JPH09210189A - Controller for continuously variable transmission - Google Patents

Controller for continuously variable transmission

Info

Publication number
JPH09210189A
JPH09210189A JP1732396A JP1732396A JPH09210189A JP H09210189 A JPH09210189 A JP H09210189A JP 1732396 A JP1732396 A JP 1732396A JP 1732396 A JP1732396 A JP 1732396A JP H09210189 A JPH09210189 A JP H09210189A
Authority
JP
Japan
Prior art keywords
pressure
control valve
shift
continuously variable
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1732396A
Other languages
Japanese (ja)
Other versions
JP3141193B2 (en
Inventor
Masuo Kashiwabara
益夫 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP1732396A priority Critical patent/JP3141193B2/en
Publication of JPH09210189A publication Critical patent/JPH09210189A/en
Application granted granted Critical
Publication of JP3141193B2 publication Critical patent/JP3141193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To determine the characteristics between the controlling amount of the hydraulic control valve which controls the hydraulic pressure of the shift control valve in a continuous transmission and the value relating to the displacement of the shift control valve by adding consideration on the variability and degradation of each hydraulic control valves and the aged deterioration to eliminate the dispersion of the characteristics. SOLUTION: The pressure in the oil chamber for shifting pressure control 4a is computed from the pulley ratio and the line pressure when the transfer torque is almost 0, according to which computation, the opening surface ratio Ar used for the second pressure computing means for computing the pressure in the oil chamber for shifting pressure control 4a from the parameter (line pressure) including the opening surface ratio Ar of the flow control valve as the value contributing to the displacement of the flow control valve 7, then based on the relationship between the opening surface ratio Ar as such computed and the control amount of the solenoid valve 8 at this time, the relationships between the opening surface ratio Ar of the flow control valve 7 and the stored control amount of the solenoid valve 8 (characteristics of control amount-opening ratio) will be corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば車両のエン
ジン等の動力源と駆動軸との間に介装される無段変速機
の制御装置に関し、特に、変速比を変化させるための油
圧制御技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a continuously variable transmission provided between a power source such as an engine of a vehicle and a drive shaft, and more particularly to a hydraulic control for changing a gear ratio. Regarding technology.

【0002】[0002]

【従来の技術】従来、車両においては、内燃機関と駆動
車輪間に変速機を介在させている。かかる変速機は、広
範囲に変化する車両の走行条件に対応させて駆動車輪側
に伝達される駆動力を変更し、内燃機関の性能を充分に
発揮させるものである。このような車両用の変速機とし
て、動力源の回転力を受ける駆動側回転部材としてのプ
ライマリプーリと、被駆動側回転部材としてのセカンダ
リプーリと、両プーリ間に介装され両者間で動力を伝達
する動力伝達部材としてのベルトと、プライマリプーリ
とベルトとの接触位置の回転中心からの距離である駆動
側接触回転半径、若しくは前記セカンダリプーリとベル
トとの接触位置の回転中心からの距離である被駆動側接
触回転半径のいずれか一方を変化させて変速を行わせる
ようにした無段変速機が知られている。
2. Description of the Related Art Conventionally, in a vehicle, a transmission is interposed between an internal combustion engine and driving wheels. Such a transmission changes the driving force transmitted to the driving wheel side in accordance with the traveling conditions of the vehicle that change over a wide range, and allows the internal combustion engine to exhibit its full performance. As a transmission for such a vehicle, a primary pulley as a driving side rotating member that receives a rotational force of a power source, a secondary pulley as a driven side rotating member, and a power transmission between the two pulleys are interposed between the pulleys. A belt as a power transmission member for transmission, and a drive-side contact rotation radius that is the distance from the rotation center of the contact position between the primary pulley and the belt, or a distance from the rotation center of the contact position between the secondary pulley and the belt. 2. Description of the Related Art A continuously variable transmission is known in which any one of the driven-side contact turning radii is changed to change gears.

【0003】かかる無段変速機においては、制御装置か
ら出力される制御信号に基づいて作動油を供給・排出す
ることで変化させて変速を行わせるための変速圧制御用
油室と、該変速圧制御用油室により変速制御されない側
の接触回転半径を、トルク伝達に必要なベルトとの間の
接触面圧を付与するべく制御するための接触面圧制御用
油室と、を含んで構成されており、変速制御弁により油
圧を制御して変速比を変化させる。
In such a continuously variable transmission, a hydraulic pressure control oil chamber for changing the speed by changing the supply and discharge of hydraulic oil based on a control signal output from a control device, and the speed change gear. And a contact surface pressure control oil chamber for controlling the contact rotation radius on the side not subjected to speed change control by the pressure control oil chamber so as to apply the contact surface pressure with the belt necessary for torque transmission. The transmission control valve controls the hydraulic pressure to change the transmission ratio.

【0004】この場合、この変速制御弁は、作動用油圧
制御弁としての電磁弁より作動油圧を制御されることに
より作動される。このような構成において、電磁弁の制
御量と変速制御弁変位との関係は、変速機の環境条件等
により変化してしまうのが一般的である。これる対応す
るために、従来、例えば、特開昭64−44348号公
報、特開平1−153851号公報等に開示された技術
のように、電磁弁と変速制御弁の関係、詳しくはデュー
ティ中立値を、油温や駆動周波数に応じて切換制御して
電磁弁を駆動するものがある。
In this case, the shift control valve is operated by controlling the working hydraulic pressure by an electromagnetic valve as a working hydraulic control valve. In such a configuration, the relationship between the control amount of the solenoid valve and the shift control valve displacement generally changes depending on the environmental conditions of the transmission and the like. In order to deal with this, conventionally, for example, as disclosed in JP-A-64-44348 and JP-A-1-153851, the relationship between the solenoid valve and the speed change control valve, more specifically, the duty neutral. There is a type in which the solenoid valve is driven by switching control of the value according to the oil temperature and the drive frequency.

【0005】しかし、上述の従来技術のように、デュー
ティ中立値を、油温や駆動周波数に応じて切換制御して
電磁弁を駆動するものでは、デューティ中立値にずれを
生じることになる。このデューティ中立値は、非常に微
小な範囲で制御されなければならず、そののずれは、変
速速度が変動して、変速に不連続を生じさせ、変速ショ
ックを発生させる。
However, in the case of driving the solenoid valve by switching the duty neutral value according to the oil temperature and the driving frequency as in the above-mentioned conventional technique, the duty neutral value is deviated. The duty neutral value must be controlled within a very small range, and the deviation thereof causes a change in shift speed, which causes discontinuity in shift and a shift shock.

【0006】そこで、更に、このような問題点を解決す
るため、制御手段に複数の駆動周波数と、これら駆動周
波数毎の油温−デューティ中立値マップとを記憶してお
き、前記制御手段によって駆動条件に応じて前記複数の
駆動周波数のいずれか1つに切換制御すると共に、この
駆動周波数の油温−デューティ中立値マップから算出さ
れる油温状態に応じたデューティ中立値に切換制御する
ことにより、駆動周波数を切り換えた際のデューティ中
立値のずれをなくそうとする技術が提案されている(特
開平5−118420号公報参照)。
Therefore, in order to solve such a problem, a plurality of drive frequencies and an oil temperature-duty neutral value map for each of these drive frequencies are stored in the control means and driven by the control means. By switching control to any one of the plurality of drive frequencies according to the condition, and switching control to a duty neutral value according to the oil temperature state calculated from the oil temperature-duty neutral value map of this drive frequency. There has been proposed a technique for eliminating the deviation of the duty neutral value when the drive frequency is switched (see Japanese Patent Laid-Open No. 5-118420).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来技術にあっては、電磁弁の個体のバラツキや劣
化等の経時変化等が考慮されておらず、例えば、電磁弁
の制御量と変速制御弁の変位に関連する値との特性を定
めるようにしたものでは、この特性のバラツキを吸収で
きないため、デューティ中立値にずれを生じることにな
り、変速速度が変動して、変速に不連続を生じさせ、変
速ショックを発生させるという問題点が依然として発生
する。
However, such prior art does not take into consideration variations with time, such as variations and deterioration of individual solenoid valves. If a characteristic that is related to the value related to the displacement of the control valve is determined, the variation in this characteristic cannot be absorbed, so that the duty neutral value will be displaced, and the shift speed will fluctuate, resulting in discontinuous shift. And a shift shock is still generated.

