reduction of the total calculation time. An object of the present invention is to speed up the calculation when the contact structure is subjected to the area division method.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、構造物の部分領域の分割で、相対する二
つの接触面が一つの部分領域になるように分割を行う。
このとき接触面の接触状態修正計算時に必要となる各接
触面のデータは一つの演算装置の記憶装置上にある。ま
た、構造物の部分領域の境界部の収束計算では、前回の
接触解析の結果を各演算装置に記憶しておき、部分領域
の再計算時には接触状態の初期値としてその前回の接触
解析結果を用いる。
In order to achieve the above object, the present invention divides a partial area of a structure so that two opposing contact surfaces become one partial area.
At this time, the data of each contact surface necessary for the calculation of the correction of the contact state of the contact surface is stored in the storage device of one arithmetic unit. In the convergence calculation of the boundary portion of the partial area of the structure, the result of the previous contact analysis is stored in each arithmetic unit, and the previous contact analysis result is used as the initial value of the contact state when recalculating the partial area. To use.

【0006】このようにすると接触面の接触状態の修正
計算時では、各接触面のデータが一つの演算装置の記憶
装置上にあるため、演算装置間のデータ転送は不要にな
る。具体的には、まず各部分領域の境界部に初期値を与
え、各部分領域で変形量,境界部反力を計算する。この
各部分領域の計算で接触部のある領域はそこで設定され
た接触状態を初期値として反復計算を行う。この反復計
算では、反復に必要なデータは全てそれぞれ演算装置の
記憶装置上にあるため、他の演算装置からデータを転送
する必要がない。接触状態が収束したら、各部分領域の
境界部の解析結果を境界部のデータを補正する演算装置
の記憶装置に転送する。集められた境界部解析結果を用
いて、境界部で力と変位の適合条件が満たされるように
境界部データを補正し、その補正結果を各部分領域を担
当する演算装置の記憶装置に転送する。各演算装置は補
正された境界データを用いて再計算を行う。このとき、
接触部分の初期値は、前回の部分領域の解析結果を用い
ることにより、接触部分の収束計算が加速される。
In this way, when the contact state of the contact surface is calculated for correction, the data of each contact surface is stored in the storage device of one arithmetic device, so that data transfer between arithmetic devices becomes unnecessary. Specifically, first, an initial value is given to the boundary portion of each partial area, and the deformation amount and the boundary reaction force are calculated in each partial area. In the calculation of each of the partial areas, the contact state set in the contact area is used as an initial value for iterative calculation. In this iterative calculation, it is not necessary to transfer the data from another arithmetic device because all the data required for the iteration are in the storage device of the arithmetic device. When the contact state converges, the analysis result of the boundary portion of each partial area is transferred to the storage device of the arithmetic unit that corrects the data of the boundary portion. The collected boundary analysis results are used to correct the boundary data so that the matching conditions of force and displacement are satisfied at the boundary, and the correction results are transferred to the storage device of the arithmetic unit in charge of each partial area. . Each arithmetic unit recalculates using the corrected boundary data. At this time,
As the initial value of the contact portion, the convergence calculation of the contact portion is accelerated by using the analysis result of the previous partial area.

【0007】[0007]

