JPH09239613A - Diamond rotary cutter - Google Patents

Diamond rotary cutter

Info

Publication number
JPH09239613A
JPH09239613A JP13559696A JP13559696A JPH09239613A JP H09239613 A JPH09239613 A JP H09239613A JP 13559696 A JP13559696 A JP 13559696A JP 13559696 A JP13559696 A JP 13559696A JP H09239613 A JPH09239613 A JP H09239613A
Authority
JP
Japan
Prior art keywords
groove
diamond
rotary cutter
cutting
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13559696A
Other languages
Japanese (ja)
Inventor
Arturo A Rodriguez
エイ,ロドリゲス アーツロ
Ronald B Crockett
ビー,クロケット ロナルド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smith International Inc
Original Assignee
Smith International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smith International Inc filed Critical Smith International Inc
Priority to JP13559696A priority Critical patent/JPH09239613A/en
Publication of JPH09239613A publication Critical patent/JPH09239613A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/1081Shank-type cutters, i.e. with an integral shaft with permanently fixed cutting inserts 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/12Boron nitride
    • B23C2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/31Diamond
    • B23C2226/315Diamond polycrystalline [PCD]

Abstract

PROBLEM TO BE SOLVED: To provide an end mill with an edge of diamond or a cubic crystal boron nitride. SOLUTION: At least a pair of spiral grooves 18 are provided on a rotary cutter blank 12. In the grooves 18, a polycrystal powder diamond or a powder cubic crystal boron nitride is filled and sintered. The angle of the groove is selected to form a positive or a negative rake angle when necessary, and then, a recess form flute 14 having the edge end parallel to the edge end 15 of the polycrystal diamond filled in the groove of the blank 12 is formed neighboring the respective grooves. By grinding a diamond in such a condition, the diamond loss is extremely little, and the perfect condition of a cutter is never hurt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はロータリカッタに関し、
特に多結晶ダイヤモンド等を含む硬質材の切刃を有する
螺旋フルート付きロータリカッタに係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary cutter,
In particular, it relates to a rotary cutter with a spiral flute having a cutting edge made of a hard material containing polycrystalline diamond or the like.

【0002】[0002]

【従来の技術】極端にきびしい条件下で切削を行うに
は、エンドミルのような螺旋フルート付きロータリカッ
タが必要である。螺旋フルート付きエンドミルの切削端
はエンドミル加工素材(ブランク)の対向面に1つずつ
少なくとも一対の切刃を含む。
2. Description of the Related Art A rotary cutter with a spiral flute such as an end mill is required for cutting under extremely severe conditions. The cutting end of the spiral flute end mill includes at least one pair of cutting edges, one on each of the facing surfaces of the end mill material (blank).

【0003】エンドミル加工素材の切削端に位置して互
いに反対向きの切削面には軸荷重とねじり荷重が作用す
るので、エンドミルカッタの構造には材料的条件が要求
される。当然のことながら、切刃の材料は被切削物を切
削するためにできるだけ硬質でなければならず、エンド
ミルカッタの切刃を高温で維持するために耐熱性も要求
される。また、エンドミルカッタの使用中、負荷が掛け
られたエンドミルカッ夕は撓みに抵抗し外形を維持する
ため、エンドミル加工素材本体の材質は剛性と靭性を兼
備しなければならない。しかし、一般に硬い材料は脆
く、高靱性の材料は摩耗し易いから、上記条件を満たそ
うとすれば材料選択において妥協を余儀なくされざるを
得ないこととなる。
Since axial loads and torsional loads act on the cutting surfaces of the end milling material which are located at the cutting ends and are opposite to each other, material conditions are required for the structure of the end mill cutter. Naturally, the material of the cutting edge must be as hard as possible to cut the work piece, and heat resistance is also required to maintain the cutting edge of the end mill cutter at a high temperature. Further, during use of the end mill cutter, since the end mill cutter under load resists bending and maintains the outer shape, the material of the main body of the end mill material must have both rigidity and toughness. However, in general, a hard material is brittle and a high toughness material is easily worn. Therefore, if the above conditions are to be satisfied, a compromise must be made in material selection.

【0004】本発明は、溝切りフライス、ドリル、皿座
ぐり、端ぐり、リーマ、タツプなどのようなさまざまな
画転切削工具にも応用できる。
The present invention is also applicable to various image cutting tools such as grooving mills, drills, counterbore, counterbore, reamers, taps and the like.

【0005】切削面における硬度と耐摩耗特性を備えた
材料と、本体及びシャフトにおける高靭性かつ高剛性の
材料とを組合わせることは公知である。切削面と本体及
びシャフトを別々の材料で形成することはすでに提案さ
れている。その結果、炭素鋼またはカーバイドから成る
シャフトにタングステンカーバイドまたはダイヤモンド
のチツプまたはインサートを組合わせるなど種々の組合
せが公知である。
It is known to combine a material having hardness and wear resistance in the cutting surface with a material having high toughness and high rigidity in the main body and the shaft. It has already been proposed to form the cutting surface and the body and shaft from different materials. As a result, various combinations are known, such as a shaft made of carbon steel or carbide with a combination of tungsten carbide or diamond chips or inserts.

