JPH09219696A - Optical amplifier - Google Patents

Optical amplifier

Info

Publication number
JPH09219696A
JPH09219696A JP8026856A JP2685696A JPH09219696A JP H09219696 A JPH09219696 A JP H09219696A JP 8026856 A JP8026856 A JP 8026856A JP 2685696 A JP2685696 A JP 2685696A JP H09219696 A JPH09219696 A JP H09219696A
Authority
JP
Japan
Prior art keywords
optical
signal light
level
wavelength
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8026856A
Other languages
Japanese (ja)
Inventor
Masabumi Koga
正文 古賀
Kenichi Sato
健一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8026856A priority Critical patent/JPH09219696A/en
Publication of JPH09219696A publication Critical patent/JPH09219696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To amplify wavelength multiplex signal lights altogether by detecting a signal light level and the number of channels, obtaining further a mean value of the signal optical levels of each wavelength and controlling optical attenuation so as to make the mean value constant. SOLUTION: A wavelength multiplex number detection circuit 11 receives an electric signal outputted from a light receiving device 5-1 and provides an output of a voltage V(i) proportional to wavelength multiplex number (i) of an input signal light. A light receiving device 5-3 receives part of the optical power of an output signal light from a variable attenuator 9 via a photocoupler 3-4 and provides an output of a voltage V(P) proportional to the signal light level. A mean level detection circuit 12 receives the output voltage V(i) from the circuit 11 and the output voltage V(P) from the light receiving device 5-3 and provides an output of a voltage V(P/i) proportional to the mean signal light levels of each channel. A light attenuation control circuit 10 controls the light attenuation of the attenuator 9 depending on the voltage V(P/i). In this case, the attenuation is controlled so that the mean value of signal light levels of each channel is constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、波長多重化信号光
を一括増幅する光増幅装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplifying device for collectively amplifying wavelength multiplexed signal light.

【0002】[0002]

【従来の技術】光増幅装置には、出力レベル一定制御方
式と利得一定制御方式がある。さらに出力レベル一定制
御方式には、励起光レベルを制御する方法と、励起光レ
ベルを一定に保ち信号光の入力または出力レベルを可変
光減衰器で制御する方法がある。ところで、励起光レベ
ルを変化させると波長に対する信号利得(dG/dλ)
も変化するので、波長多重化信号光を増幅する場合には
各波長に対する利得偏差が励起光レベルによって変化す
ることになる。したがって、波長多重化信号光の光増幅
装置としては、利得偏差が最も小さくなるように励起光
レベルを調整し、出力信号光レベルが一定になるように
可変光減衰器で制御する方法が適している。
2. Description of the Related Art Optical amplifiers include a constant output level control system and a constant gain control system. Further, the constant output level control method includes a method of controlling the pumping light level and a method of keeping the pumping light level constant and controlling the input or output level of the signal light with a variable optical attenuator. By the way, when the pumping light level is changed, the signal gain with respect to the wavelength (dG / dλ)
Also changes, the gain deviation for each wavelength changes depending on the pumping light level when the wavelength-multiplexed signal light is amplified. Therefore, as an optical amplifier for wavelength-multiplexed signal light, a method of adjusting the pumping light level so that the gain deviation is minimized and controlling with a variable optical attenuator so that the output signal light level is constant is suitable. There is.

【0003】図5は、従来の出力レベル一定制御方式に
よる光増幅装置の構成例を示す。図において、入力端子
1から入力された信号光は、光カプラ3−1,3−2を
介して、励起光源6−1から出力される励起光と合波さ
れて希土類添加ファイバ4−1に入力される。光カプラ
3−1で光パワーの一部が分岐された信号光は受光器5
−1に入力されて電気信号に変換される。希土類添加フ
ァイバ4−1から出力された信号光は、光カプラ3−
3、光アイソレータ8−1を介して可変光減衰器9に入
力される。光カプラ3−3で光パワーの一部が分岐され
た信号光は受光器5−2に入力されて電気信号に変換さ
れる。励起光源駆動回路7−1は、受光器5−1,5−
2の出力電圧から希土類添加ファイバ4−1における利
得を求め、その利得が一定になるように励起光源6−1
の出力レベルを制御する。
FIG. 5 shows an example of the configuration of a conventional optical amplification apparatus using a constant output level control system. In the figure, the signal light input from the input terminal 1 is combined with the pumping light output from the pumping light source 6-1 via the optical couplers 3-1 and 3-2, and is coupled to the rare earth-doped fiber 4-1. Is entered. The signal light obtained by branching a part of the optical power by the optical coupler 3-1 is the light receiver 5
It is input to -1 and converted into an electric signal. The signal light output from the rare earth-doped fiber 4-1 is an optical coupler 3-
3, input to the variable optical attenuator 9 via the optical isolator 8-1. The signal light in which a part of the optical power is branched by the optical coupler 3-3 is input to the photodetector 5-2 and converted into an electric signal. The excitation light source drive circuit 7-1 includes the light receivers 5-1 and 5-.
The gain in the rare earth-doped fiber 4-1 is obtained from the output voltage of 2 and the pumping light source 6-1 is used so that the gain becomes constant.
Control the output level of the