【発明の実施の形態】以下、発明の実施例を図面を用い
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1は、解析対象の構造物の例を示してい
る。構造物1は接触部2を有している。この例では接触
部は一カ所であるが、接触部が複数ある場合も以下の説
明は同様に適用できる。図2は、構造物1を複数の部分
領域3に分けたものある。接触部2は一つの部分領域4
に含まれるようにする。各部分領域3または4は境界部
5で分けられている。この部分領域3または4を部分領
域ごとに別々の演算装置で計算を行う。図3はその割り
当ての様子を示したもので、各部分領域3または4のデ
ータは別々の演算装置6に付属する記憶装置7上に格納
される。格納されるデータは、各部分領域の形状デー
タ,材料データ,外力等の力学的境界条件データ,変位
境界条件データ、及び他の部分領域と接続している境界
部5がどれかを示すデータである。解析の初期では境界
部5での変位及び表面力は未知であるので、適当な初期
値を与えて計算する。初期値の与え方は、境界部の荷重
を与える方法と、境界部の変位を与える方法がある。境
界部の荷重を与える方法では、変位拘束が少なく、領域
の剛体移動を許す結果になることがあり、その場合、静
的解析では変位が一義的に決まらない。そこで、通常は
境界部の初期値として変位を与える。与える初期変位
は、正解に近い程良いが、解析の初期段階では予測が困
難なため、変位は通常ゼロと設定する。この初期値を用
いて各部分領域の変形,応力を別々の演算装置6で解析
する。得られた解が正解であるためには、隣接する部分
領域の領域境界上で(1)応力(表面力)の釣り合い
と、(2)変位の連続性の二つの条件が満足される必要
がある。すなわち、二次元解析の場合を例にとると、境
界部5上の条件として
FIG. 1 shows an example of a structure to be analyzed. The structure 1 has a contact portion 2. In this example, there is one contact part, but the following description can be similarly applied to the case where there are a plurality of contact parts. In FIG. 2, the structure 1 is divided into a plurality of partial regions 3. The contact part 2 is one partial area 4
To be included in. Each partial area 3 or 4 is divided by a boundary portion 5. The calculation of the partial regions 3 or 4 is performed for each partial region by a different arithmetic device. FIG. 3 shows the state of the allocation, and the data of each partial area 3 or 4 is stored in the storage device 7 attached to a separate arithmetic device 6. The stored data is shape data of each partial area, material data, mechanical boundary condition data such as external force, displacement boundary condition data, and data indicating which boundary part 5 is connected to another partial area. is there. Since the displacement and the surface force at the boundary portion 5 are unknown at the initial stage of the analysis, an appropriate initial value is given for the calculation. The method of giving the initial value includes a method of giving a load on the boundary portion and a method of giving a displacement of the boundary portion. In the method of applying the load on the boundary part, there are few displacement constraints, which may result in the movement of the rigid body in the region. In that case, the displacement cannot be uniquely determined by the static analysis. Therefore, usually, the displacement is given as the initial value of the boundary portion. The closer to the correct answer the initial displacement is, the better, but it is difficult to predict it at the initial stage of analysis, so the displacement is usually set to zero. Using this initial value, the deformation and stress of each partial region are analyzed by different computing devices 6. In order for the obtained solution to be a correct solution, it is necessary that the two conditions of (1) the balance of the stress (surface force) and (2) the continuity of the displacement be satisfied on the region boundary of the adjacent partial regions. is there. That is, taking the case of two-dimensional analysis as an example, the condition on the boundary part 5 is

【0009】[0009]

【数1】 [Equation 1]

【0010】[0010]

【数2】 [Equation 2]

【0011】[0011]

【数3】 (Equation 3)

【0012】という条件が必要である。上式で、直交座
標軸はx,yであり、σx はx軸方向応力、σy はy軸
方向応力、σxyはx軸に垂直な面にかかるy軸方向のせ
ん断応力、nx は境界部5上での外向き法線単位ベクト
ルのx軸方向成分、nx は境界部5上での外向き法線単
位ベクトルのy軸方向成分、ux は変位のx軸方向成
分、uy は変位のy軸方向成分、上添え字は部分領域を
表す。ただし、境界部5上で両領域が接しているので
[0012] The condition is required. In the above equation, the orthogonal coordinate axes are x and y, σ x is the stress in the x-axis direction, σ y is the stress in the y-axis direction, σ xy is the shear stress in the y-axis direction applied to the plane perpendicular to the x-axis, and n x is The x-axis direction component of the outward normal unit vector on the boundary portion 5, n x is the y-axis direction component of the outward normal unit vector on the boundary portion 5, u x is the x-axis direction component of the displacement, u y represents the y-axis direction component of displacement, and the upper subscript represents a partial region. However, since both areas are in contact with each other on the boundary part 5,

