JPH09235176A - Quartz crucible for melting silicon - Google Patents

Quartz crucible for melting silicon

Info

Publication number
JPH09235176A
JPH09235176A JP4603796A JP4603796A JPH09235176A JP H09235176 A JPH09235176 A JP H09235176A JP 4603796 A JP4603796 A JP 4603796A JP 4603796 A JP4603796 A JP 4603796A JP H09235176 A JPH09235176 A JP H09235176A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
silicon
melt
quartz crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4603796A
Other languages
Japanese (ja)
Inventor
Yoshinori Shirakawa
義徳 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP4603796A priority Critical patent/JPH09235176A/en
Publication of JPH09235176A publication Critical patent/JPH09235176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To equip the inner sidewall of a quartz crucible with a spiral staircase- shaped fin to regulate the rising of the thermal convection in a silicon melt along the sidewall of the crucible and thus enable the oxygen concentration of the melt to be controlled and a high-quality silicon single crystal to be pulled. SOLUTION: The inner sidewall 3 of a quartz crucible 1 is equipped with a spiral staircase-shaped fin 2. Thereby, such a control as to suppress or promote the rising of the thermal convection in a silicon melt in the crucible can be conducted by altering the direction and speed of revolution of the crucible, leading to obtain a silicon single crystal excellent in the in-plane distribution characteristics of impurities such as oxygen and in device characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、シリコン単結晶
の引上げに用いられるシリコン溶融用石英坩堝に関し、
シリコン融液中における坩堝側壁部の熱対流の上昇を調
整し、酸素濃度の制御と高品質のシリコン単結晶を引き
上げることのできる石英坩堝に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon melting quartz crucible used for pulling a silicon single crystal,
The present invention relates to a quartz crucible capable of controlling an increase in thermal convection on a side wall of a crucible in a silicon melt, controlling an oxygen concentration, and pulling a high-quality silicon single crystal.

【0002】[0002]

【従来の技術】シリコン単結晶を製造するには、高純度
シリコン原料を減圧下のアルゴン雰囲気で溶融し、種結
晶を用いて上方に引き上げながら凝固させる方法(CZ
法と呼ばれている)が多用されている。
2. Description of the Related Art In order to produce a silicon single crystal, a method of melting a high-purity silicon raw material in an argon atmosphere under reduced pressure and solidifying it by pulling it upward with a seed crystal (CZ
It is often used).

【0003】図4は、引き上げながら凝固させるシリコ
ン単結晶製造装置を示す縦断面図である。図中の符号8
はシリコン単結晶11の引上げ雰囲気を減圧するチャンバ
ーであり、チャンバーの内部には溶融坩堝5 が配置さ
れ、坩堝の外側にはこれを囲んで誘導加熱コイルなどで
構成された加熱用ヒーター6 が、更にその外側に断熱材
で円筒状に構成された保温筒7 が配設されている。溶融
坩堝内にはヒーターにより溶融された結晶育成用原料、
つまりシリコン原料の溶融液9 が収容されている。その
溶融液の表面に引上げワイヤ12の先に取り付けた種結晶
10の下端を接触させ、この種結晶を上方に引き上げるこ
とによって、その下端に溶融液が凝固したシリコン単結
晶11を成長させていく。
FIG. 4 is a vertical sectional view showing a silicon single crystal manufacturing apparatus for solidifying while pulling. Reference numeral 8 in the figure
Is a chamber for decompressing the pulling atmosphere of the silicon single crystal 11, a melting crucible 5 is arranged inside the chamber, and a heating heater 6 composed of an induction heating coil and the like is provided outside the crucible, surrounding the crucible 5. Further, on the outside thereof, a heat insulating cylinder 7 formed of a heat insulating material in a cylindrical shape is arranged. In the melting crucible, raw material for crystal growth melted by a heater,
That is, the melt 9 of the silicon raw material is contained. Seed crystal attached to the surface of the melt at the tip of pulling wire 12
By bringing the lower end of 10 into contact and pulling this seed crystal upward, a silicon single crystal 11 in which the melt is solidified is grown at the lower end.

