JPH09215971A - Concentration control method in removal of anion contaminant - Google Patents

Concentration control method in removal of anion contaminant

Info

Publication number
JPH09215971A
JPH09215971A JP8048189A JP4818996A JPH09215971A JP H09215971 A JPH09215971 A JP H09215971A JP 8048189 A JP8048189 A JP 8048189A JP 4818996 A JP4818996 A JP 4818996A JP H09215971 A JPH09215971 A JP H09215971A
Authority
JP
Japan
Prior art keywords
water
anode
soil
cathode
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8048189A
Other languages
Japanese (ja)
Other versions
JP3180312B2 (en
Inventor
Takeshi Kawachi
武 川地
Hiroshi Kubo
博 久保
Jun Mitsumoto
純 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP04818996A priority Critical patent/JP3180312B2/en
Publication of JPH09215971A publication Critical patent/JPH09215971A/en
Application granted granted Critical
Publication of JP3180312B2 publication Critical patent/JP3180312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently recover an anion contaminant from soil. SOLUTION: An anode and a cathode are embedded in soil containing an anion contaminant (Step 101) and, next, water is supplied to soil (Step 102) and, subsequently, DC voltage is applied across the anode and the cathode to supply a current (Step 103) and the concn. of the anion contaminant gathered to the anode is measured (Step 104) and it is judged whether the measured concn. exceeds a reference value (Step 105) and, when the measured concn. exceeds the reference value, water on the side of the anode is drained (Step 106).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CrO4 2-、Cr
2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-
等の陰イオン汚染物を土壌内から除去する方法に関す
る。
TECHNICAL FIELD The present invention relates to CrO 4 2− , Cr
2 O 7 2-, AsO 4 3- , AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, PbO 2 2-
The present invention relates to a method for removing anionic pollutants such as the like from the soil.

【0002】[0002]

【従来の技術】工場廃水、工場廃棄物、鉱山廃水などに
よって汚染された土壌には、カドミウム、鉛、銅、亜
鉛、砒素、セレン、ニッケル、クロム等の汚染物質が含
まれていることがあり、このような土壌をそのまま放置
すると、かかる物質が地下水や生物サイクルを介して環
境に拡散する危険性がある。
2. Description of the Related Art Soil contaminated with industrial wastewater, industrial waste, mining wastewater, etc., may contain pollutants such as cadmium, lead, copper, zinc, arsenic, selenium, nickel and chromium. If such soil is left as it is, there is a risk that such substances will diffuse into the environment through groundwater or biological cycles.

【0003】そのため、汚染された土壌は、これを掘削
除去して所定の処理を施し、しかる後に管理型あるいは
遮断型の処分地に廃棄処分する一方、掘削された孔内に
は通常の土を客土して原状復帰するのが一般的である。
Therefore, the contaminated soil is excavated and removed, subjected to a predetermined treatment, and then disposed of at a management-type or blocking-type disposal site, while normal soil is excavated in the excavated hole. It is common to return to the original state after returning to the soil.

【0004】ところが、かかる方法では、掘削の際に汚
染土を攪乱して二次汚染のおそれがあるとともに、汚染
土を大量に搬出、運搬しなければならないという問題
や、既存建築物の近接部や直下では掘削除去自体が困難
になるという問題が生じる。そのため、最近では、原位
置で浄化する技術が研究され始めており、その一つとし
て通電により汚染物質を回収する方法が特開平5-59716
号公報に開示されている。
However, in such a method, there is a possibility that the contaminated soil may be disturbed during excavation to cause secondary pollution, a large amount of contaminated soil must be carried out and transported, and the proximity of existing buildings. There is a problem that the excavation and removal itself becomes difficult directly below. Therefore, recently, in-situ purification technology has begun to be researched, and one of them is a method of collecting pollutants by energization.
No. 6,086,045.

【0005】当該方法においては、まず、処理対象の地
盤範囲に止水壁を構築し、次いで、その地盤範囲に多数
の通水孔を有する中空管からなる陽極および陰極を挿入
し、次いで、当該地盤範囲に適宜散水してから電極間に
直流電圧を印加し、次いで、電気浸透現象によって陰極
側に集まった水を中空管を介して排水回収する。
In the method, first, a water blocking wall is constructed in the ground area to be treated, and then an anode and a cathode consisting of hollow tubes having a large number of water passage holes are inserted in the ground area, and then, A DC voltage is applied between the electrodes after water is appropriately sprayed on the ground area, and then the water collected on the cathode side by the electroosmosis phenomenon is drained and recovered through the hollow tube.