【0013】[0013]

【数4】 (Equation 4)

【0014】となる。## EQU1 ##

【0015】境界部5に変位の初期値を設定して解析し
た各部分領域の境界部5の変位,応力は、数3は満足し
ているが、通常、数1,数2は満足していない。そこ
で、各部分領域を別々の演算装置で解析した後、境界部
5の仮定した変位を数1,数2を満足する方向に修正す
る。修正方法で一番簡単な方法はUzawa 法と呼ばれるも
ので、以下のような式で修正する。
The displacement and stress of the boundary portion 5 of each partial region analyzed by setting the initial value of the displacement in the boundary portion 5 satisfy the equation 3, but normally the equations 1 and 2 are satisfied. Absent. Therefore, after each partial region is analyzed by a different computing device, the assumed displacement of the boundary portion 5 is corrected to a direction that satisfies the equations 1 and 2. The simplest method of modification is called the Uzawa method, which is modified by the following formula.

【0016】[0016]

【数5】 (Equation 5)

【0017】[0017]

【数6】 (Equation 6)

【0018】ここに、ρは定数である。この修正後の変
位を用いて、再度各部分領域の変位,応力を解析する。
この、各部分領域の計算と境界変位修正計算の繰り返し
を、数1,数2を十分満足するまで行う。具体的には各
部分領域の解析結果を記憶装置7から、境界部の設定値
修正を担当する演算装置8に付属する記憶装置9にデー
タ転送路10を通って境界部のデータを転送する。演算
装置8は転送されてきた各部分領域の境界部のデータを
もとに、境界部で力学的平衡条件を満たすように境界変
位に修正を加える。この推定修正データを記憶装置9か
ら各部分領域の記憶装置7に転送する。各演算装置6は
その修正された境界データを用いて再度部分領域の変
位,表面力を計算する。その解析結果から境界部の表面
力を算出し、再び記憶装置9に境界部のデータを転送す
る。この一連の反復作業を部分領域間で表面力の釣り合
いが満たされるまで行う。
Where ρ is a constant. Using the corrected displacement, the displacement and stress of each partial region are analyzed again.
The calculation of each partial region and the calculation of the boundary displacement correction are repeated until Expressions 1 and 2 are sufficiently satisfied. Specifically, the analysis result of each partial area is transferred from the storage device 7 through the data transfer path 10 to the storage device 9 attached to the arithmetic unit 8 which is in charge of the correction of the setting value of the boundary part, through the data of the boundary part. The arithmetic unit 8 corrects the boundary displacement based on the transferred boundary data of each partial area so that the mechanical equilibrium condition is satisfied at the boundary. This estimated correction data is transferred from the storage device 9 to the storage device 7 of each partial area. Each arithmetic unit 6 calculates the displacement and surface force of the partial area again using the corrected boundary data. The surface force of the boundary is calculated from the analysis result, and the data of the boundary is transferred to the storage device 9 again. This series of repetitive operations is performed until the surface force balance is satisfied between the partial areas.