【0004】可変光減衰器9から出力された信号光は、
光カプラ3−4を介して希土類添加ファイバ4−2に入
力される。光カプラ3−4で光パワーの一部が分岐され
た信号光は受光器5−3に入力されて電気信号に変換さ
れる。希土類添加ファイバ4−2の出力側に接続された
光カプラ3−5は、励起光源6−2から出力される励起
光を希土類添加ファイバ4−2へ後方から入力する。希
土類添加ファイバ4−2から出力された信号光は、光カ
プラ3−5,3−6、光アイソレータ8−2を介して出
力端子2へ出力される。光カプラ3−6で光パワーの一
部が分岐された信号光は受光器5−4に入力されて電気
信号に変換される。
The signal light output from the variable optical attenuator 9 is
It is input to the rare earth-doped fiber 4-2 via the optical coupler 3-4. The signal light in which a part of the optical power is branched by the optical coupler 3-4 is input to the light receiver 5-3 and converted into an electric signal. The optical coupler 3-5 connected to the output side of the rare earth-doped fiber 4-2 inputs the pumping light output from the pumping light source 6-2 into the rare earth-doped fiber 4-2 from the rear. The signal light output from the rare earth-doped fiber 4-2 is output to the output terminal 2 via the optical couplers 3-5 and 3-6 and the optical isolator 8-2. The signal light in which a part of the optical power is branched by the optical coupler 3-6 is input to the light receiver 5-4 and converted into an electric signal.

【0005】光減衰量制御回路10は、受光器5−4の
出力電圧に応じて可変光減衰器9の光減衰量を制御す
る。一方、励起光源駆動回路7−2は、受光器5−3,
5−4の出力電圧から希土類添加ファイバ4−2におけ
る利得を求め、その利得が一定になるように励起光源6
−2の出力レベルを制御する。これにより、希土類添加
ファイバ4−2への入力信号光レベルおよび励起光レベ
ルが一定となり、出力端子2の出力信号光レベルが一定
になるように制御される。
The optical attenuation control circuit 10 controls the optical attenuation of the variable optical attenuator 9 according to the output voltage of the photo detector 5-4. On the other hand, the pumping light source drive circuit 7-2 includes the light receivers 5-3 and
The gain in the rare earth-doped fiber 4-2 is obtained from the output voltage of 5-4, and the pumping light source 6 is controlled so that the gain becomes constant.
-2 control the output level. As a result, the input signal light level and the pumping light level to the rare earth-doped fiber 4-2 become constant, and the output signal light level at the output terminal 2 is controlled to become constant.

【0006】[0006]

【発明が解決しようとする課題】ところで、波長多重化
信号光を伝送する光システムでは、必要に応じて各波長
の信号光の遮断や立ち上げを行う。このとき、光増幅装
置へ入力される信号光の数(チャネル数)が変化する
が、その全出力信号光レベルを一定に保つ制御を行うと
1波長あたりの信号光レベルが変動する。すなわち、出
力レベル一定制御方式の光増幅装置では、波長多重数が
変化すると各信号光の光レベルが変化する問題点があっ
た。この信号光レベルの変動は伝送特性の劣化を招き、
伝送情報に誤りを生じさせる原因となる。
By the way, in an optical system for transmitting wavelength-multiplexed signal light, the signal light of each wavelength is cut off or activated as necessary. At this time, the number of signal lights (number of channels) input to the optical amplifier changes, but if control is performed to keep the total output signal light level constant, the signal light level per wavelength changes. That is, the optical amplifier of the constant output level control system has a problem that the optical level of each signal light changes when the number of wavelength division multiplexing changes. This fluctuation of the signal light level causes deterioration of transmission characteristics,
It causes an error in the transmission information.