【0006】かかる方法によれば、所定の汚染物質は、
電気浸透現象による水の流れに乗って陰極側に流れ込む
ので、これを排水回収することにより、当該汚染物質を
除去することができる。
According to such a method, the predetermined pollutant is
Since the water flows due to the electroosmosis phenomenon and flows into the cathode side, the pollutant can be removed by collecting the waste water.

【0007】[0007]

【発明が解決しようとする課題】一方、クロム、砒素、
セレン、シアン、鉛などは、それぞれCrO4 2-、Cr
2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-
(アルカリ性下) 等の陰イオンの形で土壌に含まれて
いる。そして、これら陰イオン汚染物は、通電を行う
と、陰極に移動する水の流れに逆らいながら電気泳動に
よって陽極方向に力を受けるので、陰極側ではほとんど
回収できないことが本出願人が行った実験で判明した。
そのため、陰イオン汚染物を回収するには、陽極付近に
集まったものを土とともに除去するしかないが、土の掘
削、運搬、客土など一連の作業が必要となり、その除去
効率はきわめて悪い。
On the other hand, chromium, arsenic,
For selenium, cyanide, lead, etc., CrO 4 2- and Cr, respectively
2 O 7 2-, AsO 4 3- , AsO 3 3-, SeO 4 2-, SeO 3 2-, CN -, PbO 2 2-
(Under alkaline) It is contained in soil in the form of anions such as. And, when these anionic contaminants are energized, they are subjected to a force in the direction of the anode by electrophoresis against the flow of water moving to the cathode, so that the cathode side can hardly recover them. Found out.
Therefore, in order to collect the anion contaminants, the material collected in the vicinity of the anode must be removed together with the soil, but a series of operations such as soil excavation, transportation, and soil for the soil are required, and the removal efficiency is extremely poor.

【0008】本発明は、上述した事情を考慮してなされ
たもので、陰イオン汚染物を効率よく土壌内から回収可
能な陰イオン汚染物の除去における濃度管理方法を提供
することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and an object of the present invention is to provide a concentration control method for removing anionic contaminants that can efficiently recover the anionic contaminants from the soil. .

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の陰イオン汚染物の除去における濃度管理方
法は請求項1に記載したように、陰イオン汚染物を含む
土壌内に陽極および陰極を埋設し、次に前記土壌に給水
し、次に前記陽極および前記陰極間に直流電圧を印加し
て通電を行い、次に前記陽極側に集まった前記陰イオン
汚染物の濃度を測定し、次に該測定濃度が基準値を越え
たかどうかを判別し、前記測定濃度が基準値を越えたと
きに前記陽極側の水を排水するものである。
In order to achieve the above object, the method for controlling concentration in removing anionic contaminants according to the present invention is, as described in claim 1, an anode and a soil in soil containing anionic contaminants. A cathode is buried, then water is supplied to the soil, then a direct current voltage is applied between the anode and the cathode to conduct electricity, and then the concentration of the anionic contaminants collected on the anode side is measured. Then, it is determined whether or not the measured concentration exceeds the reference value, and when the measured concentration exceeds the reference value, the water on the anode side is drained.

【0010】また、本発明に係る陰イオン汚染物の除去
における濃度管理方法は、排水された水に含まれる前記
陰イオン汚染物の分離除去処理を酸性環境下で行い、そ
の処理水を給水用にリサイクルするものである。
Further, the concentration control method for removing anionic contaminants according to the present invention is a method for separating and removing the anionic contaminants contained in drained water in an acidic environment and supplying the treated water for water supply. It is to be recycled.

【0011】本発明に係る陰イオン汚染物の除去におけ
る濃度管理方法においては、陰イオン汚染物を含む土壌
内に陽極および陰極を埋設し、次に前記土壌に給水し、
次に前記陽極および前記陰極間に直流電圧を印加して通
電を行い、次に、陽極側に集まった陰イオン汚染物の濃
度を測定し、該測定濃度が基準値を越えたときに陽極側
の水を吸い上げるが、通電中をはじめとして終始、陰極
側では非排水とし、電気浸透による陰極への水の移動を
阻止しておく。
In the concentration control method for removing anionic contaminants according to the present invention, an anode and a cathode are buried in soil containing anionic contaminants, and then water is supplied to the soil,
Next, a direct current voltage is applied between the anode and the cathode to conduct electricity, and then the concentration of the anion contaminants collected on the anode side is measured. When the measured concentration exceeds a reference value, the anode side is measured. The water is sucked up, but it is not drained on the cathode side from beginning to beginning during energization to prevent water from moving to the cathode by electroosmosis.