【0019】接触解析では、接触部の接触状態が負荷後
にどう変化するかが問題となる。解析の初期段階におけ
る接触状態は、負荷後に変化するが、接触状態そのもの
が解析における境界条件であり、負荷過程で境界条件が
変化する非線形解析となる。そこで、負荷前の接触状態
で、まず、接触面の変形及び表面力を求める。負荷後の
接触状態は初期状態と異なるため、相対する接触面が食
い込んだり、接触面同士で引っ張り力が働いたりと、幾
何学的および力学的に正しくない状態が生じる。そこ
で、接触面が食い込む部分は負荷後に接触すると推定
し、接触面同士が引っ張り合う部分は負荷後に分離する
と推定する。この他、摩擦力と接触面圧の関から、すべ
りが生じるかどうかの推定も行う。この推定値を用いて
解析を再度行い、その推定値における接触面の変形及び
表面力を求める。その結果、推定接触状態がまだ幾何学
的および力学的に正しくないと判定されるときは、再度
接触状態を推定し直して、解析を再実行する。このよう
に解析の反復を力学的に正しい接触状態が求まるまで行
う。
In the contact analysis, the problem is how the contact state of the contact portion changes after loading. The contact state in the initial stage of analysis changes after loading, but the contact state itself is the boundary condition in the analysis, and the boundary condition changes in the loading process, which is a nonlinear analysis. Therefore, in the contact state before loading, first, the deformation of the contact surface and the surface force are obtained. Since the contact state after loading is different from the initial state, the opposing contact surfaces bite into each other, or the tensile force acts between the contact surfaces, resulting in a geometrically and mechanically incorrect state. Therefore, it is presumed that the part where the contact surface bites is in contact after the load and the part where the contact surfaces are pulled apart is separated after the load. In addition, we also estimate whether slippage will occur based on the relationship between frictional force and contact surface pressure. Analysis is performed again using this estimated value, and the deformation and surface force of the contact surface at that estimated value are obtained. As a result, when it is determined that the estimated contact state is not geometrically and mechanically correct, the contact state is estimated again and the analysis is re-executed. In this way, the analysis is repeated until a mechanically correct contact state is obtained.

【0020】この接触解析過程で、接触する物体が別々
の部分領域、すなわち別々の演算装置6に割り当てられ
ていると、負荷後の接触状態を推定するのに、それぞれ
の演算装置6の記憶装置7間でデータ転送を行う必要が
生じる。並列計算機ではデータ転送を減らすことが計算
効率に一番寄与する。そこで、接触する物体が同一の記
憶装置7に入るようにし、記憶装置7間のデータ転送を
不要にする。
In the contact analysis process, if the objects to be contacted are assigned to different partial areas, that is, to different computing devices 6, the storage device of each computing device 6 is used to estimate the contact state after loading. It becomes necessary to transfer data between the seven. In parallel computers, reducing data transfer contributes the most to calculation efficiency. Therefore, the contacting object is made to enter the same storage device 7, and the data transfer between the storage devices 7 becomes unnecessary.

【0021】また、この計算過程で、部分領域間で表面
力の釣り合いが満たされるまで行う反復の各初期段階
で、接触状態をその直前の解析結果の接触状態を初期値
とする。これにより接触計算の反復回数を減らすことが
でき、計算量が減少する。
In addition, in this calculation process, at each initial stage of the iteration performed until the balance of the surface forces is satisfied between the partial regions, the contact state is set as the initial value of the contact state of the analysis result immediately before. This can reduce the number of iterations of contact calculation and reduce the calculation amount.

【0022】[0022]

【発明の効果】本発明によれば、データ転送及び計算量
を少なくでき、効率的な解析が行える。
According to the present invention, data transfer and calculation amount can be reduced, and efficient analysis can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】解析対象の構造物の説明図。FIG. 1 is an explanatory diagram of a structure to be analyzed.

【図2】解析対象を複数の部分構造に分けた例の説明
図。
FIG. 2 is an explanatory diagram of an example in which an analysis target is divided into a plurality of partial structures.

【図3】並列計算機の演算装置と記憶装置を示す説明
図。
FIG. 3 is an explanatory diagram showing an arithmetic unit and a storage device of a parallel computer.

【符号の説明】[Explanation of symbols]