【0006】[0006]

【発明が解決しようとする課題】これらの組合せは個別
的には有用であっても、インサートまたはチップとシャ
フトとの間のろう付に関連する共通の欠点がある。タン
グステンカーバイドを鋼またはカーバイドシャフトに直
接はんだ付またはろう付することは可能である。しかし
ながら、ダイヤモンドのチップまたはインサートは先ず
カーバイド基台に接着してから、この基台をシャフトに
はんだ付またはろう付しなければならない。
Although individually useful, these combinations have common drawbacks associated with brazing between the insert or tip and the shaft. It is possible to solder or braze the tungsten carbide directly onto the steel or carbide shaft. However, the diamond tip or insert must first be bonded to the carbide base and then the base soldered or brazed to the shaft.

【0007】ダイヤモンド粒子はPCD(多結晶ダイヤモ
ンド)の圧縮成形体として形成すると同時に金属触媒を
介して高圧高温プレス中でカーバイド基台に接合するの
が普通である。しかし、大気圧においては、プレス中で
起こるダイヤモンド粒子の相互間及び基台との接合を触
媒する金属は700℃以上の温度においてダイヤモンド
から黒鉛への転換をも触媒し、その結果、PCD圧縮成
形体の崩壊を招く。
The diamond particles are usually formed as a compression molded body of PCD (polycrystalline diamond) and, at the same time, bonded to a carbide base in a high pressure and high temperature press through a metal catalyst. However, at atmospheric pressure, the metals that catalyze the bonding of diamond particles to each other and to the base that occur in the press also catalyze the conversion of diamond to graphite at temperatures above 700 ° C, resulting in PCD compression molding. It causes the body to collapse.

【0008】そこでシャフトヘの基台取付けには、低温
のはんだ付またはろう付が採用される。このろう付は、
基台やシャフトよりも軟質であるから、このような旋回
工具の耐用寿命には限界がある。従って、ろう付部分は
工具構造の最大の弱点であり、工具の使用を制約する要
因となる。
Therefore, low-temperature soldering or brazing is used to attach the base to the shaft. This brazing is
Because it is softer than the base and shaft, the useful life of such turning tools is limited. Therefore, the brazed portion is the greatest weak point of the tool structure, and becomes a factor that restricts the use of the tool.

【0009】米国特許第4, 762, 445号は、例え
ばカーバイドのような比較的摩削能力の低い材料から成
るドリル加工素材中に、例えば多結晶ダイヤモンドのよ
うな焼結した研摩粒子の筋脈状成形体を互いに対向する
位置に分脈して埋込んだ螺旋フルート付きツイストドリ
ル装置を開示している。ドリルの先端及びウェブの近傍
では、研摩材の筋脈状成形体は並列から乱れて互いに交
錯する。ダイヤモンドの筋脈状 成形体は螺旋ドリル加
工素材の先端で互いに180℃に開いて相対向してい
る。
US Pat. No. 4,762,445 discloses a vein of sintered abrasive particles, eg polycrystalline diamond, in a drilling material composed of a material having a relatively low abrading capacity, eg carbide. Disclosed is a twist drill device with a spiral flute, in which shaped compacts are embedded in a position opposed to each other in a branched manner. At the tip of the drill and near the web, the striations of abrasive material are disturbed out of parallel and interlace with each other. The diamond streaks are facing each other by opening at 180 ° C at the tip of the spiral drilling material.

【0010】この対向する筋脈状成形体は螺旋ドリルの
中心即ち軸心において交錯することでダイヤモンドをツ
イストドリルの先端に集中させている。しかし、ツイス
トドリルの先端におけるダイヤモンド筋脈状成形体は比
較的浅く、短時間で摩耗する。
The opposed muscle vein shaped bodies intersect at the center of the spiral drill, that is, the center of the axis, so that the diamond is concentrated at the tip of the twist drill. However, the diamond streaky compact at the tip of the twist drill is relatively shallow and wears in a short time.

【0011】[0011]

【課題を解決するための手段】本発明は、例えば、少な
くとも一対の予め形成された溝のそれぞれにダイヤモン
ドを集中させることによって上記公知技術の問題点を克
服する。ロータリカッ夕加工素材に設ける溝は、ロータ
リカッタフルートを形成する際にダイヤモンド近傍から
の基材切除量が最少限で済むような適切なすくい角で形
成する。
The present invention overcomes the problems of the prior art by, for example, concentrating diamond in each of at least a pair of preformed grooves. The groove provided in the rotary cutting material is formed with an appropriate rake angle that minimizes the amount of base material cut from the vicinity of the diamond when forming the rotary cutter flute.

【0012】上記公知技術では、ロータリカッタ加工素
材に半径方向に整列する溝を形成し、次いでこの溝の中
でダイヤモンドカッタ材を焼結する。ダイヤモンド焼結
処理によってそれぞれの溝にダイヤモンドを固定してか
ら、ロータリカッタの心棒にフルートを形成する時、特
に被切削物に対してダイヤモンドが正のすくい角を形成
するようにしたい場合、焼結ダイヤモンド前縁の大部分
が削り取られることになる。
According to the above-mentioned known technique, a groove that is aligned in the radial direction is formed in the material for rotary cutting, and then the diamond cutter material is sintered in this groove. After fixing diamond in each groove by diamond sintering process, when forming a flute on the mandrel of the rotary cutter, especially when it is desired to make the diamond form a positive rake angle with respect to the workpiece Most of the diamond leading edge will be scraped off.

