JPH09227861A - Production of luminescent rare earth complex material introduced into solid matrix - Google Patents

Production of luminescent rare earth complex material introduced into solid matrix

Info

Publication number
JPH09227861A
JPH09227861A JP3788296A JP3788296A JPH09227861A JP H09227861 A JPH09227861 A JP H09227861A JP 3788296 A JP3788296 A JP 3788296A JP 3788296 A JP3788296 A JP 3788296A JP H09227861 A JPH09227861 A JP H09227861A
Authority
JP
Japan
Prior art keywords
rare earth
acid
earth complex
org
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3788296A
Other languages
Japanese (ja)
Inventor
Kinya Adachi
吟也 足立
Kenichi Machida
憲一 町田
Tetsuo Jin
哲郎 神
Shuji Tsutsumi
修司 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3788296A priority Critical patent/JPH09227861A/en
Publication of JPH09227861A publication Critical patent/JPH09227861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high-performance luminescent material which is kept out of contact with the open air and has both toughness and moldability by introducing a rare earth complex synthesized from a rare earth ion and an org. ligand having a conjugated system similar to an arom. ring into a solid matrix by the sol-gel method. SOLUTION: A rare earth complex synthesized from a rare earth ion and an org. ligand having a conjugated system similar to an arom. ring (e.g. bipyridine, terpyridine, phenanthroline, phthalocyanine, pyridine, quinoline, urotropin, a β-diketone, dibenzoic acid, a crown ether, cryptand, or an aminpolycarboxylate) is introduced by the sol-gel method into an org.-inorg. composite matrix formed by partially substituting the three-dimensional structure of silica with an org. silane [e.g. 3-(trimethoxysilyl)propyl acrylate, diethoxydimethylsilane, or diethoxydiphenylsilane] and heated at 50-350 deg.C to give a high-performance luminescent material. Figure 1 shows the production process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気中の湿度等の影響
により失活しやすい希土類錯体をゾルーゲル法により固
体マトリックス内に導入することで外気から効果的に遮
断し、希土類錯体本来の良好な蛍光特性に加え、固体マ
トリックスに起因する強靱さと成型加工性とを兼ね備え
た発光材料を製造する技術である。
BACKGROUND OF THE INVENTION The present invention provides a rare earth complex, which is easily deactivated by the influence of humidity in the air, into a solid matrix by the sol-gel method to effectively shield it from the outside air, which is an excellent property of the rare earth complex. It is a technology for producing a light-emitting material that has both strong toughness and moldability due to a solid matrix in addition to excellent fluorescent properties.

【0002】[0002]

【従来の技術】従来の希土類発光材料は、無機化合物あ
るいはガラス内に希土類イオンを付活することにより製
造されており、通常これらは粉末の状態で使用される。
2. Description of the Related Art Conventional rare earth luminescent materials are produced by activating rare earth ions in an inorganic compound or glass, and these are usually used in the form of powder.

【0003】[0003]

【発明が解決しようする課題】従来の無機蛍光体は良好
な蛍光特性を有しているものの加工面で劣っており、光
通信に用いられるファイバーケーブルへの成型や複雑な
形状をもつ基板への均一な塗布は困難であった。そこ
で、無機蛍光体と同等あるいはそれ以上の蛍光特性を有
し、さらに成型加工性に優れる発光材料を開発する必要
がある。
Conventional inorganic phosphors have good fluorescent properties but are inferior in terms of processing. Therefore, molding into fiber cables used for optical communication or substrates with complicated shapes is difficult. Uniform application was difficult. Therefore, it is necessary to develop a light emitting material that has a fluorescent property equal to or higher than that of the inorganic phosphor and that is excellent in moldability.

【0004】[0004]

【課題を解決するための手段】前記の目的を達成するた
めには、無機蛍光体と同等あるいはそれ以上の優れた蛍
光特性を有し、プラスティックのような成型加工性とガ
ラスのような強靱さを有する材料の開発が不可欠であ
る。本発明では、良好な蛍光特性を有する希土類錯体
を、有機ー無機複合マトリックス(ORMOSIL)内にゾルー
ゲル法により導入し、これを50℃から350℃の温度域で
加熱処理することにより、高性能発光材料を製造するこ
とを特徴としている。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the phosphor has excellent fluorescent characteristics equal to or higher than that of an inorganic phosphor, and has moldability like plastic and toughness like glass. The development of materials with In the present invention, a rare earth complex having good fluorescence characteristics is introduced into an organic-inorganic composite matrix (ORMOSIL) by a sol-gel method, and heat-treated in a temperature range of 50 ° C to 350 ° C to obtain high-performance luminescence. It is characterized by manufacturing the material.

【0005】[0005]

【作用】本発明では、本来の優れた蛍光特性を損なうこ
となく、希土類錯体を固体マトリックス内に導入した発
光材料を製造することができる。
In the present invention, it is possible to produce a luminescent material in which a rare earth complex is introduced into a solid matrix without impairing the original excellent fluorescence characteristics.

【0006】製造は、酸触媒存在下で還流したケイ素の
アルコキシドと有機シランの混合溶液に有機溶媒に溶解
した希土類錯体を所定量添加後室温で熟成および乾燥
し、さらに50℃から350℃の温度領域で加熱処理するこ
とにより行うことができる。
The production is carried out by adding a predetermined amount of a rare earth complex dissolved in an organic solvent to a mixed solution of an alkoxide of silicon and an organic silane refluxed in the presence of an acid catalyst, aging and drying at room temperature, and further heating at a temperature of 50 ° C to 350 ° C. It can be performed by heat treatment in the area.

【0007】また、従来ガラスの製造に用いられている
溶融法とは異なり、合成を350℃以下の比較的低温で行
うことができ、希土類錯体の分解等による劣化がほとん
ど進行しないことから、本来の希土類錯体の特質を損な
うことなく仕込み比通りの組成で発光材料を製造するこ
とが可能となる。
Further, unlike the melting method conventionally used for producing glass, the synthesis can be carried out at a relatively low temperature of 350 ° C. or lower, and deterioration due to decomposition of the rare earth complex hardly progresses. It is possible to manufacture a light emitting material with a composition according to the charged ratio without deteriorating the characteristics of the rare earth complex of.

【0008】[0008]

【実施例】図1に示す製造工程により、ORMOSILマトリ
ックス内に希土類錯体を導入した発光材料を製造するこ
とができる。
EXAMPLE A light emitting material in which a rare earth complex is introduced into an ORMOSIL matrix can be manufactured by the manufacturing process shown in FIG.

【0009】製造は、2、2'ービピリジン(bpy)および1、10
ーフェナントロリン(phen)と、Eu3+およびTb3+イオンの
希土類錯体であるLn(bpy)2Cl3およびLn(phen)2Cl3 (Ln
= Eu, Tb)をゾルーゲル法によりORMOSILマトリックス
(化1および化2)内に導入し、これらが分解しない温
度(350℃以下)で加熱処理することにより行った。そ
の結果、十分な機械的強度と良好な透明性を有する希土
類錯体複合発光材料を得ることに成功した。
The production was carried out using 2,2'-bipyridine (bpy) and 1,10
-Ln (bpy) 2 Cl 3 and Ln (phen) 2 Cl 3 (Ln, which are rare earth complexes of phenanthroline (phen) with Eu 3+ and Tb 3+ ions
= Eu, Tb) was introduced into the ORMOSIL matrix (formula 1 and formula 2) by the sol-gel method, and heat treatment was performed at a temperature (350 ° C or lower) at which these were not decomposed. As a result, we succeeded in obtaining a rare earth complex composite light emitting material having sufficient mechanical strength and good transparency.

【0010】[0010]

【化1】 Embedded image

【0011】[0011]

【化2】 Embedded image

【0012】図2に、オリゴマー単位としてTMSPMを含
むORMOSILマトリックス内にTb(bpy)2Cl3を10mol%導入し
た試料、およびDEDPSを含むORMOSILマトリックス内にEu
(phen)2Cl3を10mol%導入した試料における相対蛍光強度
の加熱処理温度依存性を示す。空気中、150℃で5時間加
熱処理した試料において、103%および80%の相対蛍光強
度がそれぞれ実用蛍光体に対して観測された。
FIG. 2 shows a sample in which 10 mol% of Tb (bpy) 2 Cl 3 was introduced into an ORMOSIL matrix containing TMSPM as an oligomer unit, and Eu in an ORMOSIL matrix containing DEDPS.
Fig. 7 shows the heat treatment temperature dependence of the relative fluorescence intensity in a sample in which 10 mol% of (phen) 2 Cl 3 is introduced. Relative fluorescence intensities of 103% and 80% were observed for the practical phosphors in the samples heat-treated in air at 150 ° C for 5 hours.

