JPH09189869A - Optical modulator and display device - Google Patents

Optical modulator and display device

Info

Publication number
JPH09189869A
JPH09189869A JP7352615A JP35261595A JPH09189869A JP H09189869 A JPH09189869 A JP H09189869A JP 7352615 A JP7352615 A JP 7352615A JP 35261595 A JP35261595 A JP 35261595A JP H09189869 A JPH09189869 A JP H09189869A
Authority
JP
Japan
Prior art keywords
substrate
light
plate
gap
plate member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7352615A
Other languages
Japanese (ja)
Other versions
JP3799092B2 (en
Inventor
Youbun Eki
幼文 易
Mitsuchika Saito
光親 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Priority to JP35261595A priority Critical patent/JP3799092B2/en
Priority to US08/771,566 priority patent/US5745281A/en
Priority to EP96309485A priority patent/EP0786679A3/en
Priority to KR1019960075231A priority patent/KR970048702A/en
Publication of JPH09189869A publication Critical patent/JPH09189869A/en
Application granted granted Critical
Publication of JP3799092B2 publication Critical patent/JP3799092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/05Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect with ferro-electric properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
    • G09F9/372Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements the positions of the elements being controlled by the application of an electric field

Abstract

PROBLEM TO BE SOLVED: To make possible applying a board material varying a light quantity to a two-dimensional filter, a two-dimensional optical modulator, a twodimensional optical arithmetic device, etc., of an electromagnetic wave by moving it in the direction varying an overlapping degree with electrostatic force. SOLUTION: This modulator is constituted of a substrate pair consisting of a first substrate 1 and a second substrate 2 parallel arranged with a gap, and light shielding layers 10 are formed on these substrates 1, 2 while remaining plural light passing parts 3. Then, the board material 5 varies the light quantity facing from the second substrate 2 side to the first substrate 1 side or the light quantity facing from the first substrate 1 side to the second substrate 2 side by varying the overlapping degree between respective light passing parts 3 in the direction of respective substrates 1, 2 surface. The board material 5 moves by the electrostatic force by applying a drive voltage between a set of electrodes 7A, 7B formed on at least two among an elastic supporting body 6, the first substrate 1 and the second substrate 2. Thus, the overlapping degree between the board material 5 and the light passing part 3 varies. Thus, it is applied for various devices.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種電磁波(可視
光、赤外光及び紫外光を含む)の二次元フィルタ、二次
元光変調装置、二次元光演算装置等に応用される光変調
装置、及び該光変調装置を応用したディスプレイ装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical modulator applied to a two-dimensional filter for various electromagnetic waves (including visible light, infrared light and ultraviolet light), a two-dimensional optical modulator, a two-dimensional optical arithmetic unit and the like. And a display device to which the light modulator is applied.

【0002】[0002]

【技術背景】コンピュータ等に使用されるディスプレイ
として、従来、陰極管ディスプレイ及び液晶ディスプレ
イが知られている。陰極管ディスプレイは、占有面積が
大きく、消費電力が大きいという不都合を有する。この
ため、液晶ディスプレイのような薄型で低消費電力のも
のが今後主流となると考えられる。しかし、本発明技術
分野の液晶ディスプレイは、上記の陰極管ディスプレイ
が有する不都合がない反面、コントラストが弱く、応答
速度が遅く(例えば、カラーTFT液晶ディスプレイの
場合には、数十〜百m秒である)、またフリッカが生じ
やすい等の欠点を有している。
BACKGROUND ART Cathode tube displays and liquid crystal displays are conventionally known as displays used in computers and the like. The cathode ray tube display has a disadvantage that it occupies a large area and consumes a large amount of power. For this reason, thin type and low power consumption devices such as liquid crystal displays are expected to become mainstream in the future. However, the liquid crystal display of the technical field of the present invention has the disadvantages of the above-mentioned cathode ray tube display, but has a low contrast and a slow response speed (for example, in the case of a color TFT liquid crystal display, it takes tens to hundreds of milliseconds). However, there is a drawback that flicker is likely to occur.

【0003】[0003]

【発明の目的】本発明の目的は、電磁波の二次元フィル
タ、二次元光変調装置、二次元光演算装置等に応用可能
である光学変調装置を提供することである。また、本発
明の他の目的は、液晶ディスプレイの特徴である薄型、
低消費電力の特徴を維持しながら、より高画質の表示が
できるディスプレイを提供することである。
It is an object of the present invention to provide an optical modulator applicable to a two-dimensional filter for electromagnetic waves, a two-dimensional optical modulator, a two-dimensional optical arithmetic unit and the like. In addition, another object of the present invention is a thin type which is a feature of a liquid crystal display,
An object of the present invention is to provide a display capable of displaying higher quality images while maintaining the characteristics of low power consumption.

【0004】[0004]

【発明の概要】本発明の光変調装置は、隙間をもって平
行配置された第1基板及び第2基板とからなる基板対を
有して構成され、何れか一方の基板又は双方の基板には
複数の光通過部を残して遮光層が形成されている。
SUMMARY OF THE INVENTION An optical modulator according to the present invention comprises a substrate pair consisting of a first substrate and a second substrate which are arranged in parallel with a gap, and one of the substrates or both substrates have a plurality of substrates. The light-shielding layer is formed except for the light passage portion.

【0005】この光変調装置は、各光通過部ごとに設け
られた高分子材料等からなる板材を有している。この板
材は、通常は光を遮蔽するシャッタの役割をなす。すな
わち、該板材が、各光通過部との各基板面方向の重なり
度合いを変化させることで、第2基板側から第1基板側
に向かう光、又は前記第2基板側から前記第1基板側に
向かう光の量を変化させる。
This light modulator has a plate member made of a polymer material or the like provided for each light passage portion. This plate material usually functions as a shutter that blocks light. That is, the plate material changes the degree of overlap with each light passage portion in each substrate surface direction, whereby light traveling from the second substrate side to the first substrate side, or from the second substrate side to the first substrate side. Change the amount of light going to.

【0006】基板対には、弾性支持体の一部分又は複数
部分が固定されており、この弾性支持体の他の一部分又
は複数部分が板材の少なくとも1つを支持している。例
えば、弾性支持体が2つの弾性部材からなり、各弾性部
材の一端が基板対に固定され、各弾性部材のそれぞれ他
端が1つの板材に取り付けられ、かつ各弾性部材は一直
線上に配置されるようにもできる。この場合、上記1つ
の板材に代えて、相互に固定され上記直線方向に直列及
び/又は並列に配置した板材群を、弾性部材に取り付け
ることもできる。また、弾性支持体を構成する弾性部材
の数を適宜増やすこともできる。弾性支持体は、上記板
材又は板材群が後述する1組の電極の作用により移動し
たときは、該板材又は板材群を力学的安定位置に弾性復
帰させるような力を発生じさせる。なお、弾性部材は、
第1基板と第2基板との間に設けたスペーサ等の部材を
介して基板対に対して固定するすることもできるし、弾
性部材を板材の一方の面に直接取り付けることもでき
る。
A part or a plurality of parts of the elastic support is fixed to the pair of substrates, and another part or a part of the elastic support supports at least one of the plate members. For example, the elastic support is composed of two elastic members, one end of each elastic member is fixed to the substrate pair, the other end of each elastic member is attached to one plate member, and each elastic member is arranged in a straight line. You can also do it. In this case, instead of the one plate member, a plate member group fixed to each other and arranged in series and / or in parallel in the linear direction may be attached to the elastic member. In addition, the number of elastic members forming the elastic support can be appropriately increased. The elastic support generates a force that elastically returns the plate material or the plate material group to a mechanically stable position when the plate material or the plate material group moves due to the action of a pair of electrodes described later. The elastic member is
It can be fixed to the substrate pair via a member such as a spacer provided between the first substrate and the second substrate, or the elastic member can be directly attached to one surface of the plate member.

【0007】上記各板材は、弾性支持体、第1基板、第
2基板のうちの少なくとも2つに形成された1組の電極
(通常、1対の電極)に駆動電圧(通常単方向パルス)
を印加することにより静電力(静電引力又は静電斥力)
により移動する。これにより、板材と光通過部との重な
り度合いが変化する。前記1組の電極に駆動電圧が印加
されなくなると、上記弾性支持体により、上記板材は力
学的安定位置に弾性復帰する。なお、板材の力学的安定
位置で前記重なり度合いがゼロパーセントであり、前記
1組の電極に駆動電圧が印加されると該重なり度合いが
大きくなる(最終的には100パーセントとなる)よう
にもできるし、板材の力学的安定位置で該板材の光通過
部との重なり度合いが100パーセントであり、前記1
組の電極に電圧が印加されると該重なり度合いが小さく
なる(最終的にはゼロパーセントとなる)ようにも構成
できる。
Each of the above plate members has a driving voltage (usually a unidirectional pulse) applied to a set of electrodes (usually a pair of electrodes) formed on at least two of the elastic support, the first substrate and the second substrate.
By applying an electrostatic force (electrostatic attraction or repulsion)
Move by. As a result, the degree of overlap between the plate material and the light passage portion changes. When the drive voltage is not applied to the pair of electrodes, the plate member elastically returns to the mechanically stable position by the elastic support. It should be noted that the degree of overlap is zero percent at the mechanically stable position of the plate material, and the degree of overlap becomes large (finally 100%) when a drive voltage is applied to the pair of electrodes. The degree of overlap of the plate material with the light passage portion at the mechanically stable position of the plate material is 100%.
The overlapping degree can be reduced (finally becomes 0%) when a voltage is applied to the pair of electrodes.

【0008】本発明の光変調装置では、第1基板及び第
2基板を共に透明とし、遮光層を第1基板、第2基板の
何れか一方又は双方に形成することもできる。この場
合、板材の移動により、第2基板又は第1基板を隙間に
向けて通過した後に光通過部を通過する光の量が変化す
る。
In the optical modulator of the present invention, both the first substrate and the second substrate may be transparent, and the light shielding layer may be formed on either or both of the first substrate and the second substrate. In this case, the amount of light passing through the light passing portion after passing through the second substrate or the first substrate toward the gap changes due to the movement of the plate material.

【0009】また、本発明の光変調装置では、第1基板
を透明とし、遮光層を第1基板に形成した場合におい
て、第2基板の隙間側の面に光反射層を形成することも
できる。この場合、板材の移動により、光通過部を隙間
に向けて通過した後に光反射層にて反射し再び光通過部
を通過する光の量が変化する。なお、光反射層は板材の
第1基板側の面に形成しておくこともできる。この場合
には、第2基板の隙間側の面には、光反射率及び光透過
率が低い材料層を形成する等、光が反射しない処理がな
される。
Further, in the optical modulator of the present invention, when the first substrate is transparent and the light shielding layer is formed on the first substrate, the light reflecting layer can be formed on the surface of the second substrate on the side of the gap. . In this case, due to the movement of the plate member, the amount of light that passes through the light passage portion toward the gap, is reflected by the light reflection layer, and then passes through the light passage portion again changes. The light reflecting layer may be formed on the surface of the plate material on the first substrate side. In this case, light-reflecting treatment such as forming a material layer having low light reflectance and light transmittance is performed on the gap side surface of the second substrate.