【0013】本発明は隣接する被切削物に対する角度が
正、負または90゜のいずれであっても、焼結ダイヤモ
ンドの前縁切刃角度と一致するダイヤモンド充填溝を形
成したする方法を提供する。
The present invention provides a method for forming a diamond-filled groove that matches the leading edge cutting edge angle of sintered diamond, whether the angle to adjacent workpieces is positive, negative or 90 °. .

【0014】ダイヤモンド充填溝が適正な切削角度とな
るように注意深く形成することにより、次いでフルート
をロータリカッタの心棒に形成する際には溝から焼結ダ
イヤモンドを削り取らずにすみ、ダイヤモンドに刃をつ
ける工程において焼結ダイヤモンドをそっくり維持しな
がら容易にフルートを形成することができる。
By carefully forming the diamond-filled groove so as to have an appropriate cutting angle, it is possible to avoid cutting the sintered diamond from the groove when forming the flute on the mandrel of the rotary cutter, and to cut the diamond. It is possible to easily form the flute while maintaining the whole of the sintered diamond in the process.

【0015】本発明のロータリカッタはその製造過程に
おいてダイヤモンドがそっくりそのまま残されるから従
来のものよりも耐用寿命が長く、製造コストも低く抑え
られる。
In the rotary cutter of the present invention, the diamond is left as it is during the manufacturing process, so that it has a longer service life and a lower manufacturing cost than conventional ones.

【0016】本発明はロータリカッタ加工素材に形成さ
れた螺旋溝のそれぞれが被切削物に対して正または負の
すくい角を形成する螺旋フルート付きロータリカッタを
提供する。溝には多結晶ダイヤモンド(PCD)または
立方晶窒化ホウ素(CBN)から成る圧縮成形体を充填
する。次いで溝の角度と一致する角度で凹状フルートを
形成する。従って、ダイヤモンドまたはCBNに正また
は負のすくい角で刃をつける際、ダイヤモンドまたはC
BNの損失は極めて少ない。
The present invention provides a rotary cutter with a spiral flute in which each of the spiral grooves formed in the rotary cutter work material forms a positive or negative rake angle with respect to the workpiece. The grooves are filled with a compression compact made of polycrystalline diamond (PCD) or cubic boron nitride (CBN). The concave flutes are then formed at an angle that matches the angle of the groove. Therefore, when cutting a diamond or CBN with a positive or negative rake angle,
BN loss is extremely low.

【0017】ダイヤモンドロータリカッタは先ずロータ
リカッタ加工素材の側面に少なくとも一対の溝を形成す
ることによって製造される。溝は半径方向に彫り込ま
れ、そのエッジの角度が、次にロータリカッタ加工素材
に形成される凹状フルートの角度とほぼ一致するように
形成される。ロータリカッタ加工素材に形成した螺旋溝
に多結晶ダイヤモンド系および立方晶窒化ホウ素系のい
ずれかから選択された硬質材を充填する。ロータリカッ
タ加工素材の溝内の硬質材に十分な高圧をかけて焼結
し、多結晶硬質材を形成する。螺旋溝の硬質材のエッジ
とほぼ平行にロータリカッタ加工素材に凹状フルートを
形成し、硬質材のエッジ角度とほぼ一致する角度で硬質
材を研削することにより、硬質材損失を最少限に抑えな
がら、焼結硬質材の前縁に沿って硬質材の切刃を形成す
る。
The diamond rotary cutter is manufactured by first forming at least a pair of grooves on the side surface of the rotary cutter work material. The groove is radially engraved and is formed such that the angle of its edges approximately matches the angle of the concave flutes subsequently formed in the rotary cutter blank. A spiral groove formed in a rotary cutter material is filled with a hard material selected from either a polycrystalline diamond type or a cubic boron nitride type. The polycrystalline hard material is formed by sintering the hard material in the groove of the rotary cutter material under sufficient high pressure to sinter it. While forming a concave flute in the rotary cutter processing material almost parallel to the edge of the hard material of the spiral groove and grinding the hard material at an angle that almost matches the edge angle of the hard material, while minimizing the hard material loss Forming a cutting edge of hard material along the front edge of the sintered hard material.

【0018】[0018]

【実施例】以下、本発明の実施例を添付図面に沿ってさ
らに詳細に説明する。図1のダイヤモンドエンドミル1
0はエンドミル加工素材12から成り、加工素材の周り
に円周方向に等間隔で例えば4本のフルート14を有す
る。エンドミルの加工素材は、例えばタングステンカー
バイドのような硬くて靭性の高い材料で製造することが
望ましい。螺旋溝18はフルート14の前縁15に形成
される。溝のねじれ角度は次に形成されるフルート14
の形状に合わせて設定される。焼結した多結晶ダイヤモ
ンド(PCD)または立方晶窒化ホウ素(CBN)から
成る硬質材で螺旋溝18中に筋脈状圧縮成形体30を形
成する。ドリル状加工素材フルートに近い位置で、螺旋
溝18の加圧され焼結されたダイヤモンド材の筋脈状成
形体30を研削して切刃32を形成する。タングステン
カーバイドから成るこのドリル状加工素材を接合面17
に沿って鋼またはカーバイドから成るドリル心棒16に
金属間結合する。この金属間結合は例えばろう付けによ
って行うことができる。
Embodiments of the present invention will now be described in more detail with reference to the accompanying drawings. Diamond end mill 1 in Figure 1
0 is made of the end mill processing material 12, and has, for example, four flutes 14 at equal intervals in the circumferential direction around the processing material. The processing material of the end mill is preferably made of a hard and highly tough material such as tungsten carbide. The spiral groove 18 is formed in the front edge 15 of the flute 14. The twist angle of the groove is the flute 14 to be formed next.
It is set according to the shape of. The streaky compression molded body 30 is formed in the spiral groove 18 with a hard material made of sintered polycrystalline diamond (PCD) or cubic boron nitride (CBN). At a position close to the drill-shaped work material flute, the pressed and sintered diamond-shaped molded body 30 of the spiral groove 18 is ground to form a cutting edge 32. This drill-shaped workpiece made of tungsten carbide is used as the joining surface 17
Along with an intermetallic bond to a drill mandrel 16 of steel or carbide. This intermetallic bond can be made by brazing, for example.

【0019】図2に示すエンドミルの端面13も螺旋溝
18がフルートの前縁を形成することを示している。多
結晶ダイヤモンド(PCD)または立方晶窒化ホウ素
(CBN)から成る筋脈状成形休30は米国特許第4,
991, 467号及び第5, 031, 484号に詳述さ
れているように、まず螺旋溝に粉体状の硬質材として充
填され、それから高圧プレスにかけて溝の中で押固め、
焼結することによって形成される。焼結処理が完了した
らPCD材を研削してフルート14及び切刃32を形成
する。
The end face 13 of the end mill shown in FIG. 2 also shows that the spiral groove 18 forms the leading edge of the flute. Striation forming 30 composed of polycrystalline diamond (PCD) or cubic boron nitride (CBN) is disclosed in US Pat.
As detailed in 991, 467 and 5, 031, 484, the spiral groove is first filled as a powdery hard material and then subjected to high pressure pressing to compact in the groove,
It is formed by sintering. When the sintering process is completed, the PCD material is ground to form the flutes 14 and the cutting edges 32.

【0020】溝を形成している材料の縁辺角度は焼結ダ
イヤモンドの切刃角度と一致するから、研削量は最少限
でよい。従って、刃を付ける工程中のダイヤモンド損失
を最少限に抑えて溝内のダイヤモンド量を最大限に維持
することができる。
Since the edge angle of the material forming the groove coincides with the cutting edge angle of the sintered diamond, the grinding amount may be minimized. Therefore, it is possible to minimize the diamond loss during the blade attaching process and maintain the maximum amount of diamond in the groove.

【0021】図3から明らかなように、タングステンカ
ーバイドから成るエンドミル加工素材12に例えば4本
の螺旋溝18を形成する。次に溝内でダイヤモンドを焼
結処理したのち、エンドミル本体にフルートを形成す
る。螺旋溝は加工素材の外周壁に沿って円周方向に等間
隔であり、粉体PCDを詰込まれる容器の役割を果す。
As is apparent from FIG. 3, for example, four spiral grooves 18 are formed in the end mill material 12 made of tungsten carbide. Next, after sintering the diamond in the groove, flutes are formed on the end mill body. The spiral grooves are evenly spaced in the circumferential direction along the outer peripheral wall of the processed material, and play the role of a container in which the powder PCD is packed.

【0022】螺旋溝の互いに角度を形成する側壁20は
溝の丸みのある底22へ移行するように構成するのが好
ましい。それぞれの溝には照合側壁20が設けられる。
溝底に丸みを与える理由は空隙が生じないように溝へ多
結晶粉体ダイヤモンドを充填するためである。溝の側壁
を底に対して90゜となるように構成すると90゜の鋭
い隅部が形成され、これが応力集中を生じてダイヤモン
ド素材中に空隙を形成するおそれがある。
The mutually angled sidewalls 20 of the spiral groove are preferably configured to transition to the rounded bottom 22 of the groove. A matching sidewall 20 is provided in each groove.
The reason for rounding the groove bottom is to fill the groove with polycrystalline powder diamond so that voids do not occur. If the side wall of the groove is formed at 90 ° with respect to the bottom, a sharp corner of 90 ° is formed, which may cause stress concentration to form a void in the diamond material.

【0023】図4には加工素材112に一対の螺旋溝1
18を形成した別のエンドミル加工素材110の実施例
を示した。
In FIG. 4, a pair of spiral grooves 1 is formed on the work material 112.
An example of another end mill material 110 having 18 formed therein is shown.

【0024】ロータリカッタ加工素材の軸線とほぼ平行
な一本以上の螺旋溝をダイヤモンドカッタに設けてもよ
い。さらにまた、ロータリカッタ加工素材12,112
のそれぞれ端面13,113を横切る切刃を設けること
により、縦フライス削り及び横フライス削り効果を高め
ることも本発明の範囲内で可能である。
The diamond cutter may be provided with one or more spiral grooves that are substantially parallel to the axis of the rotary cutter material. Furthermore, rotary cutter processing materials 12, 112
It is also possible within the scope of the present invention to provide vertical milling and horizontal milling effects by providing cutting edges that traverse the end faces 13 and 113, respectively.

【0025】図1、図2及び図5から明らかなように、
螺旋溝18,118を粉体ダイヤモンド(または粉体窒
化ホウ素)で充填して、多結晶材を形成するのに十分高
圧なプレス中で焼結する。このようにしてエンドミル加
工素材側面の螺旋溝に多結晶ダイヤモンド固態が形成さ
れる。次いでエンドミル加工素材を研削してフルート1
4を形成する。螺旋溝は加工素材に形成されるフルート
の角度に一致させて切削形成されているから、次の研削
工程では、最少限のダイヤモンド損失で加工素材の側面
に切刃32が形成される。
As is apparent from FIGS. 1, 2 and 5,
The spiral grooves 18, 118 are filled with powdered diamond (or powdered boron nitride) and sintered in a press at a pressure high enough to form a polycrystalline material. In this way, a polycrystalline diamond solid state is formed in the spiral groove on the side surface of the end mill processed material. Next, grind the end mill processing material and flute 1
4 is formed. Since the spiral groove is formed by cutting in accordance with the angle of the flute formed in the work material, the cutting edge 32 is formed on the side surface of the work material with the minimum diamond loss in the next grinding step.

【0026】図6には心棒本体212に溝218が形成
されている従来のエンドミル210を断面図で示した。
ダイヤモンド材230及び溝218は半径方向に形成さ
れているから、心棒本体212にフルート214を形成
し、ダイヤモンド材に刃付けをする時、陰影域217で
示すようにダイヤモンド材230の少なくとも1/3が
失われる。
FIG. 6 is a sectional view showing a conventional end mill 210 having a groove 218 formed in a mandrel body 212.
Since the diamond material 230 and the groove 218 are formed in the radial direction, when the flute 214 is formed on the mandrel main body 212 and the diamond material is bladed, at least 1/3 of the diamond material 230 is shown as indicated by the shaded area 217. Is lost.

【0027】このダイヤモンド損失は、正のカッタすく
い角“A”を設ける場合にあっては特に不都合である。
ダイヤモンド材230の研削に多大の時間を要するだけ
でなく、工具を研削する装置にとっても重い負担とな
る。さらに、ダイヤモンド損失はダイヤモンドカッタの
耐用寿命を縮める。
This diamond loss is particularly inconvenient when a positive cutter rake angle "A" is provided.
Not only a great amount of time is required to grind the diamond material 230, but also a heavy load is imposed on the tool grinding device. In addition, diamond loss shortens the useful life of the diamond cutter.

【0028】図7に示す実施態様では、PCDを詰めら
れるロータリカッタ心棒312の溝318を半径方向の
線から傾斜させて凹状フルート314と整合させる。さ
らにまた、ダイヤモンド材330の切刃332は(図示
しない)隣接の被工作物に対して正のすくい角を形成す
る。角度“B”は切刃332のすくい角度である。
In the embodiment shown in FIG. 7, the grooves 318 of the PCD-packed rotary cutter mandrel 312 are angled from the radial line to align with the concave flutes 314. Furthermore, the cutting edge 332 of the diamond material 330 forms a positive rake angle with respect to an adjacent workpiece (not shown). Angle "B" is the rake angle of cutting edge 332.

【0029】加工素材にフルートを形成する時、切削面
319と平行にかつダイヤモンド材330の底317に
対して接線方向に加工素材の材料が削り取られる。フル
ート形成工程並びにダイヤモンド刃付け工程において失
われるダイヤモンド素材がいかに僅かなものであるか明
らかである。
When forming the flutes in the work material, the work material is scraped off parallel to the cutting surface 319 and tangential to the bottom 317 of the diamond material 330. It is clear how little diamond material is lost in the flute forming process as well as the diamond edging process.

【0030】図6の公知技術と比較すれば容易に理解さ
れるように、溝を所定の角度に形成すればロータリカッ
タ310の耐久力を著しく高め、その寿命を延ばすこと
ができる。
As can be easily understood by comparing with the known technique of FIG. 6, if the groove is formed at a predetermined angle, the durability of the rotary cutter 310 can be remarkably enhanced and its life can be extended.

【0031】図8に示す実施例ではロータリカッタ41
0の加工素材412に“V”字形の溝418を形成し、
“V”字の底に丸み421が与えてある。上記実施例に
おける底331(図7)同様、底に丸み421を与える
ことで、図3の説明で上記したように、確実に空隙を発
生させず粉体ダイヤモンドをしっかり充填することがで
きる。
In the embodiment shown in FIG. 8, the rotary cutter 41 is used.
Form a V-shaped groove 418 in the processing material 412 of 0,
A roundness 421 is provided at the bottom of the "V". Similar to the bottom 331 (FIG. 7) in the above-described embodiment, by providing the bottom with the roundness 421, it is possible to reliably fill the powder diamond without generating voids as described above with reference to FIG.