【0004】このとき溶融坩堝は回転軸15で、シリコン
単結晶は引上げワイヤの上部に設けた回転機構(図示せ
ず)によって、お互いに反対方向に回転させられる。溶
融坩堝は二重構造であり、内側が石英製の容器1 (以
下、これを「石英坩堝」という)、外側がカーボン製の
容器4 (以下、これを「カーボン坩堝」という)から構
成されている。
At this time, the melting crucible is rotated by the rotating shaft 15, and the silicon single crystal is rotated by the rotating mechanism (not shown) provided above the pulling wire in opposite directions. The melting crucible has a double structure and is composed of a container 1 made of quartz inside (hereinafter referred to as "quartz crucible") and a container 4 made of carbon at outside (hereinafter referred to as "carbon crucible"). There is.

【0005】減圧チャンバー内は、約 10 torr に減圧
され、ガス供給口13からアルゴンガスを供給し、シリコ
ン溶融液の表面から発生するSiO ガスおよびカーボン坩
堝やヒーターから発生するCOガスなどをガス排気口14か
ら排出する。
The inside of the decompression chamber is decompressed to about 10 torr, argon gas is supplied from the gas supply port 13, and SiO gas generated from the surface of the silicon melt and CO gas generated from the carbon crucible and the heater are exhausted. Discharge through mouth 14.

【0006】石英坩堝は、シリコン溶融液と反応して酸
素を溶出することが知られており、これを軽減させる方
法として、加熱方法や磁気制御によって溶融液の対流を
制御する方法が提案されている。しかし、これらの方法
は、大幅な設備改造をともなうものである。
It is known that a quartz crucible reacts with a silicon melt to elute oxygen, and as a method for reducing this, a heating method or a method of controlling convection of the melt by magnetic control has been proposed. There is. However, these methods involve major equipment modifications.

【0007】上記の方法に用いられた石英坩堝は、製作
の容易さから図4に示すような側壁部および底部が滑ら
かに形成されている。石英坩堝の内部の形状を変えて熱
対流を制御しようとする試みもある。例えば、特開昭55
-130892 号公報には、坩堝の回転にともなって坩堝内の
融液が坩堝の中央底から底面を伝わって外周方向に向か
って流れ、さらに坩堝の内壁に沿って上方に向かうよう
な流れ方向制御片を坩堝の底に設け、単結晶中への酸素
の混入量を少なくすることを図った坩堝が提案されてい
る。また、実開昭63-11574号公報には、坩堝の内壁に溶
融液の対流を阻止する障壁を内径方向に張り出して庇状
に設け、ストリエーションの少ない単結晶をえることを
可能にした坩堝が提案されている。
The quartz crucible used in the above method has a smooth side wall and bottom as shown in FIG. 4 for ease of manufacture. There is also an attempt to control the thermal convection by changing the shape inside the quartz crucible. For example,
-130892 discloses a flow direction control in which the melt in the crucible flows from the center bottom of the crucible to the outer circumference along the bottom of the crucible along with the rotation of the crucible, and further upward along the inner wall of the crucible. A crucible has been proposed in which one piece is provided at the bottom of the crucible to reduce the amount of oxygen mixed into the single crystal. Further, in Japanese Utility Model Laid-Open No. 63-11574, a barrier that prevents convection of the melt on the inner wall of the crucible is provided in the shape of an eave in the direction of the inner diameter so that a single crystal with less striation can be obtained. Is proposed.