【0010】隙間には、静電力の増大等を考慮して液体
又は気体を封入することができる。この隙間を作るため
の手段として、スペーサを使用することができる。ま
た、例えば、前記少なくとも1つの板材と、弾性支持体
と、前記1組の電極とからなる1画素分についての機構
単位(以下、「1画素分機構単位」と言う)ごとに、あ
るいは複数の1画素分機構単位で、隙間を隔絶し、該隔
絶された隙間に上記の液体又は気体を封入することもで
きる。この場合に、隔絶手段として、スペーサを用いる
ことも可能である。隙間には、液体又は気体を封入する
ことで、該板材を小さな駆動電圧で移動させることがで
きる。なお、この場合、板材の抵抗率を1010Ω・c
m以下、流体の抵抗率を10Ω・cm以上とし、かつ
流体の抵抗率を板材の抵抗率よりも1桁以上大きくする
ことが好ましい。逆に、板材を誘電性の材料により構成
し、隙間を導電性の材料により構成した場合にも板材を
小さな電圧で静電駆動することができる。この場合に
は、流体の抵抗率を1010Ω・cm以下、板材の抵抗
率を10Ω・cm以上とし、かつ板材の抵抗率を液体
の抵抗率よりも1桁以上大きくすることが好ましい。
A liquid or gas can be enclosed in the gap in consideration of an increase in electrostatic force. Spacers can be used as a means for creating this gap. In addition, for example, for each mechanical unit (hereinafter, referred to as “mechanical unit for one pixel”) for one pixel including the at least one plate member, the elastic support, and the one set of electrodes, or a plurality of mechanical units. It is also possible to separate the gap in a unit of one pixel, and to fill the liquid or gas into the separated gap. In this case, it is possible to use a spacer as the isolation means. By enclosing a liquid or gas in the gap, the plate material can be moved with a small driving voltage. In this case, the resistivity of the plate material is 10 10 Ω · c.
It is preferable that the fluid resistivity is 10 7 Ω · cm or more, and the fluid resistivity is one digit or more higher than that of the plate material. Conversely, even when the plate material is made of a dielectric material and the gap is made of a conductive material, the plate material can be electrostatically driven with a small voltage. In this case, it is preferable that the resistivity of the fluid is 10 10 Ω · cm or less, the resistivity of the plate material is 10 7 Ω · cm or more, and the resistivity of the plate material is one digit or more larger than the resistivity of the liquid. .

【0011】また、板材を低誘電率の材料により構成
し、隙間に高誘電率の流体を封入した場合にも上記と同
様の効果を得ることができる。逆に板材を高誘電率の材
料により構成し、隙間に低誘電率の流体を封入した場合
にも上記と同様の効果を得ることができる。この場合、
板材と流体の抵抗率をそれぞれ10Ω・cm以上とす
ることが好ましい。
Further, when the plate material is made of a material having a low dielectric constant and a fluid having a high dielectric constant is sealed in the gap, the same effect as described above can be obtained. Conversely, when the plate material is made of a material having a high dielectric constant and a fluid having a low dielectric constant is sealed in the gap, the same effect as above can be obtained. in this case,
It is preferable that the sheet material and the fluid have a resistivity of 10 7 Ω · cm or more.

【0012】上記の光変調装置を用いて、モノクロ又は
カラーの、ディスプレイ装置、オーバーヘッドプロジェ
クタ等の装置を構成することができる。例えば、第1基
板又は第2基板に、1画素分機構単位ごとに、赤、緑、
青の光三原色のフィルタをマトリクス状に配列すること
で、カラーディスプレイ等を構成することができる。
The above-mentioned light modulator can be used to construct a monochrome or color device such as a display device or an overhead projector. For example, on the first substrate or the second substrate, red, green,
A color display or the like can be configured by arranging filters for the three primary colors of blue light in a matrix.

【0013】[0013]

【実施例】以下、本発明の好適な実施例を説明する。図
1(a)は光変調装置100の側断面図であり、光変調
装置100は、スペーサ8(図には表れていないが、平
面視矩形状をなしてもよい。図面には8A,8Bのみを
示す)により形成される隙間4をもって平行配置された
基板対(すなわち第1基板1及び第2基板2)を有して
いる。これら基板は、図1(a)では透明であり、それ
ぞれガラス板を用いているが、軽量化やフレキシビリテ
ィ等を考慮して有機高分子フィルムを用いることもでき
る。なお、図示はしないが、図1(a)では第2基板2
の、隙間4とは反対側に光源(人工光源)が設けられて
いる。図1(a)では、第1基板1には光通過部3を残
して、隙間4側に遮光層10が形成されている。図示さ
れていないが、この光通過部3は第1基板1に複数形成
されており、マトリクス状に配置されている。また、隙
間4に誘電性の流体L(ここでは液体)が封入されてい
る(以下、この流体Lを「封入流体」と言う)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. FIG. 1A is a side cross-sectional view of the light modulation device 100. The light modulation device 100 may have a spacer 8 (not shown in the drawing, but may have a rectangular shape in a plan view. 8A and 8B in the drawings). The substrate pair (that is, the first substrate 1 and the second substrate 2) are arranged in parallel with a gap 4 formed by (only shown). Although these substrates are transparent in FIG. 1A and glass plates are used, organic polymer films may be used in consideration of weight reduction and flexibility. Although not shown, the second substrate 2 is not shown in FIG.
A light source (artificial light source) is provided on the side opposite to the gap 4. In FIG. 1A, the light-shielding layer 10 is formed on the first substrate 1 on the side of the gap 4 except the light passage portion 3. Although not shown in the drawing, a plurality of the light passage portions 3 are formed on the first substrate 1 and arranged in a matrix. Further, a dielectric fluid L (a liquid here) is enclosed in the gap 4 (hereinafter, this fluid L is referred to as "enclosed fluid").

【0014】スペーサ8A,8Bには、弾性支持体6
(本実施例では、支持部材6Aと6Bとにより構成され
る)が固定されている。ここでは、支持部材6A,6B
の各一端がスペーサ8A,8Bに固定され、また他の各
一端が板材5に取り付けられている。図1(a)では、
支持部材6A,6Bはジグザグ状の伸縮式となってお
り、板材5を各光通過部3との重なり度合いを変化させ
る向きに移動可能としている。板材5は、不透明な導電
性の材料からなり、各光通過部3との重なり度合いを変
化させることで、第2基板2側から光通過部3に向かう
光の量を変化させることができる。なお、本実施例では
板材5が力学的安定位置にあるときは、上記重なり度合
いはゼロパーセントとなっている。
The elastic supports 6 are provided on the spacers 8A and 8B.
(In this embodiment, it is composed of the support members 6A and 6B). Here, the support members 6A, 6B
Is fixed to the spacers 8A and 8B, and the other ends are attached to the plate member 5. In FIG. 1A,
The support members 6A and 6B are expandable and contractable in a zigzag shape, and the plate member 5 can be moved in a direction in which the degree of overlap with the light passage portions 3 is changed. The plate member 5 is made of an opaque conductive material, and the amount of light traveling from the second substrate 2 side to the light passing unit 3 can be changed by changing the degree of overlap with each light passing unit 3. In this embodiment, when the plate member 5 is in the mechanically stable position, the degree of overlap is zero percent.

【0015】また、第1基板1の上記光通過部3の隙間
4側には電極7Aが形成され、第2基板2の隙間4側の
電極7Aに対応する部位に電極7Bがそれぞれ形成され
ている。この1組の電極7A,7Bは共に透明であり、
両電極間には電源9が接続されている。この電源9から
所定電圧(駆動電圧Vd)を印加して板材5を静電引力
により移動させることができる。
Further, an electrode 7A is formed on the gap 4 side of the light passage portion 3 of the first substrate 1, and an electrode 7B is formed on a portion of the second substrate 2 corresponding to the electrode 7A on the gap 4 side. There is. The pair of electrodes 7A and 7B are both transparent,
A power supply 9 is connected between both electrodes. A predetermined voltage (driving voltage Vd) can be applied from the power source 9 to move the plate member 5 by electrostatic attraction.

【0016】駆動電圧Vdは通常10ボルト以下(好ま
しくは数ボルト以下)の低い電圧とする。駆動電圧Vd
は、次に述べるように弾性部材6A,6Bのバネ定数に
大きく影響される。弾性部材6A,6Bのバネ定数は、
弾性係数及びサイズに依存する。シリコンやアルミニウ
ム等の無機材料は、一般には弾性係数が大きい。このた
め、これらを弾性部材6A,6Bの材料として用いる場
合には、駆動電圧Vdを10ボルト程度に下げるため
に、弾性部材6A,6Bを0.1μm程度の幅に細くす
る必要がある。一方、ポリイミド、PMMA(ポリメチ
ルメタクリレート)等の有機高分子材料の弾性係数は、
通常の無機材料の弾性係数よりも約2桁小さい。したが
って、後述する製造例では、弾性部材6A,6Bとして
ポリイミドを用いている。これにより、弾性部材6A,
6Bの幅を太くしたままで、駆動電圧Vdを10ボルト
程度とすることができる。
The driving voltage Vd is usually a low voltage of 10 V or less (preferably several V or less). Drive voltage Vd
Is greatly affected by the spring constants of the elastic members 6A and 6B as described below. The spring constants of the elastic members 6A and 6B are
Depends on elastic modulus and size. Inorganic materials such as silicon and aluminum generally have a large elastic coefficient. Therefore, when these are used as the material of the elastic members 6A and 6B, the elastic members 6A and 6B need to be thinned to a width of about 0.1 μm in order to reduce the drive voltage Vd to about 10 volts. On the other hand, the elastic modulus of organic polymer materials such as polyimide and PMMA (polymethylmethacrylate) is
It is about two orders of magnitude smaller than the elastic modulus of ordinary inorganic materials. Therefore, in the manufacturing example described later, polyimide is used as the elastic members 6A and 6B. Thereby, the elastic member 6A,
The drive voltage Vd can be set to about 10 volts while keeping the width of 6B thick.

【0017】弾性部材6A,6Bの幅が1μm程度であ
れば、コンタクトタイプの露光装置を用いて、高い歩留
りで安価に弾性支持体6を作ることができる。駆動電圧
Vdをもう少し高くしてもよい場合には、弾性部材6
A,6Bの幅を更に広くできる。したがって、より大量
生産に適した印刷技術により弾性支持体6を作ることも
可能である。
When the width of the elastic members 6A and 6B is about 1 μm, the elastic support 6 can be manufactured at a low cost with a high yield using a contact type exposure apparatus. If the driving voltage Vd may be increased a little, the elastic member 6
The width of A and 6B can be further widened. Therefore, it is possible to make the elastic support 6 by a printing technique suitable for mass production.

【0018】封入流体Lとして、多くのものが使用でき
る。比誘電率が3程度と低い誘電体(例えば、商品名F
luorinert Fluid等)も使用されるし、
室温で20以上と高いもの(例えば、水,エタノール,
メタノール,エチレングリコール,ホルムアミド)も使
用される。特に、近年開発された多数の液晶材料が使用
できる。また、封入流体Lには、板材5が移動したとき
のダンピングの必要から適宜の粘性を持たせることもで
きる。
As the enclosed fluid L, many kinds can be used. Dielectric material with low relative permittivity of about 3 (for example, trade name F
luorinert Fluid etc. are also used,
Higher than 20 at room temperature (eg water, ethanol,
Methanol, ethylene glycol, formamide) are also used. In particular, many liquid crystal materials developed in recent years can be used. Further, the enclosed fluid L can be given an appropriate viscosity because of the necessity of damping when the plate member 5 moves.

【0019】なお、封入流体Lとして、水のような電気
抵抗率が小さい液体を使用する場合には、リーク電流が
大きくなる。この結果、板材5の平衡状態の保持時間も
短くなる。この保持時間は、必ずしも短いことが好まし
いとは限らないが、一般的にはある程度の長さが必要と
される。なお、望ましい抵抗率、比誘電率、及び粘性を
得るためには、異なる液体の混合物を使用することもで
きる。
When a liquid having a low electric resistivity such as water is used as the sealed fluid L, the leak current becomes large. As a result, the holding time of the plate member 5 in the equilibrium state is shortened. Although it is not always preferable that the holding time is short, a certain length is generally required. It should be noted that a mixture of different liquids can be used to obtain the desired resistivity, relative permittivity and viscosity.

【0020】板材5の材料として導電性のものを用い、
封入流体Lとして誘電性のものを用いる場合には、大き
な静電引力を得ることができる。板材5として導電性の
高分子材料を用いることができる。もともと高絶縁性を
もつポリイミドやPMMAを板材5として用いる場合に
は、これらに炭素や窒素のイオンを注入することにより
その抵抗率を大幅に低くすることができる。他の方法と
して、板材5に導電性層を形成することもできる。
A conductive material is used for the plate member 5,
When a dielectric fluid is used as the enclosed fluid L, a large electrostatic attraction can be obtained. A conductive polymer material can be used as the plate member 5. When polyimide or PMMA, which originally has a high insulating property, is used as the plate material 5, the resistivity can be significantly reduced by implanting carbon or nitrogen ions into these. As another method, a conductive layer can be formed on the plate material 5.