【0008】そこで、本発明は、以上のような従来の実
情に鑑み、作動油圧制御弁の制御量と変速制御弁の変位
に関連する値との特性を定めるようにしたものにおい
て、この特性を作動油圧制御弁の個体のバラツキや劣化
等の経時変化等を考慮して定めることにより、前記特性
のバラツキを解消することを課題とする。
In view of the above conventional circumstances, the present invention determines the characteristics of the controlled variable of the hydraulic pressure control valve and the value related to the displacement of the shift control valve. It is an object of the present invention to eliminate the variation in the characteristics by setting the hydraulic pressure control valve in consideration of variations over time, such as variations and deterioration of individual operating hydraulic control valves.

【0009】[0009]

【課題を解決するための手段】このため、請求項1に係
る発明は、図1に示すように、動力源の回転力を受ける
駆動側回転部材と、被駆動部に連結される被駆動側回転
部材と、両回転部材間に介装され両者間で動力を伝達す
る動力伝達部材と、を含んで構成され、一方の回転部材
と動力伝達部材との接触面圧をライン圧として制御し、
他方の回転部材と動力伝達部材との接触面圧を前記ライ
ン圧を変速比に応じて調整した変速圧として制御するこ
とにより、各回転部材の回転中心から前記動力伝達部材
との接触点までの半径の比を無段階に変化させて変速比
を無段階に制御する構成であって、変速圧制御用油室
と、接触面圧制御用油室と、前記変速圧制御用油室への
変速圧を制御する変速制御弁と、該変速制御弁の作動油
圧を制御する作動油圧制御弁と、を含んで構成された無
段変速機において、前記作動油圧制御弁の制御量と変速
制御弁の変位に関連する値との関係を記憶する記憶手段
と、無段変速機の伝達トルクを検出する伝達トルク検出
手段と、実際の前記半径の比を検出する半径比検出手段
と、前記ライン圧を検出するライン圧検出手段と、前記
伝達トルク検出手段、半径比検出手段及びライン圧検出
手段から出力される検出信号に基づいて、前記変速圧制
御用油室の油圧を演算する第1の油圧演算手段と、前記
変速制御弁の変位に関連する値を含むパラメータから前
記変速圧制御用油室の油圧を演算する第2の油圧演算手
段と、前記第1の油圧演算手段の演算結果に基づいて、
第2の油圧演算手段に用いる変速制御弁の変位に関連す
る値を演算する変位関連値演算手段と、変位関連値演算
手段により演算された変速制御弁の変位に関連する値と
このときの作動油圧制御弁の制御量との関係に基づい
て、前記記憶手段における作動油圧制御弁の制御量と変
速制御弁の変位に関連する値との関係を補正する補正手
段と、を含んで構成した。
Therefore, the invention according to claim 1 is, as shown in FIG. 1, a driving side rotating member for receiving a rotational force of a power source and a driven side connected to a driven portion. A rotary member and a power transmission member that is interposed between both rotary members and that transmits power between the two are configured to include a contact surface pressure between one rotary member and the power transmission member as a line pressure, and
By controlling the contact surface pressure between the other rotary member and the power transmission member as the shift pressure adjusted by the line pressure according to the gear ratio, the rotation center of each rotary member to the contact point with the power transmission member is controlled. The configuration is such that the ratio of the radii is changed steplessly to control the speed change steplessly, and a shift pressure control oil chamber, a contact surface pressure control oil chamber, and a shift to the shift pressure control oil chamber. In a continuously variable transmission including a shift control valve for controlling pressure and a working hydraulic control valve for controlling working hydraulic pressure of the shift control valve, a control amount of the working hydraulic control valve and a shift control valve A storage unit that stores a relationship with a value related to displacement, a transmission torque detection unit that detects a transmission torque of the continuously variable transmission, a radius ratio detection unit that detects an actual ratio of the radii, and the line pressure Line pressure detecting means for detecting, and the transmission torque detecting means First hydraulic pressure calculation means for calculating the hydraulic pressure of the shift pressure control oil chamber based on the detection signals output from the radius ratio detection means and the line pressure detection means, and a value related to the displacement of the shift control valve. Based on the calculation result of the second hydraulic pressure calculation means for calculating the hydraulic pressure of the shift pressure control oil chamber from the included parameter and the calculation result of the first hydraulic pressure calculation means,
Displacement related value calculation means for calculating a value related to displacement of the shift control valve used in the second hydraulic pressure calculation means, a value related to displacement of the shift control valve calculated by the displacement related value calculation means, and operation at this time. And a correction unit that corrects the relationship between the control amount of the operating hydraulic control valve and the value related to the displacement of the shift control valve in the storage unit based on the relationship with the control amount of the hydraulic control valve.

【0010】かかる構成においては、個体のバラツキや
劣化等の経時変化等を要因とする作動油圧制御弁の制御
量と変速制御弁の変位に関連する値の特性バラツキを吸
収でき、デューティ中立値のずれをなくすことができる
結果、変速速度の変動が抑制され、変速ショックの発生
が抑制される。請求項2に係る発明は、前記第2の油圧
演算手段を、前記変速制御弁の変位に関連する値として
の該変速制御弁のライン圧導入口とドレン口の開口面積
比と、パラメータとしてのライン圧とから前記変速圧制
御用油室の油圧を演算する構成とした。
In such a configuration, characteristic variations in the control amount of the hydraulic pressure control valve and the values relating to the displacement of the shift control valve due to changes over time such as variations and deterioration of individuals can be absorbed, and the duty neutral value can be reduced. As a result of eliminating the shift, the fluctuation of the shift speed is suppressed and the occurrence of shift shock is suppressed. According to a second aspect of the present invention, the second hydraulic pressure calculating means uses the second hydraulic pressure calculating means as a parameter, as an opening area ratio of the line pressure introducing port and the drain port of the shift control valve as a value related to the displacement of the shift control valve. The hydraulic pressure in the shift pressure control oil chamber is calculated from the line pressure.

【0011】かかる構成によれば、変速制御弁の変位に
関連する値としての該変速制御弁のライン圧導入口とド
レン口の開口面積比とライン圧とから変速圧制御用油室
の油圧が演算される。請求項3に係る発明は、前記伝達
トルク検出手段を、無段変速機の伝達トルクが概ね0で
あることを検出する手段から構成した。
According to this structure, the hydraulic pressure in the shift pressure control oil chamber is calculated from the line pressure and the opening area ratio of the line pressure introduction port and the drain port of the shift control valve as values related to the displacement of the shift control valve. Is calculated. According to a third aspect of the present invention, the transmission torque detecting means comprises means for detecting that the transmission torque of the continuously variable transmission is substantially zero.