【0008】しかし、制御片を坩堝底部に一体に設ける
方法は、石英体の表面積を増加することになり、シリコ
ン溶融液への酸素の溶解量が増すとともに加工が煩雑で
あり、コスト高になる。また、坩堝の内壁に障壁を設け
る方法は、側壁に障壁を固定する加工が煩雑であり、熱
対流の上昇流が結晶成長部に集まることになり、溶融液
の流れを乱し、不純物の混入を促進するという問題があ
る。
However, the method of integrally providing the control piece on the bottom of the crucible increases the surface area of the quartz body, which increases the amount of oxygen dissolved in the silicon melt and complicates the processing, resulting in a high cost. . Further, in the method of providing a barrier on the inner wall of the crucible, the process of fixing the barrier on the side wall is complicated, and the upward flow of thermal convection will be collected in the crystal growth part, disturbing the flow of the melt and mixing impurities. There is a problem of promoting.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、シリ
コン融液中における坩堝側壁部の熱対流の上昇を調整
し、酸素濃度の制御と高品質のシリコン単結晶を引き上
げることのできる坩堝を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a crucible capable of controlling the increase of thermal convection on the side wall of the crucible in the silicon melt, controlling the oxygen concentration, and pulling a high-quality silicon single crystal. To provide.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、図1に
示す下記のシリコン溶融用石英坩堝にある。
The gist of the present invention resides in the following quartz crucible for melting silicon shown in FIG.

【0011】石英坩堝をカーボン坩堝の内部に挿入した
二重構造のシリコン溶融用の石英坩堝であって、前記石
英坩堝1 の内側壁部3 に螺旋階段状のひれ2 を有するこ
とを特徴とするシリコン溶融用石英坩堝。
A quartz crucible for melting silicon having a double structure in which a quartz crucible is inserted inside a carbon crucible, characterized in that the quartz crucible 1 has a spiral step-like fin 2 on an inner side wall portion 3 thereof. Quartz crucible for melting silicon.

【0012】[0012]

【発明の実施の形態】図1は、本発明のシリコン溶融用
石英坩堝の一部断面を示す斜視図である。本発明の溶融
坩堝1 は、内部側壁3 に螺旋階段状に展開されたひれ2
(以下、これを単に「ひれ」という)が固着されてい
る。石英坩堝内部の側壁にひれ2 を設け、坩堝の回転方
向および回転速度を変えることによって、熱対流の上昇
を抑制または促進するような制御をおこなうことができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a perspective view showing a partial cross section of a quartz crucible for melting silicon according to the present invention. The melting crucible 1 of the present invention comprises a fin 2 which is developed in a spiral step shape on the inner side wall 3.
(Hereinafter, this is simply referred to as "fin") is fixed. By providing the fin 2 on the side wall inside the quartz crucible and changing the rotation direction and the rotation speed of the crucible, it is possible to perform control so as to suppress or accelerate the rise of thermal convection.

【0013】本発明の石英坩堝は、坩堝本体と螺旋階段
状のひれを石英を原料として通常の方法で製作した後、
ひれを坩堝内部に挿入し、ひれの上端部を加熱し、溶着
することによって製造することができる。
In the quartz crucible of the present invention, after the crucible body and the spiral step fins are manufactured from quartz by a usual method,
The fin can be manufactured by inserting the fin into the crucible and heating and welding the upper end of the fin.

【0014】図2は、通常の引上げ法でシリコン単結晶
育成中の石英坩堝内の溶融液の流れを示す図であり、
(a) は断面図、(b) は平面図である。石英坩堝は、前述
したように、円筒状の加熱ヒーターで側壁から輻射によ
り加熱される。従って、坩堝内の溶融液には、熱対流a
、単結晶の回転による強制流b 、坩堝の回転による強
制流c および表面でのみ発生するマランゴニ対流d が生
じる。
FIG. 2 is a diagram showing the flow of the melt in the quartz crucible during the growth of a silicon single crystal by the ordinary pulling method.
(a) is a sectional view and (b) is a plan view. As described above, the quartz crucible is heated by radiation from the side wall by the cylindrical heater. Therefore, thermal convection a occurs in the molten liquid in the crucible.
, The forced flow b due to the rotation of the single crystal, the forced flow c due to the rotation of the crucible, and the Marangoni convection d generated only on the surface.