1…構造物、2…接触部、3…部分構造、4…接触部を
含む部分構造、5…部分構造境界部。
1 ... Structure, 2 ... Contact part, 3 ... Partial structure, 4 ... Partial structure including a contact part, 5 ... Partial structure boundary part.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数の演算装置を持つ並列計算機を用い
て、接触部分を有する構造物を複数の部分領域に分割
し、各部分領域を複数の演算装置で並列に計算し、構造
物の変位,応力を解析する装置において、接触している
相対する領域を一つの演算装置に割り当てることを特徴
とする接触応力解析システム。
1. A parallel computer having a plurality of arithmetic devices is used to divide a structure having a contact portion into a plurality of partial regions, and each partial region is calculated in parallel by a plurality of arithmetic devices to calculate the displacement of the structure. A contact stress analysis system characterized in that in a device for analyzing stress, opposing areas in contact are assigned to one computing device.
【請求項2】請求項1において、上記部分領域の境界条
件に初期値を与え、その初期値を各部分領域の計算結果
に基づいて修正を行う修正計算開始時点で、構造接触部
分の予測接触状態に、修正前の各部分領域の計算結果の
接触状態を用いる接触応力解析システム。
2. The predictive contact of a structural contact portion at the start of correction calculation, wherein an initial value is given to the boundary condition of the partial area, and the initial value is corrected based on the calculation result of each partial area. A contact stress analysis system that uses the contact state of the calculation result of each partial area before correction as the state.
JP5288296A 1996-03-11 1996-03-11 System for analyzing contact stress Pending JPH09243473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5288296A JPH09243473A (en) 1996-03-11 1996-03-11 System for analyzing contact stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5288296A JPH09243473A (en) 1996-03-11 1996-03-11 System for analyzing contact stress

Publications (1)

Publication Number Publication Date
JPH09243473A true JPH09243473A (en) 1997-09-19

Family

ID=12927260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5288296A Pending JPH09243473A (en) 1996-03-11 1996-03-11 System for analyzing contact stress

Country Status (1)

Country Link
JP (1) JPH09243473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335747A (en) * 2013-06-03 2013-10-02 山东大学 Intelligent detection method for pre-stress steel strand tensioning force

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335747A (en) * 2013-06-03 2013-10-02 山东大学 Intelligent detection method for pre-stress steel strand tensioning force

Similar Documents

Publication Publication Date Title
JP7000387B2 (en) Vector calculation unit in neural network processor
US6078938A (en) Method and system for solving linear systems
Farhat et al. On the general solution by a direct method of a large‐scale singular system of linear equations: application to the analysis of floating structures
Seçgin et al. Free vibration analysis of symmetrically laminated thin composite plates by using discrete singular convolution (DSC) approach: algorithm and verification
EP2116945A1 (en) Computation device of numeric value of structural analysis
Deng et al. Pseudoforce method for nonlinear analysis and reanalysis of structural systems
CN109740115A (en) A kind of method, device and equipment for realizing matrix multiplication operation
Malone Parallel nonlinear dynamic finite element analysis of three-dimensional shell structures
Paz Practical reduction of structural eigenproblems
JPH09243473A (en) System for analyzing contact stress
Ma et al. A local to global (L2G) finite element method for efficient and robust analysis of arbitrary cracking in 2D solids
Irschik Enhancement of elementary beam theories in order to obtain exact solutions for elastic rectangular beams
JP2005141645A (en) Apparatus and method for nonlinear finite element analysis, computer program and recording medium
JP2740057B2 (en) Weight measuring device
JP7211287B2 (en) Buckling stress estimation device, buckling stress estimation method, and buckling stress estimation program
Tanaka et al. Application of the boundary-domain element method to the pre/post-buckling problem of von Karman plates
Ferri et al. Analysis of stick-slip motion in Coulomb damped systems using variable structure system theory
JP7211283B2 (en) Buckling stress estimation device, buckling stress estimation method, and buckling stress estimation program
Ying et al. A uniform formulation for the calculation of stress singularities in the plane elasticity of a wedge composed of multiple isotropic materials
JP7211286B2 (en) Buckling stress estimation device, buckling stress estimation method, and buckling stress estimation program
JP7453551B2 (en) Buckling stress estimation device, buckling stress estimation method, and buckling stress estimation program
JP7211281B2 (en) Buckling stress estimation device, buckling stress estimation method, and buckling stress estimation program
Stolarski et al. Large deformation, rigid-plastic dynamics by an extremum principle
Ballarini et al. Finite element modeling of discontinuities with dilatancy and surface degradation
Villaverde et al. Scheme to improve numerical analysis of hysteretic dynamic systems