【0012】かかる構成によれば、無段変速機の伝達ト
ルクが概ね0であることのみが検出される。請求項4に
係る発明は、前記無段変速機の伝達トルクが概ね0であ
ることを検出する手段を、当該無段変速機と被駆動部と
の間に介装されたクラッチが解放された状態を、伝達ト
ルクが概ね0であるとして検出する構成とした。
According to this structure, it is detected that the transmission torque of the continuously variable transmission is substantially zero. According to a fourth aspect of the present invention, the clutch for interposing the means for detecting that the transmission torque of the continuously variable transmission is substantially 0 is released between the continuously variable transmission and the driven portion. The state is configured to be detected as the transmitted torque being substantially zero.

【0013】かかる構成によれば、無段変速機の伝達ト
ルクが概ね0であることが、無段変速機と被駆動部との
間に介装されたクラッチの解放状態から容易に検出され
る。請求項5に係る発明は、前記変位関連値演算手段
を、前記クラッチが解放された状態のときに、ライン圧
又は半径比の状態を複数に変化させ、夫々の状態におけ
る第1の油圧演算手段の演算結果に基づいて、第2の油
圧演算手段に用いる変速制御弁の変位に関連する値を演
算する構成とした。
According to this structure, the fact that the transmission torque of the continuously variable transmission is substantially zero can be easily detected from the released state of the clutch interposed between the continuously variable transmission and the driven portion. . According to a fifth aspect of the present invention, the displacement-related value computing means changes the line pressure or the radius ratio state to a plurality of states when the clutch is in the released state, and the first hydraulic pressure computing means in each state. A value related to the displacement of the shift control valve used in the second hydraulic pressure calculation means is calculated based on the calculation result of the above.

【0014】かかる構成によれば、変速制御弁の変位に
関連する値の補正(学習)が複数の条件で行われ、学習
精度の向上が図られる。請求項6に係る発明は、前記無
段変速機の伝達トルクが概ね0であることを検出する手
段を、駆動源と無段変速機との間に介装された流体継手
の入・出力回転速度が等しい状態を、伝達トルクが概ね
0であるとして検出する構成とした。
According to this structure, the correction (learning) of the value related to the displacement of the shift control valve is performed under a plurality of conditions, and the learning accuracy is improved. According to a sixth aspect of the present invention, a means for detecting that the transmission torque of the continuously variable transmission is substantially 0 is provided as an input / output rotation of a fluid coupling interposed between a drive source and the continuously variable transmission. The transmission torque is detected to be substantially 0 when the speeds are equal.

【0015】かかる構成においては、無段変速機の伝達
トルクが概ね0であることが駆動源と無段変速機との間
に介装された流体継手の入・出力回転速度が等しい状態
から容易に検出される。
In such a configuration, it is easy for the transmission torque of the continuously variable transmission to be substantially zero from the state where the input and output rotational speeds of the fluid coupling interposed between the drive source and the continuously variable transmission are equal. Detected by.

【0016】[0016]

【発明の実施の形態】以下、添付された図面を参照して
本発明の実施の形態を詳述する。請求項1〜6に係る発
明の共通の実施形態のシステムを示す図2において、車
両におけるエンジン1の出力側には、流体継手としての
トルクコンバータ2を介して、無段変速機(CVT)3
が装備されている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In FIG. 2 showing a system of a common embodiment of the invention according to claims 1 to 6, a continuously variable transmission (CVT) 3 is provided on the output side of an engine 1 in a vehicle via a torque converter 2 as a fluid coupling.
Is equipped.

【0017】かかる無段変速機3は、駆動源としてのエ
ンジン1側の駆動側回転部材としてのプライマリプーリ
4と、被駆動部としての駆動軸(デフ)側の被駆動側回
転部材としてのセカンダリプーリ5と、これらの間に巻
き掛けられるゴム或いは金属、若しくはこれらの組み合
わせ等からなる動力伝達部材としてのベルト6とを備
え、プライマリプーリ4側の変速圧制御用油室4aへの
変速圧、及びセカンダリプーリ5側の接触面圧制御用油
室5aへのライン圧の調整により、各回転部材の回転中
心から動力伝達部材としてのベルト6の接触点までの半
径の比、即ち、プーリ比(セカンダリプーリ側ベルト巻
き掛け有効径/プライマリプーリ側ベルト巻き掛け有効
径)を変化させて、変速比を無段階に変化させることが
できるものである。但し、公知のトロイダル式等の他の
CVTを用いることもできる。
The continuously variable transmission 3 has a primary pulley 4 as a drive side rotating member on the engine 1 side as a drive source and a secondary pulley as a driven side rotating member on a drive shaft (differential) side as a driven portion. A pulley 5 and a belt 6 as a power transmission member made of rubber or metal wound around them or a combination thereof are provided, and the shift pressure to the shift pressure control oil chamber 4a on the primary pulley 4 side, By adjusting the line pressure to the contact surface pressure control oil chamber 5a on the secondary pulley 5 side, the ratio of the radius from the rotation center of each rotating member to the contact point of the belt 6 as the power transmission member, that is, the pulley ratio ( By changing the secondary pulley-side belt winding effective diameter / primary pulley-side belt winding effective diameter, the gear ratio can be changed steplessly. However, other CVTs such as a known toroidal type can also be used.

【0018】即ち、無段変速機3は、動力源の回転力を
受ける駆動側回転部材と、被駆動部に連結される被駆動
側回転部材と、両回転部材間に介装され両者間で動力を
伝達する動力伝達部材と、を含んで構成され、各回転部
材の回転中心から前記動力伝達部材との接触点までの半
径の比を無段階に変化させて変速比を無段階に制御する
ようにした無段変速機であれば良い。
That is, the continuously variable transmission 3 includes a drive-side rotating member that receives a rotational force of a power source, a driven-side rotating member that is connected to a driven portion, and a rotary member that is interposed between the rotating members. And a power transmission member for transmitting power, and steplessly changes the ratio of the radius from the rotation center of each rotating member to the contact point with the power transmission member to control the speed ratio steplessly. Any continuously variable transmission as described above may be used.

【0019】油圧制御機構は、エンジンにより直接駆動
されるオイルポンプ(図示せず)と、ライン圧及び変速
圧を制御する複数の油圧コントロールバルブと、入力軸
回転速度、アクセル開度及び変速比を検出する入力信号
系とにより構成される。前記オイルポンプからの吐出油
は、前記油圧コントロールバルブへと送られ、プライマ
リプーリ4及びセカンダリプーリ5の作動油及び各部潤
滑油として使用される。
The hydraulic control mechanism controls an oil pump (not shown) directly driven by the engine, a plurality of hydraulic control valves for controlling the line pressure and the shift pressure, an input shaft rotation speed, an accelerator opening degree and a gear ratio. And an input signal system for detection. The oil discharged from the oil pump is sent to the hydraulic control valve, and is used as hydraulic oil for the primary pulley 4 and secondary pulley 5 and lubricating oil for each part.