【0021】図1(b)は、スペーサ8A,8Bに弾性
部材6A,6Bを介して板材5が取り付けられた様子を
示す平面図である。図1(a),(b)に示すように、
駆動電圧Vdがゼロボルトの場合には、板材5と光通過
分3との重なり度合いはゼロパーセントであり、第2基
板2からの入射光Binは、第2基板2を隙間4に向け
て透過しさらに、出射光Boutとして光通過部3を通
過する。電極7A,7B間に駆動電圧Vd(単方向パル
ス)を加えると、板材5が電極7A,7B側(図面x方
向)に吸引される。
FIG. 1B is a plan view showing a state in which the plate member 5 is attached to the spacers 8A and 8B via the elastic members 6A and 6B. As shown in FIGS. 1A and 1B,
When the drive voltage Vd is zero volt, the degree of overlap between the plate member 5 and the light passage portion 3 is zero percent, and the incident light Bin from the second substrate 2 is transmitted through the second substrate 2 toward the gap 4. Further, it passes through the light passing portion 3 as the emitted light Bout. When the drive voltage Vd (unidirectional pulse) is applied between the electrodes 7A and 7B, the plate material 5 is attracted to the electrodes 7A and 7B side (direction x in the drawing).

【0022】図2(a),(b)は、駆動電圧Vdを所
定の電圧としたときの状態を示しており、それぞれ駆動
電圧Vdをゼロボルトとした図1(a),(b)に対応
している。この場合には、板材5は電極7A,7B側
(図面x方向)に十分に移動しており、光通過部3との
重なり度合いは100パーセントとなっている。以上の
ようにして、光通過部3を通過する入射光Binの量
が、板材5により調節される。
FIGS. 2A and 2B show the states when the drive voltage Vd is set to a predetermined voltage, and correspond to FIGS. 1A and 1B where the drive voltage Vd is zero volt. doing. In this case, the plate member 5 has moved sufficiently to the electrodes 7A and 7B side (the x direction in the drawing), and the degree of overlap with the light passage portion 3 is 100%. As described above, the amount of the incident light Bin passing through the light passing portion 3 is adjusted by the plate member 5.

【0023】なお、図示はしないが、電極7A又は7B
の一方に代えて、板材5を駆動のための電極とすること
もできる(板材5は当然に導電性材料により構成され
る)。しかし、こうした場合には、板材5には電源9か
ら直接駆動電圧Vdが加えられるので、板材5は第1基
板1(又は第2基板2)に垂直な方向(+z方向又は−
z方向)に静電力を受けるので、板材5の移動が円滑に
行われないこともあり得る。これに対し、図1,図2の
光変調装置100では、板材5には直接駆動電圧Vdが
印加されておらず、板材5に加えられる電極7Aと7B
による第1基板1(又は第2基板2)に垂直な方向の静
電力は相殺される。したがって、板材5の上記の振れ
は、全くあるいは殆ど生じることはない。
Although not shown, the electrode 7A or 7B
Alternatively, the plate member 5 may be used as an electrode for driving (the plate member 5 is naturally made of a conductive material). However, in such a case, since the driving voltage Vd is directly applied to the plate member 5 from the power source 9, the plate member 5 is moved in the direction perpendicular to the first substrate 1 (or the second substrate 2) (+ z direction or −).
Since the electrostatic force is applied in the z direction), the plate member 5 may not move smoothly. On the other hand, in the light modulation device 100 of FIGS. 1 and 2, the drive voltage Vd is not directly applied to the plate material 5, and the electrodes 7A and 7B applied to the plate material 5 are used.
The electrostatic force in the direction perpendicular to the first substrate 1 (or the second substrate 2) due to is canceled out. Therefore, the above deflection of the plate material 5 does not occur at all or hardly occurs.

【0024】図1,図2に示した光変調装置100で
は、板材5を導電性材料により構成し、封入流体Lを誘
電性の流体としたが、板材5を誘電性の材料により構成
し、封入流体を板材5よりも比誘電率が小さい流体とす
ることで、図1,図2に示した光変調装置100と同
様、静電引力により板材5を移動させることができる。
In the optical modulator 100 shown in FIGS. 1 and 2, the plate member 5 is made of a conductive material and the enclosed fluid L is a dielectric fluid. However, the plate member 5 is made of a dielectric material, By using a fluid having a relative dielectric constant smaller than that of the plate material 5 as the enclosed fluid, the plate material 5 can be moved by electrostatic attraction, as in the light modulator 100 shown in FIGS.

【0025】また、板材5を誘電性の材料により構成
し、封入流体Lを板材5よりも比誘電率が小さい流体と
することもできる。この場合には、板材5は静電斥力に
より移動することになる。すなわち、駆動電圧Vdがゼ
ロボルトのときの板材5は図2に示した位置で力学的に
安定する実施例の構成では、駆動電圧Vdが大きくなる
に従って板材5は電極7A,7B側(図面の−x方向)
に移動する。駆動電圧Vdが所定の値になると板材5は
図1に示した位置に達する。
Alternatively, the plate material 5 may be made of a dielectric material, and the enclosed fluid L may be a fluid having a relative dielectric constant smaller than that of the plate material 5. In this case, the plate material 5 moves due to electrostatic repulsion. That is, in the configuration of the embodiment in which the plate member 5 is mechanically stable at the position shown in FIG. 2 when the drive voltage Vd is zero volt, the plate member 5 is closer to the electrodes 7A and 7B (-in the drawing) as the drive voltage Vd increases. x direction)
Go to When the drive voltage Vd reaches a predetermined value, the plate material 5 reaches the position shown in FIG.

【0026】さらに、板材5を絶縁性材料により構成
し、封入流体を導電性とすることもできる。この場合に
も、板材5は静電斥力により移動することになるが、電
極7A,7B間に過電流が流れることを防ぐために、通
常、これら電極7A,7Bの表面に絶縁性薄膜を形成し
ておく必要がある。また、隣接する1画素機構単位(板
材5と、弾性支持体6(弾性部材6A,6B)と、電極
7A,7Bとからなる1画素分についての機構)間の干
渉を防止するために、隣接する隙間4同士を、適宜の手
段により(例えば、スペーサ8により)相互に絶縁する
こともできる。
Further, the plate member 5 may be made of an insulating material so that the enclosed fluid is electrically conductive. In this case as well, the plate material 5 moves due to electrostatic repulsion, but in order to prevent overcurrent from flowing between the electrodes 7A and 7B, an insulating thin film is usually formed on the surfaces of these electrodes 7A and 7B. Need to be kept. In addition, in order to prevent interference between adjacent one pixel mechanism units (mechanisms for one pixel including the plate member 5, the elastic support member 6 (elastic members 6A and 6B), and the electrodes 7A and 7B), adjacent one pixel mechanism units are adjacent to each other. It is also possible to insulate the gaps 4 to be insulated from each other by an appropriate means (for example, by the spacer 8).

【0027】図3(a)〜(c)は、本発明の光変調装
置の他の実施例を示す図である。図3の光変調装置で
は、入射光Binは光通過部3を隙間4に向けて通過し
た後に第2基板2に形成された光反射層にて反射する。
反射光の量は、板材5により変化される。該反射光は、
出射光Boutとして光通過部3を通過する。図3
(a)〜(c)に示す光変調装置では、第2基板2の電
極7B′は反射層としても機能する。この電極7B′と
して、アルミ電極等の光反射率が高いものを使用してい
る。また、板材5として、黒の顔料を含んだ材料からな
る光反射率及び光透過率が低いものを使用している。こ
の光変調装置では、板材5の位置によって、反射光(出
射光Bout)の量を変化させることができる。すなわ
ち、図3(a)では、板材5が入射光Binを遮蔽して
いないので、出射光Boutは100パーセントであ
る。図3(b)では、板材5が入射光Binの一部を遮
蔽しており、入射光Binの遮蔽されない部分が出射光
Boutとして反射されている。図3(c)では、板材
5は入射光Binを全て遮蔽しており、出射光Bout
はゼロパーセントである。
FIGS. 3A to 3C are diagrams showing another embodiment of the optical modulator of the present invention. In the optical modulator of FIG. 3, the incident light Bin passes through the light passage portion 3 toward the gap 4 and then is reflected by the light reflection layer formed on the second substrate 2.
The amount of reflected light is changed by the plate material 5. The reflected light is
The emitted light Bout passes through the light passing portion 3. FIG.
In the optical modulators shown in (a) to (c), the electrode 7B 'of the second substrate 2 also functions as a reflective layer. As the electrode 7B ', an electrode having a high light reflectance such as an aluminum electrode is used. Further, as the plate material 5, a material having a low light reflectance and a light transmittance made of a material containing a black pigment is used. In this light modulator, the amount of reflected light (emitted light Bout) can be changed depending on the position of the plate member 5. That is, in FIG. 3A, since the plate member 5 does not block the incident light Bin, the emitted light Bout is 100%. In FIG. 3B, the plate member 5 shields a part of the incident light Bin, and the unshielded part of the incident light Bin is reflected as the emitted light Bout. In FIG. 3C, the plate member 5 shields all the incident light Bin, and the outgoing light Bout.
Is zero percent.

【0028】以上に述べた光変調装置では、入射光Bi
nを高い効率で利用するために、第1基板1又は第2基
板2の面積に対する光通過部3の占有面積の割合(開口
率)をできるだけ大きくすることが望ましい。しかし、
光通過部3を大きくすれば、板材5の面積も大きくしな
ければならない。したがって、板材5の移動距離も大き
くなり、駆動電圧Vdを大きくしなければならない。駆
動電圧Vdを大きくすると、弾性部材6A,6Bの設計
も容易ではなくなる。このような問題を解消するため
に、図4に示すように複数の板材(同図では51,5
2,53)を直列に連結することができる。この場合に
は、板材51〜53についてそれぞれ設けられた電極7
A同士、及び電極7B同士は相互に短絡しておく。
In the light modulator described above, the incident light Bi
In order to use n with high efficiency, it is desirable to maximize the ratio (aperture ratio) of the area occupied by the light passage portion 3 to the area of the first substrate 1 or the second substrate 2. But,
If the light passage portion 3 is enlarged, the area of the plate material 5 must be enlarged. Therefore, the moving distance of the plate member 5 also becomes large, and the drive voltage Vd must be increased. When the drive voltage Vd is increased, the elastic members 6A and 6B are not easily designed. In order to solve such a problem, as shown in FIG. 4, a plurality of plate materials (in FIG.
2, 53) can be connected in series. In this case, the electrodes 7 provided for the plate members 51 to 53, respectively.
The electrodes A and the electrodes 7B are short-circuited with each other.

【0029】高精度ディスプレイの場合、1画素のサイ
ズは概ね200μm×200μm程度である。光通過部
3のサイズが10μm×200μmの場合には、板材5
を10個直列に配置すれば1画素分に相当することにな
る。
In the case of a high precision display, the size of one pixel is approximately 200 μm × 200 μm. When the size of the light passage portion 3 is 10 μm × 200 μm, the plate member 5
If 10 pixels are arranged in series, this corresponds to one pixel.

【0030】上記の直列連結方式には以下のような利点
がある。まず、弾性部材6A,6Bが複数の板材51〜
53を支持しているので開口率が増大する。また、静電
気力は板材の数に比例すると考えられるので、同じ駆動
電圧Vdに対して、例えばn個の板材を直列接続した場
合の静電気力は、板材が1個の場合のn倍となる。この
ことは、駆動電圧Vdをより低くでき、あるいは弾性部
材6A,6Bの幅がもっと太くてもよいという利点をも
たらす。
The above-mentioned series connection method has the following advantages. First, the elastic members 6A and 6B have a plurality of plate members 51 to 51.
Since 53 is supported, the aperture ratio is increased. Further, since it is considered that the electrostatic force is proportional to the number of plate materials, the electrostatic force when, for example, n plate materials are connected in series with respect to the same drive voltage Vd is n times that in the case of one plate material. This brings about an advantage that the driving voltage Vd can be made lower, or the elastic members 6A and 6B can be made wider.

【0031】さらに、直列連結方式と並列連結方式を併
存させることもできる。この場合には、複数の板材の移
動を、所望の方向(図1におけるX方向)のみに制限す
る機構を採用することが望ましい。例えば、図5に示す
ように、1画素あたり3段の並列の板材群5A,5B,
5Cを構成し、それぞれの板材群を構成する板材同士を
相互に固定連結する。ここでは、板材群5Aは板材5A
〜5Aからなり、板材群5Bは板材5B〜5B
からなり、また板材群5Cは板材5C〜5Cからな
る。板材群5A〜5C同士も相互に固定連結して一体化
し、これらの並列の板材群5A〜5C全体を適宜箇所
(図5では、板材5Bの2箇所及び板材5A及び5
の各1箇所)に設けた弾性部材61A〜61D(こ
れらは、弾性支持体6を構成する)を介してスペーサ
(ここでは、符号8C,8Dで示す)に取り付ける。な
お、図示はしないが、各板材についての第1基板側の電
極同士、及び第2基板側の電極同士は図4の場合と同様
相互に短絡しておく。なお、図5では、板材群5A〜5
Cと、弾性部材61A〜61Dと、各電極7A,7Bと
が1画素分機構単位を構成している。
Further, the serial connection method and the parallel connection method can coexist. In this case, it is desirable to employ a mechanism that restricts the movement of the plurality of plate materials only in a desired direction (X direction in FIG. 1). For example, as shown in FIG. 5, parallel plate material groups 5A, 5B with three stages per pixel,
5C is constituted, and the plate members constituting each plate group are fixedly connected to each other. Here, the plate material group 5A is the plate material 5A.
Consist 1 to 5 A 4, the plate group 5B plate 5B 1 ~5B 5
Further, the plate material group 5C is composed of the plate materials 5C 1 to 5C 4 . Between plate group 5A~5C also integrally fixedly connected to each other, in the entire plate group 5A~5C of these parallel appropriate positions (Fig. 5, two points, and plate members 5A 4 and 5 of the plate 5B 1
Elastic members 61A~61D provided in one each) of C 4 (these are spacers (here via the constituting elastic support 6), reference numeral 8C, attached to indicated by 8D). Although not shown, the electrodes on the first substrate side and the electrodes on the second substrate side of each plate material are short-circuited to each other as in the case of FIG. In addition, in FIG. 5, plate material groups 5A-5
C, the elastic members 61A to 61D, and the electrodes 7A and 7B form a mechanical unit for one pixel.

【0032】また、開口率は、以下のような理由によっ
ても小さくなる。すなわち、後述する製造例でも示すよ
うに、例えば図1の光変調装置は、スペーサ8A,8B
の一部分、弾性部材6、板材5及び電極7Bが作り付け
られた第2基板2と、スペーサ8A,8Bの残り部分、
遮光層10及び電極7Aが作り付けられた第1基板1と
を接合することで組み立てられる。この接合に際しての
位置合わせにおいてずれが発生する。特に、光変調装置
の表示面積が大きい程、上記ずれは大きくなる。このず
れに対処するために、第1基板1の電極7A,7B及び
光通過部3のサイズに対して位置合わせのマージンをと
る必要があり、このマージンのために開口率が小さくな
る。
The aperture ratio also becomes small for the following reasons. That is, as shown in a manufacturing example described later, for example, the optical modulator of FIG. 1 has spacers 8A and 8B.
Part of the second substrate 2 on which the elastic member 6, the plate member 5 and the electrode 7B are mounted, and the remaining portions of the spacers 8A and 8B,
It is assembled by bonding the light shielding layer 10 and the first substrate 1 having the electrode 7A built therein. Misalignment occurs in alignment during this joining. In particular, the larger the display area of the light modulator, the larger the deviation. In order to cope with this deviation, it is necessary to provide a positioning margin with respect to the sizes of the electrodes 7A and 7B of the first substrate 1 and the light passage portion 3, and this margin reduces the aperture ratio.

【0033】上記の問題を解消するために、遮光層10
を第2基板2側に形成し、第1基板1の全面に電極7A
を形成し、この電極7Aを複数の板材5で共用するよう
にすることができる。 本発明の光変調装置をディスプ
レイに応用した場合において、表示を単純マトリクス駆
動により行うときは、図6に示すように1画素分機構単
位における各板材5が同じ第1基板1の電極7Aを共用
すればよい。また、TFT駆動の場合には、全ての1画
素分機構単位が同じ第1基板の電極7Aを共用すればよ
い。
In order to solve the above problems, the light shielding layer 10
Is formed on the second substrate 2 side, and the electrode 7A is formed on the entire surface of the first substrate 1.
Can be formed so that the electrode 7A can be shared by a plurality of plate members 5. When the light modulator of the present invention is applied to a display and when the display is performed by simple matrix drive, as shown in FIG. 6, each plate member 5 in the mechanism unit for one pixel shares the same electrode 7A of the first substrate 1 as shown in FIG. do it. Further, in the case of TFT driving, it is sufficient to share the electrode 7A of the first substrate having the same mechanical unit for all pixels.

【0034】上記のような構造とすることで、組み立て
時に、第1基板1と第2基板2との位置ずれがあって
も、電極7A,7B及び光通過部3に影響を及ぼさな
い。したがって、設計マージンを取らなくてもよいの
で、位置ずれによる開口率の低下を防止することができ
る。なお、1画素分機構単位又は複数の1画素分機構単
位で電極7Aを共有した場合には、電極7Aと7Bとが
非対称となるので、フリジング効果によって+z方向ま
た−z方向に静電気力が発生することもある。ただし、
この静電気力は通常小さいので、弾性部材6の+z方向
及び−z方向の剛性を高くすることによりこの問題を解
決することができる。
With the above structure, even if the first substrate 1 and the second substrate 2 are misaligned during assembly, the electrodes 7A and 7B and the light passage portion 3 are not affected. Therefore, since it is not necessary to take a design margin, it is possible to prevent the aperture ratio from being lowered due to the position shift. When the electrode 7A is shared by one pixel mechanism unit or a plurality of one pixel mechanism units, since the electrodes 7A and 7B are asymmetrical, an electrostatic force is generated in the + z direction or the −z direction due to the frising effect. There are also things to do. However,
Since this electrostatic force is usually small, this problem can be solved by increasing the rigidity of the elastic member 6 in the + z direction and the −z direction.

【0035】本発明の光変調装置を、数字だけを表示す
るような決まったパターンを表示するディスプレイに応
用する場合には、必要な画素数が非常に少ないので、各
板材5(又は板材群)を直接に駆動すればよい。また、
本発明の光変調装置を、通常のモノクロディスプレイや
カラーディスプレイに応用する場合(すなわち、各画素
をアレー状に配置し、任意の画素にアクセスする場合)
の駆動方法は、TN型液晶ディスプレイで用いられてい
るマトリクッス駆動回路と基本的に同じである。例え
ば、図1の光変調装置をディスプレイに応用した場合、
画素数が少ないときには各板材5を直接マトリクス回路
で駆動すればよいし、画素が多いときには各板材5を電
極7A,7Bとマトリクス回路との間に、トランジスタ
やダイオード等の液晶ディスプレイに多く使われている
非線形素子を入れて駆動すればよい。
When the light modulation device of the present invention is applied to a display which displays a fixed pattern such as displaying only numbers, the required number of pixels is very small, so that each plate member 5 (or plate member group) is required. Can be driven directly. Also,
When the light modulator of the present invention is applied to a normal monochrome display or color display (that is, when each pixel is arranged in an array and any pixel is accessed)
The driving method of is basically the same as the matrix driving circuit used in the TN type liquid crystal display. For example, when the light modulator of FIG. 1 is applied to a display,
When the number of pixels is small, each plate member 5 may be directly driven by a matrix circuit. When the number of pixels is large, each plate member 5 is often used for a liquid crystal display such as a transistor or a diode between the electrodes 7A and 7B and the matrix circuit. It suffices to insert a non-linear element that is present and drive.

【0036】液晶ディスプレイの場合には、同じ方向の
電圧をかけ続けると、特性が劣化し易いので反転交流電
圧が用いられる。このため、駆動回路が複雑となり、ま
たフリッカが生じ易い。これに対して、本発明の光変調
装置を用いたディスプレイでは、通常は単方向パルスを
用いるので、液晶ディスプレイのような劣化が生じにく
いし、駆動回路が複雑とならず、かつフリッカも生じに
くい。
In the case of a liquid crystal display, if a voltage in the same direction is continuously applied, the characteristics are likely to deteriorate, and therefore an inversion AC voltage is used. Therefore, the drive circuit becomes complicated and flicker is likely to occur. On the other hand, in the display using the light modulation device of the present invention, normally, unidirectional pulses are used, so that deterioration unlike liquid crystal displays does not easily occur, the drive circuit does not become complicated, and flicker hardly occurs. .

【0037】以上述べた光変調装置は、室内照明光,自
然光等の環境光や人工光(バックライト)を光源とする
モノクロディスプレイや、人工光を用いたカラーディス
プレイに応用することができる。モノクロディスプレイ
では二次元的に変調された透過光や反射光が駆動回路の
信号に対応したイメージを作り出す。また、カラーディ
スプレイでは、第1基板1又は第1基板2の表面の1画
素ごとに、赤(R)、緑(G)、青(B)の光三原色の
フィルタ素片をアレー状に配置する。図7は、カラーデ
ィスプレイの一例を示す図であり、図示した3つの光通
過部3に、それぞれR,G,Bのフィルタ素片141〜
143が形成された様子が示されている。電極7Aは複
数の1画素分機構単位で共有となっており、電極7Bに
はTFT11(TFTの3つの電極を111〜113で
示す)により駆動電圧が供給される構成となっている。
光源は導光板12と蛍光ランプ13とからなり、導光板
12からの光Binが第2基板2に入射する。なお、説
明の便宜上、図7ではスペーサを符号8で、弾性部材を
符号6で示す。なお、カラーフィルタ形成法について、
従来のカラー液晶ディスプレイで用いられている技術を
採用することができるので、詳述はしない。
The light modulator described above can be applied to a monochrome display using ambient light such as room illumination light and natural light or artificial light (backlight) as a light source, and a color display using artificial light. In a monochrome display, transmitted light and reflected light that are two-dimensionally modulated create an image corresponding to the signal from the drive circuit. In the color display, filter elements of the three primary colors of light of red (R), green (G), and blue (B) are arranged in an array for each pixel on the surface of the first substrate 1 or the first substrate 2. . FIG. 7: is a figure which shows an example of a color display, and the filter element pieces 141-R of R, G, and B are each shown in the three light passage parts 3 shown in figure.
It is shown that 143 has been formed. The electrode 7A is shared by a plurality of pixels for one mechanical unit, and the driving voltage is supplied to the electrode 7B by the TFT 11 (three electrodes of the TFT are shown by 111 to 113).
The light source includes the light guide plate 12 and the fluorescent lamp 13, and the light Bin from the light guide plate 12 enters the second substrate 2. For convenience of explanation, spacers are indicated by reference numeral 8 and elastic members are indicated by reference numeral 6 in FIG. 7. Regarding the color filter forming method,
Since the technology used in the conventional color liquid crystal display can be adopted, it will not be described in detail.

【0038】なお、本発明の光変調装置を、光学系と組
み合わせることで、オーバーヘッドプロジェクタのよう
な投射型の表示装置に応用することもできる。
The optical modulator of the present invention can be applied to a projection type display device such as an overhead projector by combining it with an optical system.

【0039】〔製造例〕以上述べた光変調装置は、マイ
クロリソグラフィ技術、場合によって印刷技術を利用す
ることで容易に実現することができる。以下、板材5と
して誘電率が小さいものを用い、封入流体Lとして誘電
率が大きいものを用いた光変調装置(便宜上、この製造
例では単純マトリクス駆動の透過型とする)の製造プロ
セスについて説明する。
[Manufacturing Example] The light modulation device described above can be easily realized by using a microlithography technique and, in some cases, a printing technique. Hereinafter, a manufacturing process of an optical modulator (using a simple matrix drive transmissive type in this manufacturing example) in which the plate material 5 has a small dielectric constant and the enclosed fluid L has a large dielectric constant will be described. .

【0040】まず、第1基板1の製造プロセスを図8に
より説明する。 (1−a)第1基板(厚さ1mmのガラス基板)1の一
方の面に、Crを厚さ1000Åでコーティングし遮光
層10を形成し、所定部分からCrを除去して光通過部
3を形成した(図8(a))。 (1−b)この上に厚さ1000ÅのSiO層を形成
した(図8(b))。 (1−c)さらに、厚さ1000ÅのITO(Indi
um Tin Oxide)層を形成した後、パターニ
ングして第1基板1の電極7Aを形成した(図8
(c))。なお、ITO層は透明である。 (1−d)厚さ3μmのポリイミドを形成しパターニン
グした。この後、熱処理することで、厚さ1.5μmの
スペーサ8の一部を形成した(図8(d))。
First, the manufacturing process of the first substrate 1 will be described with reference to FIG. (1-a) One surface of the first substrate (glass substrate having a thickness of 1 mm) 1 is coated with Cr to a thickness of 1000 Å to form the light-shielding layer 10, and the light-transmitting portion 3 is formed by removing Cr from a predetermined portion. Was formed (FIG. 8A). (1-b) A 1000 Å thick SiO 2 layer was formed thereon (FIG. 8B). (1-c) Furthermore, ITO (Indi) with a thickness of 1000 Å
um Tin Oxide) layer is formed and then patterned to form the electrode 7A of the first substrate 1 (FIG. 8).
(C)). The ITO layer is transparent. (1-d) Polyimide having a thickness of 3 μm was formed and patterned. After that, heat treatment was performed to form a part of the spacer 8 having a thickness of 1.5 μm (FIG. 8D).

【0041】次に、第2基板2の製造プロセスを図9に
より説明する。 (2−a)第2基板(厚さ1mmのガラス基板)2の一
方の面に、1000ÅのITOをコーティングした後、
パターニングして電極7Bを形成した(図9(a))。 (2−b)レジストを1.5μm塗布し、第2基板のス
ペーサ8部分に穴を開けた(図9(b))。 (2−c)感光性のポリイミド(比誘電率が3程度のも
の)を6μm塗布した(図9(c))。ここで用いるポ
リイミドは、黒色顔料を含浸させたものを用いた。 (2−d)パターニングにより、弾性部材6及び板材5
を形成した(図9(d))。 (2−e)(2−b)で塗布したレジストを除去する。
この後、熱処理することで、厚さ3μmのスペーサ8の
一部を形成した(図9(e))。
Next, the manufacturing process of the second substrate 2 will be described with reference to FIG. (2-a) After coating 1000 Å ITO on one surface of the second substrate (1 mm thick glass substrate) 2,
The electrode 7B was formed by patterning (FIG. 9A). (2-b) A resist was applied to a thickness of 1.5 μm, and a hole was made in the spacer 8 portion of the second substrate (FIG. 9B). (2-c) Photosensitive polyimide (having a relative dielectric constant of about 3) was applied to a thickness of 6 μm (FIG. 9C). The polyimide used here was impregnated with a black pigment. (2-d) By patterning, the elastic member 6 and the plate member 5
Was formed (FIG. 9 (d)). (2-e) The resist applied in (2-b) is removed.
Then, a heat treatment was performed to form a part of the spacer 8 having a thickness of 3 μm (FIG. 9E).

【0042】上記の第1基板1と第2基板2とを、各基
板のスペーサ同士の位置合わせを行いつつ、向かい合わ
せに接合した。この後、スペーサにより形成される隙間
内に比誘電率が25の液晶を注入した。第1基板1と第
2基板との接合を、液晶中に浸漬させた状態で行うと、
液晶注入を容易に行うことができる。
The first substrate 1 and the second substrate 2 were joined face to face while aligning the spacers of the substrates. Then, a liquid crystal having a relative dielectric constant of 25 was injected into the gap formed by the spacer. When the bonding between the first substrate 1 and the second substrate is performed while being immersed in the liquid crystal,
Liquid crystal can be easily injected.

【0043】[0043]

【発明の効果】本発明は上記のように構成したので、従
来になく簡易な構成の、各種電磁波の二次元フィルタ、
二次元光変調装置、二次元光演算装置等に応用される光
変調装置を提供することができる。また、陰極管ディス
プレイと液晶ディスプレイの長所の多くを備えたディス
プレイ装置を提供することができる。
Since the present invention is configured as described above, a two-dimensional filter for various electromagnetic waves having a simpler structure than ever,
An optical modulator applied to a two-dimensional optical modulator, a two-dimensional optical arithmetic device, etc. can be provided. Also, it is possible to provide a display device having many of the advantages of the cathode ray tube display and the liquid crystal display.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光変調装置の一実施例を示す断面図で
あり(a)は光変調装置の側断面図、(b)はスペーサ
に弾性部材を介して板材が取り付けられた様子を示す平
面図である。
1A and 1B are cross-sectional views showing an embodiment of a light modulation device of the present invention, FIG. 1A is a side cross-sectional view of a light modulation device, and FIG. 1B is a state in which a plate member is attached to a spacer via an elastic member. It is a top view shown.

【図2】(a),(b)はそれぞれ図1(a),(b)
に対応する図であり、駆動電圧を所定の電圧としたとき
の板材の移動の様子を示すである。
2 (a) and (b) are FIG. 1 (a) and (b), respectively.
It is a figure corresponding to, and is a state of the movement of the plate material when the drive voltage is set to a predetermined voltage.

【図3】本発明の光変調装置の他の実施例を示す図であ
る。
FIG. 3 is a diagram showing another embodiment of the optical modulator of the present invention.

【図4】複数の板材を直列に連結した実施例を示す図で
ある。
FIG. 4 is a diagram showing an embodiment in which a plurality of plate materials are connected in series.

【図5】1画素あたり3段の並列の板材群を示す図であ
る。
FIG. 5 is a diagram showing a group of parallel plate materials having three stages per pixel.

【図6】遮光層を第2基板側に形成し、第1基板の全面
に電極を形成し、この電極を1画素分機構単位で共用す
る実施例を示す図である。
FIG. 6 is a diagram showing an example in which a light-shielding layer is formed on the second substrate side, an electrode is formed on the entire surface of the first substrate, and this electrode is shared by one pixel as a mechanical unit.

【図7】遮光層を第2基板側に形成し、第1基板の全面
に電極を形成し、この電極を複数の1画素分機構単位で
共用する実施例を示す図である。
FIG. 7 is a diagram showing an embodiment in which a light-shielding layer is formed on the second substrate side, electrodes are formed on the entire surface of the first substrate, and the electrodes are shared by a plurality of one-pixel mechanical units.

【図8】第1基板の製造プロセスの説明図である。FIG. 8 is an explanatory diagram of a manufacturing process of the first substrate.

【図9】第2基板の製造プロセスの説明図である。FIG. 9 is an explanatory diagram of the manufacturing process of the second substrate.

【符号の説明】[Explanation of symbols]

1 第1基板 2 第2基板 3 光通過部 4 隙間 5 板材 6 弾性支持体 6A,6B 弾性部材 7A,7B,7B′電極 8,8A,8B スペーサ 9 電源 10 遮光層 11 TFT 12 導光板 13 蛍光ランプ 111〜113 TFTの電極 141〜143 フィルタ素片 1 First Substrate 2 Second Substrate 3 Light Passing Portion 4 Gap 5 Plate Material 6 Elastic Support 6A, 6B Elastic Member 7A, 7B, 7B 'Electrode 8, 8A, 8B Spacer 9 Power Supply 10 Shading Layer 11 TFT 12 Light Guide Plate 13 Fluorescence Lamps 111-113 TFT electrodes 141-143 Filter pieces

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 隙間をもって平行配置された第1基板及
び第2基板とからなる基板対の、何れか一方の基板又は
双方の基板に複数の光通過部を残して遮光層が形成され
た光変調装置であって、 前記各光通過部ごとに設けられ、各光通過部との前記各
基板面方向の重なり度合いを変化させることで、前記第
1基板側から前記第2基板側に向かう光、又は前記第2
基板側から前記第1基板側に向かう光の量を変化させる
板材と、 一部分又は複数部分が前記基板対に対して固定され、他
の一部分又は複数部分が前記板材の少なくとも1つを支
持し、該少なくとも1つの板材を力学的安定位置に弾性
復帰させる弾性支持体と、 前記弾性支持体、前記第1基板、前記第2基板のうちの
少なくとも2つに形成され、前記板材を、前記重なり度
合いが変化する向きに静電力により移動させるための1
組の電極と、を有してなる光変調装置。
1. A light in which a light-shielding layer is formed leaving a plurality of light passage portions on either one or both substrates of a substrate pair consisting of a first substrate and a second substrate arranged in parallel with a gap. A modulator, which is provided for each of the light passage portions, and changes the degree of overlap with each light passage portion in the direction of each of the substrate surfaces, so that the light traveling from the first substrate side to the second substrate side is changed. Or the second
A plate member that changes the amount of light traveling from the substrate side to the first substrate side, and a part or a plurality of parts is fixed to the substrate pair, and another part or a plurality of parts supports at least one of the plate members, An elastic support member that elastically returns the at least one plate member to a mechanically stable position, and at least two of the elastic support member, the first substrate, and the second substrate, and the plate members are overlapped with each other. 1 for moving by electrostatic force in the direction that changes
And a pair of electrodes, a light modulator.
【請求項2】 前記第1基板及び前記第2基板が共に透
明であり、前記遮光層が少なくとも前記第1基板に形成
されてなる請求項1に記載の光変調装置であって、 前記第2基板を前記隙間に向けて通過した後に前記第1
基板に形成された光通過部を通過する光の量を、前記板
材が変化させることを特徴とする光変調装置。
2. The light modulation device according to claim 1, wherein both the first substrate and the second substrate are transparent, and the light shielding layer is formed on at least the first substrate. After passing through the substrate toward the gap, the first
An optical modulator, wherein the plate material changes the amount of light passing through a light passage portion formed on a substrate.
【請求項3】 前記第1基板及び前記第2基板が共に透
明であり、前記遮光層が少なくとも前記第2基板に形成
されてなる請求項1に記載の光変調装置であって、 前記第2基板に形成された光通過部を前記隙間に向けて
通過した後に前記第1基板を通過する光の量を、前記板
材が変化させることを特徴とする光変調装置。
3. The light modulation device according to claim 1, wherein both the first substrate and the second substrate are transparent, and the light shielding layer is formed on at least the second substrate. The light modulating device, wherein the plate member changes the amount of light passing through the first substrate after passing through the light passage portion formed on the substrate toward the gap.
【請求項4】 前記第1基板が透明であり、前記遮光層
が前記第1基板に形成されてなる請求項1に記載の光変
調装置であって、 前記第2基板の前記隙間側の面又は前記板材の前記第1
基板側の面に光反射層が形成され、 前記第1基板に形成された光通過部を前記隙間に向けて
通過した後に前記光反射層にて反射し再び前記光通過部
を通過する光の量を、前記板材が変化させることを特徴
とする光変調装置。
4. The optical modulator according to claim 1, wherein the first substrate is transparent, and the light-shielding layer is formed on the first substrate, wherein a surface of the second substrate on the gap side. Alternatively, the first of the plate materials
A light reflection layer is formed on the surface of the substrate side, and after passing through the light passage portion formed on the first substrate toward the gap, the light reflected by the light reflection layer is passed through the light passage portion again. An optical modulator, wherein the plate material changes the amount.
【請求項5】 前記板材が高分子材料で形成されている
ことを特徴とする、請求項1〜4に記載の光変調装置。
5. The light modulation device according to claim 1, wherein the plate material is made of a polymer material.
【請求項6】 前記板材を静電気力により移動させるた
めの電極が、前記第1基板と前記第2基板とにのみ形成
されていることを特徴とする請求項1〜5に記載の光変
調装置。
6. The light modulation device according to claim 1, wherein an electrode for moving the plate member by electrostatic force is formed only on the first substrate and the second substrate. .
【請求項7】 前記隙間の間隔がスペーサにより一定に
され、当該隙間に液体又は気体が封入されていることを
特徴とする請求項1〜6に記載の光変調装置。
7. The optical modulator according to claim 1, wherein the gap is made uniform by a spacer, and a liquid or gas is sealed in the gap.
【請求項8】 前記第1基板又は前記第2基板に、前記
少なくとも1つの板材と、前記弾性支持体と、前記1組
の電極とからなる1画素分についての機構単位ごとに、
赤、緑、青の光三原色のフィルタがマトリクス状に配列
されてなるなることを特徴とする請求項1〜7に記載の
光変調装置。
8. A mechanism unit for one pixel, which comprises the at least one plate member, the elastic support, and the one set of electrodes on the first substrate or the second substrate,
8. The light modulation device according to claim 1, wherein filters of three primary colors of light of red, green and blue are arranged in a matrix.
【請求項9】 請求項1〜8に記載の光変調装置を用い
たことを特徴するディスプレイ装置。
9. A display device using the light modulation device according to claim 1.
JP35261595A 1995-12-29 1995-12-29 Light modulation device and display device Expired - Fee Related JP3799092B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP35261595A JP3799092B2 (en) 1995-12-29 1995-12-29 Light modulation device and display device
US08/771,566 US5745281A (en) 1995-12-29 1996-12-20 Electrostatically-driven light modulator and display
EP96309485A EP0786679A3 (en) 1995-12-29 1996-12-24 Electrostatically-driven light modulator and display
KR1019960075231A KR970048702A (en) 1995-12-29 1996-12-28 Capacitive Drive Optical Modulation Devices and Displays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35261595A JP3799092B2 (en) 1995-12-29 1995-12-29 Light modulation device and display device

Publications (2)

Publication Number Publication Date
JPH09189869A true JPH09189869A (en) 1997-07-22
JP3799092B2 JP3799092B2 (en) 2006-07-19

Family

ID=18425264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35261595A Expired - Fee Related JP3799092B2 (en) 1995-12-29 1995-12-29 Light modulation device and display device

Country Status (4)

Country Link
US (1) US5745281A (en)
EP (1) EP0786679A3 (en)
JP (1) JP3799092B2 (en)
KR (1) KR970048702A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322807A (en) * 2002-04-30 2003-11-14 Hewlett Packard Co <Hp> Microminiature mirror device and method for forming the same
JP2008532069A (en) * 2005-02-23 2008-08-14 ピクストロニクス,インコーポレイテッド Method and apparatus for spatial light modulation
JP2008533510A (en) * 2005-02-23 2008-08-21 ピクストロニクス,インコーポレイテッド Display device and manufacturing method thereof
JP2008197668A (en) * 2005-02-23 2008-08-28 Pixtronix Inc Display methods and apparatus
JP2008538009A (en) * 2005-02-23 2008-10-02 ピクストロニクス,インコーポレイテッド Display method and apparatus
JP2009520245A (en) * 2005-12-19 2009-05-21 ピクストロニクス,インコーポレイテッド Direct-view MEMS display device and method for generating an image thereon
JP2009139444A (en) * 2007-12-03 2009-06-25 Seiko Epson Corp Electro-optical display device and electronic device
JP2011039534A (en) * 2005-02-23 2011-02-24 Pixtronix Inc Method and apparatus for actuating display
KR20110108129A (en) * 2010-03-26 2011-10-05 삼성전자주식회사 Mems shutter and display apparatus having the same
JP2012242712A (en) * 2011-05-23 2012-12-10 Japan Display East Co Ltd Display device and manufacturing method thereof
JP2012242495A (en) * 2011-05-17 2012-12-10 Japan Display East Co Ltd Display device
US8848294B2 (en) 2010-05-20 2014-09-30 Qualcomm Mems Technologies, Inc. Method and structure capable of changing color saturation
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8891152B2 (en) 2008-08-04 2014-11-18 Pixtronix, Inc. Methods for manufacturing cold seal fluid-filled display apparatus
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US9019590B2 (en) 2004-02-03 2015-04-28 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US9082353B2 (en) 2010-01-05 2015-07-14 Pixtronix, Inc. Circuits for controlling display apparatus
US9087486B2 (en) 2005-02-23 2015-07-21 Pixtronix, Inc. Circuits for controlling display apparatus
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes
US9116344B2 (en) 2008-10-27 2015-08-25 Pixtronix, Inc. MEMS anchors
US9128277B2 (en) 2006-02-23 2015-09-08 Pixtronix, Inc. Mechanical light modulators with stressed beams
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators
US9135868B2 (en) 2005-02-23 2015-09-15 Pixtronix, Inc. Direct-view MEMS display devices and methods for generating images thereon
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
US9177523B2 (en) 2005-02-23 2015-11-03 Pixtronix, Inc. Circuits for controlling display apparatus
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9336732B2 (en) 2005-02-23 2016-05-10 Pixtronix, Inc. Circuits for controlling display apparatus
US9500853B2 (en) 2005-02-23 2016-11-22 Snaptrack, Inc. MEMS-based display apparatus
US9897796B2 (en) 2014-04-18 2018-02-20 Snaptrack, Inc. Encapsulated spacers for electromechanical systems display apparatus

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674562B1 (en) * 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US8014059B2 (en) * 1994-05-05 2011-09-06 Qualcomm Mems Technologies, Inc. System and method for charge control in a MEMS device
US6680792B2 (en) * 1994-05-05 2004-01-20 Iridigm Display Corporation Interferometric modulation of radiation
US7297471B1 (en) 2003-04-15 2007-11-20 Idc, Llc Method for manufacturing an array of interferometric modulators
US7006661B2 (en) * 1995-07-27 2006-02-28 Digimarc Corp Digital watermarking systems and methods
US7907319B2 (en) * 1995-11-06 2011-03-15 Qualcomm Mems Technologies, Inc. Method and device for modulating light with optical compensation
DE69725124T2 (en) * 1996-04-17 2004-06-09 Dicon A/S METHOD AND DEVICE FOR LIGHT CONTROL
US7471444B2 (en) * 1996-12-19 2008-12-30 Idc, Llc Interferometric modulation of radiation
EP0994373A1 (en) * 1998-09-18 2000-04-19 Ngk Insulators, Ltd. Display device comprising actuators
JP4074714B2 (en) * 1998-09-25 2008-04-09 富士フイルム株式会社 Array type light modulation element and flat display driving method
JP3919954B2 (en) * 1998-10-16 2007-05-30 富士フイルム株式会社 Array type light modulation element and flat display driving method
US6288824B1 (en) * 1998-11-03 2001-09-11 Alex Kastalsky Display device based on grating electromechanical shutter
US6191883B1 (en) * 1998-12-30 2001-02-20 Texas Instruments Incorporated Five transistor SRAM cell for small micromirror elements
US6859299B1 (en) 1999-06-11 2005-02-22 Jung-Chih Chiao MEMS optical components
US6275320B1 (en) * 1999-09-27 2001-08-14 Jds Uniphase, Inc. MEMS variable optical attenuator
WO2003007049A1 (en) * 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
US6538796B1 (en) * 2000-03-31 2003-03-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration MEMS device for spacecraft thermal control applications
KR100368637B1 (en) * 2000-05-15 2003-01-24 (주)해라시스템 Flat Panel Display using Microelectromchanical System Devices
AU2000273447A1 (en) * 2000-06-09 2001-12-24 University Of Hawaii Mems optical components
US6962771B1 (en) * 2000-10-13 2005-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Dual damascene process
JP3646250B2 (en) * 2000-11-15 2005-05-11 日本航空電子工業株式会社 Light switch
US6495944B2 (en) 2001-04-18 2002-12-17 International Business Machines Corporation Electrostatic microactuator with viscous liquid damping
US6574032B1 (en) * 2002-01-23 2003-06-03 Eastman Kodak Company Imaging apparatus using dither to minimize pixel effects
US6574033B1 (en) 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same
US7023603B2 (en) * 2002-04-30 2006-04-04 Hewlett-Packard Development Company, L.P. Micro-mirror device including dielectrophoretic microemulsion
US6954297B2 (en) * 2002-04-30 2005-10-11 Hewlett-Packard Development Company, L.P. Micro-mirror device including dielectrophoretic liquid
US6972882B2 (en) * 2002-04-30 2005-12-06 Hewlett-Packard Development Company, L.P. Micro-mirror device with light angle amplification
US6667823B2 (en) * 2002-05-22 2003-12-23 Lucent Technologies Inc. Monolithic in-plane shutter switch
US7781850B2 (en) 2002-09-20 2010-08-24 Qualcomm Mems Technologies, Inc. Controlling electromechanical behavior of structures within a microelectromechanical systems device
CN100579313C (en) * 2002-10-18 2010-01-06 卡耐特无线有限公司 Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US6903487B2 (en) * 2003-02-14 2005-06-07 Hewlett-Packard Development Company, L.P. Micro-mirror device with increased mirror tilt
US6917462B2 (en) * 2003-02-24 2005-07-12 Eastman Kodak Company Method and apparatus for translating a spatial light modulator to provide dithering
US6844953B2 (en) * 2003-03-12 2005-01-18 Hewlett-Packard Development Company, L.P. Micro-mirror device including dielectrophoretic liquid
US6993219B2 (en) * 2003-03-13 2006-01-31 Lucent Technologies Inc. Waveguide/MEMS switch
US6876484B2 (en) 2003-03-24 2005-04-05 Lucent Technologies Inc. Deformable segmented MEMS mirror
JP4338442B2 (en) * 2003-05-23 2009-10-07 富士フイルム株式会社 Manufacturing method of transmissive light modulation element
TW570896B (en) 2003-05-26 2004-01-11 Prime View Int Co Ltd A method for fabricating an interference display cell
US6989920B2 (en) * 2003-05-29 2006-01-24 Asml Holding N.V. System and method for dose control in a lithographic system
US7061591B2 (en) * 2003-05-30 2006-06-13 Asml Holding N.V. Maskless lithography systems and methods utilizing spatial light modulator arrays
US7221495B2 (en) * 2003-06-24 2007-05-22 Idc Llc Thin film precursor stack for MEMS manufacturing
TW593126B (en) * 2003-09-30 2004-06-21 Prime View Int Co Ltd A structure of a micro electro mechanical system and manufacturing the same
US6894824B2 (en) * 2003-10-02 2005-05-17 Hewlett-Packard Development Company, L.P. Micro mirror device with spring and method for the same
US7142346B2 (en) * 2003-12-09 2006-11-28 Idc, Llc System and method for addressing a MEMS display
US6917456B2 (en) * 2003-12-09 2005-07-12 Hewlett-Packard Development Company, L.P. Light modulator
US7161728B2 (en) * 2003-12-09 2007-01-09 Idc, Llc Area array modulation and lead reduction in interferometric modulators
US7532194B2 (en) * 2004-02-03 2009-05-12 Idc, Llc Driver voltage adjuster
US7706050B2 (en) 2004-03-05 2010-04-27 Qualcomm Mems Technologies, Inc. Integrated modulator illumination
US6999228B2 (en) * 2004-03-05 2006-02-14 Hewlett-Packard Development Company, L.P. Micro mirror device with adjacently suspended spring and method for the same
US7855824B2 (en) * 2004-03-06 2010-12-21 Qualcomm Mems Technologies, Inc. Method and system for color optimization in a display
US7720148B2 (en) * 2004-03-26 2010-05-18 The Hong Kong University Of Science And Technology Efficient multi-frame motion estimation for video compression
US7060895B2 (en) * 2004-05-04 2006-06-13 Idc, Llc Modifying the electro-mechanical behavior of devices
US7164520B2 (en) * 2004-05-12 2007-01-16 Idc, Llc Packaging for an interferometric modulator
US7256922B2 (en) * 2004-07-02 2007-08-14 Idc, Llc Interferometric modulators with thin film transistors
US7889163B2 (en) 2004-08-27 2011-02-15 Qualcomm Mems Technologies, Inc. Drive method for MEMS devices
US7560299B2 (en) * 2004-08-27 2009-07-14 Idc, Llc Systems and methods of actuating MEMS display elements
US7623142B2 (en) * 2004-09-14 2009-11-24 Hewlett-Packard Development Company, L.P. Flexure
US7602375B2 (en) * 2004-09-27 2009-10-13 Idc, Llc Method and system for writing data to MEMS display elements
US7808703B2 (en) * 2004-09-27 2010-10-05 Qualcomm Mems Technologies, Inc. System and method for implementation of interferometric modulator displays
US7813026B2 (en) * 2004-09-27 2010-10-12 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US7369296B2 (en) * 2004-09-27 2008-05-06 Idc, Llc Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US7920135B2 (en) 2004-09-27 2011-04-05 Qualcomm Mems Technologies, Inc. Method and system for driving a bi-stable display
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US7424198B2 (en) * 2004-09-27 2008-09-09 Idc, Llc Method and device for packaging a substrate
US7928928B2 (en) * 2004-09-27 2011-04-19 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing perceived color shift
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7420725B2 (en) 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7898521B2 (en) * 2004-09-27 2011-03-01 Qualcomm Mems Technologies, Inc. Device and method for wavelength filtering
US7701631B2 (en) 2004-09-27 2010-04-20 Qualcomm Mems Technologies, Inc. Device having patterned spacers for backplates and method of making the same
US8878825B2 (en) 2004-09-27 2014-11-04 Qualcomm Mems Technologies, Inc. System and method for providing a variable refresh rate of an interferometric modulator display
US7368803B2 (en) * 2004-09-27 2008-05-06 Idc, Llc System and method for protecting microelectromechanical systems array using back-plate with non-flat portion
US8124434B2 (en) 2004-09-27 2012-02-28 Qualcomm Mems Technologies, Inc. Method and system for packaging a display
US7653371B2 (en) 2004-09-27 2010-01-26 Qualcomm Mems Technologies, Inc. Selectable capacitance circuit
US7415186B2 (en) * 2004-09-27 2008-08-19 Idc, Llc Methods for visually inspecting interferometric modulators for defects
US7586484B2 (en) * 2004-09-27 2009-09-08 Idc, Llc Controller and driver features for bi-stable display
US20060066557A1 (en) * 2004-09-27 2006-03-30 Floyd Philip D Method and device for reflective display with time sequential color illumination
US7668415B2 (en) * 2004-09-27 2010-02-23 Qualcomm Mems Technologies, Inc. Method and device for providing electronic circuitry on a backplate
US7710629B2 (en) * 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. System and method for display device with reinforcing substance
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US20060077126A1 (en) * 2004-09-27 2006-04-13 Manish Kothari Apparatus and method for arranging devices into an interconnected array
US20060176487A1 (en) * 2004-09-27 2006-08-10 William Cummings Process control monitors for interferometric modulators
US7692839B2 (en) * 2004-09-27 2010-04-06 Qualcomm Mems Technologies, Inc. System and method of providing MEMS device with anti-stiction coating
US7675669B2 (en) 2004-09-27 2010-03-09 Qualcomm Mems Technologies, Inc. Method and system for driving interferometric modulators
US7684104B2 (en) * 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7345805B2 (en) * 2004-09-27 2008-03-18 Idc, Llc Interferometric modulator array with integrated MEMS electrical switches
US7679627B2 (en) 2004-09-27 2010-03-16 Qualcomm Mems Technologies, Inc. Controller and driver features for bi-stable display
US7807488B2 (en) * 2004-09-27 2010-10-05 Qualcomm Mems Technologies, Inc. Display element having filter material diffused in a substrate of the display element
US7355780B2 (en) 2004-09-27 2008-04-08 Idc, Llc System and method of illuminating interferometric modulators using backlighting
US7916103B2 (en) * 2004-09-27 2011-03-29 Qualcomm Mems Technologies, Inc. System and method for display device with end-of-life phenomena
US7724993B2 (en) * 2004-09-27 2010-05-25 Qualcomm Mems Technologies, Inc. MEMS switches with deforming membranes
US7136213B2 (en) * 2004-09-27 2006-11-14 Idc, Llc Interferometric modulators having charge persistence
US20060076634A1 (en) 2004-09-27 2006-04-13 Lauren Palmateer Method and system for packaging MEMS devices with incorporated getter
WO2006037044A1 (en) * 2004-09-27 2006-04-06 Idc, Llc Method and device for multistate interferometric light modulation
US7359066B2 (en) * 2004-09-27 2008-04-15 Idc, Llc Electro-optical measurement of hysteresis in interferometric modulators
US7911428B2 (en) * 2004-09-27 2011-03-22 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7289256B2 (en) * 2004-09-27 2007-10-30 Idc, Llc Electrical characterization of interferometric modulators
US7710632B2 (en) * 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Display device having an array of spatial light modulators with integrated color filters
US7417783B2 (en) * 2004-09-27 2008-08-26 Idc, Llc Mirror and mirror layer for optical modulator and method
US20060103643A1 (en) * 2004-09-27 2006-05-18 Mithran Mathew Measuring and modeling power consumption in displays
US7843410B2 (en) * 2004-09-27 2010-11-30 Qualcomm Mems Technologies, Inc. Method and device for electrically programmable display
US7259449B2 (en) * 2004-09-27 2007-08-21 Idc, Llc Method and system for sealing a substrate
US7446927B2 (en) * 2004-09-27 2008-11-04 Idc, Llc MEMS switch with set and latch electrodes
US8310441B2 (en) 2004-09-27 2012-11-13 Qualcomm Mems Technologies, Inc. Method and system for writing data to MEMS display elements
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US7583429B2 (en) 2004-09-27 2009-09-01 Idc, Llc Ornamental display device
US7532195B2 (en) * 2004-09-27 2009-05-12 Idc, Llc Method and system for reducing power consumption in a display
US7130104B2 (en) * 2004-09-27 2006-10-31 Idc, Llc Methods and devices for inhibiting tilting of a mirror in an interferometric modulator
US8362987B2 (en) * 2004-09-27 2013-01-29 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US20060066594A1 (en) * 2004-09-27 2006-03-30 Karen Tyger Systems and methods for driving a bi-stable display element
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US7289259B2 (en) 2004-09-27 2007-10-30 Idc, Llc Conductive bus structure for interferometric modulator array
US7299681B2 (en) * 2004-09-27 2007-11-27 Idc, Llc Method and system for detecting leak in electronic devices
US7893919B2 (en) 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US7545550B2 (en) * 2004-09-27 2009-06-09 Idc, Llc Systems and methods of actuating MEMS display elements
US7184193B2 (en) * 2004-10-05 2007-02-27 Hewlett-Packard Development Company, L.P. Systems and methods for amorphous flexures in micro-electro mechanical systems
US7746529B2 (en) * 2005-02-23 2010-06-29 Pixtronix, Inc. MEMS display apparatus
US7742016B2 (en) 2005-02-23 2010-06-22 Pixtronix, Incorporated Display methods and apparatus
US8159428B2 (en) 2005-02-23 2012-04-17 Pixtronix, Inc. Display methods and apparatus
US7304786B2 (en) 2005-02-23 2007-12-04 Pixtronix, Inc. Methods and apparatus for bi-stable actuation of displays
US7755582B2 (en) 2005-02-23 2010-07-13 Pixtronix, Incorporated Display methods and apparatus
US7502159B2 (en) * 2005-02-23 2009-03-10 Pixtronix, Inc. Methods and apparatus for actuating displays
US7304785B2 (en) * 2005-02-23 2007-12-04 Pixtronix, Inc. Display methods and apparatus
US8482496B2 (en) 2006-01-06 2013-07-09 Pixtronix, Inc. Circuits for controlling MEMS display apparatus on a transparent substrate
US20080158635A1 (en) * 2005-02-23 2008-07-03 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US7675665B2 (en) 2005-02-23 2010-03-09 Pixtronix, Incorporated Methods and apparatus for actuating displays
WO2006121784A1 (en) 2005-05-05 2006-11-16 Qualcomm Incorporated, Inc. Dynamic driver ic and display panel configuration
US7920136B2 (en) * 2005-05-05 2011-04-05 Qualcomm Mems Technologies, Inc. System and method of driving a MEMS display device
US7948457B2 (en) 2005-05-05 2011-05-24 Qualcomm Mems Technologies, Inc. Systems and methods of actuating MEMS display elements
US20060277486A1 (en) * 2005-06-02 2006-12-07 Skinner David N File or user interface element marking system
JP2009503565A (en) * 2005-07-22 2009-01-29 クアルコム,インコーポレイテッド Support structure for MEMS device and method thereof
KR101423321B1 (en) * 2005-07-22 2014-07-30 퀄컴 엠이엠에스 테크놀로지스, 인크. Electomechanical devices having support structures and methods of fabricating the same
EP2495212A3 (en) * 2005-07-22 2012-10-31 QUALCOMM MEMS Technologies, Inc. Mems devices having support structures and methods of fabricating the same
US7355779B2 (en) * 2005-09-02 2008-04-08 Idc, Llc Method and system for driving MEMS display elements
US8391630B2 (en) * 2005-12-22 2013-03-05 Qualcomm Mems Technologies, Inc. System and method for power reduction when decompressing video streams for interferometric modulator displays
US7795061B2 (en) 2005-12-29 2010-09-14 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7636151B2 (en) * 2006-01-06 2009-12-22 Qualcomm Mems Technologies, Inc. System and method for providing residual stress test structures
US7382515B2 (en) 2006-01-18 2008-06-03 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US8194056B2 (en) 2006-02-09 2012-06-05 Qualcomm Mems Technologies Inc. Method and system for writing data to MEMS display elements
US7903047B2 (en) 2006-04-17 2011-03-08 Qualcomm Mems Technologies, Inc. Mode indicator for interferometric modulator displays
US7711239B2 (en) 2006-04-19 2010-05-04 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing nanoparticles
US8004743B2 (en) * 2006-04-21 2011-08-23 Qualcomm Mems Technologies, Inc. Method and apparatus for providing brightness control in an interferometric modulator (IMOD) display
US8049713B2 (en) 2006-04-24 2011-11-01 Qualcomm Mems Technologies, Inc. Power consumption optimized display update
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7471442B2 (en) * 2006-06-15 2008-12-30 Qualcomm Mems Technologies, Inc. Method and apparatus for low range bit depth enhancements for MEMS display architectures
US7702192B2 (en) 2006-06-21 2010-04-20 Qualcomm Mems Technologies, Inc. Systems and methods for driving MEMS display
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7777715B2 (en) 2006-06-29 2010-08-17 Qualcomm Mems Technologies, Inc. Passive circuits for de-multiplexing display inputs
US7388704B2 (en) * 2006-06-30 2008-06-17 Qualcomm Mems Technologies, Inc. Determination of interferometric modulator mirror curvature and airgap variation using digital photographs
US7527998B2 (en) 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
JP4327183B2 (en) * 2006-07-31 2009-09-09 株式会社日立製作所 High pressure fuel pump control device for internal combustion engine
US7763546B2 (en) 2006-08-02 2010-07-27 Qualcomm Mems Technologies, Inc. Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
US7545552B2 (en) * 2006-10-19 2009-06-09 Qualcomm Mems Technologies, Inc. Sacrificial spacer process and resultant structure for MEMS support structure
EP2080045A1 (en) * 2006-10-20 2009-07-22 Pixtronix Inc. Light guides and backlight systems incorporating light redirectors at varying densities
US8004740B2 (en) * 2006-11-09 2011-08-23 International Business Machines Corporation Device and system for reflective digital light processing (DLP)
US7706042B2 (en) 2006-12-20 2010-04-27 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
US7535621B2 (en) 2006-12-27 2009-05-19 Qualcomm Mems Technologies, Inc. Aluminum fluoride films for microelectromechanical system applications
WO2008091339A2 (en) * 2007-01-19 2008-07-31 Pixtronix, Inc. Mems display apparatus
WO2008088892A2 (en) * 2007-01-19 2008-07-24 Pixtronix, Inc. Sensor-based feedback for display apparatus
US7852546B2 (en) 2007-10-19 2010-12-14 Pixtronix, Inc. Spacers for maintaining display apparatus alignment
JP4743132B2 (en) * 2007-02-15 2011-08-10 ティアック株式会社 Electronic device having a plurality of function keys
US9018724B2 (en) * 2007-03-28 2015-04-28 Advancedmems Llp Method of producing optical MEMS
US7719752B2 (en) 2007-05-11 2010-05-18 Qualcomm Mems Technologies, Inc. MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
US7625825B2 (en) * 2007-06-14 2009-12-01 Qualcomm Mems Technologies, Inc. Method of patterning mechanical layer for MEMS structures
US8068268B2 (en) * 2007-07-03 2011-11-29 Qualcomm Mems Technologies, Inc. MEMS devices having improved uniformity and methods for making them
WO2009052324A2 (en) 2007-10-19 2009-04-23 Qualcomm Mems Technologies, Inc. Display with integrated photovoltaic device
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
KR20100093590A (en) * 2007-12-17 2010-08-25 퀄컴 엠이엠스 테크놀로지스, 인크. Photovoltaics with interferometric back side masks
US7863079B2 (en) 2008-02-05 2011-01-04 Qualcomm Mems Technologies, Inc. Methods of reducing CD loss in a microelectromechanical device
US8248560B2 (en) 2008-04-18 2012-08-21 Pixtronix, Inc. Light guides and backlight systems incorporating prismatic structures and light redirectors
US7920317B2 (en) * 2008-08-04 2011-04-05 Pixtronix, Inc. Display with controlled formation of bubbles
US20100230044A1 (en) * 2009-03-12 2010-09-16 Shih-Kang Fan Bubbleless packaging method
WO2010111306A1 (en) * 2009-03-25 2010-09-30 Qualcomm Mems Technologies, Inc. Em shielding for display devices
US8736590B2 (en) 2009-03-27 2014-05-27 Qualcomm Mems Technologies, Inc. Low voltage driver scheme for interferometric modulators
US7995261B2 (en) * 2009-09-03 2011-08-09 Edward Pakhchyan Electromechanical display and backlight
KR101723149B1 (en) * 2009-12-30 2017-04-05 삼성디스플레이 주식회사 Microelectromechanical system substrate and display apparatus having the same
JP5960066B2 (en) 2010-03-11 2016-08-02 ピクストロニクス,インコーポレイテッド Reflective and transflective operating modes for display devices
KR20130100232A (en) 2010-04-09 2013-09-10 퀄컴 엠이엠에스 테크놀로지스, 인크. Mechanical layer of an electromechanical device and methods of forming the same
CN102236224B (en) * 2010-04-30 2014-01-15 北京京东方光电科技有限公司 Display panel, manufacture method and display
US8670171B2 (en) 2010-10-18 2014-03-11 Qualcomm Mems Technologies, Inc. Display having an embedded microlens array
JP5917559B2 (en) 2010-12-20 2016-05-18 ピクストロニクス,インコーポレイテッド System and method for MEMS light modulator array with reduced acoustic radiation
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8749538B2 (en) 2011-10-21 2014-06-10 Qualcomm Mems Technologies, Inc. Device and method of controlling brightness of a display based on ambient lighting conditions
US9183812B2 (en) 2013-01-29 2015-11-10 Pixtronix, Inc. Ambient light aware display apparatus
US9170421B2 (en) 2013-02-05 2015-10-27 Pixtronix, Inc. Display apparatus incorporating multi-level shutters
US9195051B2 (en) 2013-03-15 2015-11-24 Pixtronix, Inc. Multi-state shutter assembly for use in an electronic display
US20150103387A1 (en) * 2013-10-11 2015-04-16 Pixtronix, Inc. Shutter-based light modulators incorporating integrated sidewall reflectors
US11036030B2 (en) * 2018-06-15 2021-06-15 Silicon Light Machines Corporation MEMS posting for increased thermal dissipation
SG11202112799QA (en) * 2019-07-26 2021-12-30 Nat Univ Singapore An imaging system and a light encoding device therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235321A (en) * 1985-08-09 1987-02-16 Canon Inc Electric machine light modulating element
US5062689A (en) * 1990-08-21 1991-11-05 Koehler Dale R Electrostatically actuatable light modulating device
US5631764A (en) * 1993-03-23 1997-05-20 Daewoo Electronics Co., Ltd. Electrodisplacive actuator for use in an actuated mirror array
US5500761A (en) * 1994-01-27 1996-03-19 At&T Corp. Micromechanical modulator
US5646772A (en) * 1996-05-10 1997-07-08 Lucent Technologies Inc. Methods and apparatus for a multi-electrode micromechanical optical modulator