【0007】一方、利得一定制御方式の光増幅装置で
は、波長多重数が変化しても各信号光の光レベルを一定
に保つことができるが、出力信号光レベルを一定にする
には入力信号光レベルも一定レベルとする必要がある。
しかし、一般の光部品を組み合わせて構成する光システ
ムでは、入力信号光レベルを一定レベルに均一化するこ
とは実用上困難であった。それは、受動系光部品では挿
入損失のバラツキがありまた経年変化等によっても損失
が変化し、能動系光部品では出力光強度にバラツキがあ
るためである。さらに、中継光システムでは、中継間隔
が一定ではないので入力光強度も一定ではない。入力光
強度の範囲は20dB以上になることもある。
On the other hand, in the constant gain control type optical amplifier, the optical level of each signal light can be kept constant even if the number of wavelength division multiplexing changes. The light level also needs to be constant.
However, in an optical system configured by combining general optical components, it is practically difficult to make the input signal light level uniform. This is because the passive optical components have variations in insertion loss, the losses also change due to aging, and the active optical components have variations in output light intensity. Further, in the relay optical system, the input light intensity is not constant because the relay interval is not constant. The range of input light intensity may be 20 dB or more.

【0008】本発明は、波長多重化信号光を一括増幅す
る際に、チャネル数の変動や入力信号光レベルの変化に
対して、その全信号光レベルを一定に保つのではなく、
各チャネルの信号光レベルの平均値を一定にできる光増
幅装置を提供することを目的とする。
According to the present invention, when the wavelength-multiplexed signal light is collectively amplified, the total signal light level is not kept constant with respect to the fluctuation of the number of channels and the change of the input signal light level.
An object of the present invention is to provide an optical amplifying device capable of keeping the average value of the signal light level of each channel constant.

【0009】[0009]

【課題を解決するための手段】本発明の光増幅装置は、
利得一定制御を行う光ファイバ増幅器を2段縦続接続
し、所定の位置に可変光減衰手段を挿入した構成におい
て、信号光レベルと波長多重数(チャネル数)を検出
し、さらに各波長(各チャネル)の信号光レベルの平均
値を求め、それが一定になるように可変光減衰手段の光
減衰量を制御する。
The optical amplifying device of the present invention comprises:
In a configuration in which two optical fiber amplifiers that perform constant gain control are cascaded and variable optical attenuating means is inserted at a predetermined position, the signal light level and the wavelength multiplexing number (the number of channels) are detected, and each wavelength (each channel) is detected. The average value of the signal light level in 1) is obtained, and the optical attenuation amount of the variable optical attenuating means is controlled so that it becomes constant.

【0010】[0010]

【発明の実施の形態】図1は、本発明の光増幅装置の実
施形態を示す。本実施形態は、図5の従来構成と同様
に、利得一定制御を行う光ファイバ増幅器を2段縦続に
接続し、その間に可変光減衰器9を挿入して出力レベル
一定制御を行う構成を基本とする。なお、可変光減衰器
9は入力端子1または出力端子2の位置にあってもよい
が、本実施形態における位置が出力レベル一定制御に最
も都合がよい。本実施形態の特徴は、可変光減衰器9の
光減衰量を制御する際に、各チャネルの信号光レベルの
平均値が一定になるように制御するところにある。
FIG. 1 shows an embodiment of an optical amplifying device according to the present invention. In the present embodiment, similar to the conventional configuration shown in FIG. 5, the optical fiber amplifiers that perform constant gain control are connected in two stages in series, and the variable optical attenuator 9 is inserted between them to perform constant output level control. And The variable optical attenuator 9 may be located at the input terminal 1 or the output terminal 2, but the position in the present embodiment is most convenient for constant output level control. A feature of this embodiment is that when the optical attenuation amount of the variable optical attenuator 9 is controlled, the average value of the signal light level of each channel is controlled to be constant.