【0032】この実施例でも切削面419は正のすくい
角を形成するから、隣接する(図示しない)被切削物に
対して切刃432が正のすくい角を、即ち、カッタ面に
対する切線との間に正のすくい角を形成する。ここでも
フルートは切削面419に沿って形成され、底417の
レベルでダイヤモンド切削面419から移行するから先
に述べたように、フルート形成工程及びダイヤモンド刃
付け工程において、切粉として除かれるダイヤモンドの
量は極めて少ない。
Since the cutting surface 419 also forms a positive rake angle in this embodiment, the cutting edge 432 forms a positive rake angle with respect to the adjacent (not shown) workpiece, that is, the cutting line with respect to the cutter surface. Form a positive rake angle between them. Here again, the flutes are formed along the cutting surface 419 and migrate from the diamond cutting surface 419 at the level of the bottom 417. As described above, in the flute forming step and the diamond edging step, the diamonds removed as chips are The quantity is extremely small.

【0033】ダイヤモンド焼結溝及びフルートを負のす
くい角に形成することも本発明の範囲内で可能である。
螺旋状でない溝及びフルートを形成することも本発明の
範囲内で可能である。
It is also possible within the scope of the invention to form diamond sintered grooves and flutes at negative rake angles.
It is also possible within the scope of the invention to form grooves and flutes that are not helical.

【0034】本発明の構成及び手法において本発明の思
想を逸脱することなく多様な変更が可能であることはい
うまでもない。即ち、本発明の好ましい構成及び作業態
様を図示の実施例に基づいて説明したが、頭書した特許
請求の範囲内でその他の実施態様も可能である。
It goes without saying that various changes can be made in the structure and method of the present invention without departing from the concept of the present invention. That is, although the preferred construction and working mode of the present invention have been described based on the illustrated embodiment, other embodiments are possible within the scope of the appended claims.

【図面の簡単な説明】[Brief description of drawings]

【図1】フルート付きエンドミルの斜視図である。FIG. 1 is a perspective view of an end mill with a flute.

【図2】図1の2−2矢視による端面図である。FIG. 2 is an end view taken along the line 2-2 of FIG.

【図3】4本の螺旋フルートを切削形成したエンドミル
加工素材の側面図である。
FIG. 3 is a side view of an end mill processing material in which four spiral flutes are cut and formed.

【図4】互いに180゜の間隔を保つ一対の螺旋フルー
トを有するエンドミル加工素材の側面図である。
FIG. 4 is a side view of an end mill blank having a pair of spiral flutes spaced 180 ° apart from each other.

【図5】図4の5−5矢視による端面図である。5 is an end view taken along the line 5-5 of FIG.

【図6】焼結ダイヤモンドが充填された溝を半径方向に
整列させて形成した、従来の技術によるフルート付きロ
ータリカッタ加工素材の断面図である。
FIG. 6 is a cross-sectional view of a conventional rotary flute-machined material for fluting, which is formed by aligning grooves filled with sintered diamond in a radial direction.

【図7】螺旋フルートが半径方向の線と交差して正のす
くい角をなすダイヤモンド切刃を形成するフルート付き
ロータリカッタ加工素材の断面図である。
FIG. 7 is a cross-sectional view of a rotary cutting material with a flute in which a spiral flute intersects a radial line to form a diamond cutting edge forming a positive rake angle.

【図8】半径方向の線と交差して被切削物に対して正の
すくい角をなすダイヤモンド切刃を形成する“V”字形
溝を有するフルート付きロータリカッタ加工素材の断面
図である。
FIG. 8 is a cross-sectional view of a fluted rotary cutter stock having a "V" shaped groove that intersects a radial line to form a diamond cutting edge that makes a positive rake angle with the work piece.

【符号の説明】[Explanation of symbols]

10 ダイヤモンドエンドミル 12 エンドミル加工素材 13 エンドミル端面 14 フルート 15 前縁 18 螺旋溝 20 側壁 22 底 30 筋脈状圧縮成形体 32 切刃 10 Diamond End Mill 12 End Mill Processing Material 13 End Mill End Surface 14 Flute 15 Leading Edge 18 Spiral Groove 20 Sidewall 22 Bottom 30 Muscle Compression Molded Body 32 Cutting Edge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ロナルド ビー,クロケット アメリカ合衆国,84601 ユタ州,プロボ, サウス 350 ウエスト 500 ─────────────────────────────────────────────────── ———————————————————————————————————————————————————————————————————————————————————————————————— 3—3