【0020】油圧コントロールバルブの1つである変速
制御弁としての流量制御弁7と、この流量制御弁7の作
動油圧を制御する作動油圧制御弁としての電磁弁8と、
が設けられている。この場合、アクセルペダルの踏み込
み量は、エンジン回転速度を信号源にして、プライマリ
プーリ4側の変速圧制御用油室4aへのライン圧の流出
入を制御し、プライマリプーリ4の溝幅を決定して、変
速比を制御するようになっており、プライマリプーリ4
側の変速圧制御用油室4aへのライン圧の流出入を流量
制御弁7で制御し、この流量制御弁7の作動油圧を電磁
弁8で制御するようにしている。
A flow rate control valve 7 as a shift control valve which is one of hydraulic pressure control valves, a solenoid valve 8 as an operating hydraulic pressure control valve for controlling the operating hydraulic pressure of the flow rate control valve 7,
Is provided. In this case, the amount of depression of the accelerator pedal is determined by determining the groove width of the primary pulley 4 by controlling the inflow / outflow of the line pressure into / from the primary pulley 4 side shift pressure control oil chamber 4a using the engine speed as a signal source. Then, the gear ratio is controlled, and the primary pulley 4
The flow control valve 7 controls the inflow and outflow of the line pressure into and from the shift pressure control oil chamber 4a on the side, and the operating hydraulic pressure of the flow control valve 7 is controlled by the solenoid valve 8.

【0021】前記流量制御弁7としては、アンダーラッ
プ弁が適用されている。即ち、流量制御弁7は、スライ
ド自由な弁体7Aと、該弁体7Aを常時は中立位置に弾
性付勢する2つのスプリング7Bと、2つの導入口a,
bと、1つの吐出口cと、1つのドレン口dとが設けら
れた弁本体7Cとから構成されており、中立値では、2
つの導入口a,b共に僅かに開口した状態にある。
An underlap valve is applied as the flow control valve 7. That is, the flow control valve 7 includes a slide-free valve body 7A, two springs 7B that normally elastically bias the valve body 7A to a neutral position, and two inlets a,
b, a valve main body 7C provided with one discharge port c and one drain port d, and the neutral value is 2
Both of the inlets a and b are slightly open.

【0022】コントロールユニット10には、無段変速
機3の実入力回転速度Nin(エンジン3の回転速度N
e)を検出するべく入力側(プライマリプーリ4)の回
転に同期してパルス信号を発生する入力側回転センサ1
2、無段変速機3の実出力回転速度Noを検出するべく
出力側(セカンダリプーリ5)の回転に同期してパルス
信号を発生する出力側回転センサ13、エンジン1のス
ロットル弁の開度(スロットル開度)TVOに対応した
電圧信号を発生するポテンショメータ式のスロットルセ
ンサ14等から、夫々検出信号が入力されている。尚、
出力側回転センサ13としては車速センサを用いること
ができる。
The control unit 10 includes an actual input rotation speed Nin of the continuously variable transmission 3 (a rotation speed N of the engine 3).
Input side rotation sensor 1 that generates a pulse signal in synchronization with the rotation of the input side (primary pulley 4) to detect e)
2, an output side rotation sensor 13 that generates a pulse signal in synchronization with the rotation of the output side (secondary pulley 5) to detect the actual output rotation speed No of the continuously variable transmission 3, the opening degree of the throttle valve of the engine 1 ( Throttle opening) Detection signals are input from a potentiometer-type throttle sensor 14 that generates a voltage signal corresponding to TVO. still,
A vehicle speed sensor can be used as the output side rotation sensor 13.

【0023】ここで、本発明の実施形態において、上記
のように、変速圧制御用油室4aへの変速圧を制御する
流量制御弁7と、この流量制御弁7の作動油圧を制御す
る電磁弁8と、この電磁弁8を制御する制御手段と、を
含んで構成されており、前記制御手段、記憶手段、第1
の油圧演算手段、第2の油圧演算手段、変位関連値演算
手段、補正手段の各機能は、コントロールユニット10
がソフトウェア的に備えている。
Here, in the embodiment of the present invention, as described above, the flow rate control valve 7 that controls the shift pressure to the shift pressure control oil chamber 4a and the electromagnetic valve that controls the operating hydraulic pressure of the flow rate control valve 7 are described. The valve 8 and the control means for controlling the solenoid valve 8 are included, and the control means, the storage means, and the first
The respective functions of the hydraulic pressure calculation means, the second hydraulic pressure calculation means, the displacement related value calculation means, and the correction means of the control unit 10
Is equipped with software.

【0024】即ち、本発明の実施形態においては、無段
変速機3の伝達トルクを検出する伝達トルク検出手段
と、実際の前記半径の比を検出する半径比検出手段とし
てのプーリ比検出手段と、ライン圧を検出するライン圧
検出手段としてのライン圧センサと、が設けられてい
る。この場合、伝達トルク検出手段は、無段変速機の伝
達トルクが概ね0であることを検出する手段から構成さ
れ、例えば、駆動源としてのエンジン1と無段変速機3
との間に介装された流体継手としてのトルクコンバータ
2の入・出力回転速度が等しい状態を、伝達トルクが概
ね0であるとして検出する。
That is, in the embodiment of the present invention, the transmission torque detecting means for detecting the transmission torque of the continuously variable transmission 3 and the pulley ratio detecting means as the radius ratio detecting means for detecting the actual ratio of the radii. , And a line pressure sensor as a line pressure detecting means for detecting the line pressure. In this case, the transmission torque detecting means is composed of means for detecting that the transmission torque of the continuously variable transmission is approximately 0. For example, the engine 1 as the drive source and the continuously variable transmission 3 are provided.
A state in which the input and output rotational speeds of the torque converter 2 as a fluid coupling interposed between and are equal to each other is detected as the transmission torque being substantially zero.

【0025】或いは、トルクコンバータ2を備えず、無
段変速機3の出力側(セカンダリプーリ5)と駆動軸側
(例えば,デフ)との間に、クラッチを介装したもので
は、クラッチが解放された状態を、伝達トルクが概ね0
であるとして検出する。又、プーリ比検出手段は、無段
変速機3の入力回転速度と出力回転速度を検出し、これ
らの比を算出する構成とする。
Alternatively, in the case where the torque converter 2 is not provided and a clutch is interposed between the output side (secondary pulley 5) of the continuously variable transmission 3 and the drive shaft side (for example, differential), the clutch is released. Transmission torque is almost 0
To be detected. Further, the pulley ratio detecting means is configured to detect the input rotation speed and the output rotation speed of the continuously variable transmission 3 and calculate the ratio between them.

【0026】そして、これらの検出手段から出力される
検出信号に基づいて、伝達トルクが略0のときの半径比
とライン圧とから変速圧制御用油室4aの油圧を演算し
(第1の油圧演算手段)、この演算結果に基づいて、流
量制御弁7の変位に関連する値としての流量制御弁の開
口面積比(ライン圧導入口aとドレン口dの開口面積
比)を含むパラメータ(本実施形態においては、ライン
圧)から変速圧制御用油室4aの油圧(プライマリ圧)
を演算する第2の油圧演算手段に用いる開口面積比を演
算する(変位関連値演算手段)。
Then, based on the detection signals output from these detecting means, the hydraulic pressure in the transmission pressure control oil chamber 4a is calculated from the radius ratio and the line pressure when the transmission torque is substantially 0 (first Hydraulic pressure calculation means), based on the calculation result, a parameter (including the opening area ratio of the flow control valve (opening area ratio of the line pressure introduction port a and the drain port d)) as a value related to the displacement of the flow control valve 7 ( In the present embodiment, from the line pressure) to the hydraulic pressure (primary pressure) in the shift pressure control oil chamber 4a.
The opening area ratio used in the second hydraulic pressure calculation means is calculated (displacement related value calculation means).

【0027】ここで、ライン圧と、プーリ比と、伝達ト
ルクとから変速圧制御用油室の油圧を演算する方法につ
いて説明する。プライマリプーリ4の推力(プーリ4の
軸方向押し付け力)Q1 、セカンダリプーリ5の推力Q
2 とベルト6の有効張力(伝達駆動力)Teの関係は次
の式で与えられる。
A method of calculating the hydraulic pressure in the transmission pressure control oil chamber from the line pressure, the pulley ratio, and the transmission torque will be described. Thrust force of primary pulley 4 (pushing force of pulley 4 in the axial direction) Q 1 , Thrust force of secondary pulley 5 Q
The relationship between 2 and the effective tension (transmission driving force) Te of the belt 6 is given by the following equation.

【0028】Q1 tan(α+β)/θ1 −Q2 tan
(α+β)/θ2 =1/2Te{1−1/2〔tanh
(λR1 θ1 )/(λR1 θ1 )+tanh(λR2 θ
2 )/(λR2 θ2 )〕} 但し、α プーリ挟み角/2 β 図3参照 θ1 ,θ2 プライマリプーリ4、セカンダリプーリ5
のベルト巻き掛け角(図3参照) λ 定数 R1 ,R2 プライマリプーリ4、セカンダリプーリ5
の有効半径(図3参照) この式を変形すると、Q1 =1/2×Te{1−1/2
(tanhB/B+tanhC/C)}(θ1 /A)+
(θ1 /θ2 )×Q2 但し、A=tan(α+βn) B=λR1 θ1 C=λR2 θ2 このように、定常時のプライマリプーリ4の推力Q
1 は、ライン圧、トルク比(プーリ比)、入力トルクに
より定まる。
Q 1 tan (α + β) / θ 1 -Q 2 tan
(Α + β) / θ 2 = 1 / 2Te {1-1 / 2 [tanh
(ΛR 1 θ 1 ) / (λR 1 θ 1 ) + tanh (λR 2 θ
2 ) / (λR 2 θ 2 )]} However, α Pulley grip angle / 2 β See Fig. 3 θ 1 , θ 2 Primary pulley 4, Secondary pulley 5
Belt wrap angle (see FIG. 3) λ constants R 1 and R 2 primary pulley 4 and secondary pulley 5
Effective radius of (see FIG. 3) When this equation is modified, Q 1 = 1/2 × Te {1-1 / 2
(TanhB / B + tanhC / C)} (θ 1 / A) +
1 / θ 2 ) × Q 2 However, A = tan (α + βn) B = λR 1 θ 1 C = λR 2 θ 2 As described above, the thrust Q of the primary pulley 4 in the steady state is
1 is determined by the line pressure, torque ratio (pulley ratio), and input torque.

【0029】従って、入力トルクが0のとき、即ち、上
記プライマリプーリ4の推力Q1 を算出する式における
Teが0のときは、プライマリプーリ4の推力Q1 は、
1=(θ1 /θ2 )×Q2 となり、プライマリプーリ
4の推力Q1 は、変速圧制御用油室の油圧であるプライ
マリ圧Pp とプライマリプーリ4の受圧面積Ap とか
ら、Q1 =Pp ・Ap 、セカンダリプーリ推力Q2 は、
接触面圧制御用油室の油圧であるライン圧PL とセカン
ダリプーリの受圧面積AL とから、Q2 =PL ・AL
あるから、Pp ・Ap =(θ1 /θ2 )×PL ・AL
あり、この式から、プライマリ圧Pp は、次のような簡
単な式でもとめることが可能となる。
Therefore, when the input torque is 0, that is, when Te in the formula for calculating the thrust Q 1 of the primary pulley 4 is 0, the thrust Q 1 of the primary pulley 4 is
Q 1 = (θ 1 / θ 2 ) × Q 2 , and the thrust Q 1 of the primary pulley 4 is calculated from the primary pressure P p , which is the oil pressure in the oil chamber for shift pressure control, and the pressure receiving area A p of the primary pulley 4. Q 1 = P p · A p , secondary pulley thrust Q 2 is
From the line pressure P L , which is the oil pressure in the contact surface pressure control oil chamber, and the pressure receiving area A L of the secondary pulley, Q 2 = P L · A L , so P p · A p = (θ 1 / θ 2 ) × P L · A L , and from this equation, the primary pressure P p can be determined by the following simple equation.

【0030】 Pp =PL ・(AL ・Q1 )/(Ap ・Q2 ) 次に、流量制御弁7の開口面積比Arとライン圧からプ
ライマリ圧Pp (変速圧制御用油室4aの油圧)を演算
する方法について説明する。定常時のプライマリ圧Pp
は、変速制御弁が流量制御弁7からなり、これが実施形
態のようにアンダーラップ弁の場合、オリフィス前後の
流量の式から、次のように求めることができる。
P p = P L · (A L · Q 1 ) / (A p · Q 2 ) Next, from the opening area ratio Ar of the flow control valve 7 and the line pressure, the primary pressure P p (shift pressure control oil A method of calculating the hydraulic pressure of the chamber 4a) will be described. Constant primary pressure P p
When the shift control valve is the flow control valve 7 and this is an underlap valve as in the embodiment, can be obtained as follows from the equation of the flow rate before and after the orifice.

【0031】[0031]

【外1】 [Outside 1]

【0032】定常時のプライマリ圧Pp は、以下のよう
に表される。 Pp =(1+Ar2 )/Ar2 ・PL 尚、かかる流量制御弁7の開口面積比Arとライン圧と
に基づくプライマリ圧Pp の演算(推定)は、図4のフ
ローチャートの如く行うことができる。即ち、ステップ
1(図ではS1と略記する。以下同様)では、流量制御
弁7が定常状態であるか否かを判定する。即ち、プーリ
比が所定幅内にあるか否かを判定する。
The primary pressure P p in the steady state is expressed as follows. P p = (1 + Ar 2 ) / Ar 2 · P L The calculation (estimation) of the primary pressure P p based on the opening area ratio Ar of the flow rate control valve 7 and the line pressure should be performed as shown in the flowchart of FIG. You can That is, in step 1 (abbreviated as S1 in the figure; the same applies hereinafter), it is determined whether or not the flow control valve 7 is in a steady state. That is, it is determined whether the pulley ratio is within the predetermined range.

【0033】プーリ比が所定幅内にあると判定され、定
常状態であると判定されると、ステップ2に進み、そう
でなければ、リターンする。ステップ2においては、定
常判定用カウンタCount stに1を加算し、ステ
ップ3においては、デューティ平均用加算値Dt su
mにデューティDutyを加算し、ステップ4において
は、ライン圧平均用加算値P L sumにライン圧PL
を加算する。
When it is determined that the pulley ratio is within the predetermined range and it is determined that the pulley ratio is in the steady state, the process proceeds to step 2, and otherwise the process returns. In step 2, the steady determination counter Count 1 is added to st, and in step 3, duty average addition value Dt su
adding the duty Duty to m, in step 4, line pressure average addition value P L sum in the line pressure P L
Is added.

【0034】ステップ5においては、定常判定用カウン
タCount stと定常判定用カウント設定値PPC
とを比較し、Count st≧PPCであれば、所定
時間定常状態が継続したとして、ステップ6に進み、C
ount st<PPCであれば、ステップ1に戻る。
ステップ6では、定常判定用カウンタCount st
を0にリセットし、ステップ7では、デューティ平均値
Dtyaveを、デューティ平均用加算値Dt sumと
定常判定カウント設定値PPCとから演算する(Dt
sum/PPC)。
In step 5, the steady determination counter
Ta Count st and steady state determination count set value PPC
Compare with, Count If st ≧ PPC, then predetermined
Assuming that the time steady state has continued, proceed to step 6
out If st <PPC, the process returns to step 1.
In step 6, the steady-state determination counter Count st
Is reset to 0, and in step 7, the average duty value
Dtyave is added value Dt for duty averaging sum and
Calculated from the steady-state determination count set value PPC (Dt
sum / PPC).

【0035】ステップ8では、ライン圧平均値PL av
eを、ライン圧平均用加算値P L sumと定常判定カウ
ント設定値PPCとから演算する(P L sum/PP
C)。ステップ9においては、図5のように予め実験で
定めたデューティ平均値Dtyaveと開口面積比Ar
の特性図から、そのときのデューティ平均値Dtyav
eに対応する開口面積比Arを参照する。
In step 8, the line pressure average value P L av
e is calculated from the line pressure average addition value P L sum and the steady determination count set value PPC (P L sum / PP
C). In step 9, as shown in FIG. 5, the duty average value Dtyave and the opening area ratio Ar determined in advance by experiments are set.
From the characteristic diagram of, the duty average value Dtyav at that time is
Reference is made to the opening area ratio Ar corresponding to e.

【0036】そして、ステップ10においては、ステッ
プ8にて演算したライン圧平均値P L aveと、ステッ
プ9にて参照した開口面積比Arとから、プライマリ圧
pを演算する。ここで、図6に示すように、流量制御
弁7の弁体7Aを押圧するソレノイド圧PSOLは、パ
イロット圧PPIを電磁弁8のデューティ制御により減
圧した値であり、このソレノイド圧PSOLが決まる
と、次のように弁体の変位xが決まる。
Then, in step 10, the step
Line pressure average value P calculated in Lave and step
From the opening area ratio Ar referenced in
PpIs calculated. Here, as shown in FIG. 6, flow rate control
The solenoid pressure PSOL pressing the valve body 7A of the valve 7 is
Reduce the ilot pressure PPI by controlling the duty of the solenoid valve 8.
The solenoid pressure PSOL is determined.
Then, the displacement x of the valve body is determined as follows.

【0037】 x=(PSOL・A1 −PPI・A2 )/2k 但し、ソレノイド圧=0でx=0とし、弁体7Aがライ
ン圧供給方向となる向きを正の向きとする。そして、上
述した第1の油圧演算手段の演算結果に基づいて、上述
した第2の油圧演算手段に用いる流量制御弁7の変位に
関連する値である開口面積比Arを演算する。
X = (PSOL · A 1 −PPI · A 2 ) / 2k However, when the solenoid pressure is 0, x = 0, and the direction in which the valve body 7A is the line pressure supply direction is the positive direction. Then, the opening area ratio Ar, which is a value related to the displacement of the flow rate control valve 7 used in the second hydraulic pressure calculating means, is calculated based on the calculation result of the first hydraulic pressure calculating means.

【0038】即ち、Pp =PL ・(AL ・Q1 )/(A
p ・Q2 )の式と、Pp =(1+Ar2 )/Ar2 ・P
L の式とから、開口面積比Arを演算する。更に、この
ように演算された開口面積比Arとこのときの電磁弁8
の制御デューティとの関係に基づいて、図5に示す如
く、予め記憶してある電磁弁の制御デューティと流量制
御弁の開口面積比との関係(制御デューティ−開口面積
比特性)を補正する。
That is, P p = P L · (A L · Q 1 ) / (A
p · Q 2 ), and P p = (1 + Ar 2 ) / Ar 2 · P
The aperture area ratio Ar is calculated from the equation of L. Further, the opening area ratio Ar calculated in this way and the solenoid valve 8 at this time
As shown in FIG. 5, the relationship between the control duty of the solenoid valve and the opening area ratio of the flow rate control valve (control duty-opening area ratio characteristic) is corrected based on the relationship between the control duty and the control duty.

【0039】以上説明したように、伝達トルクが略0の
ときのプーリ比とライン圧とから変速圧制御用油室4a
の油圧を演算し、この演算結果に基づいて、流量制御弁
7の変位に関連する値としての流量制御弁の開口面積比
を含むパラメータ(本実施形態においては、ライン圧)
から変速圧制御用油室4aの油圧を演算する第2の油圧
演算手段に用いる開口面積比Arを演算し、このように
演算された開口面積比Arとこのときの電磁弁8の制御
デューティとの関係に基づいて、予め記憶してある電磁
弁8の制御デューティと流量制御弁7の開口面積比との
関係(制御デューティ−開口面積比特性)を補正するよ
うにしたから、個体のバラツキや劣化等の経時変化等を
要因とする電磁弁8の制御量と流量制御弁7の開口面積
の特性バラツキを吸収でき、デューティ中立値のずれを
なくすことができる結果、変速速度の変動を抑制でき、
変速ショックの発生を抑制することができる。
As described above, the transmission pressure control oil chamber 4a is calculated from the pulley ratio and the line pressure when the transmission torque is substantially zero.
Is calculated, and based on the calculation result, a parameter including the opening area ratio of the flow control valve as a value related to the displacement of the flow control valve 7 (line pressure in the present embodiment).
The opening area ratio Ar used in the second hydraulic pressure calculating means for calculating the hydraulic pressure of the transmission pressure control oil chamber 4a is calculated from the calculated opening area ratio Ar and the control duty of the solenoid valve 8 at this time. The relationship between the control duty of the solenoid valve 8 and the opening area ratio of the flow rate control valve 7 (control duty-opening area ratio characteristic) is corrected on the basis of the above relationship. Characteristic variations of the control amount of the solenoid valve 8 and the opening area of the flow rate control valve 7 due to deterioration over time and the like can be absorbed, and the deviation of the duty neutral value can be eliminated, and as a result, fluctuations in the shift speed can be suppressed. ,
The occurrence of gear shift shock can be suppressed.

【0040】尚、トルクコンバータ2を備えず、無段変
速機3の出力側(セカンダリプーリ5)と駆動軸側(例
えば,デフ)との間に、クラッチを介装したものでは、
このクラッチが解放された状態のときに、ライン圧又は
プーリ比の状態を複数に変化させ、夫々の状態における
第1の油圧演算手段の演算結果に基づいて、第2の油圧
演算手段に用いる流量制御弁7の変位に関連する値(例
えば、開口面積比)を演算する構成としても良く、この
場合には、流量制御弁7の変位に関連する値の補正(学
習)を複数の条件で行うため、学習精度の向上を図るこ
とができる。
In the case where the torque converter 2 is not provided and a clutch is provided between the output side (secondary pulley 5) of the continuously variable transmission 3 and the drive shaft side (for example, differential),
When the clutch is released, the state of the line pressure or the pulley ratio is changed to a plurality of states, and the flow rate used for the second hydraulic pressure calculation means is based on the calculation result of the first hydraulic pressure calculation means in each state. A configuration related to the displacement of the control valve 7 (for example, the opening area ratio) may be calculated. In this case, the correction (learning) of the value associated with the displacement of the flow control valve 7 is performed under a plurality of conditions. Therefore, learning accuracy can be improved.

【0041】[0041]

【発明の効果】以上説明したように、請求項1に係る発
明によれば、個体のバラツキや劣化等の経時変化等を要
因とする電磁弁の制御量と変速制御弁の変位に関連する
値の特性バラツキを吸収でき、デューティ中立値のずれ
をなくすことができる結果、変速速度の変動を抑制で
き、変速ショックの発生を抑制することができる。
As described above, according to the first aspect of the present invention, the control amount of the solenoid valve and the value related to the displacement of the shift control valve due to the change over time such as the variation and deterioration of the individual. As a result, it is possible to absorb the characteristic variation and to eliminate the deviation of the duty neutral value. As a result, it is possible to suppress the change of the shift speed and suppress the occurrence of the shift shock.

【0042】請求項2に係る発明によれば、変速制御弁
の変位に関連する値としての該変速制御弁のライン圧導
入口とドレン口の開口面積比とライン圧とから変速圧制
御用油室の油圧を演算できる。請求項3に係る発明によ
れば、無段変速機の伝達トルクが概ね0であることのみ
を検出すれば良いという利点がある。
According to the second aspect of the present invention, the shift pressure control oil is obtained from the line pressure introducing port and the drain port opening area ratio and the line pressure of the shift control valve as values related to the displacement of the shift control valve. The hydraulic pressure of the room can be calculated. According to the invention of claim 3, there is an advantage that it is only necessary to detect that the transmission torque of the continuously variable transmission is substantially zero.

【0043】請求項4に係る発明によれば、無段変速機
の伝達トルクが概ね0であることを、無段変速機と被駆
動部との間に介装されたクラッチの解放状態から容易に
検出できる。請求項5に係る発明によると、変速制御弁
の変位に関連する値の補正(学習)を複数の条件で行う
ため、学習精度の向上を図ることができる。。
According to the fourth aspect of the present invention, it is easy to confirm that the transmission torque of the continuously variable transmission is approximately 0 from the released state of the clutch interposed between the continuously variable transmission and the driven portion. Can be detected. According to the invention of claim 5, the correction (learning) of the value related to the displacement of the shift control valve is performed under a plurality of conditions, so that the learning accuracy can be improved. .

【0044】請求項6に係る発明によれば、無段変速機
の伝達トルクが概ね0であることを駆動源と無段変速機
との間に介装された流体継手の入・出力回転速度が等し
い状態から容易に検出できる。
According to the sixth aspect of the present invention, the fact that the transmission torque of the continuously variable transmission is approximately 0 means that the input / output rotational speed of the fluid coupling interposed between the drive source and the continuously variable transmission is Can be easily detected from the same state.

【図面の簡単な説明】[Brief description of drawings]

【図1】 請求項1に係る発明の構成図FIG. 1 is a configuration diagram of an invention according to claim 1.

【図2】 請求項1〜6に係る発明の実施例共通のシス
テム図
FIG. 2 is a system diagram common to the embodiments of the invention according to claims 1 to 6;

【図3】 プライマリプーリとセカンダリプーリとベル
トとの組み付け状態を示す概略図
FIG. 3 is a schematic view showing an assembled state of a primary pulley, a secondary pulley and a belt.

【図4】 プライマリ圧の演算(推定)を説明するフロ
ーチャート
FIG. 4 is a flowchart illustrating calculation (estimation) of primary pressure.

【図5】 制御デューティと開口面積比の特性図FIG. 5 is a characteristic diagram of control duty and opening area ratio.

【図6】 流量制御弁の概略図FIG. 6 is a schematic diagram of a flow control valve.

【符号の説明】[Explanation of symbols]

1 エンジン 2 トルクコンバータ 3 無段変速機(CVT) 4 プライマリプーリ 4a 変速圧制御用油室 5 セカンダリプーリ 5a 接触面圧制御用油室 6 ベルト 7 流量制御弁 8 電磁弁 10 コントロールユニット 1 Engine 2 Torque Converter 3 Continuously Variable Transmission (CVT) 4 Primary Pulley 4a Speed Change Pressure Control Oil Chamber 5 Secondary Pulley 5a Contact Surface Pressure Control Oil Chamber 6 Belt 7 Flow Control Valve 8 Solenoid Valve 10 Control Unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】動力源の回転力を受ける駆動側回転部材
と、被駆動部に連結される被駆動側回転部材と、両回転
部材間に介装され両者間で動力を伝達する動力伝達部材
と、を含んで構成され、一方の回転部材と動力伝達部材
との接触面圧をライン圧として制御し、他方の回転部材
と動力伝達部材との接触面圧を前記ライン圧を変速比に
応じて調整した変速圧として制御することにより、各回
転部材の回転中心から前記動力伝達部材との接触点まで
の半径の比を無段階に変化させて変速比を無段階に制御
する構成であって、変速圧制御用油室と、接触面圧制御
用油室と、前記変速圧制御用油室への変速圧を制御する
変速制御弁と、該変速制御弁の作動油圧を制御する作動
油圧制御弁と、該作動油圧制御弁を制御する制御手段
と、を含んで構成された無段変速機において、 前記作動油圧制御弁の制御量と変速制御弁の変位に関連
する値との関係を記憶する記憶手段と、 無段変速機の伝達トルクを検出する伝達トルク検出手段
と、実際の前記半径の比を検出する半径比検出手段と、 前記ライン圧を検出するライン圧検出手段と、 前記伝達トルク検出手段、半径比検出手段及びライン圧
検出手段から出力される検出信号に基づいて、前記変速
圧制御用油室の油圧を演算する第1の油圧演算手段と、 前記変速制御弁の変位に関連する値を含むパラメータか
ら前記変速圧制御用油室の油圧を演算する第2の油圧演
算手段と、 前記第1の油圧演算手段の演算結果に基づいて、第2の
油圧演算手段に用いる変速制御弁の変位に関連する値を
演算する変位関連値演算手段と、 変位関連値演算手段により演算された変速制御弁の変位
に関連する値とこのときの作動油圧制御弁の制御量との
関係に基づいて、前記記憶手段における作動油圧制御弁
の制御量と変速制御弁の変位に関連する値との関係を補
正する補正手段と、 を含んで構成されたことを特徴とする無段変速機の制御
装置。
1. A drive-side rotating member that receives a rotating force of a power source, a driven-side rotating member that is connected to a driven portion, and a power-transmitting member that is interposed between the rotating members and that transmits power between the two. The contact surface pressure between the one rotating member and the power transmitting member is controlled as a line pressure, and the contact surface pressure between the other rotating member and the power transmitting member is controlled according to the line ratio according to the gear ratio. The control is performed as a gearshift pressure adjusted in accordance with the above-mentioned method, so that the ratio of the radii from the center of rotation of each rotary member to the contact point with the power transmission member is changed steplessly to control the gear ratio steplessly. A shift pressure control oil chamber, a contact surface pressure control oil chamber, a shift control valve for controlling shift pressure to the shift pressure control oil chamber, and a hydraulic pressure control for controlling the hydraulic pressure of the shift control valve. A valve and control means for controlling the hydraulic pressure control valve. In the continuously variable transmission, a storage unit that stores a relationship between the control amount of the operating hydraulic control valve and a value related to the displacement of the shift control valve; a transmission torque detection unit that detects a transmission torque of the continuously variable transmission; Radius ratio detection means for detecting the actual ratio of the radii, line pressure detection means for detecting the line pressure, and based on detection signals output from the transmission torque detection means, radius ratio detection means and line pressure detection means And a second hydraulic pressure calculation means for calculating the hydraulic pressure of the shift pressure control oil chamber, and a second hydraulic pressure calculation means for calculating the hydraulic pressure of the shift pressure control oil chamber from a parameter including a value related to the displacement of the shift control valve. Hydraulic displacement calculation means, displacement related value calculation means for calculating a value related to the displacement of the shift control valve used in the second hydraulic pressure calculation means based on the calculation result of the first hydraulic pressure calculation means, and displacement related values By calculation means Based on the relation between the calculated value related to the displacement of the shift control valve and the control amount of the working hydraulic control valve at this time, the control amount of the working hydraulic control valve and the displacement of the shift control valve in the storage means are related. A control device for a continuously variable transmission, comprising: a correction unit that corrects a relationship with a value.
【請求項2】前記第2の油圧演算手段は、前記変速制御
弁の変位に関連する値としての該変速制御弁のライン圧
導入口とドレン口の開口面積比と、パラメータとしての
ライン圧とから前記変速圧制御用油室の油圧を演算する
構成である請求項1記載の無段変速機の制御装置。
2. The second hydraulic pressure calculating means includes a line pressure introducing port and a drain port opening area ratio of the shift control valve as values related to displacement of the shift control valve, and a line pressure as a parameter. 2. The control device for a continuously variable transmission according to claim 1, wherein the hydraulic pressure in the shift pressure control oil chamber is calculated from the above.
【請求項3】前記伝達トルク検出手段は、無段変速機の
伝達トルクが概ね0であることを検出する手段からなる
ことを特徴とする請求項1又は2記載の無段変速機の制
御装置。
3. The control device for a continuously variable transmission according to claim 1, wherein the transmission torque detecting means comprises means for detecting that the transmission torque of the continuously variable transmission is substantially zero. .
【請求項4】前記無段変速機の伝達トルクが概ね0であ
ることを検出する手段は、当該無段変速機と被駆動部と
の間に介装されたクラッチが解放された状態を、伝達ト
ルクが概ね0であるとして検出することを特徴とする請
求項1又は2記載の無段変速機の制御装置。
4. A means for detecting that the transmission torque of the continuously variable transmission is substantially 0 is a state in which a clutch interposed between the continuously variable transmission and a driven portion is released, The control device for a continuously variable transmission according to claim 1 or 2, wherein the transmission torque is detected as being substantially zero.
【請求項5】前記変位関連値演算手段は、前記クラッチ
が解放された状態のときに、ライン圧又は半径比の状態
を複数に変化させ、夫々の状態における第1の油圧演算
手段の演算結果に基づいて、第2の油圧演算手段に用い
る変速制御弁の変位に関連する値を演算することを特徴
とする請求項4記載の無段変速機の制御装置。
5. The displacement-related value calculation means changes the line pressure or radius ratio state to a plurality of states when the clutch is in the released state, and the calculation result of the first hydraulic pressure calculation means in each state. The control device for a continuously variable transmission according to claim 4, wherein a value related to the displacement of the shift control valve used in the second hydraulic pressure calculation means is calculated based on the above.
【請求項6】前記無段変速機の伝達トルクが概ね0であ
ることを検出する手段は、駆動源と無段変速機との間に
介装された流体継手の入・出力回転速度が等しい状態
を、伝達トルクが概ね0であるとして検出することを特
徴とする請求項1又は2記載の記載の無段変速機の制御
装置。
6. The means for detecting that the transmission torque of the continuously variable transmission is substantially zero has an equal input / output rotational speed of a fluid coupling interposed between the drive source and the continuously variable transmission. The control device for a continuously variable transmission according to claim 1 or 2, wherein the state is detected as the transmission torque being substantially zero.
JP1732396A 1996-02-02 1996-02-02 Control device for continuously variable transmission Expired - Fee Related JP3141193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1732396A JP3141193B2 (en) 1996-02-02 1996-02-02 Control device for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1732396A JP3141193B2 (en) 1996-02-02 1996-02-02 Control device for continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH09210189A true JPH09210189A (en) 1997-08-12
JP3141193B2 JP3141193B2 (en) 2001-03-05

Family

ID=11940838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1732396A Expired - Fee Related JP3141193B2 (en) 1996-02-02 1996-02-02 Control device for continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3141193B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503665A (en) * 1999-06-30 2003-01-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング CVT transmission ratio hydraulic adjustment system
FR2835583A1 (en) * 2002-02-04 2003-08-08 Toyota Motor Co Ltd CONTROL DEVICE FOR CONTINUOUS VARIATION TRANSMISSION
EP1338832A3 (en) * 2002-02-20 2006-10-18 Fuji Jukogyo Kabushiki Kaisha Shift control apparatus for continuosly varible transmission and shift control method therefor
WO2008120550A1 (en) * 2007-03-20 2008-10-09 Isuzu Motors Limited Flow rate control valve for clutch control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503665A (en) * 1999-06-30 2003-01-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング CVT transmission ratio hydraulic adjustment system
JP4988113B2 (en) * 1999-06-30 2012-08-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング CVT transmission ratio hydraulic adjustment system
FR2835583A1 (en) * 2002-02-04 2003-08-08 Toyota Motor Co Ltd CONTROL DEVICE FOR CONTINUOUS VARIATION TRANSMISSION
US6813551B2 (en) 2002-02-04 2004-11-02 Toyota Jidosha Kabushiki Kaisha Control apparatus for continuously variable transmission
EP1338832A3 (en) * 2002-02-20 2006-10-18 Fuji Jukogyo Kabushiki Kaisha Shift control apparatus for continuosly varible transmission and shift control method therefor
WO2008120550A1 (en) * 2007-03-20 2008-10-09 Isuzu Motors Limited Flow rate control valve for clutch control device
CN101641530A (en) * 2007-03-20 2010-02-03 五十铃自动车株式会社 Flow rate control valve for clutch control device
AU2008233813B2 (en) * 2007-03-20 2012-08-09 Isuzu Motors Limited Flow rate control valve for clutch control device
US8265844B2 (en) 2007-03-20 2012-09-11 Isuzu Motors Limited Flow control valve for clutch control device

Also Published As

Publication number Publication date
JP3141193B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US5074166A (en) Continuous speed variable transmission control method
JPH08285021A (en) Control device for continuously variable transmission
JPH11303758A (en) Control device for electric pump
US5069083A (en) Continuous speed variable transmission control apparatus
US20070203631A1 (en) Torque control device for continuously variable transmission
JP3856309B2 (en) Engine output control device for vehicle transmission system
US5131297A (en) Shift control method of continuously variable transmission
JP2002138879A (en) Line pressure control device of continuously variable transmission for vehicle
JP3905445B2 (en) Hydraulic control device for V-belt type continuously variable transmission
JP3141193B2 (en) Control device for continuously variable transmission
JPH08285022A (en) Control device for continuously variable transmission
US7006908B2 (en) Engine torque control apparatus
JPH0972408A (en) Speed changing ratio controller for continuously variable transmission
JP3821764B2 (en) Belt slip prevention system for belt type continuously variable transmission
JP3348594B2 (en) Transmission control device for continuously variable transmission
JP3203472B2 (en) Control device for continuously variable transmission
JP3018002B2 (en) Continuously variable transmission control device
JP2001090825A (en) Input torque calculation device for transmission
JP3203471B2 (en) Control device for continuously variable transmission
JPH09112674A (en) Control device of continuously variable transmission
JP3074631B2 (en) Hydraulic control device for continuously variable transmission
JPH09280361A (en) Control device for continuously variable transmission
JPH1019117A (en) Shift controller for transmission
JP3780796B2 (en) Shift control device for continuously variable transmission
JP2818812B2 (en) Control device for continuously variable transmission

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees