JPH09228785A - Ultra low frequency sound reducing method of buffering work for tunnel - Google Patents

Ultra low frequency sound reducing method of buffering work for tunnel

Info

Publication number
JPH09228785A
JPH09228785A JP6019096A JP6019096A JPH09228785A JP H09228785 A JPH09228785 A JP H09228785A JP 6019096 A JP6019096 A JP 6019096A JP 6019096 A JP6019096 A JP 6019096A JP H09228785 A JPH09228785 A JP H09228785A
Authority
JP
Japan
Prior art keywords
tunnel
compression wave
pressure
cover
entrance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6019096A
Other languages
Japanese (ja)
Inventor
Toshimitsu Tanaka
俊光 田中
Ichiro Yamagiwa
伊知郎 山極
Takao Nagura
隆雄 名倉
Mineo Oishi
峰生 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Central Japan Railway Co
Original Assignee
Kobe Steel Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Central Japan Railway Co filed Critical Kobe Steel Ltd
Priority to JP6019096A priority Critical patent/JPH09228785A/en
Publication of JPH09228785A publication Critical patent/JPH09228785A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce sound pressure peak and ultra low frequency sound generated by pressure wave generating at the entrance and exit of a tunnel by properly selecting data of buffering work through model tests of tunnel, train and buffering work. SOLUTION: A cover 3 having a specified length and a larger sectional area than that of a tunnel 2 is arranged at an entrance of the tunnel 2, and an opening 4 is arranged on a side surface of the cover 3. Data of this buffering work for the tunnel 2 comprises the area and shape of the opening 4 and the specified length L and the sectional area S2 of the cover 3. Through execution of model tests, the data is properly made to thereby make a first stage compression wave generating at the entrance of the cover 3 and a secondary stage compression wave generating at the entrance of the fennel 2, a synthesized compression wave as a whole close to one pressure gradient. By making the data properly, the distance between two pressure inclinations mixed in the wave front of the synthesized compression wave is specified, threreby reducing generation of ultra low frequency sound at the exit of the tunnel 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新幹線等の高速車
両がトンネルに突入した際、トンネル出口で発生する圧
力波による超低周波音を低減させる、トンネル用緩衝工
の超低周波音低減方法に関するものである。特に圧力波
の勾配の上がり方を調節し、トンネル出口での超低周波
音を低減させる効果のあるトンネル用緩衝工の超低周波
音低減方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing ultra-low frequency sound of a tunnel buffer, which reduces infrasound due to a pressure wave generated at a tunnel exit when a high-speed vehicle such as a Shinkansen enters a tunnel. It is about. In particular, the present invention relates to a method of reducing infrasound of a tunnel buffer, which has an effect of adjusting the rising of the gradient of a pressure wave to reduce infrasound at the tunnel exit.

【0002】[0002]

【従来の技術】列車が高速でトンネルに突入すると、ト
ンネル内の空気は圧縮され圧縮波が生じる。この圧縮波
はトンネル内を出口に向かって音速で伝搬し、出口に達
したとき、圧縮波のー部がトンネル出口から外部に向か
ってパルス状の圧力波として放出され、空気圧音を発生
する。またこの空気圧音が2次的に家屋等の振動を引き
起こす。この空気圧音の大きさは、トンネル出口に達し
た圧縮波の波面前面の圧力勾配に比例し、トンネルの入
口で発生する圧縮波の波面前面の圧力勾配は列車の突入
速度のほぼ3乗に比例して形成されることが判ってい
る。このため、新幹線のように220km/hr以上の
高速になると、トンネル出口の空気圧音は級数的に増大
し、深刻な環境問題を引き起こす恐れがある。
2. Description of the Related Art When a train enters a tunnel at high speed, the air in the tunnel is compressed and a compression wave is generated. This compression wave propagates in the tunnel toward the exit at the speed of sound, and when it reaches the exit, the minus part of the compression wave is emitted from the exit of the tunnel to the outside as a pulsed pressure wave to generate an air pressure sound. In addition, this pneumatic noise secondarily causes vibrations of houses and the like. The magnitude of this air pressure sound is proportional to the pressure gradient on the front surface of the compression wave reaching the tunnel exit, and the pressure gradient on the front surface of the compression wave generated at the tunnel entrance is proportional to the cube of the train entry speed. Is known to be formed. For this reason, at high speeds of 220 km / hr or more like a Shinkansen, the pneumatic noise at the tunnel exit increases exponentially, which may cause serious environmental problems.

【0003】トンネル出口での空気圧音を減少させるた
めは、圧縮波の波面前面の圧力勾配を下げる必要があ
る。この具体的方法として、特公昭55−31274号
公報に開示されるものが有効とされ、現在も使用されて
いる。
In order to reduce the air pressure noise at the tunnel exit, it is necessary to reduce the pressure gradient on the front surface of the wave front of the compression wave. As a concrete method, the method disclosed in Japanese Patent Publication No. 55-31274 is effective and is still used.

【0004】この空気圧音低減方法を図1により説明す
る。なお、図1は本発明の超低周波音低減方法で使用す
る緩衝工であるが、従来の緩衝工と構造は類似してい
る。この空気圧音低減方法は、トンネル2の突入口に設
けられ、トンネル断面積より大きな断面を有する覆体3
と、前記覆体3の側面に設けられた開口4とからなるト
ンネル用緩衝工5が用いられている。この方法は、新幹
線等の高速車両1がトンネル2に突入した際の圧縮波
を、覆体3の突入口で発生する第1段圧縮波とトンネル
2の突入口で発生する第2段圧縮波とに分ける。次に、
第1段圧縮波と第2段圧縮波との間に覆体の長さで決ま
る時間的経過を介在させ、開口の面積を最適にすること
により、第1段圧縮波と第2段圧縮波とが連続したなだ
らかな圧縮波にして波面前面の圧力勾配を下げる方法で
ある。
This air pressure sound reducing method will be described with reference to FIG. Although FIG. 1 shows a shock absorber used in the method for reducing infrasound of the present invention, the structure is similar to that of the conventional shock absorber. This pneumatic noise reduction method is provided at the entrance of the tunnel 2 and has a cover 3 having a cross section larger than the tunnel cross-sectional area.
And a tunnel buffer 5 including an opening 4 provided on a side surface of the cover 3. In this method, a compression wave generated when a high-speed vehicle 1 such as a Shinkansen plunges into the tunnel 2 is a first-stage compression wave generated at the entrance of the cover 3 and a second-stage compression wave generated at the entrance of the tunnel 2. Divide into next,
By interposing a time course determined by the length of the cover between the first-stage compression wave and the second-stage compression wave to optimize the area of the opening, the first-stage compression wave and the second-stage compression wave Is a method of reducing the pressure gradient in front of the wave front by forming a continuous gentle compression wave.

【0005】[0005]

【発明を解決しようとする課題】しかしながら、上述の
方法では空気圧音を低減することはできるが、2次的に
発生する超低周波音、特に20Hz以下の超低周波音に
より、家屋等を振動させる問題がある。このような超低
周波帯域の圧力波は可聴域の空気圧音ほど低減すること
ができず、従って、空気圧音は聞こえないが、振動は発
生するいう超低周波振動の問題が生じる。そこで、本発
明は、トンネル出口で発生する圧力波による超低周波音
を低減させる、トンネル用緩衝工の超低周波音低減方法
に関するものである。
However, although the air pressure sound can be reduced by the above-mentioned method, the house or the like is vibrated by the secondary low frequency sound, particularly the low frequency sound of 20 Hz or less. There is a problem that causes Such a pressure wave in the infra-low frequency band cannot be reduced as much as the air pressure sound in the audible range. Therefore, although the air pressure sound is inaudible, there is a problem of the infra-low frequency vibration that vibration occurs. Therefore, the present invention relates to a method of reducing infrasound of a tunnel buffer, which reduces infrasound caused by a pressure wave generated at a tunnel exit.

【0006】[0006]

【課題を解決するための手段】本発明の発明者らは、ト
ンネルにおける実際の圧縮波の発生の観察を行い、鋭意
検討を行った。この結果、覆体の突入口により発生する
第1段圧縮波とトンネル突入口により発生する第2段圧
縮波とを、合成した初期の圧縮波における波面前面に混
在する二つの圧力勾配の間隔を、前記緩衝工の諸元をさ
らに適切にして、所定間隔にすることによって、トンネ
ル出口で発生する2次の超低周波音の周波数域を20H
zを越えるようにし、超低周波音の発生を低減できるこ
とを見い出した。
Means for Solving the Problems The inventors of the present invention observed the actual generation of a compression wave in a tunnel and conducted intensive studies. As a result, the gap between the two pressure gradients in which the first-stage compression wave generated by the entrance of the cover and the second-stage compression wave generated by the tunnel entrance are mixed in the wave front surface in the initial compression wave , The frequency range of the secondary infrasound generated at the tunnel exit is set to 20H by further adjusting the specifications of the buffer and setting it at a predetermined interval.
It has been found that it is possible to reduce the generation of infrasound by making z exceed.

【0007】合成した初期の圧縮波における波面前面に
混在する二つの圧力勾配の間隔を所定間隔にするための
緩衝工の諸元は、開口の面積、開口の形状、覆体の所定
長、覆体の断面積がある。これらの諸元の一つ以上をよ
り適切にすることにより、合成した初期の圧縮波におけ
る波面前面に混在する二つの圧力勾配の間隔を所定間隔
にする。この結果、トンネル出口で発生しようとする2
次音の周波数域を20Hzを越えるようにでき、超低周
波音の発生を低減できる。さらに、所定間隔以下にする
ことにより、超低周波音の周波数域を20Hzより、さ
らに高くすることは好ましい。
The specifications of the buffer for making the interval of two pressure gradients mixed in the wave front surface in the synthesized initial compression wave a predetermined interval are as follows: area of the opening, shape of the opening, predetermined length of the cover, cover There is a cross-sectional area of the body. By making one or more of these specifications more appropriate, the interval between the two pressure gradients mixed in the wave front surface of the synthesized initial compression wave is set to a predetermined interval. As a result, 2 which is going to occur at the tunnel exit
The frequency range of the next sound can be set to exceed 20 Hz, and the generation of infrasound can be reduced. Furthermore, it is preferable to set the frequency range of the infrasound to be higher than 20 Hz by setting the predetermined interval or less.

【0008】トンネル用緩衝工の超低周波音低減方法を
列車及び緩衝工の模型実験で行うことは好ましい。すな
わち、第1段圧縮波と第2段圧縮波を、全体として一つ
の圧力勾配に近づいた合成圧縮波にする第1工程と、合
成圧縮波の波面前面に混在する二つの圧力勾配の間隔を
所定間隔にする第2工程を、模型実験で行い、実機に適
用するものである。実機での実験は制約条件が多く、ま
た実施できない実験条件もある。一方、模型実験では実
験条件を自由に設定でき、この結果、効率良く、効果的
に実験が行え、トンネル出口で発生しようとする超低周
波音をより低減できることが可能である。さらに、模型
実験での圧力勾配の間隔を、覆体の入口で発生する第1
段圧縮波とトンネル入口で発生する第2段圧縮波が維持
される代表時間の間隔にすることは好ましい。
It is preferable to carry out the method of reducing the infrasound of the tunnel buffer by a train and model test of the buffer. That is, the first step of converting the first-stage compression wave and the second-stage compression wave into a combined compression wave that is close to one pressure gradient as a whole, and the interval between the two pressure gradients mixed in front of the wavefront of the combined compression wave The second step of setting the predetermined intervals is performed by a model test and applied to an actual machine. There are many restrictions on the experiments on the actual machine, and there are also experimental conditions that cannot be carried out. On the other hand, in the model experiment, the experimental conditions can be freely set, and as a result, it is possible to perform the experiment efficiently and effectively and to further reduce the infrasound generated at the tunnel exit. In addition, the pressure gradient interval in the model experiment is set to the first
It is preferable to set an interval of a representative time during which the stage compression wave and the second stage compression wave generated at the tunnel entrance are maintained.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態を、図示例と
ともに説明する。まず、緩衝工をトンネルの入口に設け
た時の模型実験圧縮波の解析結果を示す(実施例1)。
図1はトンネルの入口に緩衝工を設けた状態を示す側面
図と正面図である。図2は実験装置により、トンネル入
口付近を列車が通過するタイミングとその時に発生する
圧縮波をトンネル入口で計測した図である。測定条件は
トンネル長さ75m、緩衝工の覆体の長さ2.65m、
緩衝工の覆体の断面積/トンネル断面積の比率が2.5
の緩衝工をトンネルの入口に設け、車両模型を500k
m/hrでトンネルへ突入させた場合である。図2の横
軸は時間、縦軸は圧力を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to illustrated examples. First, an analysis result of a model test compression wave when a shock absorber is provided at the entrance of a tunnel is shown (Example 1).
FIG. 1 is a side view and a front view showing a state in which a shock absorber is provided at the entrance of the tunnel. FIG. 2 is a diagram in which the timing at which a train passes near the tunnel entrance and the compression wave generated at that time were measured at the tunnel entrance by the experimental apparatus. The measurement conditions are a tunnel length of 75 m, a buffer covering length of 2.65 m,
The ratio of the sectional area of the cover of the shock absorber / the sectional area of the tunnel is 2.5.
A shock absorber will be installed at the entrance of the tunnel and a model car will be run for 500k.
This is the case when entering the tunnel at m / hr. The horizontal axis of FIG. 2 represents time and the vertical axis represents pressure.

【0010】図2に示すように、圧縮波は3つの部分か
ら形成されている。即ち、(a)列車先頭部が緩衝工に
突入する際に形成される第1段圧縮波、(b)緩衝工通
過中に形成される圧縮波と、(c)列車先頭部が緩衝工
からトンネルに突入する際に形成される第2段圧縮波で
ある。
As shown in FIG. 2, the compression wave is formed of three parts. That is, (a) the first stage compression wave formed when the train head portion rushes into the shock absorber, (b) the compression wave formed while passing through the shock absorber, and (c) the train front portion from the shock absorber. It is the second-stage compression wave formed when entering the tunnel.

【0011】次に、圧縮波の圧力波形の伝搬の様子を調
査した解析結果を示す(実施例2)。図3は圧縮波がト
ンネル入口から出口への圧力波形の伝搬の様子を示し、
さらに、トンネル出口から放出された微気圧波の圧力波
形を示している。実施例1と同じ測定条件で行った。
Next, the analysis result of the investigation of the propagation of the pressure waveform of the compression wave will be shown (Example 2). Figure 3 shows how the compression wave propagates in the pressure waveform from the tunnel entrance to the exit,
Furthermore, the pressure waveform of the micro-pressure wave emitted from the tunnel exit is shown. The measurement was performed under the same measurement conditions as in Example 1.

【0012】図3は上から順に(a)トンネル入口の圧
縮波の圧力波形、(b)トンネル出口直前の圧縮波の圧
力波形、(c)トンネル出口から放出された微気圧波の
圧力波形である。(a)のトンネル入口直後の圧力波形
は、トンネル内を伝搬し出口近傍では(b)のような圧
力波形になる。大気圧では空気は音速約340m/sで
伝搬する。圧縮された空気は、圧力が大気圧よりも大き
いために、音速も速くなる。従って、(a)のトンネル
入口の圧縮波は、圧力が高い部分は圧力が低い部分より
も速くトンネル出口に到達する。このことが、トンネル
出口に進むに連れて圧力勾配が切り立ってくる理由であ
る。
FIG. 3 shows, in order from the top, (a) the pressure waveform of the compression wave at the tunnel entrance, (b) the pressure waveform of the compression wave immediately before the tunnel exit, and (c) the pressure waveform of the micro-pressure wave emitted from the tunnel exit. is there. The pressure waveform immediately after the tunnel entrance of (a) propagates in the tunnel and becomes a pressure waveform like (b) near the exit. At atmospheric pressure, air propagates at a speed of sound of about 340 m / s. Since the compressed air has a pressure higher than the atmospheric pressure, the sound velocity also increases. Therefore, the compression wave at the entrance of the tunnel in (a) reaches the exit of the tunnel faster in the high pressure portion than in the low pressure portion. This is the reason why the pressure gradient rises as the tunnel exits.

【0013】(a)のトンネル入口の圧縮波の圧力勾配
が急な部分は、図3に示すように、(b)のトンネル出
口直前の圧縮波の圧力勾配がさらに急峻になる。(b)
の圧力波形が、ちょうど(a)の圧力波形の時間軸を圧
縮したような形になっている。
As shown in FIG. 3, in the portion (a) where the pressure gradient of the compression wave at the tunnel entrance is steep, the pressure gradient of the compression wave immediately before the tunnel exit in (b) becomes even steeper. (B)
The pressure waveform of (1) is in a form in which the time axis of the pressure waveform of (a) is compressed.

【0014】(b)のトンネル出口直前の圧縮波がトン
ネルから放出されると、トンネル出口の外では、(c)
のようなパルス状の微気圧波として観察される。この圧
力の大きさはトンネル出口での圧力勾配の大きさに比例
していることが分かる。いわゆる「ドン音」はこのパル
ス波のことであり、「ドン音」の大きさはパルス波の圧
力の大きさで決まる。すなわち、得られた圧縮波の波面
前面の圧力勾配が出口での空気圧力音の大きさを決定す
る。
When the compression wave just before the tunnel exit of (b) is emitted from the tunnel, outside the tunnel exit, (c)
Is observed as a pulsed micro-pressure wave. It can be seen that the magnitude of this pressure is proportional to the magnitude of the pressure gradient at the tunnel exit. The so-called "don't sound" is this pulse wave, and the magnitude of the "don't sound" is determined by the magnitude of the pressure of the pulse wave. That is, the pressure gradient on the front surface of the obtained compression wave determines the loudness of the air pressure sound at the outlet.

【0015】一方、トンネル出口で発生する2次の超低
周波音はパルス状の微気圧波のピ−クの時間間隔を周期
とする周波数成分が支配的になる。この周波数が、家屋
等の構造物の共鳴周波数(通常は20Hz以下)と一致
するよう場合、超低周波空気振動問題が発生する。パル
ス状の微気圧波のピ−クの時間間隔が長い程、微気圧の
主な周波数成分が2次音の発生する周波数領域に入るこ
とにより超低周波の問題が発生することになる。特に、
(a)部の覆体の入口で発生する第1段圧縮波と(c)
部のトンネル入口で発生する第2段圧縮波のピ−クの時
間間隔が超低周波の発生への寄与が大きい。すなわち、
ピ−クの時間間隔が長くなり、20Hz以下の超低周波
が発生しやすくなる。なお、パルス状の微気圧波を周波
数分析し、トンネル出口で発生する2次の超低周波音の
周波数は前記微気圧波のピ−クの時間間隔が支配するこ
とを確認している。
On the other hand, the second-order ultra-low frequency sound generated at the tunnel exit is dominated by frequency components whose period is the time interval of the peak of the pulsed micro-pressure wave. If this frequency matches the resonance frequency of a structure such as a house (usually 20 Hz or less), an ultra-low frequency air vibration problem occurs. The longer the time interval between the peaks of the pulsed micro-atmospheric pressure wave, the more the main frequency component of the micro-atmospheric pressure enters the frequency region where the secondary sound is generated, which causes a problem of ultra-low frequency. Especially,
The first-stage compression wave generated at the entrance of the cover of part (a) and (c)
The time interval of the peak of the second-stage compression wave generated at the entrance of the tunnel in the section greatly contributes to the generation of the ultra-low frequency. That is,
The peak time interval becomes long, and an ultra-low frequency of 20 Hz or less is likely to occur. The frequency of the pulsed micro-pressure wave is analyzed and it has been confirmed that the frequency of the secondary ultra-low frequency sound generated at the tunnel exit is controlled by the peak time interval of the micro-pressure wave.

【0016】図3の(a)のトンネル入口の圧縮波の圧
力勾配が急な部分が、トンネル出口で発生する2次の超
低周波音に大きな影響を与えることを今回初めて見出し
た。今まで、このような緩衝工をトンネルの入口に設け
た時の圧縮波の解析がほとんどなされていなかった。特
に、トンネル出口で発生する2次の超低周波音がどのよ
うに発生するか、今まで、実施例で示すような解析がな
されていなかった。
It was found for the first time that the steep pressure gradient portion of the compression wave at the tunnel entrance in FIG. 3 (a) has a great influence on the secondary infrasound generated at the tunnel exit. Until now, there has been almost no analysis of compression waves when such a buffer was installed at the entrance of a tunnel. In particular, how the second-order infrasound generated at the tunnel exit is generated has not been analyzed so far in the examples.

【0017】発明者らは、トンネル出口で発生しようと
する空気音圧のピークの低減(第1工程)と超低周波音
の低減(第2工程)について、鋭意研究を行った。第1
工程は、列車の突入により、緩衝工の覆体の入口により
発生する第1段圧縮波及びトンネル入口により発生する
第2段圧縮波とを、全体として一つの圧力勾配に近づい
た合成圧縮波にする手段である。第2工程は、前記合成
圧縮波の波面前面に混在する二つの圧力勾配の間隔を所
定間隔にする手段である。
The inventors of the present invention have earnestly studied to reduce the peak of the air sound pressure to be generated at the tunnel exit (first step) and the reduction of infrasound (second step). First
In the process, the first-stage compression wave generated by the entrance of the cover of the shock absorber and the second-stage compression wave generated by the tunnel entrance due to the train rush are combined into a composite compression wave that approaches one pressure gradient as a whole. Is a means to do. The second step is a means for setting the interval of two pressure gradients mixed on the front surface of the wavefront of the composite compression wave to be a predetermined interval.

【0018】第1工程のトンネル出口で発生しようとす
る空気圧音のピークの低減方法について、さらに説明す
る。第1工程での緩衝工の諸元を変化させた1例を示す
(実施例3)。覆体の長さ、断面積とも同じ、同一形状
の緩衝工の側面の開口面積を変化させて、同型車両模型
を同速度で突入させて実験を行い、圧縮波を測定した。
この結果を図4に示す。実線(イ)が側面の開口面積を
最適にした場合で、圧縮波の圧力勾配が緩やかになって
いる。開口面積を広くした破線(ロ)の場合は、(b)
部の圧力上昇が減少することにより、(c)部の傾きが
立ってくる。一方、開口面積を狭くした点線(ハ)の場
合は、(b)部の圧力上昇が増加することにより、
(a)部の傾きが立ってくる。
The method of reducing the peak of the pneumatic noise that is about to occur at the tunnel exit in the first step will be further described. An example in which the specifications of the buffer in the first step are changed is shown (Example 3). The compression wave was measured by changing the opening area of the side surface of the buffer with the same shape, which has the same length and the same cross-sectional area, and plunging the same model vehicle at the same speed.
The result is shown in FIG. The solid line (a) shows the case where the opening area on the side surface is optimized, and the pressure gradient of the compression wave is gentle. In the case of the broken line (b) with a wide opening area, (b)
As the pressure rise in the section decreases, the inclination of the section (c) rises. On the other hand, in the case of the dotted line (c) where the opening area is narrowed, the increase in pressure in (b) increases,
The inclination of part (a) rises.

【0019】緩衝工の側面に設けられた開口は(b)部
の圧縮波を調節することができる。この開口により、
(a)部と(c)部の圧縮波を滑らかにつなぐことによ
って圧力勾配を緩やかにする機能を有するものである。
すなわち、側面の開口面積を調整することにより、空気
圧音の低減効果を上げることができる。本実施例では、
緩衝工の側面の開口面積を変化させた例を示したのみで
ある。緩衝工の諸元を、開口の面積、開口の形状、覆体
の所定長、覆体の断面積の一つ以上変化させ、全体とし
て一つの圧力勾配に近づいた圧縮波に合成できる。
The opening provided on the side surface of the shock absorber can adjust the compression wave of the portion (b). By this opening,
By smoothly connecting the compression waves of the parts (a) and (c), it has the function of grading the pressure gradient.
That is, the effect of reducing the pneumatic noise can be enhanced by adjusting the opening area of the side surface. In this embodiment,
It only shows an example in which the opening area of the side surface of the shock absorber is changed. The specifications of the shock absorber can be changed by one or more of the area of the opening, the shape of the opening, the predetermined length of the cover, and the cross-sectional area of the cover to synthesize a compression wave approaching one pressure gradient as a whole.

【0020】次に、本発明のポイントである第2工程の
トンネル出口で発生しようとする超低周波音の低減方法
について説明する。第2工程では、緩衝工の諸元をさら
に変化させた。覆体の長さ、側面の開口面積が同じで、
覆体の断面積を変化させた緩衝工に、同型車両模型を同
速度で突入させて実験を行い、トンネル入口での圧縮波
を測定した(実施例4)。この結果を図5に示す。覆体
の断面積/トンネルの断面積の比率は1.2から2.5
に変化させた。
Next, a method of reducing the infrasound to be generated at the tunnel exit in the second step, which is the point of the present invention, will be described. In the second step, the specifications of the shock absorber were further changed. The length of the cover and the opening area of the side surface are the same,
The same model vehicle model was rushed into the shock absorber with the cross-sectional area of the cover changed at the same speed to perform an experiment, and the compression wave at the tunnel entrance was measured (Example 4). The result is shown in FIG. The ratio of the cross-sectional area of the cover to the cross-sectional area of the tunnel is 1.2 to 2.5
Was changed to.

【0021】図4より、断面積の比率を変えることによ
り、圧縮波の圧力勾配の急な部分の位置及びその圧力勾
配が変化することが明らかとなった。特に、圧縮波の圧
力勾配の急な部分の位置が、トンネル出口で発生しよう
とする2次の超低周波音を低減するために、重要であ
る。なお、圧力勾配の急な部分が維持される代表時間の
位置は各勾配の中央部となる。
From FIG. 4, it has been clarified that the position of the portion of the compression wave where the pressure gradient is steep and the pressure gradient are changed by changing the ratio of the cross-sectional areas. In particular, the position of the steep portion of the pressure gradient of the compression wave is important for reducing the secondary infrasound that is about to occur at the tunnel exit. The position of the representative time at which the steep portion of the pressure gradient is maintained is the center of each gradient.

【0022】トンネル出口で発生しようとする2次の超
低周波音を低減するために、トンネル入口における、第
1段圧縮波と第2段圧縮波の圧力勾配の急な部分の時間
間隔を所定間隔にする必要がある。前記時間間隔を前記
所定間隔以下にし、前記超低周波音の周波数をさらに高
くすることは好ましい。
In order to reduce the second-order infrasound to be generated at the tunnel exit, the time interval of the steep portion of the pressure gradient between the first-stage compression wave and the second-stage compression wave at the tunnel entrance is predetermined. Must be spaced. It is preferable to set the time interval to be the predetermined interval or less and to further increase the frequency of the infrasound.

【0023】前記所定間隔は、トンネル出口から放出さ
れた微気圧波の圧力波形のピ−クの時間間隔により決定
されるものである。さらに、前記所定間隔はトンネル長
さ、列車速度等の条件を付加して決定される。トンネル
長さは圧縮波の伝播距離に影響をあたえる。トンネルが
長くなると、トンネル出口での圧縮波の圧力勾配がさら
に急峻になる。この結果、2次の超低周波音の周波数特
性に影響を与える。また列車速度も、2次の超低周波音
の周波数特性に影響を与えるものある。詳細については
後述する。
The predetermined interval is determined by the time interval of the peak of the pressure waveform of the micro atmospheric pressure wave emitted from the tunnel exit. Further, the predetermined interval is determined by adding conditions such as tunnel length and train speed. The tunnel length affects the propagation distance of the compression wave. The longer the tunnel, the steeper the pressure gradient of the compression wave at the tunnel exit. As a result, the frequency characteristics of the second-order infrasound are affected. The train speed also affects the frequency characteristics of the secondary infrasound. Details will be described later.

【0024】図4において、第1段圧縮波と第2段圧縮
波の圧力勾配の急な部分の時間間隔が短かかった、覆体
の断面積/トンネルの断面積の比率は1.2の緩衝工に
ついて、圧縮波の圧力波形の伝搬の様子を、さらに模型
実験で調査した(実施例5)。この解析結果を図6に示
す。実施例2(図3)に比べて、トンネル出口の微気圧
波の圧力波形のピ−クの時間間隔は狭くなっており、こ
の結果、発生する超低周波音の周波数は高くなる。図6
に示すように、トンネル出口の微気圧波の圧力波形のピ
−クの時間間隔は1.20msecとなる。この時に発
生する超低周波音の主な周波数は833Hzである。こ
の周波数は実機に換算すると24.5Hzとなる。
In FIG. 4, the time interval between the steep pressure gradient portions of the first-stage compression wave and the second-stage compression wave was short, and the ratio of the cross-sectional area of the covering body / the cross-sectional area of the tunnel was 1.2. Regarding the shock absorber, the state of propagation of the pressure waveform of the compression wave was further investigated by a model test (Example 5). The result of this analysis is shown in FIG. Compared to the second embodiment (FIG. 3), the time interval of the peak of the pressure waveform of the micro atmospheric pressure wave at the tunnel exit is narrower, and as a result, the frequency of the generated ultra-low frequency sound is higher. FIG.
As shown in, the time interval of the peak of the pressure waveform of the micro atmospheric pressure wave at the tunnel exit is 1.20 msec. The main frequency of the super low frequency sound generated at this time is 833 Hz. This frequency is 24.5 Hz when converted to an actual machine.

【0025】さらに、トンネル出口から放出される2次
の超低周波音の周波数におよぼす緩衝工の覆体の長さと
列車速度の影響について検討した。トンネル入口の圧力
波形の第1段圧縮波と第2段圧縮波との時間間隔の最大
値tは緩衝工の覆体の長さと列車速度から決定される。
トンネル入口の圧力波形の第1段圧縮波と第2段圧縮波
との時間間隔の最大値tは t=L/V−L/C となり、ここで、Lは緩衝工の覆体の長さ、Vは列車速
度、Cは音速である。この時の周波数fは f=1/t で表される。これにより、トンネル出口で発生する超低
周波音の最小の周波数がきまる。なお、このことは、ト
ンネル入口から出口に伝搬する際、時間間隔が縮まるこ
とと、入口での2つ圧力勾配の間隔がtよりも大きくな
らない事実によるものである。
Furthermore, the influence of the length of the cover of the buffer and the train speed on the frequency of the secondary infrasound emitted from the tunnel exit was examined. The maximum value t of the time interval between the first-stage compression wave and the second-stage compression wave of the pressure waveform at the tunnel entrance is determined by the length of the cushion cover and the train speed.
The maximum value t of the time interval between the first-stage compression wave and the second-stage compression wave of the pressure waveform at the tunnel inlet is t = L / V-L / C, where L is the length of the cover of the shock absorber. , V is the train speed, and C is the speed of sound. The frequency f at this time is represented by f = 1 / t. As a result, the minimum frequency of infrasound generated at the tunnel exit is determined. This is due to the fact that when propagating from the tunnel entrance to the exit, the time interval is shortened, and the interval between the two pressure gradients at the entrance is not larger than t.

【0026】本発明の前記超低周波音の周波数特性の調
節は前記最小の周波数が下限となる。前記の超低周波音
を低減するためには、緩衝工の覆体の長さを短くすれば
良い。しかしながら、トンネル出口での空気圧音を小さ
くするには、緩衝工の覆体の長さを所定の長さが必要と
なる。
In the adjustment of the frequency characteristic of the super low frequency sound of the present invention, the minimum frequency is the lower limit. In order to reduce the above-mentioned super low frequency sound, the length of the cover of the shock absorber may be shortened. However, in order to reduce the air pressure noise at the tunnel exit, the length of the cover of the shock absorber needs to be a predetermined length.

【0027】先に、実施例2(図3)で説明したよう
に、緩衝工の側面の開口面積を調節することによって、
圧縮波の立ち上がり波形の調節が可能である。従って、
トンネル出口から放出される空気圧音の超低周波の周波
数特性を調節することが可能である。緩衝工の諸元を、
開口の面積、開口の形状、覆体の所定長、覆体の断面積
の一つ以上変化させ、合成圧縮波の波面前面に混在する
二つの圧力勾配の間隔を、所定間隔にすることにより、
トンネル出口で発生しようとする超低周波音を低減でき
る。
As previously described in the second embodiment (FIG. 3), by adjusting the opening area of the side surface of the shock absorber,
The rising waveform of the compression wave can be adjusted. Therefore,
It is possible to adjust the frequency characteristics of the infrasound of the pneumatic sound emitted from the tunnel exit. The specifications of the shock absorber,
By changing one or more of the area of the opening, the shape of the opening, the predetermined length of the cover, and the cross-sectional area of the cover, and by setting the interval of the two pressure gradients mixed in the wave front surface of the composite compression wave to be the predetermined interval,
It is possible to reduce the infrasound that is generated at the tunnel exit.

【0028】実機と模型での試験結果の比較例を図7に
示す(実施例6)。実機実験は緩衝工を設けた新欽明路
トンネル(トンネル長さ:7km)、列車を57m/s
でトンネルへ突入させ、発生する圧縮波をトンネル入口
(東坑口80m点)で測定した。模型実験は、1/34
模型のトンネルを用い、模型列車を58m/sの速度で
トンネルへ突入させ、発生する圧縮波をトンネル入口
(坑口2.3m点)で測定した。図7に示すように、圧
縮波の立ち上がりは実機と模型実験の間に大きな差は認
められなかった。本発明の覆体の入口により発生する第
1段圧縮波及びトンネル入口により発生する第2段圧縮
波は、図7の立ち上がり部に相当する。この結果、実機
と模型実験の相関が相当に高いことを確認した。なお両
者が異なるのは、圧縮波の後半部であるが、これは実機
の車両長さと模型の車両長さの違いからくる差異であ
り、微気圧波を決定する圧力勾配には関係しない。
A comparative example of the test results of the actual machine and the model is shown in FIG. 7 (Example 6). In the actual machine test, Shinkinmei road tunnel (tunnel length: 7 km) equipped with shock absorbers, train 57 m / s
Then, the compression wave generated was measured at the tunnel entrance (east pit entrance 80m point). Model experiment is 1/34
Using a model tunnel, a model train was rushed into the tunnel at a speed of 58 m / s, and the generated compression wave was measured at the tunnel entrance (pit 2.3 m point). As shown in FIG. 7, the rising of the compression wave was not significantly different between the actual machine and the model test. The first-stage compression wave generated by the entrance of the cover of the present invention and the second-stage compression wave generated by the tunnel entrance correspond to the rising portion of FIG. 7. As a result, it was confirmed that the correlation between the actual machine and the model test was considerably high. The difference between the two is the latter half of the compression wave, but this is due to the difference in the vehicle length of the actual machine and the vehicle length of the model, and is not related to the pressure gradient that determines the micro-pressure wave.

【0029】[0029]

【発明の効果】本発明のうち請求項1および2記載の発
明は、緩衝工の諸元としての開口の面積、開口の形状、
覆体の所定長、覆体の断面積のの一つ以上をより適切に
することにより、覆体の突入口により発生する第1段圧
縮波とトンネル突入口により発生する第2段圧縮波と
を、合成した初期の圧縮波における波面前面に混在する
二つの圧力勾配の間隔を所定間隔にすることができる。
この結果、トンネル出口で発生する2次の超低周波音の
発生を低減できるという効果を有する。
According to the first and second aspects of the present invention, the area of the opening, the shape of the opening, and
By making one or more of the predetermined length of the cover and the cross-sectional area of the cover more appropriate, the first-stage compression wave generated by the entrance of the cover and the second-stage compression wave generated by the tunnel entrance Can be set to a predetermined interval between the two pressure gradients mixed in the front surface of the wave in the synthesized initial compression wave.
As a result, there is an effect that it is possible to reduce the generation of secondary infrasound generated at the tunnel exit.

【0030】また、本発明のうち請求項3および4記載
の発明は、超低周波音低減方法を列車及び緩衝工の模型
実験で行うことにより、より効率的にトンネル出口で発
生しようとする超低周波音をより低減できるという効果
を有する。本発明により、トンネル出口から発生する圧
力波の周波数特性の調節が可能になるので、問題になる
周波数を避けるように緩衝工を設計し、超低周波振動を
低減することができるという効果を有する。
Further, the invention according to claims 3 and 4 of the present invention is a super low frequency sound reduction method which is attempted to be more efficiently generated at a tunnel exit by performing a model test of trains and buffers. It has an effect that low frequency sound can be further reduced. According to the present invention, since the frequency characteristic of the pressure wave generated from the tunnel exit can be adjusted, it is possible to design the shock absorber so as to avoid the problematic frequency and reduce the infrasound. .

【図面の簡単な説明】[Brief description of drawings]

【図1】トンネルの入口に本発明の緩衝工を設けた状態
を示す側面図と正面図である。
FIG. 1 is a side view and a front view showing a state in which a shock absorber of the present invention is provided at an entrance of a tunnel.

【図2】トンネル内の圧縮波の形成される過程を示す図
である。
FIG. 2 is a diagram showing a process of forming a compression wave in a tunnel.

【図3】トンネル内の圧縮波と出口から発生する圧力波
の関係を示す図である。(覆体の断面積/トンネルの断
面積の比率:2.5)
FIG. 3 is a diagram showing a relationship between a compression wave in a tunnel and a pressure wave generated from an outlet. (Ratio of cross-sectional area of cover / cross-sectional area of tunnel: 2.5)

【図4】緩衝工の覆体の側面の開口面積の効果を示す図
である。
FIG. 4 is a diagram showing an effect of an opening area on a side surface of a cover of a shock absorber.

【図5】緩衝工の覆体の断面積変化による圧縮波の変化
を示す図である。
FIG. 5 is a diagram showing a change in a compression wave due to a change in a cross-sectional area of a cover of a shock absorber.

【図6】トンネル内の圧縮波と出口から発生する圧力波
の関係を示す図である。(覆体の断面積/トンネルの断
面積の比率:2.5)
FIG. 6 is a diagram showing a relationship between a compression wave in a tunnel and a pressure wave generated from an outlet. (Ratio of cross-sectional area of cover / cross-sectional area of tunnel: 2.5)

【図7】緩衝工の実機と模型の比較を示す図である。FIG. 7 is a diagram showing a comparison between an actual machine and a model of a shock absorber.

【符号の説明】[Explanation of symbols]

1 列車 2 トンネル 3 覆体 4 開口 5 緩衝工 L 覆体の長さ S1 トンネルの断面積 S2 覆体の断面積 1 Train 2 Tunnel 3 Cover 4 Opening 5 Buffer L Length of Cover S1 Cross Section of Tunnel S2 Cross Section of Cover

───────────────────────────────────────────────────── フロントページの続き (72)発明者 名倉 隆雄 愛知県名古屋市中村区名駅一丁目1番4号 東海旅客鉄道株式会社内 (72)発明者 大石 峰生 愛知県名古屋市中村区名駅一丁目1番4号 東海旅客鉄道株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takao Nagura 1-4-1, Mei Station, Nakamura-ku, Nagoya-shi, Aichi Tokai Passenger Railroad Co., Ltd. (72) Mineo Oishi, Mei Station, Nakamura-ku, Nagoya-shi, Aichi 1-4-1 Tokai Passenger Railway Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 トンネル入口に設けられ、トンネル断面
積より大きな断面を有する所定長の覆体と、前記覆体の
側面に設けられた開口とからなるトンネル用緩衝工を用
い、 列車の突入により、前記覆体の入口により発生する第1
段圧縮波及び前記トンネル入口により発生する第2段圧
縮波とを、前記緩衝工の前記諸元を適切にして、全体と
して一つの圧力勾配に近づいた合成圧縮波にすることに
よってトンネル出口で発生しようとする空気音圧のピー
クを低減する第1工程と、 前記合成圧縮波の波面前面に混在する二つの圧力勾配の
間隔を、前記緩衝工の諸元をさらに適切にして、所定間
隔にすることによってトンネル出口で発生しようとする
超低周波音を低減する第2工程と、を含んでなるトンネ
ル用緩衝工の超低周波音低減方法。
1. A train bumper is provided by using a tunnel buffer, which is provided at a tunnel entrance and has a cover of a predetermined length having a cross section larger than the tunnel cross section, and an opening provided on a side surface of the cover. The first generated by the inlet of the cover
The stage compression wave and the second stage compression wave generated by the tunnel entrance are generated at the tunnel exit by appropriately adjusting the specifications of the buffer and forming a composite compression wave that approaches one pressure gradient as a whole. The first step of reducing the peak of the air sound pressure to be attempted, and the interval between the two pressure gradients mixed on the front surface of the composite compression wave are set to predetermined intervals by further adjusting the specifications of the shock absorber. And a second step of reducing the infrasound that is about to occur at the tunnel exit, thereby reducing the infrasound of the tunnel buffer.
【請求項2】 前記緩衝工の前記諸元は、前記開口の面
積、前記開口の形状、前記覆体の所定長、前記覆体の断
面積の一つ以上である請求項1記載のトンネル用緩衝工
の超低周波音低減方法。
2. The tunnel according to claim 1, wherein the specifications of the buffer are one or more of an area of the opening, a shape of the opening, a predetermined length of the cover, and a cross-sectional area of the cover. Ultra low frequency sound reduction method of shock absorber.
【請求項3】 前記第1工程及び前記第2工程は、前記
トンネル、前記列車及び前記緩衝工の模型実験で行われ
る請求項2記載のトンネル用緩衝工の超低周波音低減方
法。
3. The method for reducing infrasound of a tunnel buffer according to claim 2, wherein the first step and the second step are performed in a model test of the tunnel, the train and the buffer.
【請求項4】 前記圧力勾配の前記間隔は、二つの前記
圧力勾配のそれぞれが維持される代表時間の間隔である
請求項3記載のトンネル用緩衝工の超低周波音低減方
法。
4. The method according to claim 3, wherein the interval between the pressure gradients is a representative time interval during which each of the two pressure gradients is maintained.
JP6019096A 1996-02-21 1996-02-21 Ultra low frequency sound reducing method of buffering work for tunnel Pending JPH09228785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6019096A JPH09228785A (en) 1996-02-21 1996-02-21 Ultra low frequency sound reducing method of buffering work for tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6019096A JPH09228785A (en) 1996-02-21 1996-02-21 Ultra low frequency sound reducing method of buffering work for tunnel

Publications (1)

Publication Number Publication Date
JPH09228785A true JPH09228785A (en) 1997-09-02

Family

ID=13135004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6019096A Pending JPH09228785A (en) 1996-02-21 1996-02-21 Ultra low frequency sound reducing method of buffering work for tunnel

Country Status (1)

Country Link
JP (1) JPH09228785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434166A (en) * 2011-11-24 2012-05-02 上海交通大学 Device and method for testing influence of tunnel excavation on existing close-distance parallel tunnels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434166A (en) * 2011-11-24 2012-05-02 上海交通大学 Device and method for testing influence of tunnel excavation on existing close-distance parallel tunnels

Similar Documents

Publication Publication Date Title
Ngai et al. Structure-borne noise and vibration of concrete box structure and rail viaduct
King Iii et al. On the sources of wayside noise generated by high-speed trains
Kitagawa et al. The horizontal directivity of noise radiated by a rail and implications for the use of microphone arrays
Zhang et al. Source contribution analysis for exterior noise of a high-speed train: experiments and simulations
JPS6231505A (en) Device for conducting control related to state of road surface by shock absorber for spring device of automobile while depending upon computer
Poisson Railway noise generated by high-speed trains
JPH09228785A (en) Ultra low frequency sound reducing method of buffering work for tunnel
JP3475267B2 (en) Opening structure of tunnel entrance buffer
SUEKI et al. Evaluation of acoustic and vibratory characteristics of impact noise due to rail joints
JP4302086B2 (en) Tunnel wellhead structure and shock absorber
Pieren et al. Auralisation of railway noise: a concept for the emission synthesis of rolling and impact noise
Maillard et al. Physically-based auralization of railway rolling noise
Li et al. An experimental investigation into the difference in the external noise behavior of a high-speed train between viaduct and embankment sections
De Beer et al. Experimental determination of pass-by noise contributions from the bogies and superstructure of a freight wagon
Myouken et al. Noise evaluation of developed egg shaped sound-proofing wall for high speed railway by field test
KR20140047568A (en) A sounder for mobile apparatus
KR100449509B1 (en) Draft hole type train tunnel
Kikuchi et al. Continuous pressure waves generated by a train running in a tunnel
Kawaguchi et al. Railway noise above 10 kHz generated on a curved section of high-speed railway line
KR100449510B1 (en) Draft hole type train tunnel
Komorski et al. Analysis of wheel and track irregularities impact on the vibroacoustic signals emission in rail vehicles
JPH05321592A (en) Sound absorbing tunnel
IIDA et al. Pressure waves radiated directly from tunnel portals at train entry or exit
NAGAKURA Recent Studies on Wayside Environmental Problems
Endo et al. Small Model Experiment on the Pressure Wave Formation by Entering the Tunnel of Conventional Limited Express with Diaphragmless Driver Acceleration Apparatus