【0013】図3は、得られたORMOSIL複合体における
相対蛍光強度の経時変化を、希土類錯体Tb(bpy)2Cl3
れ自身の結果と共に示したものである。希土類錯体それ
自身の相対蛍光強度は時間の経過とともに急激に低下し
たのに対し、ORMOSIL複合型発光材料の蛍光強度は、数
日後も全く低下しなかったことから、希土類錯体は固体
マトリックスにより完全に外気から遮断され、良好な蛍
光特性を保持することが明かとなった。
FIG. 3 shows the time course of the relative fluorescence intensity of the obtained ORMOSIL complex, together with the results of the rare earth complex Tb (bpy) 2 Cl 3 itself. The relative fluorescence intensity of the rare earth complex itself decreased sharply with the passage of time, whereas the fluorescence intensity of the ORMOSIL composite-type luminescent material did not decrease at all even after several days, so the rare earth complex was completely removed by the solid matrix. It was revealed that it was shielded from the outside air and retained good fluorescence characteristics.

【0014】[0014]

【発明の効果】本発明は、ゾルーゲル法により合成を行
うため、バルク体、薄膜およびファイバー等への成型が
極めて容易であり、加えて市販の無機蛍光体と同等ある
いはそれ以上の良好な蛍光特性を有する発光材料を作製
することができる。そのため、これまで困難とされてき
た成形加工性に優れた高輝度発光材料を製造することが
できる。また、分解することなく導入された希土類錯体
では、励起エネルギーを効率よく配位子が吸収し希土類
イオンへ伝達することから、それら配位子を選ぶことに
より、特定の波長(エネルギー)の励起光に選択的に感
応する高輝度発光材料の製造にも効果がある。
Industrial Applicability According to the present invention, since it is synthesized by the sol-gel method, it is extremely easy to mold it into a bulk body, a thin film, a fiber, and the like, and, in addition, it has a good fluorescent property equivalent to or better than that of a commercially available inorganic phosphor. A light emitting material having Therefore, it is possible to manufacture a high-brightness light emitting material having excellent moldability, which has been considered difficult until now. Further, in the rare earth complex introduced without decomposition, the ligand efficiently absorbs the excitation energy and transfers it to the rare earth ion. Therefore, by selecting those ligands, the excitation light of a specific wavelength (energy) can be obtained. It is also effective in producing a high-brightness light emitting material that selectively responds to.

【図面の簡単な説明】[Brief description of drawings]

【図1】ORMOSIL複合体の製造工程図である。FIG. 1 is a manufacturing process diagram of an ORMOSIL complex.

【図2】ORMOSIL複合体における相対蛍光強度の加熱処
理温度依存性の図である。ただし、(a)はTMSPMから成る
ORMOSILマトリックス内にTb(bpy)2Cl3を10mol%導入した
試料、(b)はDEDPSから成るORMOSILマトリックスにEu(ph
en)2Cl3を10mol%導入した試料である。また、(a)および
(b)の相対蛍光強度の算出には、標準蛍光体としてLaP
O4:Ce,TbおよびY(P,V)O4:Euをそれぞれ用いた。
FIG. 2 is a diagram showing heat treatment temperature dependency of relative fluorescence intensity in an ORMOSIL complex. However, (a) consists of TMSPM
A sample in which 10 mol% of Tb (bpy) 2 Cl 3 was introduced into the ORMOSIL matrix, (b) was Eu (ph) in the ORMOSIL matrix composed of DEDPS.
This is a sample into which 10 mol% of en) 2 Cl 3 is introduced. Also, (a) and
To calculate the relative fluorescence intensity of (b), LaP was used as a standard phosphor.
O 4 : Ce, Tb and Y (P, V) O 4 : Eu were used, respectively.

【図3】ORMOSIL複合体における相対蛍光強度の経時変
化を、希土類錯体Tb(bpy)2Cl3単独のそれと共に示した
図である。ただし、IoはORMOSIL複合体およびTb(bpy)2C
l3を150℃で加熱処理した直後の相対蛍光強度、Iは所定
時間経過後の値である。
FIG. 3 is a diagram showing a change in relative fluorescence intensity over time in an ORMOSIL complex together with that of a rare earth complex Tb (bpy) 2 Cl 3 alone. Where I o is the ORMOSIL complex and Tb (bpy) 2 C
Relative fluorescence intensity immediately after heat treatment of l 3 at 150 ° C., I is a value after a predetermined time has elapsed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堤 修司 大阪府豊中市蛍池中町1丁目5番18号 メ ゾン豊中 Part15 207号室 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Tsutsumi 1-5-18 Hotaruikenakacho, Toyonaka-shi, Osaka Maison Toyonaka Part15 Room 207

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】希土類イオンと芳香環類似の共役系部位を
有する有機配位子(例えば、ビピリジン、テルピリジ
ン、フェナントロリン、フタロシアニン、ピリジン、キ
ノリン、ウトロピン、βージケトン、二安息香酸、クラ
ウンエーテル、クリプタンド、アミンポリカルボン酸、
ジフェニル酸、ナフタル酸、フタル酸、ピロカテコー
ル、ピロガロール、サリチル酸およびこれらの誘導体な
ど)から合成した希土類錯体を、シリカの三次元構造を
部分的に3ー(トリメトキシシリル)プロピルアクリレート
(TMSPM)、ジエトキシジメチルシラン(DEDMS)、ジエ
トキシジフェニルシラン(DEDPS)などの有機シランで
置換した有機ー無機複合型マトリックス(ORMOSIL)内に
ゾルーゲル法により導入後、50℃から350℃の温度領域で
加熱処理することで高性能発光材料を製造する技術。
1. An organic ligand having a conjugated system portion similar to a rare earth ion and an aromatic ring (for example, bipyridine, terpyridine, phenanthroline, phthalocyanine, pyridine, quinoline, utropine, β-diketone, dibenzoic acid, crown ether, cryptand, Amine polycarboxylic acid,
Diphenyl acid, naphthalic acid, phthalic acid, pyrocatechol, pyrogallol, salicylic acid, and their derivatives) are used as a rare earth complex to partially convert the three-dimensional structure of silica to 3- (trimethoxysilyl) propyl acrylate (TMSPM), After introducing by sol-gel method into organic-inorganic hybrid matrix (ORMOSIL) substituted with organic silane such as diethoxydimethylsilane (DEDMS) and diethoxydiphenylsilane (DEDPS), heat treatment in the temperature range of 50 ° C to 350 ° C Technology for manufacturing high-performance light-emitting materials by doing so.
JP3788296A 1996-02-26 1996-02-26 Production of luminescent rare earth complex material introduced into solid matrix Pending JPH09227861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3788296A JPH09227861A (en) 1996-02-26 1996-02-26 Production of luminescent rare earth complex material introduced into solid matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3788296A JPH09227861A (en) 1996-02-26 1996-02-26 Production of luminescent rare earth complex material introduced into solid matrix

Publications (1)

Publication Number Publication Date
JPH09227861A true JPH09227861A (en) 1997-09-02

Family

ID=12509919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3788296A Pending JPH09227861A (en) 1996-02-26 1996-02-26 Production of luminescent rare earth complex material introduced into solid matrix

Country Status (1)