【0015】これらの流れの中で、熱対流a は溶融液の
温度分布を均一化し、結晶成長速度や直径制御の容易さ
にも影響を与える。また、熱対流は乱流状態であるとい
われており、結晶成長界面に温度変動すなわち成長速度
変動をもたらし、不純物の不均一分布や欠陥発生の要因
となる。更に石英坩堝の溶融液への溶解を促進させ、酸
素の混入を増大させる。
In these flows, the thermal convection a makes the temperature distribution of the melt uniform, and also affects the crystal growth rate and the ease of controlling the diameter. Further, it is said that thermal convection is in a turbulent state, which causes a temperature change, that is, a growth rate change at a crystal growth interface, which causes a non-uniform distribution of impurities and a defect. Further, it promotes the dissolution of the quartz crucible in the melt and increases the mixing of oxygen.

【0016】単結晶の回転による強制流b は、結晶の回
転速度15〜30rpm の範囲で坩堝の回転と反対の方向に回
転することにより、溶融液に慣性力が与えられ、液流が
発生する。この流れは、乱れのない層流のため、結晶成
長界面直下への乱れた熱対流の浸入を阻止し、結晶成長
を安定化させる作用があるといわれている。
The forced flow b due to the rotation of the single crystal rotates in the direction opposite to the rotation of the crucible within the rotation speed of the crystal of 15 to 30 rpm, so that an inertial force is applied to the melt and a liquid flow is generated. . Since this flow is a laminar flow without turbulence, it is said that it has an action of preventing the entry of turbulent thermal convection just below the crystal growth interface and stabilizing the crystal growth.

【0017】坩堝の回転による強制流c は、通常、坩堝
を結晶の回転と反対の方向に回転することにより、坩堝
壁面では(b) 図に示すように坩堝回転速度とほぼ等しい
速度が与えられ、熱対流を抑制する流れとなる。
The forced flow c due to the rotation of the crucible normally causes the crucible wall to be rotated in a direction opposite to the rotation of the crystal, so that a velocity substantially equal to the crucible rotation speed is given to the crucible wall surface as shown in Fig. (B). , It becomes a flow that suppresses thermal convection.

【0018】マランゴニ対流d は、表面張力の不均一に
よって発生する流れであり、熱対流、結晶および坩堝の
回転による強制流に比べると小さく、シリコン単結晶育
成にはほとんど影響しないといわれている。
The Marangoni convection d is a flow generated by uneven surface tension, and is smaller than the thermal convection and the forced flow due to the rotation of the crystal and the crucible, and is said to have almost no effect on the growth of the silicon single crystal.

【0019】この様に溶融液の対流は、溶融液中の熱お
よび不純物を移動させる効果があり、熱対流の大きさに
より酸素濃度、ドーパントの分布の均一さが決まる。し
たがって、溶融液の対流の大きさを制御する必要があ
る。
Thus, the convection of the melt has an effect of moving heat and impurities in the melt, and the oxygen concentration and the uniformity of the dopant distribution are determined by the size of the heat convection. Therefore, it is necessary to control the magnitude of the convection of the melt.

【0020】図3は、本発明の坩堝を用いた場合に考え
られる液流れを示す図であり、(a)は坩堝を螺旋階段状
ひれの上昇方向と同じ方向に回転した場合、(b) は坩堝
を螺旋階段状ひれの上昇方向と反対方向に回転した場合
を示す図である。
FIG. 3 is a diagram showing a possible liquid flow when the crucible of the present invention is used. (A) shows the case where the crucible is rotated in the same direction as the rising direction of the spiral staircase fin, (b) FIG. 6 is a diagram showing a case where the crucible is rotated in the direction opposite to the upward direction of the spiral staircase fin.

【0021】坩堝を螺旋階段状ひれの上昇方向と同じ方
向に回転した場合には、坩堝側壁部の熱対流a はひれの
下面に沿って上昇し、坩堝の回転による強制流c が重畳
される。一方、坩堝を螺旋階段状ひれの上昇方向と反対
方向に回転した場合には、坩堝側壁部の熱対流a はひれ
の下面に沿って上昇し、坩堝の回転による強制流c によ
って抑制される。
When the crucible is rotated in the same direction as the rising direction of the spiral staircase fin, the thermal convection a on the side wall of the crucible rises along the lower surface of the fin, and the forced flow c due to the rotation of the crucible is superposed. . On the other hand, when the crucible is rotated in the direction opposite to the rising direction of the spiral staircase fin, the thermal convection a on the side wall of the crucible rises along the lower surface of the fin and is suppressed by the forced flow c due to the rotation of the crucible.

【0022】[0022]

【実施例】図1に示す本発明の溶融用石英坩堝を配置し
た図4 に示すシリコン単結晶製造装置を用い、直径8イ
ンチの単結晶を製造した。内径750 mm、高さ400 mmの石
英坩堝の内壁に、幅 50 mm、厚さ3mm、螺旋の巻き回数
3回のひれを設置した。
EXAMPLE A single crystal having a diameter of 8 inches was manufactured by using the silicon single crystal manufacturing apparatus shown in FIG. 4 in which the melting quartz crucible of the present invention shown in FIG. 1 was arranged. A fin having a width of 50 mm, a thickness of 3 mm and a spiral winding number of 3 was set on the inner wall of a quartz crucible having an inner diameter of 750 mm and a height of 400 mm.

【0023】100 kgの多結晶シリコンを溶融し、引上げ
速度1.0mm/min で800 mm長さの単結晶を製造した。ま
た、比較例として図4 に示すような従来の溶融石英坩堝
を用い、同様のシリコン単結晶を製造した。
100 kg of polycrystalline silicon was melted to produce a 800 mm long single crystal at a pulling rate of 1.0 mm / min. As a comparative example, a conventional fused silica crucible as shown in FIG. 4 was used to manufacture the same silicon single crystal.

【0024】本発明の溶融用石英坩堝を使用した試験で
は、螺旋階段状ひれの上昇方向と同方向に回転させる場
合、および螺旋階段状ひれの上昇方向と反対方向に回転
させる場合の2種類について単結晶の引上げをおこなっ
た。
In the test using the melting crucible for melting of the present invention, two kinds of tests were carried out: one in the case of rotating in the same direction as the rising direction of the spiral step fins, and the other in the case of rotating in the opposite direction to the rising direction of the spiral step fins. The single crystal was pulled up.

【0025】評価として、得られた単結晶中の不純物お
よび欠陥の調査をおこない、それらの結果を表1に示し
た。表1において、ドーパントの面内分布はウエーハに
切断した状態で4端針法により抵抗を測定し、酸素濃度
はFT−IR法で、IR欠陥密度は赤外線トモグラフ法
で測定した。
As an evaluation, impurities and defects in the obtained single crystal were investigated, and the results are shown in Table 1. In Table 1, the in-plane distribution of the dopant was measured by a four-edge probe method in a state of being cut into wafers, the oxygen concentration was measured by the FT-IR method, and the IR defect density was measured by the infrared tomography method.

【0026】[0026]

【表1】 [Table 1]

【0027】表1から次のことがわかる。The following can be seen from Table 1.

【0028】発明例1は、坩堝を螺旋階段状ひれの上昇
方向と同じ方向に回転させ、結晶を反対方向に回転した
もので、ドーパントの面内分布が±1%、IR欠陥密度
が1×105 個/cm3といずれも小さく、酸素濃度は17×10
17atoms/ccとやや高くなった。
In Invention Example 1, the crucible was rotated in the same direction as the rising direction of the spiral staircase fin, and the crystal was rotated in the opposite direction. The in-plane distribution of the dopant was ± 1% and the IR defect density was 1 ×. As small as 10 5 pieces / cm 3 , oxygen concentration is 17 × 10
It became a little higher at 17 atoms / cc.

【0029】発明例2は、坩堝を螺旋階段状ひれの上昇
方向と反対方向に回転させ、結晶を螺旋階段状ひれの上
昇方向と同じ方向に回転したもので、ドーパントの面内
分布およびIR欠陥密度は発明例1と同じであるが、酸
素濃度は 3×1017atoms/ccと低くできた。これは、坩堝
を螺旋階段状ひれの上昇方向と反対方向に回転させる
と、溶融液の熱対流を抑制するので結晶育成界面に取り
入れられる酸素が低減したものと考えられる。
In Invention Example 2, the crucible was rotated in the direction opposite to the rising direction of the spiral staircase fin, and the crystal was rotated in the same direction as the rising direction of the spiral staircase fin. The density was the same as that of Inventive Example 1, but the oxygen concentration could be as low as 3 × 10 17 atoms / cc. It is considered that when the crucible is rotated in the direction opposite to the rising direction of the spiral staircase fin, the thermal convection of the melt is suppressed, so that the oxygen introduced into the crystal growth interface is reduced.

【0030】比較例3および4は、内部にひれのない通
常の坩堝を使用した場合であり、ドーパントの面内分布
が±5%、IR欠陥密度が5×105 個/cm3といずれも高
い。
Comparative Examples 3 and 4 are cases in which a normal crucible having no fin inside was used, and the in-plane distribution of the dopant was ± 5% and the IR defect density was 5 × 10 5 / cm 3. high.

【0031】[0031]

【発明の効果】本発明のシリコン溶融坩堝を使用すれ
ば、ドーパント、酸素などの不純物の面内分布性に優
れ、デバイス特性に優れたシリコン単結晶が得られる。
更に、低酸素から高酸素まで単結晶の酸素濃度を制御す
ることができる。
By using the silicon melting crucible of the present invention, a silicon single crystal having excellent in-plane distribution of impurities such as dopant and oxygen and excellent device characteristics can be obtained.
Furthermore, the oxygen concentration of the single crystal can be controlled from low oxygen to high oxygen.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のシリコン溶融用坩堝の縦断面を示す図
である。
FIG. 1 is a view showing a vertical cross section of a silicon melting crucible of the present invention.

【図2】通常の引上げ法でシリコン単結晶育成中の石英
坩堝内の溶融液の流れを示す図であり、(a) は断面図、
(b) は平面図である。
FIG. 2 is a diagram showing a flow of a molten liquid in a quartz crucible during the growth of a silicon single crystal by a normal pulling method, (a) is a sectional view,
(b) is a plan view.

【図3】本発明の石英坩堝を用いた流体模型試験による
液流れを示す図であり、(a) は坩堝を螺旋階段状ひれの
上昇方向と同じ方向に回転した場合、(b) は坩堝を螺旋
階段状ひれの上昇方向と反対方向に回転した場合を示す
図である。
FIG. 3 is a diagram showing a liquid flow in a fluid model test using the quartz crucible of the present invention, where (a) is the crucible rotated in the same direction as the rising direction of the spiral staircase fin, and (b) is the crucible. It is a figure showing the case where it rotates in the direction opposite to the ascending direction of the spiral staircase fin.

【図4】引き上げながら凝固させるシリコン単結晶製造
装置を示す縦断面図である。
FIG. 4 is a vertical cross-sectional view showing a silicon single crystal manufacturing apparatus for solidifying while pulling.

【符号の説明】[Explanation of symbols]

1.石英坩堝 2.ひれ 3.側壁 4.カーボン坩堝 5.溶融坩堝 6.加熱用ヒータ 7.保温筒 8.減圧チャンバー 9.シリコン溶融液 10.種結晶 11.シリコン単結晶 12.引上げワイヤ 13.ガス供給口 14.ガス排出口 15.回転軸 A.結晶の回転方向 B.坩堝の回転方向 a.熱対流 b.結晶の回転による強制流 c.坩堝の回転による強制流 d.マランゴニ対流 1. Quartz crucible 2. Fin 3. Side wall 4. Carbon crucible 5. Melting crucible 6. Heater for heating 7. 7. Heat insulation tube Decompression chamber 9. Silicon melt 10. Seed crystal 11. Silicon single crystal 12. Pull wire 13. Gas supply port 14. Gas outlet 15. Rotating axis A. Crystal rotation direction B. Rotating direction of crucible a. Thermal convection b. Forced flow due to crystal rotation c. Forced flow by rotation of crucible d. Marangoni convection

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】石英坩堝をカーボン坩堝の内部に挿入した
二重構造のシリコン溶融用の石英坩堝であって、前記石
英坩堝の内側壁部に螺旋階段状のひれを有することを特
徴とするシリコン溶融用石英坩堝。
1. A quartz crucible for melting silicon having a double structure in which a quartz crucible is inserted inside a carbon crucible, wherein the inner wall of the quartz crucible has a spiral step fin. Quartz crucible for melting.
JP4603796A 1996-03-04 1996-03-04 Quartz crucible for melting silicon Pending JPH09235176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4603796A JPH09235176A (en) 1996-03-04 1996-03-04 Quartz crucible for melting silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4603796A JPH09235176A (en) 1996-03-04 1996-03-04 Quartz crucible for melting silicon

Publications (1)

Publication Number Publication Date
JPH09235176A true JPH09235176A (en) 1997-09-09

Family

ID=12735851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4603796A Pending JPH09235176A (en) 1996-03-04 1996-03-04 Quartz crucible for melting silicon

Country Status (1)

Country Link
JP (1) JPH09235176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079863A (en) * 2019-04-22 2019-08-02 山东天岳先进材料科技有限公司 A kind of reactor for crystal growth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079863A (en) * 2019-04-22 2019-08-02 山东天岳先进材料科技有限公司 A kind of reactor for crystal growth
CN110079863B (en) * 2019-04-22 2020-07-14 山东天岳先进材料科技有限公司 Reactor for crystal growth

Similar Documents

Publication Publication Date Title
KR100806001B1 (en) Method of lifting silicon single crystal
JP2546736B2 (en) Silicon single crystal pulling method
US6086671A (en) Method for growing a silicon single crystal
JPH11268987A (en) Silicon single crystal and its production
US5306473A (en) Quartz glass crucible for pulling a single crystal
US5392729A (en) Method of producing silicon single crystal
JPH09263484A (en) Method for pulling single crystal
TWI784314B (en) Manufacturing method of single crystal silicon
JPH09235176A (en) Quartz crucible for melting silicon
JP2004231474A (en) Manufacturing method of silicon single crystal and silicon single crystal manufactured thereby
JP4131176B2 (en) Inert gas flow rate control device and method for controlling flow rate of silicon single crystal pulling device
JP3787452B2 (en) Method for producing silicon single crystal
JP3635694B2 (en) Single crystal manufacturing method
JP4951186B2 (en) Single crystal growth method
JP2007204305A (en) Single crystal pulling apparatus
JP4360069B2 (en) Method for growing silicon single crystal
JP4801869B2 (en) Single crystal growth method
JP7249913B2 (en) Manufacturing method of silicon single crystal
JP4207498B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JPS5950627B2 (en) Single crystal silicon pulling equipment
JP2005060151A (en) Silicon single crystal production method and silicon single crystal wafer
JPH10279391A (en) Method for growing silicon single crystal
JP2005306669A (en) Apparatus for pulling up silicon single cryststal and method therefor
JP4211334B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP2001199793A (en) Single crystal pull device