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
JP2003322807A (en) * 2002-04-30 2003-11-14 Hewlett Packard Co <Hp> Microminiature mirror device and method for forming the same
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US9019590B2 (en) 2004-02-03 2015-04-28 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US9500853B2 (en) 2005-02-23 2016-11-22 Snaptrack, Inc. MEMS-based display apparatus
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
JP2011039534A (en) * 2005-02-23 2011-02-24 Pixtronix Inc Method and apparatus for actuating display
US9087486B2 (en) 2005-02-23 2015-07-21 Pixtronix, Inc. Circuits for controlling display apparatus
US9336732B2 (en) 2005-02-23 2016-05-10 Pixtronix, Inc. Circuits for controlling display apparatus
US9274333B2 (en) 2005-02-23 2016-03-01 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
JP2012053474A (en) * 2005-02-23 2012-03-15 Pixtronix Inc Display device
JP2012128451A (en) * 2005-02-23 2012-07-05 Pixtronix Inc Display methods and apparatus
JP2012168562A (en) * 2005-02-23 2012-09-06 Pixtronix Inc Method and device for placing display in operation
JP2012177938A (en) * 2005-02-23 2012-09-13 Pixtronix Inc Method of forming image
JP2012215906A (en) * 2005-02-23 2012-11-08 Pixtronix Inc Projector
JP2012230385A (en) * 2005-02-23 2012-11-22 Pixtronix Inc Display device and spatial light modulator
JP2012234182A (en) * 2005-02-23 2012-11-29 Pixtronix Inc Display apparatus and spatial light modulator
US9530344B2 (en) 2005-02-23 2016-12-27 Snaptrack, Inc. Circuits for controlling display apparatus
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
JP2012256069A (en) * 2005-02-23 2012-12-27 Pixtronix Inc Display method and device
JP2013015870A (en) * 2005-02-23 2013-01-24 Pixtronix Inc Display device and method for manufacturing the same
US9177523B2 (en) 2005-02-23 2015-11-03 Pixtronix, Inc. Circuits for controlling display apparatus
US9158106B2 (en) 2005-02-23 2015-10-13 Pixtronix, Inc. Display methods and apparatus
JP2008532069A (en) * 2005-02-23 2008-08-14 ピクストロニクス,インコーポレイテッド Method and apparatus for spatial light modulation
US9135868B2 (en) 2005-02-23 2015-09-15 Pixtronix, Inc. Direct-view MEMS display devices and methods for generating images thereon
JP2008538009A (en) * 2005-02-23 2008-10-02 ピクストロニクス,インコーポレイテッド Display method and apparatus
JP2008533510A (en) * 2005-02-23 2008-08-21 ピクストロニクス,インコーポレイテッド Display device and manufacturing method thereof
JP2008197668A (en) * 2005-02-23 2008-08-28 Pixtronix Inc Display methods and apparatus
JP2009520245A (en) * 2005-12-19 2009-05-21 ピクストロニクス,インコーポレイテッド Direct-view MEMS display device and method for generating an image thereon
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US9128277B2 (en) 2006-02-23 2015-09-08 Pixtronix, Inc. Mechanical light modulators with stressed beams
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
JP2009139444A (en) * 2007-12-03 2009-06-25 Seiko Epson Corp Electro-optical display device and electronic device
US7999987B2 (en) 2007-12-03 2011-08-16 Seiko Epson Corporation Electro-optical display device and electronic device
US8891152B2 (en) 2008-08-04 2014-11-18 Pixtronix, Inc. Methods for manufacturing cold seal fluid-filled display apparatus
US9182587B2 (en) 2008-10-27 2015-11-10 Pixtronix, Inc. Manufacturing structure and process for compliant mechanisms
US9116344B2 (en) 2008-10-27 2015-08-25 Pixtronix, Inc. MEMS anchors
US9082353B2 (en) 2010-01-05 2015-07-14 Pixtronix, Inc. Circuits for controlling display apparatus
US8817353B2 (en) 2010-03-26 2014-08-26 Samsung Display Co., Ltd. MEMS shutter and display apparatus having the same
JP2011209689A (en) * 2010-03-26 2011-10-20 Samsung Electronics Co Ltd Mems shutter and display apparatus having the same
KR20110108129A (en) * 2010-03-26 2011-10-05 삼성전자주식회사 Mems shutter and display apparatus having the same
US8848294B2 (en) 2010-05-20 2014-09-30 Qualcomm Mems Technologies, Inc. Method and structure capable of changing color saturation
JP2012242495A (en) * 2011-05-17 2012-12-10 Japan Display East Co Ltd Display device
JP2012242712A (en) * 2011-05-23 2012-12-10 Japan Display East Co Ltd Display device and manufacturing method thereof
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators
US9897796B2 (en) 2014-04-18 2018-02-20 Snaptrack, Inc. Encapsulated spacers for electromechanical systems display apparatus

Also Published As

Publication number Publication date
US5745281A (en) 1998-04-28
KR970048702A (en) 1997-07-29
EP0786679A2 (en) 1997-07-30
EP0786679A3 (en) 1998-09-16
JP3799092B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP3799092B2 (en) Light modulation device and display device
US7436472B2 (en) Liquid crystal display device and method with color filters having overcoat layer thereover formed on substrate except for fourth color filter formed on the overcoat layer
US20020075443A1 (en) Liquid crystal display device
US9784904B2 (en) Display substrate, display apparatus having the same, and fabricating method thereof
JP2004205973A (en) Flat plane display element and method of driving the same
US20100231843A1 (en) Liquid crystal display element, method of manufacturing the element, and electronic paper and electronic terminal apparatus utilizing the element
JP3934269B2 (en) Flat panel display
JP2004286825A (en) Flat panel display device
US5037196A (en) Projection-type color display apparatus
JP2000214393A (en) Optical modulator, array optical modulator and flat- panel display device
JP2002040336A (en) Optical modulation element and exposure device and flat display device using the same
JP2002040337A (en) Optical modulation element and exposure device and flat display device using the same
JP2004020758A (en) Display device
JP4040869B2 (en) Image display device
JP4359155B2 (en) Electrophoretic display device
RU2407047C2 (en) Reflecting display device with control electric field
CN112083605B (en) Liquid crystal panel, display device and alignment method of liquid crystal panel
WO2007077644A1 (en) Liquid crystal display device
JP3048705B2 (en) Liquid crystal display
JP2002169105A (en) Display device
JP2004286935A (en) Optical element, optical deflector, and image display apparatus
JPS6328308B2 (en)
JPS6043631A (en) Display panel
KR101198888B1 (en) Light blocking display driven by electric field
KR20010036518A (en) Display Device Using Micro Light Modulator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050712

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050725

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060629

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees