JPH09208714A - Production of biodegradable composite material - Google Patents

Production of biodegradable composite material

Info

Publication number
JPH09208714A
JPH09208714A JP4534596A JP4534596A JPH09208714A JP H09208714 A JPH09208714 A JP H09208714A JP 4534596 A JP4534596 A JP 4534596A JP 4534596 A JP4534596 A JP 4534596A JP H09208714 A JPH09208714 A JP H09208714A
Authority
JP
Japan
Prior art keywords
composite material
protein
plasticizer
fine cellulose
hot press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4534596A
Other languages
Japanese (ja)
Other versions
JP3317624B2 (en
Inventor
Masami Shinohara
正美 篠原
Kiyoshi Shinohara
清 篠原
Ichiro Sohara
一郎 曽原
Kazuyuki Sashita
和幸 指田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Vitamin Co Ltd
Original Assignee
Riken Vitamin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Vitamin Co Ltd filed Critical Riken Vitamin Co Ltd
Priority to JP4534596A priority Critical patent/JP3317624B2/en
Publication of JPH09208714A publication Critical patent/JPH09208714A/en
Application granted granted Critical
Publication of JP3317624B2 publication Critical patent/JP3317624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the above material having excellent strength and degredable property by microorganisms, easy for forming and processing, not producing a harmful substance even after degradation thereof, and useful as a packing material, etc., by mixing a fine cellulose fiber with a protein and a plasticizer and hot press forming. SOLUTION: This biodegradable composite material is obtained by mixing (A) a fine cellulose fiber with (B) a protein and (C) a plasticizer, and performing a hot press forming preferably at 50-250 deg.C and under 10-200kgf/m<2> pressure. Further, e.g. as the components (A), (B) and (C), a cellulose, etc., having <=3000μm length and <=50μm diameter, a casein, and glycerin, etc., are used respectively. Based on 100 pts.wt. component (A), it is preferable to blend in the ratio of 20-100 pts.wt. component (B) and 20-100 pts.wt. component (C).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、生分解性複合材料
の製造方法に関し、更に詳しくは、包装材、農園芸用の
フィルムや育苗ポット、土木及び建材用の資材、成形ト
レイその他の成形体などに利用され、優れた強度を有
し、土壌中の微生物により分解可能な生分解性複合材料
の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a biodegradable composite material, and more specifically, a packaging material, a film for agricultural and horticultural use, a nursery pot, a material for civil engineering and building materials, a molding tray and other molded articles. The present invention relates to a method for producing a biodegradable composite material which is used for, for example, excellent strength and can be decomposed by microorganisms in soil.

【0002】[0002]

【従来の技術】セルロース、澱粉、蛋白質などの天然物
を素材とした成形体が数多く知られているが、これらの
成形体は何れも汎用のプラスチックに比べて強度が弱
く、また湿潤状態での吸湿により更に強度が低下した
り、水中で溶解するなどの問題点がある。
2. Description of the Related Art There are many known molded products made of natural products such as cellulose, starch, and protein. However, these molded products have weaker strength than general-purpose plastics and can be used in a wet state. Due to moisture absorption, there are problems that the strength is further reduced, and that it dissolves in water.

【0003】これらの問題点を改良する為に、例えば、
澱粉を用いる成形体ではホルムアルデヒドなどの架橋剤
を反応させたり、蛋白質を用いる成形体では、イソシア
ネートやジメチロール尿素などの架橋剤を反応させるな
どの操作が行われている。
In order to improve these problems, for example,
Operations such as reacting a cross-linking agent such as formaldehyde with starch and a cross-linking agent such as isocyanate and dimethylolurea with a molding using protein are performed.