【0011】波長多重数検出回路11は、受光器5−1
から出力される電気信号を入力し、入力信号光の波長多
重数iに比例した電圧V(i) を出力する。受光器5−3
は、可変光減衰器9の出力信号光の光パワーの一部を光
カプラ3−4を介して入力し、その信号光レベルに比例
した電圧V(P) を出力する。平均レベル検出回路12は
波長多重数検出回路11の出力電圧V(i) と受光器5−
3の出力電圧V(P) を入力し、各チャネルの信号光レベ
ルの平均値に比例した電圧V(P/i) を出力する。光減衰
量制御回路10は、平均レベル検出回路12の出力電圧
V(P/i) に応じて可変光減衰器9の光減衰量を制御す
る。
The wavelength multiplex number detection circuit 11 includes a light receiver 5-1.
The electric signal output from the input terminal is input, and a voltage V (i) proportional to the wavelength multiplexing number i of the input signal light is output. Light receiver 5-3
Inputs a part of the optical power of the output signal light of the variable optical attenuator 9 through the optical coupler 3-4 and outputs a voltage V (P) proportional to the signal light level. The average level detection circuit 12 outputs the output voltage V (i) of the wavelength multiplex number detection circuit 11 and the light receiver 5-
The output voltage V (P) of No. 3 is input, and the voltage V (P / i) proportional to the average value of the signal light level of each channel is output. The optical attenuation amount control circuit 10 controls the optical attenuation amount of the variable optical attenuator 9 according to the output voltage V (P / i) of the average level detection circuit 12.

【0012】なお、本実施形態の平均レベル検出回路1
2は、可変光減衰器9の出力信号光レベル(V(P))をモ
ニタする構成になっているが、可変光減衰器9の入力信
号光レベル、または入力端子1の入力信号光レベル、ま
たは出力端子2の出力信号光レベルをモニタする構成で
もよい。図2は、波長多重数検出回路11の構成例を示
す。本構成例は、波長に固有の周波数で微弱に強度変調
されたパイロット・トーン(PLT)が信号光に重畳さ
れている場合のものである。
The average level detection circuit 1 of the present embodiment
2 is configured to monitor the output signal light level (V (P)) of the variable optical attenuator 9, the input signal light level of the variable optical attenuator 9 or the input signal light level of the input terminal 1, Alternatively, the configuration may be such that the output signal light level of the output terminal 2 is monitored. FIG. 2 shows a configuration example of the wavelength multiplexing number detection circuit 11. This configuration example is for a case where a pilot tone (PLT) weakly intensity-modulated at a frequency peculiar to the wavelength is superimposed on the signal light.

【0013】波長多重数検出回路11に入力される電気
信号は、最大入力チャネル数Mに分配され、各PLT周
波数f1,f2,…,fMに対応したバンドパスフィルタ(B
PF)21−1〜21−Mを介して、各チャネルのPL
T振幅レベルが検出される。このとき、入力されていな
いチャネルのPLT振幅レベルは0であり、入力されて
いるチャネルのPLT振幅レベルには所定の振動成分が
現れる。各バンドパスフィルタ21−1〜21−Mの出
力は、それぞれ比較回路22−1〜22−Mに入力さ
れ、光増幅装置への所定の最小入力レベルとの大小が判
定される。すなわち、入力されているチャネルについて
は“1”に対応する電圧が出力される。加算器23は、
この“1”に対応する電圧を加算し、入力信号光の波長
多重数(入力チャネル数)iに比例したアナログ電圧V
(i) を出力する。
[0013] electric signal input to the wavelength multiplex number detecting circuit 11 is distributed to the maximum number of input channels M, the PLT frequency f 1, f 2, ..., band pass filter (B corresponding to f M
PF) 21-1 to 21-M through PL of each channel
The T amplitude level is detected. At this time, the PLT amplitude level of the non-input channel is 0, and a predetermined vibration component appears in the PLT amplitude level of the input channel. The outputs of the bandpass filters 21-1 to 21-M are input to the comparison circuits 22-1 to 22-M, respectively, and the magnitude of the output is compared with a predetermined minimum input level to the optical amplifier. That is, the voltage corresponding to "1" is output for the input channel. The adder 23 is
An analog voltage V proportional to the wavelength multiplexing number (input channel number) i of the input signal light is obtained by adding the voltage corresponding to “1”.
Output (i).

【0014】なお、PLT振幅レベルはバンドパスフィ
ルタ21を用いて検出する他に、同期検波回路を用いて
検出することも可能である。また、ここではアナログ回
路による構成例を示したが、同様の動作をディジタル的
に実現することも容易である。また、PLTを用いない
場合には、光カプラ3−1で分岐された信号光を入力
し、光分波器で各波長の信号光に分波し、それぞれの光
強度を検出することにより、波長多重数(入力チャネル
数)iに比例した電圧V(i) を出力させることもでき
る。
The PLT amplitude level can be detected by using a synchronous detection circuit instead of using the bandpass filter 21. Further, although the configuration example using the analog circuit is shown here, it is easy to realize the same operation digitally. When the PLT is not used, the signal light branched by the optical coupler 3-1 is input, the signal light is demultiplexed into the signal light of each wavelength by the optical demultiplexer, and the respective light intensities are detected. It is also possible to output a voltage V (i) proportional to the number of wavelength division multiplexing (the number of input channels) i.

【0015】図3は、光減衰量制御回路10および可変
光減衰器9の構成例を示す。ここでは、可変光減衰器9
としてシリカ系光導波路によって形成したマッハツェン
ダ干渉計を用いた例を示す。マッハツェンダ干渉計は、
2つの方向性結合器31,32の間に2本の光導波路3
3,34を接続し、その一方の光導波路にヒータ35を
蒸着した構成である。ヒータ35に流す電流に応じた熱
光学効果により光導波路の屈折率が変化してスイッチ動
作する。高いオン/オフ比を確保するために、2本のア
ーム長が異なる非対称型としている。ヒータ35に流す
電流がゼロのときには光減衰量はゼロとなる。また、図
1における可変光減衰器9と光カプラ3−4は、図3の
ようにシリカ系基板上に集積化することができ、損失お
よび形状を小さくすることができる。
FIG. 3 shows a configuration example of the optical attenuation control circuit 10 and the variable optical attenuator 9. Here, the variable optical attenuator 9
As an example, an example using a Mach-Zehnder interferometer formed by a silica optical waveguide is shown. The Mach-Zehnder interferometer
Two optical waveguides 3 are provided between the two directional couplers 31 and 32.
3, 34 are connected, and the heater 35 is vapor-deposited on one of the optical waveguides. The thermo-optic effect according to the electric current flowing through the heater 35 changes the refractive index of the optical waveguide to perform the switch operation. In order to secure a high on / off ratio, the two arm lengths are made asymmetrical. When the current passed through the heater 35 is zero, the light attenuation amount is zero. Further, the variable optical attenuator 9 and the optical coupler 3-4 in FIG. 1 can be integrated on the silica-based substrate as shown in FIG. 3, and the loss and the shape can be reduced.

【0016】光減衰量制御回路10は、平均値一定制御
回路40と定電流回路50により構成される。平均値一
定制御回路40に入力される平均値電圧V(P/i) は、オ
ペアンプ41で基準電圧Vref と比較され、その差分電
圧Δν(=ANF(V(P/i) −Vref)がオペアンプ42を
用いた加算器に入力され、基準電圧Vref と加算されて
定電流回路50に入力される。定電流回路50は、オペ
アンプ51とトランジスタ52によって構成され、Δν
が正値であればヒータ35へ流れる電流を増加させる。
一方、Δνが負値であればヒータ35へ流れる電流が減
少する。ともに光減衰量が大きくなり、モニタ光強度
(V(P))が小さくなってΔνがゼロに近づく。このよう
な負帰還動作により、可変光減衰器9から出力される各
チャネルの信号光レベルの平均値が一定になるように制
御することができる。
The optical attenuation control circuit 10 comprises a constant average value control circuit 40 and a constant current circuit 50. The average value voltage V (P / i) input to the constant average value control circuit 40 is compared with the reference voltage Vref by the operational amplifier 41, and the difference voltage Δν (= A NF (V (P / i) −Vref) is calculated. It is input to the adder using the operational amplifier 42, is added to the reference voltage Vref, and is input to the constant current circuit 50. The constant current circuit 50 is composed of an operational amplifier 51 and a transistor 52.
Is positive, the current flowing to the heater 35 is increased.
On the other hand, if Δν is a negative value, the current flowing to the heater 35 decreases. In both cases, the amount of light attenuation increases, the monitor light intensity (V (P)) decreases, and Δν approaches zero. By such a negative feedback operation, it is possible to control so that the average value of the signal light level of each channel output from the variable optical attenuator 9 becomes constant.

【0017】図4は、光減衰量制御回路10の他の構成
例を示す。ここでは、図3の平均値一定制御回路40の
処理を演算回路を用いて行う構成を示す。光減衰量制御
回路10は、平均レベル検出回路12の出力電圧V(P/
i)をディジタル信号に変換するA/D変換器43と、平
均値電圧V(P/i) と基準電圧Vref の差分を演算する演
算回路44と、演算回路44の出力値をアナログ信号に
変換して定電流回路50に与えるD/A変換器45によ
り構成される。なお、演算回路44では、定電流回路5
0への印加電圧と、可変光減衰器9における光減衰量と
の関係を予めメモリに記憶させておくことにより演算処
理が簡単になる。
FIG. 4 shows another configuration example of the optical attenuation control circuit 10. Here, a configuration is shown in which the processing of the average value constant control circuit 40 of FIG. 3 is performed using an arithmetic circuit. The optical attenuation amount control circuit 10 outputs the output voltage V (P / P / V of the average level detection circuit 12
i) is converted into a digital signal, an A / D converter 43, an arithmetic circuit 44 for calculating the difference between the average value voltage V (P / i) and the reference voltage Vref, and an output value of the arithmetic circuit 44 is converted into an analog signal. The D / A converter 45 is provided to the constant current circuit 50. In the arithmetic circuit 44, the constant current circuit 5
By storing the relationship between the applied voltage to 0 and the optical attenuation amount in the variable optical attenuator 9 in the memory in advance, the arithmetic processing is simplified.

【0018】[0018]

【発明の効果】以上説明したように、本発明の光増幅装
置は、波長多重化信号光のチャネル数や各チャネルの入
力信号光レベルが変化しても、各チャネルの信号光レベ
ルの平均値を一定に制御することができる。
As described above, the optical amplifying device of the present invention has an average value of the signal light level of each channel even if the number of channels of the wavelength multiplexed signal light or the input signal light level of each channel changes. Can be controlled to be constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光増幅装置の実施形態を示す図。FIG. 1 is a diagram showing an embodiment of an optical amplifying device of the invention.

【図2】波長多重数検出回路11の構成例を示す図。FIG. 2 is a diagram showing a configuration example of a wavelength multiplex number detection circuit 11.

【図3】光減衰量制御回路10および可変光減衰器9の
構成例を示す図。
FIG. 3 is a diagram showing a configuration example of an optical attenuation control circuit 10 and a variable optical attenuator 9.

【図4】光減衰量制御回路10の他の構成例を示す図。FIG. 4 is a diagram showing another configuration example of the optical attenuation control circuit 10.

【図5】従来の出力レベル一定制御方式による光増幅装
置の構成例を示す図。
FIG. 5 is a diagram showing an example of the configuration of a conventional optical amplification device using a constant output level control method.

【符号の説明】[Explanation of symbols]

1 入力端子 2 出力端子 3 光カプラ 4 希土類添加ファイバ 5 受光器 6 励起光源 7 励起光源駆動回路 8 光アイソレータ 9 可変光減衰器 10 光減衰量制御回路 11 波長多重数検出回路 12 平均レベル検出回路 21 バンドパスフィルタ(BPF) 22 比較回路 23 加算器 31,32 方向性結合器 33,34 光導波路 35 ヒータ 40 平均値一定制御回路 41,42 オペアンプ 43 A/D変換器 44 演算回路 45 D/A変換器 50 定電流回路 51 オペアンプ 52 トランジスタ 1 Input Terminal 2 Output Terminal 3 Optical Coupler 4 Rare Earth Doped Fiber 5 Photoreceptor 6 Excitation Light Source 7 Excitation Light Source Drive Circuit 8 Optical Isolator 9 Variable Optical Attenuator 10 Optical Attenuation Control Circuit 11 Wavelength Multiplexing Detection Circuit 12 Average Level Detection Circuit 21 Band pass filter (BPF) 22 Comparing circuit 23 Adder 31, 32 Directional coupler 33, 34 Optical waveguide 35 Heater 40 Average value constant control circuit 41, 42 Operational amplifier 43 A / D converter 44 Arithmetic circuit 45 D / A conversion Device 50 constant current circuit 51 operational amplifier 52 transistor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 縦続接続される第1および第2の希土類
添加ファイバと、 第1および第2の励起光をそれぞれ前記第1および第2
の希土類添加ファイバに入力し、かつ前記第1および第
2の希土類添加ファイバの利得がそれぞれ一定になるよ
うに励起光パワーを制御する第1および第2の励起光入
力手段と、 前記第1の希土類添加ファイバの入力端から前記第2の
希土類添加ファイバの出力端までの間の所定の位置に挿
入される可変光減衰手段とを備え、 前記第1の光ファイバへ波長多重された信号光が入力さ
れ、前記第2の光ファイバから増幅された信号光が出力
される光増幅装置において、 前記信号光の光レベルを検出する信号光レベル検出手段
と、 前記信号光の波長多重数を検出する波長多重数検出手段
と、 前記各検出手段で検出された信号光レベルと波長多重数
を入力し、各波長の信号光レベルの平均値が一定になる
ように前記可変光減衰手段の光減衰量を制御する光減衰
量制御手段とを備えたことを特徴とする光増幅装置。
1. A first and a second rare earth-doped fibers that are cascade-connected, and a first and a second pumping light, respectively.
First and second pumping light input means for controlling pumping light power so that the gains of the first and second rare earth-doped fibers become constant, respectively. A variable optical attenuator inserted at a predetermined position between the input end of the rare earth-doped fiber and the output end of the second rare earth-doped fiber, wherein the signal light wavelength-multiplexed to the first optical fiber is In an optical amplifying device that outputs the signal light that is input and amplified from the second optical fiber, a signal light level detection unit that detects an optical level of the signal light, and a wavelength multiplexing number of the signal light is detected. Wavelength multiplex number detection means, the signal light level detected by each of the detection means and the wavelength multiplex number are input, and the optical attenuation amount of the variable optical attenuating means so that the average value of the signal light level of each wavelength becomes constant. To Optical amplifying apparatus being characterized in that an optical attenuation control means Gosuru.
【請求項2】 請求項1に記載の光増幅装置における光
減衰量制御手段は、 信号光レベルを波長多重数で割算して各波長の信号光レ
ベルの平均値を検出する平均レベル検出回路と、 前記平均レベル検出回路の出力と基準値とを比較し、そ
の差分値に応じて可変光減衰手段の光減衰量を制御する
光減衰量制御回路とを備えたことを特徴とする光増幅装
置。
2. An optical level control circuit in the optical amplification device according to claim 1, wherein the optical attenuation amount control means divides the signal light level by the number of wavelength multiplexes and detects an average value of the signal light level of each wavelength. And an optical attenuation amount control circuit that compares the output of the average level detection circuit with a reference value and controls the optical attenuation amount of the variable optical attenuation means according to the difference value. apparatus.
【請求項3】 請求項1に記載の光増幅装置における可
変光減衰手段は、 シリカ系基板上に形成した導波路型干渉計に熱光学効果
による導波路屈折率変化を生じさせて可変光減衰機能を
実現した構成であることを特徴とする光増幅装置。
3. The variable optical attenuating means in the optical amplifying device according to claim 1, wherein the waveguide optical interferometer formed on a silica-based substrate is caused to undergo a waveguide optical index change due to a thermo-optical effect, and the variable optical attenuating is performed. An optical amplifying device having a configuration that realizes a function.
JP8026856A 1996-02-14 1996-02-14 Optical amplifier Pending JPH09219696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8026856A JPH09219696A (en) 1996-02-14 1996-02-14 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8026856A JPH09219696A (en) 1996-02-14 1996-02-14 Optical amplifier

Publications (1)

Publication Number Publication Date
JPH09219696A true JPH09219696A (en) 1997-08-19

Family

ID=12204928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8026856A Pending JPH09219696A (en) 1996-02-14 1996-02-14 Optical amplifier

Country Status (1)

Country Link
JP (1) JPH09219696A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003460A3 (en) * 1998-05-22 2000-04-20 Ciena Corp Fiber optic amplifier
US6055094A (en) * 1998-03-20 2000-04-25 Fujitsu Limited Optical amplifying apparatus
WO2000069099A1 (en) * 1999-05-10 2000-11-16 Afc Technologies Inc. Input independent tilt free broadband amplifier with dynamic gain equalisation
WO2001010063A1 (en) * 1999-07-30 2001-02-08 Mitsubishi Denki Kabushiki Kaisha Optical amplification repeater and optical amplification repeating and transmitting system
US6449085B1 (en) 1997-12-10 2002-09-10 Nec Corporation Optical direct amplifier and control method thereof
KR100358112B1 (en) * 2000-12-26 2002-10-25 한국전자통신연구원 Gain clamped erbium-doped fiber amplifier
KR100358115B1 (en) * 2000-12-14 2002-10-25 한국전자통신연구원 Dynamic gain-controlled erbium-doped fiber amplifier
WO2002093794A3 (en) * 2001-05-17 2003-06-26 Corning Inc Optical amplifier performance controller and method of use
JP2006253850A (en) * 2005-03-09 2006-09-21 Nec Corp Optical amplifier, operating control method thereof, and program
US7170673B2 (en) 1999-07-30 2007-01-30 Mitsubishi Denki Kabushiki Kaisha Optical amplifying repeater apparatus and optical amplifying/repeating transmission system
US7227681B2 (en) * 1996-05-02 2007-06-05 Fujitsu Limited Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied
US7990608B2 (en) * 2006-09-26 2011-08-02 Fujitsu Limited Optical transmission system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9007680B2 (en) 1996-05-02 2015-04-14 Fujitsu Limited Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied
US8553319B2 (en) 1996-05-02 2013-10-08 Fujitsu Limited Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied
US7969649B2 (en) 1996-05-02 2011-06-28 Fujitsu Limited Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied
US7477447B2 (en) 1996-05-02 2009-01-13 Fujitsu Limited Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied
US7227681B2 (en) * 1996-05-02 2007-06-05 Fujitsu Limited Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied
US6449085B1 (en) 1997-12-10 2002-09-10 Nec Corporation Optical direct amplifier and control method thereof
US6055094A (en) * 1998-03-20 2000-04-25 Fujitsu Limited Optical amplifying apparatus
WO2000003460A3 (en) * 1998-05-22 2000-04-20 Ciena Corp Fiber optic amplifier
WO2000069099A1 (en) * 1999-05-10 2000-11-16 Afc Technologies Inc. Input independent tilt free broadband amplifier with dynamic gain equalisation
US6215584B1 (en) 1999-05-10 2001-04-10 Jds Uniphase Inc. Input independent tilt free actively gain flattened broadband amplifier
US6873456B2 (en) 1999-07-30 2005-03-29 Mitsubishi Denki Kabushiki Kaisha Optical amplifying repeater apparatus and optical amplifying/repeating transmission system
US7170673B2 (en) 1999-07-30 2007-01-30 Mitsubishi Denki Kabushiki Kaisha Optical amplifying repeater apparatus and optical amplifying/repeating transmission system
US6657778B1 (en) 1999-07-30 2003-12-02 Mitsubishi Denkikabushiki Kaisha Optical amplification repeater and optical amplification repeating and transmitting system
WO2001010063A1 (en) * 1999-07-30 2001-02-08 Mitsubishi Denki Kabushiki Kaisha Optical amplification repeater and optical amplification repeating and transmitting system
KR100358115B1 (en) * 2000-12-14 2002-10-25 한국전자통신연구원 Dynamic gain-controlled erbium-doped fiber amplifier
KR100358112B1 (en) * 2000-12-26 2002-10-25 한국전자통신연구원 Gain clamped erbium-doped fiber amplifier
WO2002093794A3 (en) * 2001-05-17 2003-06-26 Corning Inc Optical amplifier performance controller and method of use
JP2006253850A (en) * 2005-03-09 2006-09-21 Nec Corp Optical amplifier, operating control method thereof, and program
US7657187B2 (en) 2005-03-09 2010-02-02 Nec Corporation Optical transmission apparatus and optical transmission control method for wavelength-division-multiplexed optical signal
JP4710357B2 (en) * 2005-03-09 2011-06-29 日本電気株式会社 Optical amplification apparatus, operation control method thereof, and program
US7990608B2 (en) * 2006-09-26 2011-08-02 Fujitsu Limited Optical transmission system

Similar Documents

Publication Publication Date Title
JP3306700B2 (en) Optical amplifier and wavelength division multiplexing optical transmission system
EP0960491B1 (en) Optical fiber amplifier having variable gain
US6212001B1 (en) Method and system for controlling optical amplification in wavelength division multiplex optical transmission
US6657774B1 (en) Amplifier system with distributed and discrete Raman fiber amplifiers
EP1376904B1 (en) Optical amplifier and control method therefor
EP1037337B1 (en) Optical amplifier
JPH09219696A (en) Optical amplifier
JP2809132B2 (en) Optical amplification monitoring device
US6259556B1 (en) Optical fibre amplifier having a controlled gain
JP4635402B2 (en) Optical amplifier and optical amplification method
GB2344209A (en) Optical fiber amplifier having constant output power
JPH09214034A (en) Optical amplifier
US6738185B2 (en) Optical amplifier gain control method for optical amplifier and gain control circuit for optical amplifier
US6704137B2 (en) Optical amplifier, method for optical amplification and optical transmission system
JP2001284689A (en) Optical amplifier
US6917467B2 (en) Optical amplifier
US7453628B2 (en) Optical amplifier having wide dynamic range
JPH0548207A (en) Optical preamplifier
JP2000244417A (en) Optical pre-amplifier
JP2000091676A (en) Optical amplifier
EP1137129A2 (en) Optical gain equalizer and optical gain equalizing method
JPH1012951A (en) Optical amplifier
JP3408378B2 (en) Optical repeater amplifier
JP2760305B2 (en) Optical direct amplifier
US6151156A (en) Optical fibre amplifier and transmission system with optical fibre-amplifier