Country Link
JP (1) JPH09227861A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004000971A1 (en) * 2002-06-19 2003-12-31 National Institute Of Advanced Industrial Science And Technology Semiconductor superfine particle phosphor and light emitting device
WO2005097944A1 (en) * 2004-03-25 2005-10-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Luminescent material and method for producing same
US6994947B2 (en) * 2001-03-01 2006-02-07 Osaka University Photochemical hole burning media
JP2008074889A (en) * 2006-09-19 2008-04-03 Saitama Univ Light-emitting substance, method for producing the same, light emitting device using the light-emitting substance and lighting unit and image display device using the light-emitting device
CN102504808A (en) * 2011-10-19 2012-06-20 厦门大学 Preparation method of rare-earth fluorescent silica nano particle
CN106241938A (en) * 2016-09-05 2016-12-21 徐伟明 Water purifier under a kind of agricultural well
CN106243269A (en) * 2016-08-04 2016-12-21 苏州德捷膜材料科技有限公司 A kind of yellow fluorescence agent of acrylate substrate and preparation method thereof
CN106748993A (en) * 2016-11-29 2017-05-31 周口师范学院 A kind of hybrid luminescent materials based on Michael addition reactions and preparation method thereof
CN117659997A (en) * 2024-02-02 2024-03-08 德州学院 Organic-inorganic hybridization rare earth luminous hydrogel and preparation method and application thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6994947B2 (en) * 2001-03-01 2006-02-07 Osaka University Photochemical hole burning media
WO2004000971A1 (en) * 2002-06-19 2003-12-31 National Institute Of Advanced Industrial Science And Technology Semiconductor superfine particle phosphor and light emitting device
US8025816B2 (en) 2002-06-19 2011-09-27 National Institute Of Advanced Industrial Science And Technology Semiconductor superfine particle phosphor and light emitting device
JPWO2005097944A1 (en) * 2004-03-25 2008-02-28 株式会社豊田中央研究所 Luminescent material and manufacturing method thereof
JP4640711B2 (en) * 2004-03-25 2011-03-02 株式会社豊田中央研究所 Luminescent material and manufacturing method thereof
WO2005097944A1 (en) * 2004-03-25 2005-10-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Luminescent material and method for producing same
JP2008074889A (en) * 2006-09-19 2008-04-03 Saitama Univ Light-emitting substance, method for producing the same, light emitting device using the light-emitting substance and lighting unit and image display device using the light-emitting device
CN102504808A (en) * 2011-10-19 2012-06-20 厦门大学 Preparation method of rare-earth fluorescent silica nano particle
CN106243269A (en) * 2016-08-04 2016-12-21 苏州德捷膜材料科技有限公司 A kind of yellow fluorescence agent of acrylate substrate and preparation method thereof
CN106241938A (en) * 2016-09-05 2016-12-21 徐伟明 Water purifier under a kind of agricultural well
CN106241938B (en) * 2016-09-05 2019-05-24 海门名驰工业设计有限公司 Water purifier under a kind of agricultural well
CN106748993A (en) * 2016-11-29 2017-05-31 周口师范学院 A kind of hybrid luminescent materials based on Michael addition reactions and preparation method thereof
CN117659997A (en) * 2024-02-02 2024-03-08 德州学院 Organic-inorganic hybridization rare earth luminous hydrogel and preparation method and application thereof
CN117659997B (en) * 2024-02-02 2024-04-02 德州学院 Organic-inorganic hybridization rare earth luminous hydrogel and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Cui et al. Colorful, time-dependent carbon dot-based afterglow with ultralong lifetime
Feng et al. Hybrid materials based on lanthanide organic complexes: a review
CN108034418B (en) All-inorganic lead-halogen perovskite nano composite luminescent material, and preparation method and application thereof
Li et al. Preparation and luminescence properties of organically modified silicate composite phosphors doped with an europium (III) β-diketonate complex
CN111205853B (en) Preparation method of silicon dioxide coated all-inorganic perovskite core-shell structure quantum dot
JP4515634B2 (en) Oxynitride encapsulated electroluminescent phosphor particles, production method and use
JPH09227861A (en) Production of luminescent rare earth complex material introduced into solid matrix
Li et al. Luminescence properties of transparent hybrid thin film covalently linked with lanthanide complexes
CN107226914B (en) Terbium organic framework complex and preparation method thereof
JP2002527569A5 (en)
Zaitoun et al. Effect of varying lanthanide local coordination sphere on luminescence properties illustrated by selected inorganic and organic rare earth complexes synthesized in sol–gel host glasses
CN107459535A (en) Polysubstituted quinoline coordinated iridium hybrid compound and preparation method and application thereof
Al-Busaidi et al. Utilization of a Pt (II) di-yne chromophore incorporating a 2, 2′-bipyridine-5, 5′-diyl spacer as a chelate to synthesize a green and red emitting d–f–d heterotrinuclear complex
CN103880867A (en) Di-nuclear cuprous complex green luminescent material and preparation method thereof
CN113563869A (en) Preparation and application of perovskite quantum dot MOF composite luminescent material
JP2008063482A (en) Nano sized luminescent complex
CN110066401B (en) Red fluorescent rare earth europium coordination polymer and preparation method and application thereof
Thejo Kalyani et al. Persistent phosphors for luminous paints: A review
CN105461717B (en) Thermal activation delayed fluorescence material based on 1,10 ferrosins and preparation method thereof, application
JP2000328053A (en) Composite thin film containing rare earth complex, its production, and optical material using this film
Ru et al. Thermally reversible, flexible, transparent, and luminescent ionic organosilica gels
Abo-Naf et al. Sol–gel synthesis, paramagnetism, photoluminescence and optical properties of Gd-doped and Bi–Gd-codoped hybrid organo-silica glasses
WO2007072691A1 (en) ORGANIC BORON π-ELECTRON SYSTEM COMPOUND AND INTERMEDIATE FOR PRODUCTION OF THE COMPOUND
JPH0695290A (en) Thin clay film and its production
CN103865523B (en) A kind of double-core cuprous iodide complex luminescent material