【0004】例えば、特開平3−131636号公報に
記載の如く、水中や湿潤状態での強度を向上させる目的
で、蛋白質水溶液と微細セルロース繊維及び/又は可塑
剤を混合後、乾燥させることにより複合化して、水中で
も形状を保ち、十分な湿潤強度を示す成形体が得られる
ことが見い出されている。
For example, as described in JP-A-3-131636, for the purpose of improving the strength in water or in a wet state, an aqueous protein solution is mixed with fine cellulose fibers and / or a plasticizer and then dried to form a composite. It has been found that a molded product can be obtained, which retains its shape even in water and exhibits sufficient wet strength.

【0005】また、特開平2−6689号公報に記載の
如く、天然素材である 微細セルロース繊維とキトサン
を複合させると云う簡単な方法により、汎用プラスチッ
クと同等又はそれ以上の強度を有し、水中や湿潤状態で
も十分な強度を有する新規な複合材料が見いだされてい
る。
Further, as described in JP-A-2-6689, a simple method of compounding fine cellulose fibers which is a natural material and chitosan has a strength equal to or higher than that of a general-purpose plastic, and is underwater. New composite materials have been found that have sufficient strength even in wet and wet conditions.

【0006】更に、特開平4−59830号公報や特公
平6−25260号公報に記載の如く、複合材料の微生
物分解速度を速めるために、微細セルロース繊維とキト
サンに加えて更に蛋白質を添加することで、或いは、添
加量を変えることにより、微生物分解速度を調節できる
ことが見い出されている。
Further, as described in JP-A-4-59830 and JP-B-6-25260, in order to accelerate the microbial decomposition rate of the composite material, a protein is further added in addition to the fine cellulose fiber and chitosan. It has been found that the microbial decomposition rate can be controlled by changing the amount of the microbial compound added, or by changing the addition amount.

【0007】[0007]

【発明が解決しようとする課題】上記、蛋白質と微細セ
ルロース繊維及び/又は可塑剤から成る複合材料、及び
微細セルロース繊維とキトサン及び/又は蛋白質から成
る複合材料は、これらの水分散性又は水溶液を乾燥する
ことにより生分解性複合材料を得るため、成形、乾燥な
ど成形加工に煩雑な操作が必要である。また、乾燥工程
で収縮が生じ、寸法精度が悪くなる難点がある。
The above-mentioned composite material comprising protein and fine cellulose fiber and / or plasticizer, and composite material comprising fine cellulose fiber and chitosan and / or protein are water-dispersible or aqueous solutions thereof. Since the biodegradable composite material is obtained by drying, complicated operations such as molding and drying are required. Further, there is a problem that shrinkage occurs in the drying process and the dimensional accuracy deteriorates.

【0008】本発明は、上記に鑑み、成形加工が容易で
あり、しかも、汎用プラスチックと同様な強度を有し、
土中の微生物により容易に分解される生分解性複合材料
の製造方法を明らかにすることを目的とする。
In view of the above, the present invention is easy to mold and has the same strength as general-purpose plastics.
It is intended to clarify a method for producing a biodegradable composite material which is easily decomposed by microorganisms in the soil.

【0009】[0009]

【課題を解決するための手段】本発明に係る生分解性複
合材料の製造方法は、微細セルロース繊維と蛋白質及び
可塑剤を混合し、熱プレス成形することを特徴とする。
The method for producing a biodegradable composite material according to the present invention is characterized in that fine cellulose fibers are mixed with a protein and a plasticizer and subjected to hot press molding.

【0010】即ち、本発明は微細セルロース繊維と蛋白
質及び可塑剤から成る生分解性複合材料の強度を十分に
保持し、しかも容易に成形出来る加工方法を鋭意検討し
た結果、微細セルロース繊維と蛋白質及び可塑剤を混合
後、熱プレス成形することにより、複合材料の強度低下
がなく微生物分解性の速い、しかも成形加工の容易な生
分解性複合材料を得られることを見出し本発明に至った
ものである。
That is, according to the present invention, as a result of diligent study of a processing method capable of easily maintaining the strength of a biodegradable composite material composed of fine cellulose fibers, proteins and a plasticizer, and further, easily forming the fine cellulose fibers, proteins and By mixing the plasticizer and hot pressing, it has been found that a biodegradable composite material which does not have a decrease in strength of the composite material, has a fast biodegradability, and is easy to mold and process has been completed. is there.

【0011】[0011]

【作用】微細セルロース繊維と蛋白質及び可塑剤を水溶
液に溶解又は分散させた後乾燥することにより複合化さ
せた場合、その製造方法、特に乾燥工程が煩雑であり、
しかも乾燥時に成形材料の収縮が生じ寸法精度が悪いこ
とが挙げられる。
When a fine cellulose fiber, a protein and a plasticizer are dissolved or dispersed in an aqueous solution and then dried to form a composite, the production method, particularly the drying step is complicated,
In addition, shrinkage of the molding material occurs during drying, resulting in poor dimensional accuracy.

【0012】本発明による微細セルロース繊維と蛋白質
及び可塑剤を十分に混合後、熱プレス成形にて複合化す
ることにより、汎用プラスチックと同様な強度を保ち、
しかも成形加工が容易であり生分解性複合材料を得るこ
とが出来る。また生分解性の原料を使用しているため土
中の微生物に容易に分解される。
By thoroughly mixing the fine cellulose fibers according to the present invention with the protein and the plasticizer and then compounding them by hot press molding, the same strength as general-purpose plastics can be maintained,
Moreover, the molding process is easy and a biodegradable composite material can be obtained. In addition, because it uses biodegradable raw materials, it is easily decomposed by microorganisms in the soil.

【0013】[0013]

【発明の実施の形態】本発明の方法に係る複合材料で使
用されるセルロース繊維としては、例えば、紙粉、木
材、綿、麻、藁、竹、籾殻、バガスなどの植物から得ら
れるセルロース、ヘミセルロース、リグノセルロース、
ベクトセルロースや菌が生産するバクテリアセルロース
などからなる繊維が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Cellulose fibers used in the composite material according to the method of the present invention include, for example, cellulose obtained from plants such as paper powder, wood, cotton, hemp, straw, bamboo, chaff and bagasse, Hemicellulose, lignocellulose,
Examples of the fiber include vector cellulose and bacterial cellulose produced by bacteria.

【0014】これらセルロース繊維は公知の種々の方法
で微細化したものが使用される。微細セルロースの大き
さは、長さ3000μm以下、直径50μm以下である
ことが好ましいが、これらの中にそれ以上の大きさの繊
維が一部に混じっていてもさしつかえない。
As these cellulose fibers, those finely divided by various known methods are used. It is preferable that the fine cellulose has a length of 3000 μm or less and a diameter of 50 μm or less, but fibers of a larger size may be partially mixed in these fine celluloses.

【0015】本発明の方法に係る複合材料で使用される
蛋白質としては、例えば、カゼイン、アルブミン、グル
テン、大豆蛋白、とうもろこし蛋白、ゼラチン、膠など
各種の動植物体や微生物から分離又は濃縮して得られる
ものが挙げられる。これらは、単独又は二種以上を混合
して使用することができる。これらは各々の蛋白質の溶
解に適したpHに調整した水に溶解して使用される。
The protein used in the composite material according to the method of the present invention is obtained, for example, by separating or concentrating from various animal and plant bodies or microorganisms such as casein, albumin, gluten, soybean protein, corn protein, gelatin and glue. Some of them are listed. These may be used alone or in combination of two or more. These are used by being dissolved in water adjusted to a pH suitable for dissolving each protein.

【0016】本発明において成形材料に可塑性を付与す
る目的で可塑剤を使用するが、使用する可塑剤として
は、親水性のものが挙げられる。例えば、グリセリン、
ジグリセリン、エチレングリコール、ジエチレングリコ
ール、プロピレングリコール、ジプロピレングリコー
ル、トリメチロールプロパン、ポリエチレングリコール
等の多価アルコールが好ましく用いられる。これらは単
独及び二種以上混合して使用することができるが、これ
らに限定されるものではない。
In the present invention, a plasticizer is used for the purpose of imparting plasticity to the molding material, and examples of the plasticizer used include hydrophilic ones. For example, glycerin,
Polyhydric alcohols such as diglycerin, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylolpropane and polyethylene glycol are preferably used. These may be used alone or in combination of two or more, but are not limited thereto.

【0017】使用原料の配合割合としては、微細セルロ
ース繊維100重量部に対し蛋白質2〜200重量部、
特に20〜100重量部、可塑剤2〜200重量部、特
に20〜100重量部が好ましい。
The mixing ratio of the raw materials used is 2 to 200 parts by weight of protein per 100 parts by weight of fine cellulose fiber,
Particularly, 20 to 100 parts by weight, plasticizer 2 to 200 parts by weight, and particularly 20 to 100 parts by weight are preferable.

【0018】本発明の生分解性複合材料の製造方法を示
すと、先ず微細セルロース繊維と蛋白質及び可塑剤を十
分に混合する。混合する装置としてはヘンシェルミキサ
ー、リボンブレンダー等の混合機、ロールミル、らい潰
機等が使用される。この混合物を熱プレスすることによ
り本発明の生分解性複合材料が得られる。
The method for producing the biodegradable composite material of the present invention will be described. First, fine cellulose fibers, protein and plasticizer are sufficiently mixed. As a device for mixing, a Henschel mixer, a mixer such as a ribbon blender, a roll mill, a crusher or the like is used. The biodegradable composite material of the present invention is obtained by hot pressing this mixture.

【0019】熱プレス成形温度は、50〜250℃の範
囲、特に好ましくは120〜180℃の範囲である。熱
プレス成形圧は10〜200Kgf/cmの範囲であ
る。プレス成形時間は5秒〜20分、好ましくは1分〜
10分である。
The hot press molding temperature is in the range of 50 to 250 ° C, particularly preferably in the range of 120 to 180 ° C. The hot press molding pressure is in the range of 10 to 200 Kgf / cm 2 . Press molding time is 5 seconds to 20 minutes, preferably 1 minute to
10 minutes.

【0020】尚、混合物を調整する際に、必要に応じて
着色剤、充填材、補強剤、架橋剤等の添加剤を添加する
ことができる。特に耐水性が要求される用途には、ポリ
エチレンワックス、パラフィンワックス、油脂類、シリ
コン系化合物、フッ素系化合物等を添加することにより
耐水性が向上される。また、これらの耐水性向上剤を成
形品に塗布することで耐水性を付与することもできる。
When preparing the mixture, additives such as a colorant, a filler, a reinforcing agent and a cross-linking agent can be added if necessary. Especially for applications requiring water resistance, the water resistance is improved by adding polyethylene wax, paraffin wax, oils and fats, silicon compounds, fluorine compounds and the like. Water resistance can also be imparted by applying these water resistance improvers to a molded article.

【0021】熱プレス成形による複合化の機構について
は詳細は明らかではないが、セルロース中の水酸基やカ
ルボニル基及び可塑剤の水酸基と、蛋白質のアミノ基や
カルボキシル基が熱プレス成形の間に互いに化学結合を
生じ複合化していることと推測される。
Although the mechanism of complexation by hot press molding is not clear, the hydroxyl group or carbonyl group in cellulose and the hydroxyl group of the plasticizer and the amino group or carboxyl group of the protein chemically react with each other during hot press molding. It is presumed that they are bound and complexed.

【0022】熱プレス形成することにより、各種成形品
及びシートが成形される。更に、得られたシートを真空
成形、圧空成形等で二次成形することで所望のトレイや
各種容器に成形することができる。
Various molded articles and sheets are molded by hot pressing. Further, the obtained sheet can be formed into a desired tray or various containers by secondary forming such as vacuum forming and pressure forming.