【0012】すると、陰イオン汚染物は、電気浸透によ
る陰極への水の移動にあえて逆らうことなく、電気泳動
によって自然に陽極に集まる。そして、陽極近傍の陰イ
オン汚染物が一定濃度に達したならば、水とともに吸い
上げてこれを回収する。なお、陽極に近づくほど酸性度
が上昇して陰イオン汚染物の溶解度が高くなるので、よ
り効率的に回収される。
[0012] Then, the anionic contaminants naturally collect on the anode by electrophoresis, without countering the migration of water to the cathode by electroosmosis. When the anion contaminant near the anode reaches a certain concentration, it is sucked up with water and collected. It should be noted that the closer to the anode, the higher the acidity and the higher the solubility of the anionic contaminants, and thus the more efficient recovery.

【0013】ここで、排水された水に含まれる陰イオン
汚染物の分離除去処理を酸性環境下で行い、その処理水
を土壌に給水リサイクルすれば、土壌中の陰イオン汚染
物の溶解度が増大し、除去効率が向上する。
If the separation and removal treatment of anionic contaminants contained in the drained water is carried out in an acidic environment and the treated water is recycled to the soil, the solubility of the anionic contaminants in the soil is increased. However, the removal efficiency is improved.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る陰イオン汚染
物の除去における濃度管理方法の実施の形態について、
添付図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the concentration control method for removing anionic contaminants according to the present invention will be described below.
This will be described with reference to the accompanying drawings.

【0015】図1は、本実施形態に係る陰イオン汚染物
の除去における濃度管理方法の手順を示したフローチャ
ートである。本実施形態に係る濃度管理方法において
は、まず図2に示すように、CrO4 2-、Cr2O7 2-、As
O4 3-、AsO3 3-、SeO4 2-、SeO3 2-、CN-、PbO2 2-等の陰イ
オン汚染物を含む土壌1内に陽極2および陰極3を埋設
する(図1、ステップ101)。
FIG. 1 is a flow chart showing the procedure of a concentration control method for removing anionic contaminants according to this embodiment. In the concentration control method according to the present embodiment, first, as shown in FIG. 2, CrO 4 2− , Cr 2 O 7 2− , As
Anode 2 and cathode 3 are buried in soil 1 containing anionic contaminants such as O 4 3− , AsO 3 3− , SeO 4 2− , SeO 3 2− , CN , PbO 2 2− (Fig. 1 , Step 101).

【0016】ここで、陰極3は例えば鉄筋棒で構成する
のがよい。また、陽極2は、炭素棒等の導電性中空管に
多数の孔を設けて構成してあり、電極とストレーナ管と
を兼用させてある。そして、陽極2の中には、給水やポ
ンプアップによる排水を行うための給排水管5を配設し
てあり、該給排水管5は、地上に設置された給排水ポン
プ6に接続してある。
Here, the cathode 3 is preferably composed of, for example, a reinforcing rod. Further, the anode 2 is configured by providing a large number of holes in a conductive hollow tube such as a carbon rod, and serves as both an electrode and a strainer tube. A water supply / drainage pipe 5 for supplying water or draining water by pumping up is provided in the anode 2, and the water supply / drainage pipe 5 is connected to a water supply / drainage pump 6 installed on the ground.

【0017】一方、陽極2の底部には陰イオン汚染物の
濃度を測定する濃度センサ7を設置してあり、地上に設
置されたコンピュータ8に随時計測データを転送するよ
うになっている。そして、コンピュータ8は、該データ
の大きさに応じて給排水ポンプ6の給水、排水並びに停
止を切替制御するようになっている。
On the other hand, a concentration sensor 7 for measuring the concentration of anionic contaminants is installed at the bottom of the anode 2, and the measurement data is transferred to a computer 8 installed on the ground at any time. Then, the computer 8 switches and controls water supply, drainage, and stop of the water supply / drainage pump 6 according to the size of the data.

【0018】次に、図3(a) に示すように、コンピュー
タ8を操作して給排水ポンプ6を給水側に駆動し、給排
水管5および陽極2を介して汚染土壌1に給水を行うと
ともに(ステップ102)、引き続いて陽極2および陰
極3の間に直流電圧を印加して通電を行う(ステップ1
03)。通電時間は、土質性状、陰イオン汚染物の種類
や濃度などによってさまざまであるが、例えば数日間継
続して行うのがよい。
Next, as shown in FIG. 3 (a), the computer 8 is operated to drive the water supply / drainage pump 6 to the water supply side to supply water to the contaminated soil 1 via the water supply / drainage pipe 5 and the anode 2 ( (Step 102), and subsequently, a DC voltage is applied between the anode 2 and the cathode 3 to energize (Step 1).
03). The energization time varies depending on the soil properties, the type and concentration of the anion contaminant, and the like, but it is preferable to continue the application for several days.

【0019】ここで、陽極2付近の水位は、陰極3側の
水位が地表面に達することがない程度に適宜調整する。
また、陰極3側では、通電中をはじめ終始非排水とし、
電気浸透による陰極3への水の移動を阻止しておく。
Here, the water level near the anode 2 is appropriately adjusted so that the water level on the cathode 3 side does not reach the ground surface.
Also, on the cathode 3 side, it is not drained all the time, including during energization,
The movement of water to the cathode 3 due to electroosmosis is prevented.

【0020】すると、土壌1中の水は、電気浸透によっ
て陰極3へ移動しようとするが、陰極3側では排水され
ないため、陰極3へ移動しようとする力と陰極3付近の
水位の若干の上昇による圧力とが平衡し、水は移動しな
くなる。
Then, the water in the soil 1 tries to move to the cathode 3 by electroosmosis, but it is not drained on the side of the cathode 3, so that the force to move to the cathode 3 and a slight rise in the water level near the cathode 3 occur. Equilibrium with the pressure due to, the water does not move.

【0021】かかる状態で通電を継続すれば、陰イオン
汚染物は、電気浸透による陰極3への水の移動にあえて
逆らうことなく、電気泳動によって自然に陽極2に集ま
る。しかも、陽極2に近づくほど酸性度が上昇して陰イ
オン汚染物の溶解度が高くなるので、より効率的な回収
が可能となる。
If the energization is continued in such a state, the anion contaminants will naturally collect on the anode 2 by electrophoresis without countering the movement of water to the cathode 3 due to electroosmosis. Moreover, the closer to the anode 2, the higher the acidity and the higher the solubility of the anionic contaminants, so that more efficient recovery is possible.

【0022】次に、陽極2の側に集まってくる陰イオン
汚染物の濃度を濃度センサ7でリアルタイムで計測し、
コンピュータ8に随時転送する(ステップ104)。
Next, the concentration of anionic contaminants gathering on the side of the anode 2 is measured by the concentration sensor 7 in real time,
The data is transferred to the computer 8 as needed (step 104).

【0023】次に、測定された陰イオン汚染物の濃度が
基準値を越えたかどうかをコンピュータ8で判断する
(ステップ105)。ここで、基準となる陰イオン汚染
物の濃度は、電気泳動の効果が低下する限界を考慮し
て、500〜1000ppmとするのがよい。
Next, the computer 8 judges whether or not the measured concentration of the anionic contaminant exceeds the reference value (step 105). Here, the reference concentration of anionic contaminants is preferably 500 to 1000 ppm in consideration of the limit that the effect of electrophoresis decreases.

【0024】そして、測定濃度が基準値を下回っている
場合には通電を継続し、基準値を上回った場合には、図
3(b) に示すように、コンピュータ8を操作して給排水
ポンプ6を排水側に駆動し、陽極2内の水を給排水管5
を介して地上に吸い上げ、陰イオン汚染物を回収する
(ステップ106)。
When the measured concentration is lower than the reference value, energization is continued, and when it exceeds the reference value, the computer 8 is operated to operate the water supply / drainage pump 6 as shown in FIG. 3 (b). Drive the water to the drain side and supply the water in the anode 2 to the drainage pipe 5
It is sucked up to the ground via the to collect anionic contaminants (step 106).

【0025】次に、陽極2から回収された水を酸性環境
のままイオン交換樹脂等を用いて水処理を行い、該水中
の陰イオン汚染物を分離除去する(ステップ107)。
次いで、陰イオン汚染物が除去された後の処理水を給水
用にリサイクルする(ステップ108)。リサイクルに
あたっては、図3(a) と同様に給排水ポンプ6を給水側
に駆動し給排水管5を介して陽極2内に送水すればよ
い。
Next, the water recovered from the anode 2 is treated with an ion exchange resin or the like in an acidic environment to separate and remove anionic contaminants in the water (step 107).
Next, the treated water from which the anionic contaminants have been removed is recycled for water supply (step 108). For recycling, as in the case of FIG. 3 (a), the water supply / drainage pump 6 may be driven to the water supply side to feed water into the anode 2 via the water supply / drainage pipe 5.

【0026】陽極側で回収された水は酸性度が高い。し
たがって、これをアルカリにして一般的な水処理を行う
よりも、酸性環境をそのまま生かして陰イオン汚染物を
分離処理し、処理された後の処理水を給水用にリサイク
ルするようにすれば、陰イオン汚染物を溶解させやすい
水を土壌中に給水することができる。
The water recovered on the anode side has a high acidity. Therefore, rather than making this an alkali and performing general water treatment, if the acidic environment is used as it is to separate the anion contaminants and the treated water after treatment is recycled for water supply, Water capable of dissolving anionic contaminants can be supplied to the soil.

【0027】このような手順を土壌の洗浄が終了するま
で繰り返し、工事終了後は、陰イオン汚染物が分離除去
された排水をpH処理して下水に放流する。
This procedure is repeated until the soil is washed, and after the construction is completed, the wastewater from which the anionic contaminants have been separated and removed is subjected to pH treatment and discharged into the sewage.

【0028】以上説明したように、本実施形態に係る陰
イオン汚染物の除去における濃度管理方法によれば、陰
極側を非排水とし陽極側からのみ排水するようにしたの
で、CrO4 2-、Cr2O7 2-、AsO4 3-、AsO3 3-、SeO4 2-、SeO3
2-、CN-、PbO2 2-などの陰イオン汚染物は、電気浸透に
よる水の流れに邪魔されることなく、電気泳動によって
スムーズに陽極に到達し、かくして、陰イオン汚染物を
効率よく陽極に集めてこれを回収することが可能とな
る。
As described above, according to the concentration control method for removing anionic contaminants according to the present embodiment, the cathode side is not drained and only the anode side is drained. Therefore, CrO 4 2− , Cr 2 O 7 2- , AsO 4 3- , AsO 3 3- , SeO 4 2- , SeO 3
2-, CN -, PbO 2 2- anion contaminants, such as, without being disturbed by the flow of water by electroosmosis, smoothly reach the anode by electrophoresis, thus efficiently anion contaminants It becomes possible to collect this by collecting it at the anode.

【0029】また、陽極に近づくほど陰イオン汚染物の
溶解度が高くなるので、陰極〜陽極間の広い範囲の土壌
を除染することができる。
Further, since the solubility of the anionic contaminant becomes higher as it gets closer to the anode, it is possible to decontaminate a wide range of soil between the cathode and the anode.

【0030】また、陰極非排水としたことによって電気
浸透による水の移動がなくなり、その分、給排水の量や
位置によって土壌中の水の流れを制御できるようにな
る。
Further, since the cathode is not drained, the movement of water due to electroosmosis is eliminated, and accordingly, the flow of water in the soil can be controlled depending on the amount and position of water supply and drainage.

【0031】また、排水中の陰イオン汚染物の分離除去
処理を酸性状態のまま行い、該処理水を給水用にリサイ
クルするようにしたので、土壌中の陰イオン汚染物が溶
解しやすい状態となり、いったんアルカリに戻して分離
除去し、これを給水用にリサイクルするよりも土壌中の
陰イオン汚染物をより効率的に回収除去することが可能
となる。
Further, since the separation and removal treatment of the anion contaminants in the waste water is carried out in an acidic state and the treated water is recycled for water supply, the anion contaminants in the soil are easily dissolved. It becomes possible to recover and remove anionic contaminants in soil more efficiently than once returning to alkali to separate and remove it, and to recycle it for water supply.

【0032】また、陽極に集まった陰イオン汚染物の濃
度を測定し、その大きさに応じて給水および排水を切り
替えるようにしたので、長期間にわたる自動管理が可能
となる。
Further, since the concentration of anionic contaminants collected on the anode is measured and the water supply and drainage are switched depending on the size, automatic control over a long period of time becomes possible.

【0033】本実施形態では、炭素棒で構成した陽極を
ストレーナ管兼用としたが、陽極とストレーナ管とを別
体としてもよい。
In the present embodiment, the anode made of carbon rods also serves as the strainer tube, but the anode and the strainer tube may be separate bodies.

【0034】また、本実施形態では、給水を陽極側から
行うようにしたが、給水位置については特に限定される
ものではなく、陽極側に加えてあるいはその代わりに電
極間の所望の位置で地表面から散水し、例えば電気分解
による損失分を補充するようにしてもよい。
Further, in the present embodiment, the water is supplied from the anode side, but the water supply position is not particularly limited, and in addition to or instead of the anode side, the ground is provided at a desired position between the electrodes. You may make it sprinkle water from the surface and supplement the loss by electrolysis, for example.

【0035】また、本実施形態では、酸性環境のまま水
処理を行う方法として、イオン交換樹脂を用いた方法を
採用したが、かかる方法に代えて、例えば砒素やセレン
を鉄化合物に吸着させて除去を図る方法を採用してもよ
い。
Further, in the present embodiment, a method using an ion exchange resin is adopted as a method for water treatment in an acidic environment. Instead of such a method, for example, arsenic or selenium is adsorbed on an iron compound. You may employ the method of removing.

【0036】また、本実施形態では、排水された水を酸
性環境のまま水処理するようにしたが、必ずしも酸性の
ままで処理する必要はなく、いったんアルカリ性にして
から陰イオン汚染物の分離除去水処理を行うようにして
もよいし、かかる場合、処理水を給水用にリサイクルし
なくてもよい。
In this embodiment, the drained water is treated in an acidic environment. However, it is not always necessary to treat it in an acidic state. Water treatment may be performed, and in such a case, treated water may not be recycled for water supply.

【0037】[0037]

【発明の効果】以上述べたように、本発明の陰イオン汚
染物の除去における濃度管理方法は、陰イオン汚染物を
含む土壌内に陽極および陰極を埋設し、次に前記土壌に
給水し、次に前記陽極および前記陰極間に直流電圧を印
加して通電を行い、次に前記陽極側に集まった前記陰イ
オン汚染物の濃度を測定し、次に該測定濃度が基準値を
越えたかどうかを判別し、前記測定濃度が基準値を越え
たときに前記陽極側の水を排水するので、陰イオン汚染
物を効率よく土壌内から回収することができる。
As described above, the concentration control method for removing anionic contaminants of the present invention is to embed an anode and a cathode in soil containing anionic contaminants, and then supply water to the soil. Next, a direct current voltage is applied between the anode and the cathode to conduct electricity, and then the concentration of the anionic contaminants collected on the anode side is measured, and then whether the measured concentration exceeds a reference value. When the measured concentration exceeds the reference value, the water on the anode side is drained, so that the anion contaminants can be efficiently collected from the soil.

【0038】[0038]

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施形態に係る陰イオン汚染物の除去におけ
る濃度管理方法の手順を示したフローチャート。
FIG. 1 is a flowchart showing a procedure of a concentration management method in removing anionic contaminants according to the present embodiment.

【図2】本実施形態に係る陰イオン汚染物の除去におけ
る濃度管理方法を示した概念図。
FIG. 2 is a conceptual diagram showing a concentration management method for removing anionic contaminants according to the present embodiment.

【図3】本実施形態に係る陰イオン汚染物の除去におけ
る濃度管理方法の作用を説明したものであり、(a)は給
水並びに通電を行っている様子、(b)は排水を行ってい
る様子を示した図。
FIG. 3 is a diagram for explaining the action of the concentration control method in removing anionic contaminants according to the present embodiment, where (a) is a state of supplying water and conducting electricity, and (b) is performing drainage. A diagram showing the situation.

【符号の説明】[Explanation of symbols]

1 汚染土壌 2 陽極(ストレーナ管) 3 陰極 1 Contaminated soil 2 Anode (strainer tube) 3 Cathode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陰イオン汚染物を含む土壌内に陽極およ
び陰極を埋設し、次に前記土壌に給水し、次に前記陽極
および前記陰極間に直流電圧を印加して通電を行い、次
に前記陽極側に集まった前記陰イオン汚染物の濃度を測
定し、次に該測定濃度が基準値を越えたかどうかを判別
し、前記測定濃度が基準値を越えたときに前記陽極側の
水を排水することを特徴とする陰イオン汚染物の除去に
おける濃度管理方法。
1. An anode and a cathode are buried in a soil containing an anion contaminant, and then water is supplied to the soil, and then a direct current voltage is applied between the anode and the cathode to conduct electricity, and The concentration of the anionic contaminant collected on the anode side is measured, then it is determined whether the measured concentration exceeds a reference value, and when the measured concentration exceeds the reference value, the water on the anode side is removed. A method for controlling concentration in removing anionic pollutants, characterized by draining.
【請求項2】 排水された水に含まれる前記陰イオン汚
染物の分離除去処理を酸性環境下で行い、その処理水を
給水用にリサイクルする請求項1記載の陰イオン汚染物
の除去における濃度管理方法。
2. The concentration for removing anionic contaminants according to claim 1, wherein the treatment for separating and removing the anionic contaminants contained in the drained water is performed in an acidic environment, and the treated water is recycled for water supply. Management method.
JP04818996A 1996-02-09 1996-02-09 Concentration control method for removal of anionic contaminants Expired - Fee Related JP3180312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04818996A JP3180312B2 (en) 1996-02-09 1996-02-09 Concentration control method for removal of anionic contaminants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04818996A JP3180312B2 (en) 1996-02-09 1996-02-09 Concentration control method for removal of anionic contaminants

Publications (2)

Publication Number Publication Date
JPH09215971A true JPH09215971A (en) 1997-08-19
JP3180312B2 JP3180312B2 (en) 2001-06-25

Family

ID=12796449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04818996A Expired - Fee Related JP3180312B2 (en) 1996-02-09 1996-02-09 Concentration control method for removal of anionic contaminants

Country Status (1)

Country Link
JP (1) JP3180312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110000199A (en) * 2019-04-16 2019-07-12 吕敦玉 A kind of soil pollution emergency pumping preventing control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110000199A (en) * 2019-04-16 2019-07-12 吕敦玉 A kind of soil pollution emergency pumping preventing control method
CN110000199B (en) * 2019-04-16 2021-04-02 吕敦玉 Soil pollution emergency pumping and injecting prevention and control method

Also Published As

Publication number Publication date
JP3180312B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
Alshawabkeh et al. Practical aspects of in-situ electrokinetic extraction
US5584980A (en) Electric field method and apparatus for decontaminating soil
Trombly Electrochemical remediation takes to the field
CN110434166B (en) Double-ring vertical self-cleaning type in-situ dehydration pollution-reduction electric repair device and method
JP3178581B2 (en) How to clean contaminated soil
JPH115077A (en) Contaminated ground purification system
JPH09215971A (en) Concentration control method in removal of anion contaminant
JPH09215970A (en) Concentration control method in removal of anion contaminant
JP3381764B2 (en) How to clean contaminated soil
JPH09215975A (en) Method for arranging electrode in removing anion contaminant
JP3610916B2 (en) How to remove anionic contaminants
KR101297098B1 (en) Soil remediation system using electrokinetics
JP3575544B2 (en) Electrode placement method for removal of anionic contaminants
JPH09215973A (en) Method for removing anion contaminant
JPH11221553A (en) Purifying method of heavy metal contamination soil
JPH09215972A (en) Anion contaminant removing apparatus
JP3343662B2 (en) In-situ treatment method and apparatus for hydrous soil by electroosmosis
JPH09215974A (en) Method for removing anion contaminant and making cleaning
JP2004181407A (en) Method for treating contaminated underground water and soil by electrode reduction
JP3214600B2 (en) How to clean contaminated soil
JPH1034126A (en) Method and apparatus for purifying soil polluted with heavy metal
KR20060036813A (en) Remediation and dewatering of dredged slurry and mine tailing with the vacuum method and electrokinetic phenomenon and apparatus)
JP3457484B2 (en) Metal recovery method and recovery device
US5944979A (en) Electrokinetic transfer of contaminants from a thin layer of soil to a thin porous medium
KR0134078B1 (en) Device for solidifying solid polluted with heavy metals

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010319

LAPS Cancellation because of no payment of annual fees