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 第1及び第2の端部を有するロータリカ
ッタ加工素材の側壁に少なくとも一対の溝を形成し、多
結晶ダイヤモンド系および立方晶窒化ホウ素系のいずれ
かから選択された硬質材を前記溝内に固定したロータリ
カッタにおいて、前記溝がこの溝のそれぞれに隣接させ
て前記ロータリカッタ加工素材に形成されるフルートの
ねじれ角と合致する角度に沿って半径方向の彫り込みに
よって形成され、次いで前記硬質材及びロータリカッタ
加工素材を研削することにより、硬質材によって形成さ
れる傾斜前縁に沿って前記フルート及び切刃を形成する
ことを特徴とするダイヤモンドロータリカッタ。
1. A hard material selected from one of a polycrystalline diamond-based material and a cubic boron nitride-based material, in which at least a pair of grooves are formed in a side wall of a rotary cutting material having first and second ends. In the rotary cutter fixed in the groove, the grooves are formed by radial engraving along an angle that is adjacent to each of the grooves and that matches a helix angle of a flute formed in the rotary cutter work material, and then A diamond rotary cutter characterized in that the flute and the cutting edge are formed along an inclined front edge formed by the hard material by grinding the hard material and the rotary cutter processing material.
【請求項2】 前記溝の方向を、カッタ面に対する接線
と正のすくい角を形成するように設定したことを特徴と
する請求項1記載のダイヤモンドロータリカッタ。
2. The diamond rotary cutter according to claim 1, wherein the direction of the groove is set so as to form a positive rake angle with a tangent to the cutter surface.
【請求項3】 前記溝の方向を、カッタ面に対する接線
と負のすくい角を形成するように設定したことを特徴と
する請求項1記載のダイヤモンドロータリカッタ。
3. The diamond rotary cutter according to claim 1, wherein the direction of the groove is set so as to form a negative rake angle with a tangent to the cutter surface.
【請求項4】 前記溝をV型に形成し、カッタ面に対す
る接線と正のすくい角を形成するように切刃前縁の方向
を設定したことを特徴とする請求項1記載のダイヤモン
ドロータリカッタ。
4. The diamond rotary cutter according to claim 1, wherein the groove is formed in a V shape, and the direction of the leading edge of the cutting edge is set so as to form a positive rake angle with a tangent to the cutter surface. .
【請求項5】 切削端を第1端部とし基部を第2端部と
するロータリカッタ加工素材を形成し、第1の切削端部
から第2の基端部に向かってロータリカッタ加工素材の
側面に少なくとも一対の溝を形成し、このロータリカッ
タ加工素材に形成された前記溝に、多結晶ダイヤモンド
系および立方晶窒化ホウ素系のいずれかから選択された
硬質材を充填し、前記溝内の前記硬質材を多結晶硬質剤
を形成するのに十分な高圧プレス内で焼結し、ほぼ前記
溝の縁端においてロータリカッタ加工素材に凹状フルー
トを形成するステップを含むロータリカッタの形成方法
において、前記溝が半径方向に向けて彫り込まれ、次い
でロータリカッタ加工素材に形成される凹状フルートの
ねじれ角とほぼ一致する角度でエッジが形成され、ロー
タリカッタ加工素材の前記溝内で形成された硬質材をこ
の硬質材の前記エッジの角度とほぼ等しい角度で研削す
ることにより、焼結された硬質材の前縁と前記エッジの
角度とほぼ一致するすくい角に沿って硬質材の切刃を形
成することを特徴とするダイヤモンドロータリカッタの
形成方法。
5. A rotary cutter working material having a cutting end as a first end and a base as a second end is formed, and the rotary cutting work material is formed from the first cutting end toward the second base end. Forming at least a pair of grooves on the side surface, the groove formed in this rotary cutter processing material, filled with a hard material selected from any one of polycrystalline diamond-based and cubic boron nitride-based, in the groove In a method of forming a rotary cutter, comprising sintering the hard material in a high-pressure press sufficient to form a polycrystalline hardener, and forming a concave flute in the rotary cutting material at substantially the edge of the groove, The groove is carved in the radial direction, and then an edge is formed at an angle substantially corresponding to the twist angle of the concave flute formed in the rotary cutting material, the rotary cutting material By grinding the hard material formed in the groove of the hard material at an angle substantially equal to the angle of the edge of the hard material, a rake angle substantially equal to the angle of the leading edge and the edge of the sintered hard material is obtained. A method of forming a diamond rotary cutter, characterized in that a cutting edge made of a hard material is formed along the cutting edge.
【請求項6】前記溝として、この溝底の幅がロータリカ
ッタ加工素材の表面の溝幅よりも狭い”V”字形溝を画
定するように”V”字形に傾斜側壁をロータリカッタ加
工素材に形成するステップを含み、前記傾斜側壁がカッ
タ表面に対する接線と正のすくい角を形成することを特
徴とする請求項5記載のダイヤモンドロータリカッタの
形成方法。
6. As the groove, a sloped side wall is formed into a rotary cutting material in a "V" shape so as to define a "V" -shaped groove in which the width of the groove bottom is narrower than the groove width of the surface of the rotary cutting material. The method of forming a diamond rotary cutter according to claim 5, further comprising the step of forming, wherein the inclined sidewall forms a positive rake angle with a tangent to the surface of the cutter.
【請求項7】 隣接する被切削物に対して正のすくい角
度で溝を形成するステップを含むことを特徴とする請求
項5記載の方法。
7. The method of claim 5 including the step of forming a groove at a positive rake angle with respect to an adjacent work piece.
【請求項8】 隣接する被切削物に対して負のすくい角
度で溝を形成するステップを含むことを特徴とする請求
項5記載の方法。
8. The method of claim 5 including the step of forming a groove at a negative rake angle with respect to an adjacent work piece.
【請求項9】 前記ロータリカッタの基端である第2端
部をカッタ心棒にろう付けするステップを含むことを特
徴とする請求項5乃至8のいずれか一項記載の方法。
9. A method as claimed in any one of claims 5 to 8 including the step of brazing a proximal second end of the rotary cutter to a cutter mandrel.
JP13559696A 1996-05-29 1996-05-29 Diamond rotary cutter Pending JPH09239613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13559696A JPH09239613A (en) 1996-05-29 1996-05-29 Diamond rotary cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13559696A JPH09239613A (en) 1996-05-29 1996-05-29 Diamond rotary cutter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4208803A Division JP2934927B2 (en) 1991-08-16 1992-08-05 Diamond rotary cutter

Publications (1)

Publication Number Publication Date
JPH09239613A true JPH09239613A (en) 1997-09-16

Family

ID=15155524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13559696A Pending JPH09239613A (en) 1996-05-29 1996-05-29 Diamond rotary cutter

Country Status (1)

Country Link
JP (1) JPH09239613A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074402A (en) * 2002-08-16 2004-03-11 Sandvik Ab Drill bit or milling tool and its manufacturing method
JP2004344984A (en) * 2003-05-20 2004-12-09 Tungaloy Corp End mill
JP2009509788A (en) * 2005-10-04 2009-03-12 フィルマ ギューリング オーハーゲー Cutting tools
CN102917824A (en) * 2010-05-27 2013-02-06 斯奈克玛 Method for machining grooves in a turbomachine turbine disc
CN107695408A (en) * 2016-10-10 2018-02-16 上海精韧激光科技有限公司 Superhard material cutting part and its manufacture method and purposes
CN110871343A (en) * 2018-08-29 2020-03-10 发那科株式会社 Mirror surface processing method and mirror surface processing tool
CN113118532A (en) * 2021-05-20 2021-07-16 成都戴梦迪超硬工具有限责任公司 Precise long and short blade PCBN small spiral angle end milling cutter for machining thin-walled parts and machining method
WO2023146713A1 (en) * 2022-01-28 2023-08-03 Diamond Innovations, Inc. Veined end mill tool blanks

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074402A (en) * 2002-08-16 2004-03-11 Sandvik Ab Drill bit or milling tool and its manufacturing method
JP2004344984A (en) * 2003-05-20 2004-12-09 Tungaloy Corp End mill
JP2009509788A (en) * 2005-10-04 2009-03-12 フィルマ ギューリング オーハーゲー Cutting tools
CN102917824A (en) * 2010-05-27 2013-02-06 斯奈克玛 Method for machining grooves in a turbomachine turbine disc
JP2013532248A (en) * 2010-05-27 2013-08-15 スネクマ Method for machining grooves in a turbine disk of a turbine engine
CN107695408A (en) * 2016-10-10 2018-02-16 上海精韧激光科技有限公司 Superhard material cutting part and its manufacture method and purposes
CN110871343A (en) * 2018-08-29 2020-03-10 发那科株式会社 Mirror surface processing method and mirror surface processing tool
CN110871343B (en) * 2018-08-29 2023-01-03 发那科株式会社 Mirror surface processing method and mirror surface processing tool
CN113118532A (en) * 2021-05-20 2021-07-16 成都戴梦迪超硬工具有限责任公司 Precise long and short blade PCBN small spiral angle end milling cutter for machining thin-walled parts and machining method
CN113118532B (en) * 2021-05-20 2024-04-09 成都戴梦迪超硬工具有限责任公司 Precision long and short edge PCBN small helix angle end mill for machining thin-wall parts and machining method
WO2023146713A1 (en) * 2022-01-28 2023-08-03 Diamond Innovations, Inc. Veined end mill tool blanks

Similar Documents

Publication Publication Date Title
JP2934927B2 (en) Diamond rotary cutter
US6158304A (en) Process for forming a center cutting end mill
EP0458434B1 (en) Rotary cutter with Diamond-like cutting edges
US4802799A (en) Drill bit
US5070748A (en) Diamond fluted end mill
JP2004521766A (en) Sintered cutting insert with center hole for tightening screw
JPH0683927B2 (en) Cutting tools
EP1322441B1 (en) Cutting tool and method and apparatus for making the same
CN111201102B (en) Four-edge drill bit
JP2008264979A (en) Rotary cutting tool for drilling
JPH09239613A (en) Diamond rotary cutter
JPS625726B2 (en)
KR960007687Y1 (en) End mill
JPH08118113A (en) Cutting tool with chip breaker
JPH08336716A (en) Rotary cutting tool
JP2000043006A (en) Rotary cutting tool
CA1326146C (en) Drill bit with cutting insert
JP4608062B2 (en) Burnishing drill
WO1996035537A1 (en) Diamond or cbn fluted center cutting end mill
JPH052247Y2 (en)
JPH039945Y2 (en)
JPH031134Y2 (en)
JP2021523836A (en) Tool blanks and drills with vanes
CN215392672U (en) Hard alloy flat-bottom drill reamer for machining tooth holes of roller bit
JPS6224903A (en) Compound cutting tool