【0023】[0023]

【実施例】次に本発明を実施例により更に詳細に説明す
る。これらの例において、部は全て重量部を表わす。
EXAMPLES The present invention will now be described in more detail with reference to Examples. In these examples, all parts are parts by weight.

【0024】引張り強度はJIS K7113に準じて
測定し、曲げ強度はJIS K7203に準じて測定し
た。微生物分解性試験は、試料を土中に埋め一週間毎に
掘り出し、その分解状態を観察して行った。
The tensile strength was measured according to JIS K7113, and the bending strength was measured according to JIS K7203. The microbial degradability test was carried out by burying the sample in soil, excavating it every week, and observing the state of degradation.

【0025】実施例1〜6 微細セルロース繊維(針葉樹漂白パルプを叩解したも
の、以下全て同様)と大豆蛋白及びグリセリンを表1に
示す比率で混合した後、熱プレス温度160℃、圧力1
20Kgf/cm、プレス時間2分間で、厚さ2mm
及び5mmのシートを得た。得られたシートの引張り強
度(2mmシートを使用)、曲げ強度(5mmシートを
使用)及び微生物分解日数(週)を表1に示した。
Examples 1 to 6 Fine cellulosic fibers (beaten softwood bleached pulp, the same applies hereinafter), soybean protein and glycerin were mixed at the ratios shown in Table 1, and the hot press temperature was 160 ° C. and the pressure was 1
20 kgf / cm 2 , press time 2 minutes, thickness 2 mm
And 5 mm sheets were obtained. Table 1 shows the tensile strength (using a 2 mm sheet), the bending strength (using a 5 mm sheet) and the number of days (weeks) of microbial decomposition of the obtained sheet.

【0026】比較例1〜2 微細セルロース繊維の水分散液(濃度3%)と大豆蛋白
水溶液(濃度3%、pH8)及びグリセリンを表1に示
す比率で混合したものをガラス板に流延し、70℃で6
時間送風乾燥して、厚さ2mm及び5mmのシートを得
た。得られたシートの引張り強度(2mmシートを使
用)、曲げ強度(5mmシートを使用)及び微生物分解
日数(週)を表1に示した。
Comparative Examples 1-2 A mixture of an aqueous dispersion of fine cellulose fibers (concentration 3%), an aqueous soybean protein solution (concentration 3%, pH 8) and glycerin in the ratios shown in Table 1 was cast on a glass plate. 6 at 70 ° C
Air-dried for an hour to obtain sheets with thicknesses of 2 mm and 5 mm. Table 1 shows the tensile strength (using a 2 mm sheet), the bending strength (using a 5 mm sheet) and the number of days (weeks) of microbial decomposition of the obtained sheet.

【0027】[0027]

【表1】 実施例7〜10 微細セルロース繊維とグルテン及びエチレングリコール
を表2に示す比率で混合した後、熱プレス温度140
℃、圧力120Kgf/cm 、プレス時間2分間
で、厚さ2mm及び5mmのシートを得た。得られたシ
ートの引っ張り強度(2mmシートを使用)、曲げ強度
(5mmシートを使用)及び微生物分解日数(週)を表
2に示した。
[Table 1] Examples 7 to 10 Fine cellulose fibers were mixed with gluten and ethylene glycol in the ratios shown in Table 2, and then the hot press temperature was 140.
A sheet having a thickness of 2 mm and a sheet having a thickness of 5 mm was obtained at a temperature of 120 ° C., a pressure of 120 kgf / cm 2 , and a pressing time of 2 minutes. Table 2 shows the tensile strength (using a 2 mm sheet), the bending strength (using a 5 mm sheet) and the number of days (weeks) of microbial decomposition of the obtained sheet.

【0028】比較例3〜4 微細セルロース繊維とグルテン及びエチレン不リコール
を表2に示す比率で混合した後、上記実施例7〜10と
同様の条件で熱プレス成形し、厚さ2mm及び5mmの
シートを得た。得られたシートの引っ張り強度(2mm
シートを使用)、曲げ強度(5mmシートを使用)及び
微生物分解日数を表2に示した。
Comparative Examples 3 to 4 Fine cellulose fibers were mixed with gluten and ethylene glycol at the ratios shown in Table 2, and then hot-pressed under the same conditions as in Examples 7 to 10 to give a thickness of 2 mm and 5 mm. Got the sheet. Tensile strength of the obtained sheet (2 mm
Table 2 shows the bending strength (using a sheet of 5 mm) and the number of days of microbial decomposition.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】本発明の方法により得られる生分解性複
合材料は、優れた強度と微生物分解性を有し、成形加工
も容易であり、また、天然物を原料に用いているため分
解された後でも有害物質を生じないと云う特徴も有して
おり、包装材、農園芸用のフィルムや育苗ポット、土木
及び建材用の資材、成形トレイその他の成形体等の分野
において汎用プラスチック成形品、紙製品、パルプモー
ルド成形品等の代替材料として優れた効果を発揮する。
Industrial Applicability The biodegradable composite material obtained by the method of the present invention has excellent strength and microbial degradability, is easy to mold, and is decomposed because it uses a natural product as a raw material. It also has the characteristic that it does not produce harmful substances even after it has been used. It is a general-purpose plastic molded product in the fields of packaging materials, films for agricultural and horticultural use, nursery pots, materials for civil engineering and construction materials, molding trays and other molded products. It exhibits excellent effects as a substitute material for paper products, pulp molded products, etc.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 1:00 B29L 7:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // B29K 1:00 B29L 7:00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】微細セルロース繊維と蛋白質及び可塑剤を
混合し、熱プレス成形することを特徴とする生分解性複
合材料の製造方法。
1. A method for producing a biodegradable composite material, which comprises mixing fine cellulose fibers with a protein and a plasticizer, followed by hot press molding.
【請求項2】熱プレス成形温度が50〜250℃であ
り、熱プレス成形圧が10〜200Kgf/mである
ことを特徴とする請求項1記載の生分解性複合材料の製
造方法。
2. The method for producing a biodegradable composite material according to claim 1, wherein the hot press molding temperature is 50 to 250 ° C. and the hot press molding pressure is 10 to 200 Kgf / m 2 .
JP4534596A 1996-02-07 1996-02-07 Method for producing biodegradable composite material Expired - Fee Related JP3317624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4534596A JP3317624B2 (en) 1996-02-07 1996-02-07 Method for producing biodegradable composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4534596A JP3317624B2 (en) 1996-02-07 1996-02-07 Method for producing biodegradable composite material

Publications (2)

Publication Number Publication Date
JPH09208714A true JPH09208714A (en) 1997-08-12
JP3317624B2 JP3317624B2 (en) 2002-08-26

Family

ID=12716705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4534596A Expired - Fee Related JP3317624B2 (en) 1996-02-07 1996-02-07 Method for producing biodegradable composite material

Country Status (1)

Country Link
JP (1) JP3317624B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045917A1 (en) * 1999-12-21 2001-06-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tubular films formed from cellulose/protein blends
WO2003056103A1 (en) * 2001-12-26 2003-07-10 Kansai Technology Licensing Organization Co., Ltd. High strength material using cellulose micro-fibril
WO2009075122A1 (en) * 2007-12-13 2009-06-18 Nuclear Engineering, Ltd. Biodegradable film or sheet, method for producing the same and composition for biodegradable film or sheet
GB2459524A (en) * 2007-12-13 2009-10-28 Nuclear Engineering Ltd Biodegradable film or sheet, method for producing the same, and composition for biodegradable film or sheet
JP4574738B1 (en) * 2010-02-15 2010-11-04 株式会社原子力エンジニアリング Biodegradable molded products
US9200148B2 (en) 2010-12-15 2015-12-01 3M Innovative Properties Company Controlled degradation fibers
US20210324167A1 (en) * 2018-07-10 2021-10-21 Cellutech Ab Porous material of cellulose fibres and gluten

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045917A1 (en) * 1999-12-21 2001-06-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tubular films formed from cellulose/protein blends
US6699542B2 (en) 1999-12-21 2004-03-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Tubular films formed from cellulose/protein blends
WO2003056103A1 (en) * 2001-12-26 2003-07-10 Kansai Technology Licensing Organization Co., Ltd. High strength material using cellulose micro-fibril
JP2003201695A (en) * 2001-12-26 2003-07-18 Kansai Tlo Kk High strength material utilizing cellulose microfibril
US7378149B2 (en) 2001-12-26 2008-05-27 Kansai Technology Licensing Organization Co, Ltd. High strength material using cellulose microfibrils
WO2009075122A1 (en) * 2007-12-13 2009-06-18 Nuclear Engineering, Ltd. Biodegradable film or sheet, method for producing the same and composition for biodegradable film or sheet
GB2459524A (en) * 2007-12-13 2009-10-28 Nuclear Engineering Ltd Biodegradable film or sheet, method for producing the same, and composition for biodegradable film or sheet
GB2459524B (en) * 2007-12-13 2010-03-10 Nuclear Engineering Ltd Biodegradable film or sheet, process for producing the same, and composition for biodegradable film or sheet.
JP4574738B1 (en) * 2010-02-15 2010-11-04 株式会社原子力エンジニアリング Biodegradable molded products
JP2011084709A (en) * 2010-02-15 2011-04-28 Nuclear Engineering Ltd Biodegradable molded article
US9200148B2 (en) 2010-12-15 2015-12-01 3M Innovative Properties Company Controlled degradation fibers
US20210324167A1 (en) * 2018-07-10 2021-10-21 Cellutech Ab Porous material of cellulose fibres and gluten

Also Published As

Publication number Publication date
JP3317624B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
Briassoulis An overview on the mechanical behaviour of biodegradable agricultural films
DE69830029T2 (en) Composite resin composition
EP1719797B1 (en) Starch-vegetable oil graft copolymers and their biofiber composites, and a process for their manufacture
DE69631884T2 (en) THERMOPLASTIFIED STARCH AND METHOD OF MANUFACTURING THEREOF
US5844023A (en) Biologically degradable polymer mixture
AU705176B2 (en) Thermoplastic composition comprising starch and other components from natural origin
JP3912023B2 (en) Biodegradable composition and method for producing the same
KR20140034778A (en) Blends of a polylactic acid and a water soluble polymer
EP1622984B1 (en) Biodegradable composition having improved water resistance and process for producing same
US8277718B2 (en) Biodegradable film or sheet, process for producing the same, and composition for biodegradable film or sheet
DK0961805T3 (en) Components for preparing starch-based polymer blends and processes for preparing the components
JP3317624B2 (en) Method for producing biodegradable composite material
JP2002114896A (en) Lignin-based resin composition
JPH02281050A (en) Novel water absorbing complex material and its production
FI104091B (en) Melt-machinable starch composition, process for its preparation and use of the composition
JPH0794576B2 (en) Flexible biodegradable film or sheet, and method for producing the same
JPH06104759B2 (en) Novel composite material film and manufacturing method thereof
KR101856496B1 (en) Modified microfibrillated cellulose and preparation method thereof
JPH0459830A (en) New biodegradative composite material and its production
KR102335950B1 (en) Composition for Biodegradable and photodegradable seeding-pot and manufacturing method using the same
JP7210819B2 (en) Aqueous sizing composition for treating natural fibers and process for treating natural fibers with the composition
JPH0459829A (en) Production of composite material
KR102142016B1 (en) Biodegradable products and its Preparation Method using the water-repellent starch
JPH06218878A (en) Biodegradable film or sheet having heat sealing property
EP3315536B1 (en) Biodegradable polymeric derivatives

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020409

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees