JPH09186374A - Magnetoresistive effect element - Google Patents

Magnetoresistive effect element

Info

Publication number
JPH09186374A
JPH09186374A JP8331922A JP33192296A JPH09186374A JP H09186374 A JPH09186374 A JP H09186374A JP 8331922 A JP8331922 A JP 8331922A JP 33192296 A JP33192296 A JP 33192296A JP H09186374 A JPH09186374 A JP H09186374A
Authority
JP
Japan
Prior art keywords
film
ferromagnetic
magnetic field
magnetization
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8331922A
Other languages
Japanese (ja)
Other versions
JP3691920B2 (en
Inventor
Hitoshi Iwasaki
仁志 岩崎
Yuichi Osawa
裕一 大沢
Reiko Kondo
玲子 近藤
Susumu Hashimoto
進 橋本
Atsuhito Sawabe
厚仁 澤邊
Yuzo Kamiguchi
裕三 上口
Masashi Sahashi
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33192296A priority Critical patent/JP3691920B2/en
Publication of JPH09186374A publication Critical patent/JPH09186374A/en
Application granted granted Critical
Publication of JP3691920B2 publication Critical patent/JP3691920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the soft magnetic characteristics by intersecting the magnetizing direction of two ferromagnetic films substantially perpendicularly in the case of zero signal field and conducting a sense current in the direction of signal field. SOLUTION: A ferromagnetic CoFe film 11, an intermediate nonmagnetic Cu film 12, a ferrormagnetic CoFe film 11, an antiferromagnetic FeMn film 13 and a protective film of Ti 14 are deposited sequentially on a sapphire substrate 10. Two ferromagnetic films 11 serve as a magnetization fixing film for keeping the magnetizing direction substantially even upon application of a signal field and a field detection film for detecting the signal field causing variation of magnetization, respectively. When the signal field is zero, magnetizing direction of two ferromagnetic films 11 intersect perpendicularly to each other thus conducting a sense current in the direction of signal field. This arrangement enhances the soft magnetic characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気ヘッド等に用
いられる磁気抵抗効果素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect element used for a magnetic head or the like.

【0002】[0002]

【従来の技術】以前より、磁気記録媒体に記録された情
報を読み出す場合は、コイルを有する読取り用の磁気ヘ
ッドを記録媒体に対して相対的に移動させて、その時に
発生する電磁誘導でコイルに誘起される電圧を検出する
方法が一般的である。また、情報を読み出す場合に磁気
抵抗効果型ヘッドを用いることも知られている[IEEE MA
G-7,150(1971)]。この磁気抵抗効果型ヘッドは、ある種
の強磁性体の電気抵抗が外部磁界の強さに応じて変化す
るという現象を利用したものであり、磁気記録媒体用の
高感度ヘッドとして知られている。近年、磁気記録媒体
の小型化・大容量化が進められ、情報読み取り時の読取
り用磁気ヘッドと磁気記録媒体との相対速度が小さくな
ってきているので、小さい相対速度であっても大きな出
力が取り出せる磁気抵抗効果型ヘッドへの期待が高まっ
ている。
2. Description of the Related Art When reading information recorded on a magnetic recording medium, a reading magnetic head having a coil is moved relatively to the recording medium, and the coil is moved by electromagnetic induction generated at that time. In general, a method of detecting a voltage induced in a voltage is used. It is also known to use a magnetoresistive head when reading information [IEEE MA
G-7,150 (1971)]. This magnetoresistive head utilizes the phenomenon that the electric resistance of a certain ferromagnetic material changes according to the strength of an external magnetic field, and is known as a high-sensitivity head for magnetic recording media. . In recent years, the size and capacity of magnetic recording media have been reduced, and the relative speed between the magnetic head for reading and the magnetic recording medium at the time of reading information has become smaller. Expectations for a magnetoresistive head that can be taken out are increasing.

【0003】従来、磁気抵抗効果型ヘッドにおいて外部
磁界を感知して抵抗が変化する部分(以下、MRエレメ
ントと呼ぶ)には、NiFe合金(以下、パーマロイと
省略する)が使用されている。パーマロイは、良好な軟
磁気特性を有するものでも磁気抵抗変化率が最大で3%
程度であり、小型化・大容量化された磁気記録媒体用の
MRエレメントに用いる場合には磁気抵抗変化率が不充
分である。このため、MRエレメント材料として、より
高感度な磁気抵抗変化を示すものが望まれている。
Conventionally, a NiFe alloy (hereinafter abbreviated as permalloy) is used in a portion of a magnetoresistive head in which the resistance is changed by sensing an external magnetic field (hereinafter referred to as an MR element). Permalloy has a maximum magnetoresistance ratio of 3% even though it has good soft magnetic properties.
When used for an MR element for a magnetic recording medium having a small size and a large capacity, the rate of change in magnetoresistance is insufficient. For this reason, a material exhibiting a more sensitive change in magnetoresistance is desired as an MR element material.

【0004】近年、Fe/CrやCo/Cuのように、
強磁性膜と非磁性膜をある条件で交互に積層してなる多
層積層膜、いわゆる人工格子膜には、隣接する強磁性膜
間の反強磁性的結合を利用して巨大な磁気抵抗変化が現
れることが確認されており、最大で100%を超える大
きな磁気抵抗変化率を示すものも報告されている[Phy
s.Rev.Lett.,Vol.61,2472(1988)][Phys.Rev.Lett.,Vol.
64,2304(1990)] 。
In recent years, like Fe / Cr and Co / Cu,
Giant magnetoresistive changes occur in a multi-layer film, a so-called artificial lattice film, in which ferromagnetic films and non-magnetic films are alternately stacked under certain conditions, using antiferromagnetic coupling between adjacent ferromagnetic films. It has been confirmed that it appears, and some have a large magnetoresistance change rate exceeding 100% [Phy
s. Rev. Lett., Vol. 61, 2472 (1988)] [Phys. Rev. Lett., Vol.
64, 2304 (1990)].

【0005】一方、強磁性膜が反強磁性結合しない場合
でも、隣接する強磁性膜間の反強磁性的結合を用いずに
別の手段で非磁性膜を挟んだ2つの強磁性膜の一方に交
換バイアスを及ぼし磁化を固定しておき、もう一方の強
磁性膜が外部磁界により磁化反転することにより、非磁
性膜を挟んで互いに反平行な状態を作り出し、大きな磁
気抵抗変化を実現した例も報告されている。このタイプ
をここではスピンバルブ構造と呼ぶ[Phys.Rev.B.,Vol.
45806(1992)][J.Appl.Phys.,Vol.69,4774(1991)]。
On the other hand, even when a ferromagnetic film does not have antiferromagnetic coupling, one of two ferromagnetic films sandwiching a nonmagnetic film by another means without using antiferromagnetic coupling between adjacent ferromagnetic films. Example in which a magnetization is fixed by applying an exchange bias to the other, and the other ferromagnetic film is reversed in magnetization by an external magnetic field, creating a state antiparallel to each other across the non-magnetic film, achieving a large magnetoresistance change Have also been reported. This type is referred to herein as a spin valve structure [Phys. Rev. B., Vol.
45806 (1992)] [J. Appl. Phys., Vol. 69, 4774 (1991)].

【0006】人工格子膜、スピンバルブ構造の膜のいず
れも、強磁性膜の種類によって、積層膜の抵抗変化特性
および磁気特性はかなり異なる。たとえば、スピンバル
ブ構造でCoを用いた場合、例えばCo/Cu/Co/
FeMnでは、8%の大きな抵抗変化率を生じるが、保
磁力が約20エルステッドと高く、軟磁気特性が良好で
ない。逆に、パーマロイを用いた場合、例えばNiFe
/Cu/NiFe/FeMnでは、保磁力が1エルステ
ッド以下の良好な値が報告されているが、抵抗変化率は
4%程度と大きくはない[J.Al.Phys.,Vol.69,4774(199
1)]。このように、積層膜の軟磁気特性は良好である
が、抵抗変化率が低下する。したがって、軟磁気特性お
よび抵抗変化率の両方を満たす積層膜の構成元素および
膜構造がまだ報告されていない。
Both the artificial lattice film and the film having the spin valve structure have considerably different resistance change characteristics and magnetic characteristics of the laminated film depending on the type of ferromagnetic film. For example, when Co is used in a spin valve structure, for example, Co / Cu / Co /
In FeMn, a large resistance change rate of 8% is generated, but the coercive force is as high as about 20 Oe and the soft magnetic characteristics are not good. Conversely, when permalloy is used, for example, NiFe
For / Cu / NiFe / FeMn, a good value of coercive force of 1 Oe or less is reported, but the rate of change in resistance is not as large as about 4% [J. Al. Phys., Vol. 69, 4774 ( 199
1)]. As described above, the soft magnetic characteristics of the laminated film are good, but the rate of change in resistance is reduced. Therefore, the constituent elements and the film structure of the laminated film satisfying both the soft magnetic characteristics and the rate of change in resistance have not been reported yet.

【0007】また、2つのタイプの膜には、以下の問題
点がある。
[0007] The two types of films have the following problems.

【0008】人工格子膜では、磁界レンジを無視した抵
抗変化率ΔR/Rは、スピンバルブ型に比べて大きい
が、反強磁性結合が大きいために飽和磁界Hsが大きく
軟磁性に難があり、さらにこのRKKY的な反強磁性結合は
界面構造に敏感であるので、安定した成膜が困難であ
り、また、経時変化を生じ易い。
In the artificial lattice film, the resistance change rate ΔR / R ignoring the magnetic field range is larger than that of the spin valve type. However, since the antiferromagnetic coupling is large, the saturation magnetic field Hs is large, and soft magnetism is difficult. Furthermore, since the RKKY-like antiferromagnetic coupling is sensitive to the interface structure, stable film formation is difficult, and changes over time tend to occur.

【0009】スピンバルブ構造の膜では、強磁性膜にN
iFe膜を用いると良好な軟磁気特性が得られるが、強
磁性膜と非磁性膜の界面が2つなのでΔR/Rは人工格
子膜に比べて小さい。この界面の数を増やすために強磁
性膜、非磁性膜、反強磁性膜を繰り返して積層してなる
多層積層膜を構成しても、この積層膜中に抵抗の高い反
強磁性膜が存在することになるのでスピン依存散乱が抑
制され、結局ΔR/Rの増加は期待できない。
In a film having a spin valve structure, N is added to the ferromagnetic film.
When an iFe film is used, good soft magnetic characteristics can be obtained, but ΔR / R is smaller than that of an artificial lattice film because there are two interfaces between a ferromagnetic film and a nonmagnetic film. In order to increase the number of interfaces, even if a multilayer laminated film is formed by repeatedly laminating a ferromagnetic film, a non-magnetic film, and an anti-ferromagnetic film, an anti-ferromagnetic film having a high resistance exists in the laminated film. Therefore, spin-dependent scattering is suppressed, and eventually, an increase in ΔR / R cannot be expected.

【0010】また、磁気ヘッドに適する強磁性膜の困難
軸方向に信号磁界を加えた場合、片側のみの強磁性膜で
磁化が回転するので、図83に示すように、信号磁界に
より反強磁性膜1上の強磁性膜2と、非磁性膜3上の強
磁性膜4の磁化のなす角度を約90°までしか変えられ
ない。なお、容易軸方向では180°までの角度変化が
生じる。その結果、ΔR/Rは容易軸方向の約半分に減
少する。ここで、たとえ反強磁性膜1上の強磁性膜2の
交換バイアス磁界を何らかの方法で弱くして両方の強磁
性膜2,4の磁化回転を利用できるようにした場合、非
磁性膜3の膜厚を薄くして抵抗変化率の増大を目指す
と、2つの強磁性膜間に強磁性的な結合が働くために、
信号磁界0の状態では強磁性膜間の磁化は同方向を向
く。その結果、信号磁界により磁化回転しても2つの強
磁性膜間での磁化の角度変化が僅かとなり抵抗変化が僅
かになる。
When a signal magnetic field is applied in the hard axis direction of a ferromagnetic film suitable for a magnetic head, the magnetization is rotated by only one side of the ferromagnetic film. Therefore, as shown in FIG. The angle between the magnetization of the ferromagnetic film 2 on the film 1 and the magnetization of the ferromagnetic film 4 on the nonmagnetic film 3 can be changed only up to about 90 °. Note that an angle change of up to 180 ° occurs in the easy axis direction. As a result, ΔR / R decreases to about half in the easy axis direction. Here, even if the exchange bias magnetic field of the ferromagnetic film 2 on the antiferromagnetic film 1 is weakened by some method so that the magnetization rotation of both ferromagnetic films 2 and 4 can be used, Aiming to increase the resistance change rate by reducing the film thickness, ferromagnetic coupling acts between the two ferromagnetic films,
When the signal magnetic field is 0, the magnetization between the ferromagnetic films is directed in the same direction. As a result, even if the magnetization is rotated by the signal magnetic field, the angle change of the magnetization between the two ferromagnetic films is small, and the resistance change is small.

【0011】さらに、この非磁性膜の膜厚を薄くした場
合に働く2つの強磁性膜間の強磁性的な結合は、強磁性
膜の透磁率を劣化させるという問題もある。また、軟磁
気特性の良好なNiFe膜では、通常の異方性磁気抵抗
効果があるが、センス電流を信号磁界と直交する方向に
流す方式では、図84に示すように、信号磁界0で2つ
の強磁性膜の磁化が同方向に揃った状態で、信号磁界に
よる異方性磁気抵抗効果とスピン依存散乱による抵抗変
化が互いに打ち消し合ってしまう。
Further, the ferromagnetic coupling between the two ferromagnetic films that works when the thickness of the nonmagnetic film is reduced causes a problem that the magnetic permeability of the ferromagnetic film is deteriorated. Also, a NiFe film having good soft magnetic characteristics has a normal anisotropic magnetoresistance effect, but in a method in which a sense current flows in a direction orthogonal to a signal magnetic field, as shown in FIG. When the magnetizations of the two ferromagnetic films are aligned in the same direction, the anisotropic magnetoresistance effect due to the signal magnetic field and the resistance change due to spin-dependent scattering cancel each other.

【0012】[0012]

【発明が解決しようとする課題】人工格子膜とスピンバ
ルブ構造の膜の共通の問題としては、第1に、磁気ヘッ
ドにおいて高感度を得るためには、供給する電流をでき
る限り増加させる必要があるが、この場合両者の膜と
も、一部の強磁性膜がこの電流が作る磁界により磁化の
方向が乱されて、磁界に対する高感度な抵抗変化が妨げ
られることである。具体的には、積層膜の最上層、最下
層近傍では、電流磁界が強く、磁化が電流磁界方向を向
き易い。
As a common problem of the artificial lattice film and the spin valve structure film, first, in order to obtain high sensitivity in the magnetic head, it is necessary to increase the supplied current as much as possible. However, in this case, in both of the films, the direction of magnetization of some of the ferromagnetic films is disturbed by the magnetic field generated by the current, so that a highly sensitive resistance change to the magnetic field is prevented. Specifically, in the vicinity of the uppermost layer and the lowermost layer of the laminated film, the current magnetic field is strong, and the magnetization tends to be oriented in the current magnetic field direction.

【0013】第2に、バルクハウゼンノイズ抑制や動作
点バイアス等の磁気ヘッドに適用する上で解決すべき重
要な問題がある。
Second, there is an important problem to be solved when applied to magnetic heads such as Barkhausen noise suppression and operating point bias.

【0014】以上のように、スピン依存散乱を利用した
人工格子膜やスピンバルブ構造の膜を有する磁気抵抗効
果素子では、高感度化に不可欠な、大電流投入時でも良
好な軟磁気特性を示し、しかも大きい抵抗変化率ΔR/
Rを示すことができないのが現状にある。
As described above, a magnetoresistive element having an artificial lattice film utilizing spin-dependent scattering or a film having a spin valve structure exhibits good soft magnetic characteristics even when a large current is applied, which is indispensable for high sensitivity. And a large resistance change rate ΔR /
At present, R cannot be indicated.

【0015】本発明はかかる点に鑑みてなされたもので
あり、軟磁気特性が良好で抵抗変化率△R/Rが充分な
スピンバルブ構造の膜または人工格子膜を有し、高感度
の磁気ヘッドに適用が可能である磁気抵抗効果素子を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and has a spin-valve structure film or an artificial lattice film having a good soft magnetic property and a sufficient resistance change rate ΔR / R, and has a high sensitivity. An object of the present invention is to provide a magnetoresistive element applicable to a head.

【0016】[0016]

【課題を解決するための手段】上記目的と達成するため
になされた本発明は、図1に示すようなスピンバルブ構
造の膜または図4に示すような人工格子膜を有する磁気
抵抗効果素子に関するものであって、基板上に、少なく
とも強磁性膜、非磁性膜、および強磁性膜が順次積層さ
れてなる基本構造を有している。ここで、前記強磁性膜
の材料としては、特に規定されない限り、Co、CoF
e、CoNi、NiFe,センダスト、NiFeCo、
Fe8 N等を挙げることができる。さらに、Co100-x
Fex (0<x≦40原子%)からなる強磁性膜は、高
△R/Rでかつ低Hcを示すので好ましい。強磁性膜の
膜厚は1〜20nmであることが好ましい。なお、本発明
において強磁性とはフェリ磁性を含む意味である。ま
た、非磁性膜の材料としては、Mn、Fe、Ni、C
u、Al、Pd、Pt、Rh、Ru、Ir、Au、また
はAg等の非磁性金属やCuPd、CuPt、CuA
u、CuNi合金等を挙げることができる。非磁性膜の
膜厚は0.5〜20nmであることが好ましく、0.8〜
5nmであることが特に好ましい。
SUMMARY OF THE INVENTION The present invention, which has been made to achieve the above objects, relates to a magnetoresistive element having a spin valve structure film as shown in FIG. 1 or an artificial lattice film as shown in FIG. It has a basic structure in which at least a ferromagnetic film, a non-magnetic film, and a ferromagnetic film are sequentially stacked on a substrate. Here, the material of the ferromagnetic film is Co or CoF unless otherwise specified.
e, CoNi, NiFe, sendust, NiFeCo,
Fe 8 N, and the like. Furthermore, Co 100-x
A ferromagnetic film made of Fe x (0 <x ≦ 40 atom%) is preferable because it has high ΔR / R and low Hc. The ferromagnetic film preferably has a thickness of 1 to 20 nm. In the present invention, the term “ferromagnetic” includes ferrimagnetism. The material of the non-magnetic film is Mn, Fe, Ni, C.
Nonmagnetic metal such as u, Al, Pd, Pt, Rh, Ru, Ir, Au, or Ag, or CuPd, CuPt, CuA
Examples thereof include u and CuNi alloys. The thickness of the non-magnetic film is preferably 0.5 to 20 nm, and 0.8 to
Particularly preferably, it is 5 nm.

【0017】[0017]

【発明の実施の形態】以下、本発明の磁気抵抗効果素子
を具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The magnetoresistive effect element of the present invention will be specifically described below.

【0018】本発明の第1の発明は、基板上に、少なく
とも強磁性膜、非磁性膜、および強磁性膜が順次積層さ
れてなる積層膜を具備した磁気抵抗効果素子であって、
2つの前記強磁性膜が非結合であり、少なくとも一方の
強磁性膜はCo,Fe,およびNiからなる群より選ば
れた少なくとも1種の元素を主成分とし、かつ、その最
密面が膜面垂直方向に配向していることを特徴とする磁
気抵抗効果素子を提供する。
According to a first aspect of the present invention, there is provided a magnetoresistive element including a laminated film in which at least a ferromagnetic film, a nonmagnetic film, and a ferromagnetic film are sequentially laminated on a substrate,
The two ferromagnetic films are non-bonded, and at least one of the ferromagnetic films contains at least one element selected from the group consisting of Co, Fe, and Ni as a main component, and the close-packed surface thereof is a film. Provided is a magnetoresistive effect element characterized by being oriented in a direction perpendicular to a plane.

【0019】第1の発明において、2つの強磁性膜が非
結合であるとは、2つの強磁性膜間に反強磁性的交換結
合が実質的に存在しないことを意味する。したがって、
2つの強磁性膜において、反平行な磁化配列状態を実現
する場合は、強磁性膜間の反強磁性的結合とは別の手段
が強磁性膜へのバイアス磁界印加手段として形成され
る。また、最密面配向とは、fcc相の場合には(11
1)面を意味し、hcp相の場合には(001)面を意
味する。
In the first invention, that the two ferromagnetic films are non-coupled means that there is substantially no antiferromagnetic exchange coupling between the two ferromagnetic films. Therefore,
In the case of realizing an antiparallel magnetization arrangement state in the two ferromagnetic films, means other than antiferromagnetic coupling between the ferromagnetic films is formed as means for applying a bias magnetic field to the ferromagnetic films. The closest-packed plane orientation is (11) in the case of the fcc phase.
1) means the plane, and in the case of the hcp phase, means the (001) plane.

【0020】第1の発明において、前記強磁性膜の最密
面を膜面垂直方向に配向させる方法としては、前記強磁
性膜の材料にPd,Al,Cu,Ta,In,B,N
b,Hf,Mo,W,Re,Ru,Rh,Ga,Zr,
Ir,Au,およびAgからなる群より選ばれた少なく
とも1種の元素を添加する方法(特に、抵抗変化率の低
下がほとんどないPd,Cu,Au,Agの添加が好ま
しい)、強磁性膜を形成する基板としてサファイア基板
のC面等を用いる方法、基板と強磁性膜との間にCu,
Ni,CuNi,NiFe,Ge,Si,GaAs等の
fcc格子を有する材料、NiO等の菱面体格子を有す
る材料、Ti,磁性非晶質金属(CoZrNb,CoH
fTa等)、および非磁性非晶質材料からなる群より選
ばれたものからなる下地膜を設ける方法、並びにMBE
等の超高真空成膜装置により成膜する方法等が挙げられ
る。
In the first invention, as a method for orienting the closest surface of the ferromagnetic film in a direction perpendicular to the film surface, the material of the ferromagnetic film may be Pd, Al, Cu, Ta, In, B, N
b, Hf, Mo, W, Re, Ru, Rh, Ga, Zr,
A method of adding at least one element selected from the group consisting of Ir, Au, and Ag (especially, Pd, Cu, Au, and Ag, which hardly decrease the resistance change rate, are preferable); A method using a C surface of a sapphire substrate as a substrate to be formed, Cu,
Materials having an fcc lattice, such as Ni, CuNi, NiFe, Ge, Si, and GaAs; materials having a rhombohedral lattice, such as NiO; Ti, magnetic amorphous metals (CoZrNb, CoH
fTa, etc.), a method of providing a base film made of a material selected from the group consisting of non-magnetic amorphous materials, and MBE.
And the like, and a method of forming a film by an ultra-high vacuum film forming apparatus.

【0021】ここで、詳しく前記下地膜の具体例を示す
と、例えばCo系強磁性膜において、Co90Fe10膜に
代表されるfcc格子を有する強磁性膜を用いる場合に
は、Cu−Ge−Zr、Cu−P、Cu−P−Pd、C
u−Pd−Si、Cu−Si−Zr、Cu−Ti、Cu
−Sn、Cu−Ti−Zr等に代表されるCu系合金、
Au−Dy、Au−Pb−Sb、Au−Pd−Si、A
u−Yb等に代表されるAu系合金、Al−Cr、Al
−Dy、Al−Ga−Mg、Al−Si等に代表される
Al系合金、Pt系合金、Pd−Si、Pd−Zr等に
代表されるPd系合金、Be−Ti、Be−Ti−Z
r、Be−Zr等のBe系合金、Ge−Nb、Ge−P
d−Se等に代表されるGe系合金、Ag系合金、Rh
系合金、Mn系合金、Ir系合金、Pb系合金等のfc
c格子を有する金属系、またはこれらfcc格子を有す
る金属を主成分とする合金系、Ge、Si、ダイヤモン
ド等のダイヤモンド構造を有する材料、GaAs、Ga
−Al−As、Ga−P、In−P等の閃亜鉛鉱型構造
を有する材料等が前記fcc格子を有する材料として挙
げられ、これらの中から選ばれた少なくとも1種類を主
成分とする材料、またはそれらに他の元素を添加した材
料等を用いることができる。上記した材料のうち、単元
素金属以外の物質は、それ自身で既に強磁性膜と比較し
て十分に比抵抗が高いため、シャント分流分の電流を抑
制する効果を有している。また、単元素金属への他元素
の添加による比抵抗の増加は、様々な組み合わせが存在
するが、Cu−Ni、Cu−Cr、Cu−Zr等に代表
されるCu系合金、Au−Cr、Fe−Mn、Pt−M
n、Ni−Mn等の合金がその中の一例として挙げられ
る。
Here, a specific example of the base film will be described in detail. For example, when a ferromagnetic film having an fcc lattice typified by a Co 90 Fe 10 film is used as a Co-based ferromagnetic film, Cu—Ge -Zr, Cu-P, Cu-P-Pd, C
u-Pd-Si, Cu-Si-Zr, Cu-Ti, Cu
Cu-based alloys represented by -Sn, Cu-Ti-Zr, etc.
Au-Dy, Au-Pb-Sb, Au-Pd-Si, A
Au-based alloys such as u-Yb, Al-Cr, Al
-Dy, Al-Ga-Mg, Al-based alloys represented by Al-Si, etc., Pt-based alloys, Pd-based alloys represented by Pd-Si, Pd-Zr, etc., Be-Ti, Be-Ti-Z
r, Be-Zr and other Be-based alloys, Ge-Nb, Ge-P
Ge-based alloys such as d-Se, Ag-based alloys, Rh
Fc of manganese-based alloys, Mn-based alloys, Ir-based alloys, Pb-based alloys, etc.
a metal having a c lattice, an alloy containing a metal having the fcc lattice as a main component, a material having a diamond structure such as Ge, Si, diamond, GaAs, Ga
Materials having a zinc blende structure such as -Al-As, Ga-P, In-P and the like are mentioned as materials having the fcc lattice, and materials containing at least one selected from these as a main component Or a material in which another element is added thereto, or the like. Among the above-mentioned materials, substances other than the single-element metal have a sufficiently high specific resistance as compared with the ferromagnetic film by themselves, and thus have an effect of suppressing the current for the shunt shunt. In addition, various combinations exist for the increase in specific resistance due to the addition of another element to a single element metal, but Cu-based alloys represented by Cu-Ni, Cu-Cr, Cu-Zr, Au-Cr, Fe-Mn, Pt-M
Alloys such as n and Ni-Mn are given as examples.

【0022】非磁性非晶質材料としては、非磁性の単元
素金属や合金、および非金属を添加物として含むもの等
の非磁性金属材料や、水素化Siのような非晶質Si、
水素化カーボン、ガラス状炭素、黒鉛状炭素等の非晶質
カーボン等の非磁性非金属材料等が挙げられる。
Examples of the non-magnetic amorphous material include non-magnetic metal materials such as non-magnetic single element metals and alloys and those containing non-metals as additives; amorphous Si such as hydrogenated Si;
Non-magnetic and non-metallic materials such as amorphous carbon such as hydrogenated carbon, glassy carbon, and graphitic carbon are included.

【0023】上述したような下地膜の膜厚は、特に限定
されるものではないが、100nm以下とすることが好ま
しい。これは、下地膜の膜厚をあまり厚くしてもそれ以
上の効果が得られないばかりか、逆に素子全体における
下地膜に流れる電流の割合が大きく、結果として抵抗変
化率が小さくなるからである。第1の発明において、下
地膜は強磁性膜の最密面配向を改善する。さらに、上述
したような材料のうち非磁性非晶質材料においては、基
板材料によらずに層状成長させることが可能で安定して
平滑な表面が得られるため、(111)配向の改善に加
えて、その上に形成する強磁性膜の表面平滑性、さらに
は非磁性膜との界面の平滑性の向上を図ることができ
る。よって、良好な抵抗変化率を安定して得ることが可
能となる。また、第1の発明における下地膜として、非
磁性材料を用いると、その上に形成される強磁性膜に対
して悪影響を及ぼすこともない。
The thickness of the underlayer as described above is not particularly limited, but is preferably 100 nm or less. This is because even if the thickness of the base film is too large, no further effect can be obtained, and conversely, the ratio of the current flowing through the base film in the entire device is large, and as a result, the resistance change rate is reduced. is there. In the first aspect, the underlayer improves the closest plane orientation of the ferromagnetic film. Further, among the above-mentioned non-magnetic amorphous materials, non-magnetic amorphous materials can be grown in layers regardless of the substrate material, and a stable and smooth surface can be obtained. Thus, the surface smoothness of the ferromagnetic film formed thereon and the smoothness of the interface with the nonmagnetic film can be improved. Therefore, it is possible to stably obtain a good resistance change rate. Further, when a non-magnetic material is used as the base film in the first invention, there is no adverse effect on the ferromagnetic film formed thereon.

【0024】なお、下地膜を形成する場合、結晶配向性
は改善されるが、平滑性が劣化して抵抗変化率が低下す
る場合がある。そこで、最密面配向を促進させるための
前記第1の下地膜の材料として、fcc格子を有する材
料や磁性非晶質金属を用いる場合には、Ti、Ta、Z
rや非磁性非晶質材料等からなる平滑性を改善するため
の第2の下地膜を、第1の下地膜と基板との間に配置し
た2層構造にすることが好ましい。このような構成にす
ることにより、最密面結晶配向の向上によって得られる
良好な軟磁気特性と高い磁気抵抗変化率とを併せ持つ磁
気抵抗効果素子が得られる。また、2層構造において、
強磁性膜と同じ結晶系を有し、かつ比抵抗が強磁性膜材
料よりも大きい材料からなる第2の下地膜を用いること
により、上記効果に加えて、素子内に流れる電流におけ
るシャント電流分を少なくすることができる。なお、下
地膜を2層以上の積層構造として使用する場合には、積
層構造の厚さとして100nmを超えないことが望まし
い。
When the underlayer is formed, the crystal orientation is improved, but the smoothness may be deteriorated and the resistance change rate may be reduced. Therefore, when a material having an fcc lattice or a magnetic amorphous metal is used as a material of the first underlayer for promoting close-packed plane orientation, Ti, Ta, Z
It is preferable that the second underlayer for improving the smoothness made of r, a non-magnetic amorphous material, or the like has a two-layer structure arranged between the first underlayer and the substrate. With this configuration, it is possible to obtain a magnetoresistive element having both good soft magnetic characteristics and a high rate of change in magnetoresistance obtained by improving the crystal orientation in the closest-packed plane. In a two-layer structure,
By using the second underlayer made of a material having the same crystal system as the ferromagnetic film and having a higher specific resistance than the ferromagnetic film material, in addition to the above-described effects, the shunt current component in the current flowing in the element can be improved. Can be reduced. When the base film is used as a laminated structure having two or more layers, it is desirable that the thickness of the laminated structure does not exceed 100 nm.

【0025】上述したような下地膜の作製方法として
は、13.56MHz または100MHz以上の高周波放電
を用いた2極スパッタリング法、ECRイオン源やカウ
フマン型イオン源等の様々なイオン源を用いたイオンビ
ームスパッタリング法、電子ビーム蒸発源やクヌーセン
セルを用いた真空蒸着法、熱CVD法、様々なプラズマ
を用いたCVD法、有機金属を原料とするMOCVD法
やMOMBE法等、各種成膜方法を適用することができ
る。これらの成膜方法に共通することとして、超高真空
までの排気や原料ガスの超高純度化を通じて、水および
酸素の管理を行うことが重要である。より具体的には、
2 OおよびO2 の含有量をppm 以下に、望ましくはpp
b オーダーまで低減することが好ましい。
Examples of the method for producing the underlayer film described above include a two-pole sputtering method using a high-frequency discharge of 13.56 MHz or 100 MHz or more, and an ion source using various ion sources such as an ECR ion source and a Kauffman-type ion source. Various film forming methods such as beam sputtering, vacuum evaporation using an electron beam evaporation source or Knudsen cell, thermal CVD, CVD using various plasmas, MOCVD using organic metal as raw material, and MOMBE. can do. As common to these film forming methods, it is important to manage water and oxygen through evacuation to ultra-high vacuum and ultra-high purity of the source gas. More specifically,
Reduce the content of H 2 O and O 2 to ppm or less, preferably pp
It is preferable to reduce to b order.

【0026】第1の発明において、強磁性膜の材料とし
ては、Co系合金を用いることが好ましい。この理由
は、Coを含有しない系では、得られる磁気抵抗効果素
子の抵抗率変化△R/Rが4%程度とCo系合金の場合
に比べて低く、またCoの単元素金属では最密面配向を
実現してもCoが有する大きな結晶磁気異方性のため、
軟磁気特性がそれほど向上しない恐れがあるからであ
る。このとき、特に、Co100-x Fex (5≦x≦40
原子%)がfcc相(111)配向とすることで10%
以上の高△R/Rと80A/m未満の低Hcを示すので
好ましい。
In the first invention, it is preferable to use a Co-based alloy as the material of the ferromagnetic film. The reason for this is that, in a system containing no Co, the change in resistivity ΔR / R of the obtained magnetoresistance effect element is about 4%, which is lower than that in the case of a Co-based alloy. Due to the large crystal magnetic anisotropy that Co has even when the orientation is realized,
This is because the soft magnetic characteristics may not be improved so much. At this time, in particular, Co 100-x Fe x (5 ≦ x ≦ 40
Atomic%) is 10% by the fcc phase (111) orientation.
It is preferable because it exhibits the above high ΔR / R and low Hc of less than 80 A / m.

【0027】強磁性膜の結晶配向は、そのX線回折曲線
における最密面(例えばfcc相(111)面)反射ピ
ークのロッキングカーブの半値幅が20°未満、特に7
°以下であることが好ましい。
The crystal orientation of the ferromagnetic film is such that the half value width of the rocking curve of the reflection peak on the closest plane (for example, fcc phase (111) plane) in the X-ray diffraction curve is less than 20 °, especially 7 °.
° or less.

【0028】第1の発明において、添加元素の添加含有
量は、CoFe合金等を主成分とする強磁性膜の強磁性
が室温で損なわれず、かつ、スピン依存散乱を阻害する
金属間化合物が生成されない範囲である必要がある。例
えば、添加元素がAl、Ga、Inである場合には、含
有量が6.5at%未満であることが好ましい。添加元素
がNb、Ta、Zr、Hf、B、Mo、Wである場合に
は含有量が10at%未満であることが好ましい。添加元
素がCu、Pd、Au、Ag、Re、Ru、Rh、Ir
である場合には、含有量は40at%未満であることが好
ましい。
In the first aspect of the present invention, the content of the additional element is such that an intermetallic compound which does not impair the ferromagnetism of a ferromagnetic film containing a CoFe alloy or the like as a main component at room temperature and inhibits spin-dependent scattering is formed. It must be within the range that is not performed. For example, when the additive element is Al, Ga, or In, the content is preferably less than 6.5 at%. When the additive element is Nb, Ta, Zr, Hf, B, Mo, or W, the content is preferably less than 10 at%. The additive element is Cu, Pd, Au, Ag, Re, Ru, Rh, Ir
In the case of, the content is preferably less than 40 at%.

【0029】また、基板材料としては、MgO、サファ
イヤ、ダイヤモンド、グラファイト、シリコン、ゲルマ
ニウム、SiC、BN、SiN、AlN、BeO、Ga
As、GaInP、GaAlAs、BP等に代表される
単結晶体、およびそれらの多結晶体やそれらを主成分と
する焼結体、磁性または非磁性金属の単結晶体、多結晶
体、焼結体等が代表例として挙げられるが、強磁性膜の
種類およびその下地膜材料に応じて、基板材料を選択す
る。特に、Co系合金と良好な格子整合を有し、さらに
平滑な面が容易に得易い特徴を有するサファイア基板の
C面を用いることが好ましい。サファイア基板等の単結
晶基板を用いる場合には、強磁性膜の厚さは20nm以下
にすることが好ましい。これは、強磁性膜の厚さが20
nmを超えると最密面配向が劣化するからである。
As the substrate material, MgO, sapphire, diamond, graphite, silicon, germanium, SiC, BN, SiN, AlN, BeO, Ga
Single crystals represented by As, GaInP, GaAlAs, BP, and the like, polycrystals thereof, sintered bodies containing these as main components, single crystal bodies, polycrystal bodies, and sintered bodies of magnetic or non-magnetic metals The substrate material is selected according to the type of the ferromagnetic film and the material of the underlying film. In particular, it is preferable to use the C-plane of a sapphire substrate that has good lattice matching with a Co-based alloy and has a feature that a smooth surface can be easily obtained. When a single crystal substrate such as a sapphire substrate is used, the thickness of the ferromagnetic film is preferably set to 20 nm or less. This is because the thickness of the ferromagnetic film is 20
This is because if it exceeds nm, the close-packed plane orientation is deteriorated.

【0030】ここで、最密面配向した上記磁性膜では、
磁化方向が最密面面内から僅かに傾くとHcが急増す
る。したがって基板面にうねりがあると、たとえ最密面
配向を実現しても磁化方向が(111)面内から外れる
場合があるので、Hcは低下しない恐れがある。このた
め、基板の表面粗さが5nm未満であることが好ましい。
Here, in the above-described magnetic film having the closest plane orientation,
When the magnetization direction is slightly inclined from the closest plane, Hc sharply increases. Therefore, if the substrate surface has undulation, the magnetization direction may deviate from within the (111) plane even if the closest-packed plane orientation is realized, and thus Hc may not decrease. For this reason, the surface roughness of the substrate is preferably less than 5 nm.

【0031】なお、第1の発明の磁気抵抗効果素子は、
上記構成に加えて非磁性膜と強磁性膜を交互に複数回積
層したものであってもよい。
The magnetoresistive effect element of the first invention is
In addition to the above configuration, a nonmagnetic film and a ferromagnetic film may be alternately stacked a plurality of times.

【0032】第1の発明において、Co,Fe,および
Niからなる群より選ばれた少なくとも1種の元素を主
成分とする強磁性膜の最緻密面、例えばfcc相(11
1)面が膜面垂直方向に配向することにより良好な軟磁
気特性が得られる。これは、fcc相(111)面内に
おいては、結晶磁気異方性K1 に依存した磁化容易軸が
現れないからである。また、強磁性膜を形成する基板の
表面粗さを制御することにより、強磁性膜における磁化
を最密面面内に保存することができ、これにより結晶磁
気異方性に伴う保磁力を低下させることができる。した
がって、より良好な軟磁気特性が得られる。また、ロッ
キングカーブ半値幅を20°未満、望ましくは7°以下
となるように配向することにより、保磁力(Hc)が1
00A/mまでである良好な軟磁気特性、無配向膜や他
の配向(例えばfcc相(100)配向)を上回る高抵
抗変化率(△R/R)(例えばCoFe膜では△R/R
〜10%)、および高い透磁率を共に有する高感度な磁
気抵抗効果素子を得ることができる。
In the first invention, the densest surface of the ferromagnetic film containing at least one element selected from the group consisting of Co, Fe, and Ni as a main component, for example, the fcc phase (11
1) Good soft magnetic properties can be obtained by orienting the plane in the direction perpendicular to the film surface. This is because an easy axis dependent on the crystal magnetic anisotropy K 1 does not appear in the fcc phase (111) plane. In addition, by controlling the surface roughness of the substrate on which the ferromagnetic film is formed, the magnetization of the ferromagnetic film can be preserved in the close-packed plane, thereby reducing the coercive force associated with crystal magnetic anisotropy. Can be done. Therefore, better soft magnetic characteristics can be obtained. The coercive force (Hc) is set to 1 by arranging the rocking curve half width to be less than 20 °, preferably 7 ° or less.
Good soft magnetic properties up to 00 A / m, high resistance change rate (ΔR / R) over non-oriented films and other orientations (eg, fcc phase (100) orientation) (eg, ΔR / R for CoFe films)
-10%) and a high-sensitivity magnetoresistive element having both high magnetic permeability.

【0033】なお、ここで、積層膜の主結晶配向面の法
線が、結晶配向面の揺らぎにより膜面内で成分を持ち、
この膜面内成分が異方性を有していたり、結晶性の積層
膜に発生する面欠陥の法線が、膜面内への揺らぎを持
ち、この揺らぎが膜面内で異方性を有していることがあ
る。このような異方性が強い方向は、膜成長する原子面
において強磁性原子と非磁性原子が混在し易い方向であ
る。したがって、この方向、すなわち膜面内成分による
異方性が最も大きくなる方向にセンス電流を流すことに
より、電子が界面でスピン依存散乱する確率が高くなる
と考えられる。
Here, the normal line of the main crystal orientation plane of the laminated film has a component in the film plane due to the fluctuation of the crystal orientation plane,
The in-plane component of the film has anisotropy, and the normal of a plane defect generated in a crystalline laminated film has fluctuations in the film plane, and this fluctuation causes anisotropy in the film plane. May have. The direction in which such anisotropy is strong is a direction in which ferromagnetic atoms and non-magnetic atoms are likely to be mixed on an atomic plane on which a film is grown. Therefore, it is considered that when a sense current is caused to flow in this direction, that is, in the direction in which the anisotropy due to the in-film component is the largest, the probability of spin-dependent scattering of electrons at the interface increases.

【0034】すなわち、積層膜注の強磁性膜の結晶配向
面が揺らいだり、面欠陥が導入されて原子配列に乱れが
生じることにより、結晶配向面内の原子配列に乱れが生
じた場合、その乱れの大きな方向にセンス電流を流すこ
とによって、電子は等価的に多くの界面および強磁性膜
を通過することになり、スピン依存散乱される確率が高
くなる。このように、センス電流の方向を積層膜の結晶
配向面の揺らぎ方向に沿う方向に設定することにより、
磁気抵抗効果素子はより大きな抵抗変化率を示す。
That is, when the crystal orientation plane of the ferromagnetic film of the laminated film is fluctuated or the surface arrangement is introduced to disturb the atomic arrangement, the atomic arrangement in the crystal orientation surface is disturbed. By passing a sense current in the direction of large turbulence, electrons equivalently pass through many interfaces and ferromagnetic films, and the probability of spin-dependent scattering increases. Thus, by setting the direction of the sense current to the direction along the fluctuation direction of the crystal orientation plane of the stacked film,
The magnetoresistance effect element shows a larger resistance change rate.

【0035】第2の発明は、基板上に、少なくとも強磁
性膜、非磁性膜、および強磁性膜が順次積層されてなる
積層膜を具備した磁気抵抗効果素子であって、少なくと
も一方の強磁性膜はCo,Fe,およびNiからなる群
より選ばれた少なくとも2種の元素を主成分とし、P
d,Al,Cu,Ta,In,B,Nb,Hf,Mo,
W,Re,Ru,Rh,Ga,Zr,Ir,Au,およ
びAgからなる群より選ばれた少なくとも一つの元素が
添加含有された組成を有することを特徴とする磁気抵抗
効果素子を提供する。
A second aspect of the present invention is a magnetoresistive effect element comprising a laminated film in which at least a ferromagnetic film, a nonmagnetic film, and a ferromagnetic film are sequentially laminated on a substrate, and at least one of the ferromagnetic films. The film contains at least two elements selected from the group consisting of Co, Fe, and Ni as main components, and P
d, Al, Cu, Ta, In, B, Nb, Hf, Mo,
Provided is a magnetoresistive element having a composition containing at least one element selected from the group consisting of W, Re, Ru, Rh, Ga, Zr, Ir, Au, and Ag.

【0036】第2の発明の磁気抵抗効果素子は、上記構
成に加えて非磁性膜と強磁性膜を交互に複数回積層した
ものであってもよい。
The magnetoresistive effect element of the second invention may have a structure in which a nonmagnetic film and a ferromagnetic film are alternately laminated a plurality of times in addition to the above structure.

【0037】第2の発明において、添加元素の添加含有
量は、CoFe合金等を主成分とする強磁性膜の強磁性
が室温で損なわれず、かつ、スピン依存散乱を阻害する
金属間化合物が生成されない範囲である必要がある。例
えば、添加元素がAl、Ga、Inである場合には、含
有量が6.5at%未満であることが好ましい。添加元素
がNb、Ta、Zr、Hf、B、Mo、Wである場合に
は含有量が10at%未満であることが好ましい。添加元
素がCu、Pd、Au、Ag、Re、Ru、Rh、Ir
である場合には、含有量は40at%未満であることが好
ましい。
In the second invention, the added content of the additional element is such that an intermetallic compound that does not impair the ferromagnetism of the ferromagnetic film containing CoFe alloy as a main component at room temperature and inhibits spin-dependent scattering is formed. It must be within the range not covered. For example, when the additive element is Al, Ga, or In, the content is preferably less than 6.5 at%. When the additive element is Nb, Ta, Zr, Hf, B, Mo, or W, the content is preferably less than 10 at%. The additive element is Cu, Pd, Au, Ag, Re, Ru, Rh, Ir
In the case of, the content is preferably less than 40 at%.

【0038】第2の発明においては、上述したような添
加元素を加えることにより、Hcが100A/mまでで
ある良好な軟磁気特性および5%以上の△R/Rを有す
る高感度な磁気抵抗効果素子を得ることができる。特
に、Al,Ta,Zr,Nb,Hfの添加では、軟磁気
特性が著しく改善される。この場合、軟磁気特性が良好
になる理由は今のところ明確ではないが、結晶配向の改
善によるもの以外に、結晶磁気異方性の低減による効果
も含まれていると考えられる。さらに、Pd,Cu,A
g,Auでは、40at%程度まで大量に添加含有して
も、金属間化合物が生成せず、かつ、格子定数が大きく
なることにより、Cu等の中間非磁性膜との格子整合が
良好になり、いわゆるバルク散乱によるスピン依存散乱
の増大が期待できる。このため、軟磁気特性の改善に加
えて高△R/Rを維持することができる。
In the second aspect of the present invention, by adding the above-mentioned additive element, the Hc is up to 100 A / m, the good soft magnetic characteristics and the high sensitivity magnetic resistance having ΔR / R of 5% or more. An effect element can be obtained. In particular, the addition of Al, Ta, Zr, Nb, and Hf significantly improves the soft magnetic properties. In this case, the reason why the soft magnetic property is improved is not clear at present, but it is considered that the effect of reducing the crystal magnetic anisotropy is included in addition to the effect of improving the crystal orientation. Further, Pd, Cu, A
In g and Au, even if they are added in a large amount up to about 40 at%, no intermetallic compound is formed and the lattice constant becomes large, so that the lattice matching with an intermediate non-magnetic film such as Cu is improved. That is, an increase in spin-dependent scattering due to so-called bulk scattering can be expected. Therefore, high ΔR / R can be maintained in addition to the improvement of the soft magnetic characteristics.

【0039】第3の発明は、基板上に、(n+1)層の
強磁性膜とn層の非磁性膜とが交互に形成されてなる積
層膜(ただし、nは1〜4の整数を示す)を具備した磁
気抵抗効果素子であって、前記積層膜の最上層および最
下層の強磁性膜の少なくとも一方に隣接して抵抗率が5
0μΩcm以上である強磁性膜がさらに積層形成されたこ
とを特徴とする磁気抵抗効果素子を提供する。
A third invention is a laminated film in which a ferromagnetic film of (n + 1) layers and a nonmagnetic film of n layers are alternately formed on a substrate (where n is an integer of 1 to 4). ), The resistivity is 5 adjacent to at least one of the uppermost layer and the lowermost ferromagnetic film of the laminated film.
Provided is a magnetoresistive element in which a ferromagnetic film having a thickness of 0 μΩcm or more is further laminated.

【0040】第3の発明において、抵抗率が50μΩcm
以上である高抵抗強磁性膜は、強磁性膜またはフェリ磁
性膜のいずれであってもよい。また、強磁性膜を積層数
が5層以下の積層膜としたのは、強磁性膜/非磁性膜の
界面の数が多くなると、高抵抗強磁性膜/強磁性膜の界
面の働きが相対的に低下して△R/Rが向上しないから
である。したがって、第3の発明は、スピンバルブ構造
の膜を有する磁気抵抗効果に適する。
In the third invention, the resistivity is 50 μΩcm.
The high-resistance ferromagnetic film described above may be either a ferromagnetic film or a ferrimagnetic film. The reason why the ferromagnetic film is formed as a laminated film having five or less layers is that when the number of interfaces between the ferromagnetic film and the nonmagnetic film increases, the function of the interface between the high-resistance ferromagnetic film and the ferromagnetic film becomes relatively large. This is because ΔR / R does not improve due to a decrease in the ratio. Therefore, the third invention is suitable for a magnetoresistance effect having a film having a spin valve structure.

【0041】このように、強磁性膜に高抵抗強磁性膜が
接するように積層することによって、境界面でのマグノ
ンの発生を抑制することができる。その結果として、マ
グノンと電子との衝突による電子のスピンの反転確率を
小さくすることができ、これにより室温での抵抗変化率
を増加させることが可能となり、高感度な磁気抵抗効果
素子が実現できる。ただし、この高抵抗強磁性膜材料の
抵抗率が50μΩcm未満であると、電流が主にこの高抵
抗強磁性膜中を流れてしまい、逆に抵抗変化率が減少し
てしまう。換言すれば、抵抗率が50μΩcm以上の強磁
性膜を用いることにより、高抵抗強磁性膜に電流が取ら
れることを防止することができ、シャント効果による磁
気抵抗変化率の低下が抑えられる。
By laminating the ferromagnetic film so that the high-resistance ferromagnetic film is in contact with the ferromagnetic film, it is possible to suppress the generation of magnon at the boundary surface. As a result, the probability of spin reversal of electrons due to collision between magnon and electrons can be reduced, thereby increasing the rate of resistance change at room temperature, and realizing a highly sensitive magnetoresistive element. . However, if the resistivity of the high-resistance ferromagnetic film material is less than 50 μΩcm, current mainly flows through the high-resistance ferromagnetic film, and conversely, the resistance change rate decreases. In other words, by using a ferromagnetic film having a resistivity of 50 μΩcm or more, it is possible to prevent a current from being applied to the high-resistance ferromagnetic film, and to suppress a decrease in the magnetoresistance ratio due to the shunt effect.

【0042】高抵抗磁性膜の材料としては、Ni、F
e、Co、NiFe、NiFeCo、CoFe、Co合
金等にTi、V、Cr、Mn、Zn、Nb、Tc、H
f、Ta、W、Re等の元素を添加したものが挙げられ
る。
As the material of the high resistance magnetic film, Ni, F
e, Co, NiFe, NiFeCo, CoFe, Co alloy, etc. to Ti, V, Cr, Mn, Zn, Nb, Tc, H
Those to which elements such as f, Ta, W, and Re are added are exemplified.

【0043】第3の発明において、高抵抗強磁性膜は、
高抵抗軟磁性膜であることが好ましい。このとき、隣接
する強磁性膜と高抵抗軟磁性膜とが一体化することによ
り、高抵抗軟磁性膜、例えば良好な軟磁気特性を有する
非晶質膜の磁化回転に伴い、強磁性膜の磁化も同様に磁
化回転する。これにより強磁性膜の軟磁気特性が改善さ
れる。
In the third invention, the high resistance ferromagnetic film is
It is preferably a high-resistance soft magnetic film. At this time, the adjacent ferromagnetic film and the high-resistance soft magnetic film are integrated, so that the magnetization rotation of the high-resistance soft magnetic film, for example, the amorphous film having good soft magnetic characteristics, The magnetization rotates similarly. Thereby, the soft magnetic characteristics of the ferromagnetic film are improved.

【0044】高抵抗軟磁性膜としては、CoZrNb等
からなる高抵抗非晶質膜、FeZrN,CoZrN等か
らなる微結晶の高抵抗軟磁性膜、あるいはNiFeXに
おいてXがRh,Nb,Zr,Hf,Ta,Re,I
r,Pd,Pt,Cu,Mo,Mn,W,Ti,Cr,
Au,およびAgからなる群より選ばれたいずれか一つ
の元素である材料からなる膜を用いることができる。ま
たこれらの中で、非晶質膜やCoZrN,NiFeNb
等からなるfcc相を有する材料からなる膜を最下層の
強磁性膜に隣接形成すると、その上の強磁性膜のfcc
(111)配向が促進されるのでよりこの好ましい。
As the high resistance soft magnetic film, a high resistance amorphous film made of CoZrNb or the like, a microcrystalline high resistance soft magnetic film made of FeZrN, CoZrN, or the like, or X of Rh, Nb, Zr, Hf in NiFeX, Ta, Re, I
r, Pd, Pt, Cu, Mo, Mn, W, Ti, Cr,
A film made of a material that is any one element selected from the group consisting of Au and Ag can be used. Among these, amorphous films, CoZrN, NiFeNb
When a film made of a material having an fcc phase is formed adjacent to the lowermost ferromagnetic film, the fcc
This is more preferable because the (111) orientation is promoted.

【0045】高抵抗強磁性膜の膜厚は、0.5nm以上と
することが好ましい。これは、膜厚が0.5nm未満であ
ると高抵抗強磁性膜自体の磁性が弱くなり、マグノンの
発生を抑制することが困難となるためである。一方、高
抵抗強磁性膜の軟磁気特性がそれに隣接する強磁性膜の
軟磁気特性よりも劣る場合には、高抵抗強磁性膜の膜厚
は10nm以下であることが望ましい。これは、膜厚が1
0nmを超えると強磁性膜の磁化過程に影響を与え、軟磁
気特性を得ることが困難となるからである。
The thickness of the high resistance ferromagnetic film is preferably 0.5 nm or more. This is because when the film thickness is less than 0.5 nm, the magnetism of the high-resistance ferromagnetic film itself becomes weak, and it becomes difficult to suppress generation of magnon. On the other hand, when the soft magnetic characteristics of the high-resistance ferromagnetic film are inferior to those of the adjacent ferromagnetic films, the thickness of the high-resistance ferromagnetic film is preferably 10 nm or less. This means that the film thickness is 1
If the thickness exceeds 0 nm, the magnetization process of the ferromagnetic film is affected, and it is difficult to obtain soft magnetic characteristics.

【0046】第4の発明は、基板上に、(n+1)層の
強磁性膜とn層の第1の非磁性膜とが交互に形成されて
なる積層膜(ただし、nは1〜4の整数を示す)を具備
した磁気抵抗効果素子であって、前記積層膜の最上層お
よび最下層の強磁性膜の少なくとも一方の厚さが5nm以
下であり、この厚さが5nm以下の強磁性膜に隣接して抵
抗率が前記強磁性膜の2倍以下である第2の非磁性膜が
さらに積層形成されたことを特徴とする磁気抵抗効果素
子を提供する。
A fourth invention is a laminated film (where n is 1 to 4) in which a ferromagnetic film of (n + 1) layers and a first nonmagnetic film of n layers are alternately formed on a substrate. The thickness of at least one of the uppermost and lowermost ferromagnetic films of the laminated film is 5 nm or less, and the thickness is 5 nm or less. A magnetoresistive effect element characterized in that a second non-magnetic film having a resistivity not more than twice that of the ferromagnetic film is further formed adjacent to the above.

【0047】第4の発明において、第2の非磁性膜の材
料は、隣接する強磁性膜の材料と同じ結晶構造を有する
ことが好ましい。すなわち、強磁性膜がfcc相を有す
る材料からなる場合、第1の非磁性膜もfcc相を有す
る材料が好ましく用いられる。このとき、第2の非磁性
膜の材料と強磁性膜の材料との間の格子定数の違いが5
%以内であることが好ましい。特に、第2の非磁性膜を
最下層の強磁性膜に隣接して形成する場合は、強磁性膜
と第2の非磁性膜との結晶整合性を高めることにより、
強磁性膜をエピタキシャル成長させることが可能とな
り、よって界面における電子の散乱を抑制することがで
きる。
In the fourth invention, the material of the second nonmagnetic film preferably has the same crystal structure as the material of the adjacent ferromagnetic film. That is, when the ferromagnetic film is made of a material having an fcc phase, a material having an fcc phase is also preferably used for the first nonmagnetic film. At this time, the difference in lattice constant between the material of the second non-magnetic film and the material of the ferromagnetic film is 5
% Is preferable. In particular, when the second nonmagnetic film is formed adjacent to the lowermost ferromagnetic film, the crystal matching between the ferromagnetic film and the second nonmagnetic film is improved,
It is possible to grow the ferromagnetic film epitaxially, so that scattering of electrons at the interface can be suppressed.

【0048】具体的に、第2の非磁性膜の材料として
は、Mn,Fe,Ni,Cu,Al,Pd,Pt,R
h,Ir,Au,およびAgからなる群より選ばれた少
なくとも1種の元素を主成分としたものを用いることが
できる。また、基板と第2の非磁性膜との間には、下地
膜を介在させてもよい。
Specifically, the material of the second non-magnetic film is Mn, Fe, Ni, Cu, Al, Pd, Pt, R.
Those containing at least one element selected from the group consisting of h, Ir, Au, and Ag can be used. Further, a base film may be interposed between the substrate and the second non-magnetic film.

【0049】第4の発明では、各強磁性膜において結晶
成長が阻害されないように、強磁性膜を構成する材料の
結晶は、膜厚方向に結晶粒径が大きいことが望ましい。
なお、強磁性膜は5層を超えると強磁性膜と非磁性膜と
の界面の数が増加し、スピン依存散乱効果が実質的に消
失してしまう恐れがあるので、強磁性膜の積層数は5層
以下とする。
In the fourth invention, it is desirable that the crystal grains of the material forming the ferromagnetic film have a large crystal grain size in the film thickness direction so that the crystal growth in each ferromagnetic film is not hindered.
If the number of ferromagnetic films exceeds five, the number of interfaces between the ferromagnetic film and the nonmagnetic film increases, and the spin-dependent scattering effect may substantially disappear. Is 5 layers or less.

【0050】第4の発明において、第2の非磁性膜の膜
厚は、0.2〜20nmの範囲とすることが好ましい。こ
れは、第2の非磁性膜の膜厚が0.2nm未満であると、
第2の非磁性膜内に流入した電子が基板等との界面にお
いて非弾性散乱を受ける確率が増加し、平均自由行程を
有効に伸すことが困難となり、逆に膜厚が20nmを超え
ても、それ以上の効果が得られないと共に、第2の非磁
性膜のみを流れる電流が増え、大きな抵抗変化率を得る
ことが困難となるからである。
In the fourth invention, the thickness of the second nonmagnetic film is preferably in the range of 0.2 to 20 nm. This is because if the thickness of the second non-magnetic film is less than 0.2 nm,
The probability that electrons flowing into the second non-magnetic film undergo inelastic scattering at the interface with the substrate or the like increases, making it difficult to effectively extend the mean free path. Conversely, when the film thickness exceeds 20 nm, This is because no further effect can be obtained, and the current flowing only through the second nonmagnetic film increases, making it difficult to obtain a large resistance change rate.

【0051】第4の発明の磁気抵抗効果素子をセンサに
適用する場合、第2の非磁性膜の材料は、強磁性膜の材
料であるCoFe合金等の2倍以下の板状体であること
が必要であり、さらには強磁性膜より小さい抵抗率を有
することが好ましい。これは、第2の非磁性膜の抵抗率
が強磁性膜の抵抗率より著しく大きいと、第2の非磁性
膜に流入した電子が散乱を受け有効的な平均自由行程を
長く保つことができず、抵抗変化率の増大は望めないか
らである。また、第2の非磁性膜の材料は、その抵抗率
が強磁性膜の抵抗率の1/4以上であることが望まし
い。これは、第2の非磁性膜材料の抵抗率が強磁性膜の
抵抗率の1/4未満であると第2の非磁性膜のみに電流
が流れ易くなるからである。
When the magnetoresistive effect element of the fourth invention is applied to a sensor, the material of the second non-magnetic film should be a plate-like body having a size not more than twice that of the material of the ferromagnetic film such as CoFe alloy. Is required, and it is preferable that the resistivity is smaller than that of the ferromagnetic film. This is because if the resistivity of the second non-magnetic film is significantly higher than the resistivity of the ferromagnetic film, the electrons flowing into the second non-magnetic film are scattered and the effective mean free path can be kept long. This is because an increase in the rate of change in resistance cannot be expected. It is desirable that the material of the second nonmagnetic film has a resistivity equal to or more than 1 / of the resistivity of the ferromagnetic film. This is because if the resistivity of the material of the second non-magnetic film is less than 1/4 of the resistivity of the ferromagnetic film, the current easily flows only in the second non-magnetic film.

【0052】このような第4の発明は、少なくとも一方
の強磁性膜に隣接して第2の非磁性膜を積層することに
より、この強磁性膜の厚さを5nm以下と薄くしても、電
子の有効な平均自由行程を長く保てることを利用してい
る。例えば、スピンバルブ構造の膜においては、強磁性
膜の厚さを薄くしていくと、比抵抗が大きくなり、抵抗
変化率が減少してしまう。そこで、強磁性膜を薄くする
と同時に、薄くした強磁性膜に接して第2の非磁性膜を
積層することにより、電子は強磁性膜表面において非弾
性散乱を受けることなく、第2の非磁性膜に流入するこ
とができるようになり、有効的な平均自由行程を長く保
ったまま、強磁性膜を薄くすることができる。このとき
以上の作用を得るには、強磁性膜の積層数が5層以下で
ある必要がある。
According to the fourth aspect of the invention, the second non-magnetic film is laminated adjacent to at least one of the ferromagnetic films so that the thickness of the ferromagnetic film can be reduced to 5 nm or less. It takes advantage of the fact that the effective mean free path of electrons can be kept for a long time. For example, in a film having a spin valve structure, as the thickness of the ferromagnetic film decreases, the specific resistance increases and the rate of change in resistance decreases. Therefore, by making the ferromagnetic film thinner and stacking a second nonmagnetic film in contact with the thinned ferromagnetic film, electrons are not subjected to inelastic scattering on the surface of the ferromagnetic film and the second nonmagnetic The ferromagnetic film can flow into the film, and the ferromagnetic film can be thinned while keeping the effective mean free path long. In order to obtain the above effect, the number of laminated ferromagnetic films must be five or less.

【0053】上述したように第4の発明では、第2の非
磁性膜を強磁性膜に接して積層することにより、通常は
著しい抵抗変化率の減少を招く強磁性膜の厚さが5nm以
下の場合でも、抵抗変化率の大きな磁気抵抗効果素子が
得られる。しかも、強磁性膜の厚さを5nm以下と薄くし
たことによって、狭トラック幅の高密度磁気記録再生に
対応して強磁性膜を微細形状に加工しても、反磁界によ
る磁壁発生が抑制でき、よって信号磁界の検出感度が低
下することなく、またバルクハウゼンノイズの発生を抑
えることが可能となる。その結果、高密度記録の再生に
適した、ノイズが少なく高感度な磁気抵抗効果素子が実
現できる。
As described above, in the fourth invention, the second nonmagnetic film is laminated in contact with the ferromagnetic film, so that the thickness of the ferromagnetic film, which usually causes a remarkable decrease in resistance change rate, is 5 nm or less. Even in the case, a magnetoresistive effect element having a large resistance change rate can be obtained. In addition, since the thickness of the ferromagnetic film is reduced to 5 nm or less, even if the ferromagnetic film is processed into a fine shape corresponding to high-density magnetic recording / reproducing with a narrow track width, generation of domain walls due to a demagnetizing field can be suppressed. Therefore, it is possible to prevent the detection sensitivity of the signal magnetic field from lowering and to suppress the occurrence of Barkhausen noise. As a result, a high-sensitivity magnetoresistive element with little noise suitable for reproduction of high-density recording can be realized.

【0054】なお、第4の発明の磁気抵抗効果素子は、
スピンバルブ構造の膜、人工格子膜のいずれを有するも
のであってもよい。ただし、スピンバルブ型磁気抵抗効
果素子については、磁化が反強磁性膜等によって固着さ
れていない強磁性膜に隣接して、第2の強磁性膜を積層
形成することが好ましい。
The magnetoresistive element of the fourth invention is
Any of a film having a spin valve structure and an artificial lattice film may be used. However, in the case of a spin-valve magnetoresistive element, it is preferable that a second ferromagnetic film is formed adjacent to a ferromagnetic film whose magnetization is not fixed by an antiferromagnetic film or the like.

【0055】第5の発明は、基板上に、少なくとも強磁
性膜、非磁性膜、および強磁性膜が順次積層されてなる
積層膜を具備した磁気抵抗効果素子であって、前記積層
膜の最上層および最下層の強磁性膜の少なくとも一方に
隣接してこの強磁性膜よりも大きい抵抗率および長い平
均自由行程を有する薄膜がさらに積層形成されたことを
特徴とする磁気抵抗効果素子を提供する。
A fifth aspect of the present invention is a magnetoresistive effect element comprising a laminated film in which at least a ferromagnetic film, a nonmagnetic film and a ferromagnetic film are sequentially laminated on a substrate. Provided is a magnetoresistive effect element characterized in that a thin film having a larger resistivity and a longer mean free path than that of the ferromagnetic film is further formed adjacent to at least one of the upper and lowermost ferromagnetic films. .

【0056】第5の発明において、薄膜の材料として
は、Bi、Sb、炭素等の半金属、高濃度にドーピング
を行い縮退した半導体、SnO2 、TiO2 等の酸化物
半導体等が挙げられる。また、薄膜の膜厚は、1〜50
nmの範囲とすることが好ましい。これは、薄膜の膜厚が
1nm未満であると電子の平均自由行程の増大効果が十分
に得られず、膜厚が50nmを超えてもそれ以上の効果が
得られないと共に、薄膜のみを流れる電流が増え、大き
な抵抗変化率を得ることが困難となるからである。さら
に、薄膜の抵抗率が強磁性膜の抵抗率より小さいと、電
流が主に当該薄膜中を流れてしまい、磁気抵抗効果は逆
に小さくなるので、薄膜は強磁性膜よりも大きい抵抗率
を有するようにする。
In the fifth invention, examples of the material for the thin film include semimetals such as Bi, Sb and carbon, semiconductors degenerated by high concentration doping, oxide semiconductors such as SnO 2 and TiO 2 . The thickness of the thin film is 1 to 50.
It is preferably in the range of nm. This is because if the thickness of the thin film is less than 1 nm, the effect of increasing the mean free path of electrons cannot be sufficiently obtained, and if the thickness exceeds 50 nm, no further effect can be obtained, and only the thin film flows. This is because the current increases and it becomes difficult to obtain a large resistance change rate. Furthermore, if the resistivity of the thin film is smaller than the resistivity of the ferromagnetic film, the current mainly flows through the thin film, and the magnetoresistance effect is conversely reduced, so that the thin film has a higher resistivity than the ferromagnetic film. To have.

【0057】なお、第5の発明おいて、平均自由行程と
は、他の物に散乱されずに電子が移動する平均の距離を
いう。
In the fifth aspect of the invention, the mean free path means the average distance traveled by the electrons without being scattered by other objects.

【0058】第5の発明において、強磁性膜の膜厚は、
薄膜と接する場合、第4の発明と同様の理由で5nm以下
とすることが好ましく、薄膜と接しない強磁性膜は平均
自由行程を確保するために2〜20nmの範囲とすること
が好ましい。
In the fifth invention, the thickness of the ferromagnetic film is
In the case of contact with a thin film, the thickness is preferably 5 nm or less for the same reason as in the fourth invention, and the thickness of a ferromagnetic film not in contact with the thin film is preferably in the range of 2 to 20 nm in order to secure the mean free path.

【0059】このような第5の発明は、少なくとも一方
の強磁性膜に接して、平均自由行程が長い薄膜を積層す
ることにより、積層膜全体の有効的な平均自由行程を長
くすることができることを利用している。例えば、スピ
ンバルブ型積層膜における磁気抵抗効果の物理的機構と
しては、以下のことが知られている。すなわち、スピン
バルブ型積層膜では、2つの強磁性膜間の磁化の方向が
互いに平行なときには、磁化に平行なスピンまたは磁化
に反平行のスピンのどちらか一方のスピンをもつ伝導電
子が、膜全体で長い平均自由行程を持つことができるよ
うになり、全体として低い比抵抗値を示す。これに対し
て、2つの強磁性膜間の磁化の方向が互いに反平行なと
きには、膜全体で平均自由行程の長い伝導電子は存在し
なくなり、比抵抗値が高くなる。スピンバルブ型積層膜
での磁気抵抗効果は、この2つの状態における平均自由
行程の長さの差によって決まる。
In the fifth aspect of the invention as described above, the effective mean free path of the entire laminated film can be lengthened by laminating thin films having a long mean free path in contact with at least one ferromagnetic film. Are using. For example, the following is known as a physical mechanism of the magnetoresistance effect in the spin-valve type laminated film. That is, in the spin-valve type stacked film, when the directions of magnetization between the two ferromagnetic films are parallel to each other, conduction electrons having either one of a spin parallel to the magnetization and a spin anti-parallel to the magnetization are generated. It is possible to have a long mean free path as a whole and exhibit a low specific resistance value as a whole. On the other hand, when the directions of magnetization between the two ferromagnetic films are antiparallel to each other, no conduction electrons having a long mean free path exist in the entire film, and the specific resistance increases. The magnetoresistance effect in the spin-valve type laminated film is determined by the difference in the length of the mean free path in these two states.

【0060】さらに、強磁性膜内部において、磁化に対
して平行なスピンを持った電子と、反平行なスピンを持
った電子とでは、その平均自由行程が異なることが知ら
れており、上述した原因から、強磁性膜内部で長い平均
自由行程を持つスピン方向の電子は、より長い平均自由
行程を持っている方が、スピンバルブ型積層膜の磁気抵
抗効果を大きくすることができる。そこで、第5の発明
においては、平均自由行程が強磁性膜より長い薄膜を積
層することにより、電子の有効的な平均自由行程を長く
して、磁気抵抗効果をより大きくすることを可能にして
いる。ただし、上記薄膜の比抵抗が強磁性膜より小さい
と、電流が主に積層した薄膜中を流れてしまい、磁気抵
抗効果は逆に小さくなってしまう。そのため、上記薄膜
の構成材料は、平均自由行程が長いと同時に、強磁性膜
の抵抗率以上の抵抗率を有することが必要となる。
Further, it is known that electrons having spins parallel to the magnetization and electrons having antiparallel spins in the ferromagnetic film have different mean free paths. For the reason, electrons in the spin direction having a long mean free path inside the ferromagnetic film can have a larger magnetoresistive effect in the spin-valve type laminated film if the electron has a longer mean free path. Therefore, in the fifth invention, by laminating a thin film having a mean free path longer than a ferromagnetic film, it is possible to lengthen the effective mean free path of electrons and to increase the magnetoresistance effect. I have. However, if the specific resistance of the thin film is smaller than that of the ferromagnetic film, the current mainly flows through the laminated thin film, and conversely, the magnetoresistance effect decreases. Therefore, the constituent material of the thin film needs to have a long mean free path and a resistivity higher than the resistivity of the ferromagnetic film.

【0061】また、上記平均自由行程が長い薄膜とし
て、抵抗率が大きい材料を用いると共に、それと接する
強磁性膜の厚さを薄くすることにより、積層膜全体とし
ての比抵抗値を増加させることが可能になる。これによ
り、高い比抵抗値を持った積層膜が得られ、微細パター
ンにおいても低電流密度で大きな信号電圧を取り出すこ
とができる。よって、発熱、マイグレーション等の問題
を回避することが可能となる。
Further, as the thin film having a long mean free path, a material having a large resistivity is used, and the thickness of the ferromagnetic film in contact with the thin film is thinned to increase the specific resistance value of the laminated film as a whole. It will be possible. As a result, a laminated film having a high specific resistance can be obtained, and a large signal voltage can be obtained with a low current density even in a fine pattern. Therefore, problems such as heat generation and migration can be avoided.

【0062】なお、第5の発明の磁気抵抗効果素子は、
上記構成に加えて非磁性膜と強磁性膜を交互に複数回積
層したものであってもよい。
The magnetoresistive effect element of the fifth invention is
In addition to the above configuration, a nonmagnetic film and a ferromagnetic film may be alternately stacked a plurality of times.

【0063】第6の発明は、基板上に、少なくとも強磁
性膜、非磁性膜、および強磁性膜が順次積層されてなる
積層膜を具備した磁気抵抗効果素子であって、前記積層
膜の最下層の強磁性膜がCoFe合金からなり、この強
磁性膜に隣接してCoFe合金よりも格子定数の大きい
fcc相を有する下地膜がさらに積層形成されてなるこ
とを特徴とする磁気抵抗効果素子を提供する。
A sixth aspect of the present invention is a magnetoresistive effect element comprising a laminated film in which at least a ferromagnetic film, a nonmagnetic film, and a ferromagnetic film are sequentially laminated on a substrate, and the laminated film has the highest layer. A magnetoresistive effect element characterized in that a lower ferromagnetic film is made of a CoFe alloy, and an underlying film having an fcc phase having a lattice constant larger than that of a CoFe alloy is further formed adjacent to the ferromagnetic film. provide.

【0064】第6の発明においては、格子定数の大きい
fcc相を有する下地膜上に形成される強磁性膜がCo
Fe合金からなるとき低Hcが実現され、特にCo
100-x Fex (5≦x≦40原子%)からなる強磁性膜
について軟磁気特性の改善が顕著となる。これは、Fe
濃度が5原子%未満であるとhcp相が混入して、逆に
Fe濃度が40原子%を超えるとbcc相が混入して格
子不整合が起こるからである。また、CoFeに添加し
得る他の元素としては、Pd,Al,Cu,Ta,I
n,B,Zr,Nb,Hf,Mo,Ni,W,Re,R
u,Ir,Rh,Ga,Au,Agを挙げることがで
き、これらの元素が添加含有された場合にも同様なHc
低減が実現される。
In the sixth invention, the ferromagnetic film formed on the underlying film having the fcc phase having a large lattice constant is Co.
Low Hc is realized when made of Fe alloy,
The improvement in soft magnetic characteristics is remarkable for a ferromagnetic film made of 100-x Fe x (5 ≦ x ≦ 40 at%). This is Fe
If the concentration is less than 5 at%, the hcp phase is mixed. Conversely, if the Fe concentration exceeds 40 at%, the bcc phase is mixed and lattice mismatch occurs. Other elements that can be added to CoFe include Pd, Al, Cu, Ta, and I.
n, B, Zr, Nb, Hf, Mo, Ni, W, Re, R
u, Ir, Rh, Ga, Au, and Ag. When these elements are added and contained, similar Hc
Reduction is realized.

【0065】第6の発明において、また、下地膜として
は、fcc相で格子定数がCoFeよりも大きい材料で
あれば限定されないが、強磁性膜を構成するCoFr合
金より大きい抵抗率を有する材料を用いることが好まし
い。具体的には、Cu、Pd、Al等、Niやこれらを
主成分とする合金、あるいはfcc相を有する強磁性材
料を用いることができる。この下地膜の膜厚は、1原子
層以上であればHcを低減することができ、さらに10
0nm以下とすることが好ましい。ただし、下地膜にCu
等の抵抗率の低い材料を用いた場合には、センス電流が
下地膜に分流し易くなるので、膜厚が2nm以下であるこ
とが特に好ましい。また、基板と下地膜との間には、平
滑性改善のための膜が形成されていることが好ましく、
平滑性改善のための膜としては、Cr、Ta、Zr、T
i等からなる膜を用いることができる。
In the sixth invention, the base film is not limited as long as it is a material having a fcc phase and a lattice constant larger than CoFe, but a material having a resistivity higher than that of the CoFr alloy forming the ferromagnetic film is used. It is preferable to use. Specifically, Cu, Pd, Al, Ni, an alloy containing these as a main component, or a ferromagnetic material having an fcc phase can be used. If the thickness of the underlayer is at least one atomic layer, Hc can be reduced.
Preferably, the thickness is 0 nm or less. However, Cu
When a material having a low resistivity, such as the above, is used, the sense current is easily diverted to the base film, so that the film thickness is particularly preferably 2 nm or less. Preferably, a film for improving smoothness is formed between the substrate and the base film,
Cr, Ta, Zr, T
A film made of i or the like can be used.

【0066】第6の発明では、fcc相であり強磁性膜
の材料よりも大きい格子定数を有する材料からなる下地
膜上に強磁性膜であるCo100-x Fex (0<x<10
0原子%)膜を形成すると、適度な格子歪がCoFe膜
に誘導され、その結果Hcが大幅に低下して良好な軟磁
気特性を示す。なお、この格子歪は下地膜の種類だけで
なく、強磁性膜の膜厚や下地膜の膜厚等を調整すること
により容易に制御できる。したがって、この強磁性膜上
に例えばCu等の非磁性膜、CoFe膜等のスピン依存
散乱能力を有する強磁性膜、および反強磁性膜を順次形
成すると、僅かな信号磁界により大きな抵抗変化を生じ
る高感度な磁気抵抗効果素子となる。ここで、基板上に
形成する下地膜の抵抗率が強磁性膜よりも大きいと、こ
の下地膜へのセンス電流の分流が抑制でき、高い抵抗変
化率を示す。さらに、この下地膜が層状に膜成長しない
ために各界面での平滑性が劣化して抵抗変化率が低下す
る場合には、層状に膜成長させる働きのある別の下地膜
を上述したような下地膜と基板との間に介在させること
により高い抵抗変化率を実現することができる。
In the sixth aspect of the invention, a ferromagnetic film of Co 100-x Fe x (0 <x <10 is formed on the under film made of a material having an fcc phase and a lattice constant larger than that of the material of the ferromagnetic film.
When the (0 at%) film is formed, an appropriate lattice strain is induced in the CoFe film, and as a result, Hc is significantly reduced, and good soft magnetic characteristics are exhibited. The lattice strain can be easily controlled by adjusting not only the type of the base film but also the thickness of the ferromagnetic film and the thickness of the base film. Therefore, when a non-magnetic film such as a Cu film, a ferromagnetic film having a spin-dependent scattering ability such as a CoFe film, and an antiferromagnetic film are sequentially formed on the ferromagnetic film, a large change in resistance occurs due to a slight signal magnetic field. It becomes a highly sensitive magnetoresistive element. Here, if the resistivity of the base film formed on the substrate is higher than that of the ferromagnetic film, the shunt of the sense current to the base film can be suppressed, and a high resistance change rate is exhibited. Further, when the underlying film does not grow in a layered manner, the smoothness at each interface is degraded and the resistance change rate is reduced. In this case, another underlying film having the function of growing the layered film is provided as described above. A high resistance change rate can be realized by interposing between the base film and the substrate.

【0067】なお、第6の発明の磁気抵抗効果素子は、
上記構成に加えて非磁性膜と強磁性膜を交互に複数回積
層したものであってもよい。
The magnetoresistive effect element of the sixth invention is
In addition to the above configuration, a nonmagnetic film and a ferromagnetic film may be alternately stacked a plurality of times.

【0068】第7の発明は、基板上に、少なくとも強磁
性膜、第1の非磁性膜、および強磁性膜が順次積層され
てなる積層膜を具備した磁気抵抗効果素子であって、少
なくとも一方の強磁性膜の前記第1の非磁性膜と反対側
の主面に隣接して第1の非磁性膜とは異なる厚さを有す
る第2の非磁性膜と強磁性膜とが交互に形成されてお
り、これらの強磁性膜と第2の強磁性膜とからなる単位
積層膜内での各強磁性膜の磁化が互いに強磁性的に結合
されていることを特徴とする磁気抵抗効果素子を提供す
る。
A seventh aspect of the present invention is a magnetoresistive effect element comprising a laminated film in which at least a ferromagnetic film, a first non-magnetic film, and a ferromagnetic film are sequentially laminated on a substrate, and at least one of them. Adjacent to the main surface of the ferromagnetic film opposite to the first nonmagnetic film, second nonmagnetic films and ferromagnetic films having different thicknesses from the first nonmagnetic film are alternately formed. The magnetoresistive effect element is characterized in that the magnetizations of the respective ferromagnetic films in the unit laminated film composed of these ferromagnetic films and the second ferromagnetic film are ferromagnetically coupled to each other. I will provide a.

【0069】第7の発明においては、第1の非磁性膜を
挟んで形成される両側の強磁性膜に対して少なくとも第
2の非磁性膜および強磁性膜を隣接形成してもよいし、
第1の非磁性膜の片側については単層の強磁性膜であっ
てもよい。また、強磁性膜の第1の非磁性膜と反対側の
主面に隣接して第2の非磁性膜および強磁性膜を交互に
2周期以上形成して単位積層膜を構成することも可能で
ある。ここで、単位積層膜中の第2の非磁性膜の厚さは
2nm以下であることが好ましく、さらに、互いに近接す
る強磁性膜がRKKY的な反強磁性結合をしない程度の厚さ
であることが好ましい。これは、単位積層膜中での各強
磁性膜の磁化を強磁性的結合状態に保つためである。例
えば、強磁性膜の材料がCoFeであり、第2の非磁性
膜の材料がCuである場合には、第2の非磁性膜の厚さ
は、1nm近傍でないように設定する。
In the seventh invention, at least the second non-magnetic film and the ferromagnetic film may be formed adjacent to the ferromagnetic films on both sides formed with the first non-magnetic film interposed therebetween.
One side of the first nonmagnetic film may be a single-layer ferromagnetic film. It is also possible to form a unit laminated film by alternately forming a second non-magnetic film and a ferromagnetic film at least two periods adjacent to the main surface of the ferromagnetic film opposite to the first non-magnetic film. It is. Here, the thickness of the second non-magnetic film in the unit laminated film is preferably 2 nm or less, and the thickness is such that the ferromagnetic films adjacent to each other do not have anti-ferromagnetic coupling like RKKY. Is preferred. This is to keep the magnetization of each ferromagnetic film in the unit laminated film in a ferromagnetically coupled state. For example, when the material of the ferromagnetic film is CoFe and the material of the second nonmagnetic film is Cu, the thickness of the second nonmagnetic film is set so as not to be around 1 nm.

【0070】また、強磁性膜と第2の非磁性膜とは格子
整合を保って成長すること、すなわち強磁性膜と第2の
非磁性膜とが格子整合されて両者の界面における余分な
散乱がないことが望ましい。これにより、抵抗の増加を
防止することができる。
Further, the ferromagnetic film and the second non-magnetic film are grown while maintaining the lattice matching, that is, the ferromagnetic film and the second non-magnetic film are lattice-matched, and extra scattering occurs at the interface between them. It is desirable that there is no Thereby, an increase in resistance can be prevented.

【0071】第7の発明において、強磁性膜と第2の非
磁性膜とからなる単位積層膜は、軟磁気特性が良好であ
り、格子の整合性がよく、強磁性的に結合されているた
め、反強磁性結合状態に比べて抵抗が小さく、スピン依
存散乱を生じる強磁性膜と非磁性膜との界面数が多い。
このため、単位積層膜中でのいわゆるバルク散乱による
抵抗変化率増大が期待できる。したがって、この単位積
層膜を強磁性膜単位として用いた人工格子膜やスピンバ
ルブ構造の膜は、軟磁気特性が良好であり、スピン依存
散乱に起因した高い抵抗変化率を示す。その結果、高感
度な磁気抵抗効果素子が得られる。
In the seventh invention, the unit laminated film including the ferromagnetic film and the second nonmagnetic film has good soft magnetic characteristics, good lattice matching, and is ferromagnetically coupled. Therefore, the resistance is smaller than that in the antiferromagnetically coupled state, and the number of interfaces between the ferromagnetic film and the nonmagnetic film that causes spin-dependent scattering is large.
Therefore, an increase in the rate of change in resistance due to so-called bulk scattering in the unit laminated film can be expected. Therefore, an artificial lattice film or a film having a spin-valve structure using this unit laminated film as a ferromagnetic film unit has good soft magnetic properties and exhibits a high resistance change rate due to spin-dependent scattering. As a result, a highly sensitive magnetoresistive element can be obtained.

【0072】なお、第7の発明の磁気抵抗効果素子は、
上記構成に加えて第1の非磁性膜と単位積層膜または強
磁性膜を交互に複数回積層したものであってもよい。ま
た、第7の発明の磁気抵抗効果素子は、スピンバルブ構
造の膜、人工格子膜のいずれを有するものであってもよ
い。
The magnetoresistive element of the seventh invention is
In addition to the above configuration, the first nonmagnetic film and the unit laminated film or the ferromagnetic film may be alternately laminated plural times. Further, the magnetoresistive element of the seventh invention may have any of a spin-valve structure film and an artificial lattice film.

【0073】第8の発明は、基板上に、少なくとも強磁
性膜、非磁性膜、および強磁性膜が順次積層されてなる
積層膜を具備した磁気抵抗効果素子であって、少なくと
も一方の強磁性膜へのバイアス磁界印加手段として前記
積層膜に隣接または近接して形成されたバイアス膜を備
え、かつ、2つの前記強磁性膜にそれぞれトラック幅方
向の成分が互いに反平行となる方向のバイアス磁界が印
加されて、2つの前記強磁性膜の磁化が信号磁界により
互いに逆方向に回転することを特徴とする磁気抵抗効果
素子を提供する。
An eighth aspect of the present invention is a magnetoresistive effect element comprising at least a ferromagnetic film, a non-magnetic film and a ferromagnetic film laminated in this order on a substrate. A bias film is formed as a bias magnetic field applying means to the film, the bias film being formed adjacent to or in the vicinity of the laminated film, and the bias magnetic fields in the directions in which the track width direction components are antiparallel to each other in the two ferromagnetic films. Is applied, the magnetizations of the two ferromagnetic films rotate in opposite directions due to a signal magnetic field, thereby providing a magnetoresistive effect element.

【0074】第8の発明において、信号磁界により2つ
の強磁性膜の磁化が互いに逆回転するようなバイアス磁
界を印加する方法としては、積層膜に隣接または近接し
てバイアス膜を形成する方法、より具体的には反強磁性
膜からの交換結合を用いる方法、硬質磁性膜を用いる方
法、スピン依存散乱能力を有する強磁性膜に新たな強磁
性膜を積層することにより生じる交換バイアスを利用す
る方法等や、さらにはセンス電流により発生するバイア
ス磁界や、微細パターン加工時に発する静磁結合(反磁
界)を利用する方法が採用される。ただし、少なくとも
一方の強磁性膜に対しては上述したようなバイアス膜を
形成して、バイアス磁界が印加される。
In the eighth invention, as a method of applying a bias magnetic field in which the magnetizations of the two ferromagnetic films rotate in opposite directions by the signal magnetic field, a method of forming a bias film adjacent to or close to the laminated film, More specifically, a method using exchange coupling from an antiferromagnetic film, a method using a hard magnetic film, and an exchange bias generated by stacking a new ferromagnetic film on a ferromagnetic film having spin-dependent scattering ability are used. The method and the like, and further, a method utilizing a bias magnetic field generated by a sense current and a magnetostatic coupling (demagnetizing field) generated at the time of fine pattern processing are adopted. However, a bias magnetic field is applied to at least one of the ferromagnetic films by forming the above-described bias film.

【0075】具体的には、例えば、2つの強磁性膜に隣
接してそれぞれ反強磁性膜を積層し、この反強磁性膜を
用い、隣り合う強磁性膜間でバイアス磁界の方向が18
0°異なるようにそれぞれの強磁性膜を着磁する。この
場合の着磁は、強磁性膜および反強磁性膜の成膜時に静
磁界を加える方向を180°変えること等により達成で
きる。ここで、隣り合う強磁性膜に加えるバイアス磁界
は、強磁性膜の単磁区化に必要最少限の大きさ、例えば
5kA/m以下であることが望ましい。また、両反強磁
性膜は、2つの強磁性膜に互いに異なる方向のバイアス
磁界を容易に印加するために、それぞれ異なるネール点
を有することが好ましい。
Specifically, for example, an antiferromagnetic film is laminated adjacent to two ferromagnetic films, the antiferromagnetic film is used, and the direction of the bias magnetic field is 18 between the adjacent ferromagnetic films.
The ferromagnetic films are magnetized so that they differ by 0 °. The magnetization in this case can be achieved by changing the direction in which a static magnetic field is applied during the film formation of the ferromagnetic film and the antiferromagnetic film by 180 °. Here, the bias magnetic field applied to the adjacent ferromagnetic films is desirably the minimum necessary for forming the ferromagnetic films into a single magnetic domain, for example, 5 kA / m or less. The antiferromagnetic films preferably have different Neel points in order to easily apply bias magnetic fields in different directions to the two ferromagnetic films.

【0076】あるいは、以下に示す方法もある。一方の
強磁性膜へのバイアス磁界印加には、反強磁性膜との積
層による交換バイアス磁界を用いる。これに対し、別の
強磁性膜へのバイアス磁界印加には、反強磁性膜の前記
強磁性膜と反対側の主面に隣接して新たな強磁性膜を積
層して、反強磁性膜により磁化固着された新たな強磁性
膜から微細パターンに加工した時に発生する静磁結合磁
界(反磁界)を利用する。なお、この新たな強磁性膜
は、反強磁性膜と接する側から順に交換バイアスが加わ
るのに適した強磁性膜A(例えば、NiFeやCoFe
等の結晶性の良い膜)と、さらに静磁結合磁界を発生す
るのに適した別の強磁性膜B(例えば、Co系の非晶質
強磁性膜や窒化または炭化微結晶強磁性膜等)を強磁性
交換結合するように積層した2層構造とすることが望ま
しい。この2層構造では、強磁性膜Bの膜厚、組成調
整、作製条件等により強磁性膜のBsや抵抗値を例え
ば、Bsが低く、抵抗値が高くなるように調整すること
により、静磁結合バイアス磁界強度や、強磁性膜Bをセ
ンス電流の一部が流れることにより発生するいわゆるシ
ャントバイアス(動作点バイアス)を調整することがで
きる。なお、強磁性膜が異方性磁気抵抗効果を有するN
iFe等からなる場合には、センス電流を信号磁界の方
向と直交する方向に流すことが好ましい。すなわち、セ
ンス電流を信号磁界と直交する方向に流す方式では、N
iFe膜等を用いた場合に無視できない通常の異方性磁
気抵抗効果とスピン依存散乱による抵抗変化とが重畳さ
れるので、ΔR/Rが増大する。
Alternatively, the following method is also available. To apply a bias magnetic field to one ferromagnetic film, an exchange bias magnetic field formed by lamination with an antiferromagnetic film is used. On the other hand, to apply a bias magnetic field to another ferromagnetic film, a new ferromagnetic film is stacked adjacent to the main surface of the antiferromagnetic film on the side opposite to the ferromagnetic film, and the antiferromagnetic film is Utilizes a magnetostatic coupling magnetic field (demagnetizing field) generated when a new ferromagnetic film that has been magnetized and fixed is processed into a fine pattern. The new ferromagnetic film is a ferromagnetic film A (for example, NiFe or CoFe) suitable for applying an exchange bias in order from the side in contact with the antiferromagnetic film.
And another ferromagnetic film B (for example, a Co-based amorphous ferromagnetic film, a nitrided or carbonized microcrystalline ferromagnetic film, etc.) suitable for generating a magnetostatic coupling magnetic field. ) Is desirably a two-layer structure in which ferromagnetic exchange coupling is performed. In this two-layer structure, the magnetostatic property is adjusted by adjusting the Bs and the resistance of the ferromagnetic film B so that the Bs is low and the resistance is high, for example, by adjusting the thickness, the composition, and the manufacturing conditions of the ferromagnetic film B. It is possible to adjust the strength of the coupling bias magnetic field and the so-called shunt bias (operating point bias) generated when a part of the sense current flows through the ferromagnetic film B. It should be noted that the ferromagnetic film has an anisotropic magnetoresistance effect of N
In the case of iFe or the like, it is preferable to flow the sense current in a direction orthogonal to the direction of the signal magnetic field. That is, in the method in which the sense current flows in a direction orthogonal to the signal magnetic field, N
When an iFe film or the like is used, a normal anisotropic magnetoresistance effect that cannot be ignored and a resistance change due to spin-dependent scattering are superimposed, so that ΔR / R increases.

【0077】また、反強磁性膜を用いて強磁性膜にバイ
アス磁界を印加する場合には、そのバイアス磁界が大き
すぎることがときに問題となるが、この大きなバイアス
磁界は反強磁性膜と強磁性膜との間に、反強磁性膜側を
強磁性膜とした強磁性膜と非磁性膜との積層膜を介在さ
せること等により低減できる。
When a bias magnetic field is applied to a ferromagnetic film by using an antiferromagnetic film, it sometimes becomes a problem that the bias magnetic field is too large. It can be reduced by interposing a laminated film of a ferromagnetic film whose anti-ferromagnetic film side is a ferromagnetic film and a non-magnetic film between the ferromagnetic film and the like.

【0078】上述したような第8の発明においては、隣
り合う強磁性膜間での磁化が信号磁界により急峻に反平
行的な状態から平行的な状態に変化する。さらに、両強
磁性膜の信号磁界零の場合の磁化方向を反平行にさせる
ために必要な反強磁性膜等からのバイアス磁界は、バル
クハウゼンノイズ抑制のために必要な最小限に抑制され
る。このため、磁気ヘッドに適する困難軸方向に信号磁
界を加えた場合(高周波特性が良好等の利点を有する)
でも、両強磁性膜の磁化回転により、両強磁性膜間の磁
化が0〜180°まで比較的低い磁界範囲で変化する。
したがって、容易軸方向と同程度の大きな抵抗変化率を
比較的低い磁界レンジで示す。なお、第8の発明では、
2つの強磁性膜に印加されるバイアス磁界の方向を必ず
しも互いに反平行とする必要はなく、換言すれば、信号
磁界零の場合における両強磁性膜の磁化方向と信号磁界
方向とのなす角がそれぞれ+90°、−90°に設定さ
れてなくてもよい。具体的には、信号磁界零の場合の両
強磁性膜の磁化方向と信号磁界とのなす角がそれぞれ+
30°〜60°、−30°〜60°の範囲内に設定され
ることが好ましい。この理由は信号磁界零の場合の両強
磁性膜の磁化方向を、反平行状態から信号磁界とのなす
角が上述したような範囲内となるように傾けることによ
り、動作点バイアスが不要となるからである。
In the eighth aspect of the invention as described above, the magnetization between adjacent ferromagnetic films sharply changes from the antiparallel state to the parallel state due to the signal magnetic field. Further, the bias magnetic field from the antiferromagnetic film or the like necessary to make the magnetization directions antiparallel when the signal magnetic field of both ferromagnetic films is zero is suppressed to the minimum necessary for suppressing Barkhausen noise. . For this reason, when a signal magnetic field is applied in a hard axis direction suitable for a magnetic head (has advantages such as good high-frequency characteristics)
However, the magnetization rotation between the two ferromagnetic films changes the magnetization between the two ferromagnetic films in a relatively low magnetic field range from 0 to 180 °.
Therefore, a large rate of change in resistance, which is almost equal to that in the easy axis direction, is shown in a relatively low magnetic field range. In the eighth invention,
The directions of the bias magnetic fields applied to the two ferromagnetic films do not necessarily have to be antiparallel to each other. In other words, the angle between the magnetization directions of the two ferromagnetic films and the signal magnetic field direction when the signal magnetic field is zero is formed. The angles may not be set to + 90 ° and −90 °, respectively. Specifically, the angles formed by the magnetization directions of both ferromagnetic films and the signal magnetic field when the signal magnetic field is zero are +
It is preferable to set within the range of 30 ° to 60 ° and -30 ° to 60 °. The reason is that the operating point bias becomes unnecessary by inclining the magnetization directions of the two ferromagnetic films when the signal magnetic field is zero from the antiparallel state so that the angle between the ferromagnetic films and the signal magnetic field is within the above-described range. Because.

【0079】さらに、従来のスピンバルブ型磁気抵抗効
果素子では、非磁性膜の膜厚が薄くなると抵抗変化率が
指数関数的に増大するので、できるだけ非磁性膜の膜厚
を薄くすることが望ましいが、実際には、非磁性膜の膜
厚が2nm未満になると上下強磁性膜間の強磁性的結合が
強くなり、反強磁性的磁化配列が実現できなくなり、抵
抗変化率が大幅に低下する問題点がある。しかしなが
ら、両強磁性膜にバイアス磁界を加える第8の発明にお
いては、非磁性膜の膜厚が2nm未満になっても反平行バ
イアス磁界強度の調整により反強磁性的磁化配列が実現
できるので、抵抗変化率の飛躍的増大が期待できる。
Further, in the conventional spin valve type magnetoresistive effect element, the resistance change rate exponentially increases as the thickness of the non-magnetic film decreases, so it is desirable to reduce the thickness of the non-magnetic film as much as possible. However, in reality, when the thickness of the non-magnetic film becomes less than 2 nm, the ferromagnetic coupling between the upper and lower ferromagnetic films becomes strong, the antiferromagnetic magnetization arrangement cannot be realized, and the resistance change rate is significantly reduced. There is a problem. However, in the eighth invention in which a bias magnetic field is applied to both ferromagnetic films, the antiferromagnetic magnetization arrangement can be realized by adjusting the antiparallel bias magnetic field intensity even when the thickness of the nonmagnetic film becomes less than 2 nm. A dramatic increase in the rate of resistance change can be expected.

【0080】また、2つの強磁性膜にバイアス磁界を加
えるので、すべての強磁性膜から磁壁がなくなりバルク
ハウゼンノイズが抑制できる。
Since a bias magnetic field is applied to the two ferromagnetic films, the magnetic domain walls are eliminated from all the ferromagnetic films, and Barkhausen noise can be suppressed.

【0081】なお、第8の発明の磁気抵抗効果素子は、
上記構成に加えて非磁性膜と強磁性膜を交互に複数回積
層したものであってもよい。
The magnetoresistive element of the eighth invention is
In addition to the above configuration, a nonmagnetic film and a ferromagnetic film may be alternately stacked a plurality of times.

【0082】第9の発明は、基板上に、少なくとも強磁
性膜、非磁性膜、および強磁性膜が順次積層されてなる
積層膜を具備した磁気抵抗効果素子であって、2つの前
記強磁性膜はそれぞれ信号磁界が印加されてもその磁化
方向が実質的に保持される磁化固着膜、および信号磁界
により磁化が変化して信号磁界を検出する磁界検出膜と
なり、信号磁界零の場合における2つの前記強磁性膜の
磁化方向が互いに略直交しており、かつ、信号磁界方向
にセンス電流を通電することを特徴とする磁気抵抗効果
素子を提供する。
A ninth aspect of the present invention is a magnetoresistive effect element comprising a laminated film in which at least a ferromagnetic film, a non-magnetic film, and a ferromagnetic film are sequentially laminated on a substrate. The films serve as a magnetically pinned film whose magnetization direction is substantially maintained even when a signal magnetic field is applied, and a magnetic field detection film whose magnetization changes by the signal magnetic field to detect the signal magnetic field. There is provided a magnetoresistive effect element characterized in that the magnetization directions of the two ferromagnetic films are substantially orthogonal to each other and a sense current is passed in the signal magnetic field direction.

【0083】第9の発明において、磁化固着膜の磁化を
固着させる方法としては、反強磁性膜を磁化固着膜と交
換結合するように積層する方法、磁化固着膜の高Hc化
を図る方法、高Hcを有する強磁性膜を磁化固着膜に積
層する方法が挙げられる。また、信号磁界零の場合にお
ける磁化固着膜と磁界検出膜の磁化方向を互いに直交さ
せる方法としては、磁化固着膜の磁化と直交するように
磁界検出膜の磁化容易軸を付与する方法、磁界検出膜に
隣接または近接してバイアス膜を形成し磁化固着膜の磁
化と直交する方向に例えば5kA/m以下程度の弱い交
換結合バイアスを与える方法等が挙げられる。なお、後
者の方法によれば、磁界検出膜が特に大きなバイアス磁
界を有するCoFeからなる場合でも、磁化固着膜の磁
化と略同一方向に磁界検出膜の磁化容易軸を付与して、
この磁化容易軸と直交する膜面内方向にCoFeの異方
性磁界を若干上回る交換結合バイアスを与えることによ
り、磁界検出膜の磁気異方性を低減でき、結果として低
い磁界レンジで大きな抵抗変化率を得ることが可能とな
る。
In the ninth invention, as a method of fixing the magnetization of the magnetization fixed film, a method of laminating an antiferromagnetic film so as to exchange-couple with the magnetization fixed film, a method of increasing the Hc of the magnetization fixed film, A method of laminating a ferromagnetic film having a high Hc on the magnetization fixed film can be mentioned. As a method of making the magnetization directions of the magnetization fixed film and the magnetic field detection film orthogonal to each other when the signal magnetic field is zero, a method of giving an easy axis of magnetization of the magnetic field detection film so as to be orthogonal to the magnetization of the magnetization fixed film, There is a method in which a bias film is formed adjacent to or close to the film, and a weak exchange coupling bias of, for example, about 5 kA / m or less is applied in a direction orthogonal to the magnetization of the magnetization fixed film. According to the latter method, even when the magnetic field detection film is made of CoFe having a particularly large bias magnetic field, the magnetization easy axis of the magnetic field detection film is provided in substantially the same direction as the magnetization of the magnetization fixed film,
By applying an exchange coupling bias slightly above the anisotropic magnetic field of CoFe in the in-plane direction perpendicular to the axis of easy magnetization, the magnetic anisotropy of the magnetic field detecting film can be reduced, resulting in a large resistance change in a low magnetic field range. Rate can be obtained.

【0084】第9の発明において、信号磁界0の状態で
磁化固着膜と信号磁界検出膜の磁化のなす角度を約90
°に設定すると、例えば正の信号磁界の方向に磁化固着
膜の磁化が向いている場合には、正の信号磁界では隣り
合う強磁性膜間の磁化のなす角度が強磁性的になるので
抵抗が低下し、逆に、負の信号磁界では、隣り合う強磁
性膜間の磁化のなす角度が反強磁性的になるので抵抗が
上昇する。すなわち動作点バイアスが不要になる。
In the ninth invention, the angle formed by the magnetization of the magnetization pinned film and the magnetization of the signal magnetic field detection film is about 90 when the signal magnetic field is zero.
When the angle is set to °, for example, when the magnetization of the magnetization pinned film is oriented in the direction of the positive signal magnetic field, the angle formed by the magnetization between the adjacent ferromagnetic films becomes ferromagnetic with the positive signal magnetic field, so that the resistance is increased. Conversely, with a negative signal magnetic field, the angle formed by the magnetization between the adjacent ferromagnetic films becomes antiferromagnetic, so that the resistance increases. That is, the operating point bias becomes unnecessary.

【0085】さらに、センス電流を信号磁界方向に通電
することにより、磁界検出膜の磁化が電流磁界により信
号磁界と直交する方向に向けて傾く。したがって、磁界
検出膜に加わる電流磁界のためにバルクハウゼンノイズ
が抑制できる。また、この場合、電流磁界があるので磁
界検出膜においては必ずしも磁化容易軸を必要としな
い。
Further, when the sense current is passed in the signal magnetic field direction, the magnetization of the magnetic field detection film is inclined by the current magnetic field in the direction orthogonal to the signal magnetic field. Therefore, Barkhausen noise can be suppressed due to the current magnetic field applied to the magnetic field detection film. In this case, since there is a current magnetic field, the magnetic field detecting film does not necessarily need an easy axis of magnetization.

【0086】なお、第9の発明の磁気抵抗効果素子は、
上記構成に加えて非磁性膜と強磁性膜を交互に複数回積
層したものであってもよい。
The magnetoresistive effect element of the ninth invention is
In addition to the above configuration, a nonmagnetic film and a ferromagnetic film may be alternately stacked a plurality of times.

【0087】第10の発明は、基板上に、少なくとも強
磁性膜、非磁性膜、および強磁性膜が順次積層されてな
る積層膜を具備した磁気抵抗効果素子であって、2つの
前記強磁性膜はそれぞれ信号磁界が印加されてもその磁
化方向が実質的に保持される磁化固着膜、および信号磁
界によりその磁化方向が変化して信号磁界を検出する磁
界検出膜となり、信号磁界零の場合における2つの前記
強磁性膜の磁化方向のなす角θが30°以上60°以下
であることを特徴とする磁気抵抗効果素子を提供する。
A tenth aspect of the present invention is a magnetoresistive effect element comprising a laminated film in which at least a ferromagnetic film, a nonmagnetic film, and a ferromagnetic film are sequentially laminated on a substrate. When the signal magnetic field is zero, the film becomes a fixed magnetic film that retains its magnetization direction substantially even when a signal magnetic field is applied, and a magnetic field detection film that detects the signal magnetic field by changing its magnetization direction due to the signal magnetic field. An angle θ formed by the magnetization directions of the two ferromagnetic films in 30 is not less than 30 ° and not more than 60 °.

【0088】第10の発明において、磁化固着膜の磁化
を固着させる方法としては、第9の発明と同様に磁化固
着膜に反強磁性膜を積層することにより生じる交換バイ
アスを利用する方法や磁化固着膜となる強磁性膜を高保
磁力膜とする方法等がある。また、磁界検出膜へのバイ
アス磁界印加手段としては、磁界検出膜の磁化容易軸、
磁界検出膜に隣接または近接して形成した硬質磁性膜か
らのバイアス磁界、前記反強磁性膜に隣接または近接し
て形成した強磁性膜から発生する静磁バイアス、センス
電流からの電流磁界等を利用できる。なお、センス電流
からの電流磁界を用いるためには、信号磁界とほぼ同じ
方向にセンス電流を通電することが必要である。ただ
し、磁化固着膜において磁化を安定的に固着させる観点
からは、センス電流からの電流磁界が磁化固着膜の磁化
方向とほぼ同じ方向に加わるように、センス電流を信号
磁界と直交する方向に通電することが望ましい。
In the tenth invention, as a method for fixing the magnetization of the magnetization fixed film, a method utilizing an exchange bias generated by laminating an antiferromagnetic film on the magnetization fixed film and the magnetization are the same as in the ninth invention. There is a method of using a high coercive force film as the ferromagnetic film to be the fixed film. Further, as means for applying a bias magnetic field to the magnetic field detection film, an easy axis of magnetization of the magnetic field detection film,
A bias magnetic field from a hard magnetic film formed adjacent to or close to the magnetic field detection film, a magnetostatic bias generated from a ferromagnetic film formed adjacent to or close to the antiferromagnetic film, a current magnetic field from a sense current, and the like. Available. In order to use the current magnetic field from the sense current, it is necessary to supply the sense current in substantially the same direction as the signal magnetic field. However, from the viewpoint of stably fixing the magnetization in the magnetization fixed film, the sense current is applied in a direction orthogonal to the signal magnetic field so that the current magnetic field from the sense current is applied in almost the same direction as the magnetization direction of the magnetization fixed film. It is desirable to do.

【0089】第10の発明では、信号磁界零の場合にお
ける磁化固着膜と磁界検出膜とのなす角θを30〜60
°以内に設定したので、磁化固着膜からの漏れ磁界によ
り、動作点バイアスを不要としながらバルクハウゼンノ
イズ除去を行うことができる。第10の発明で上述した
ような磁化固着膜と磁界検出膜とのなす角θを30°〜
60°に設定したのは、角θが30°未満であると信号
磁界に対する線形応答磁界範囲が狭まり、60°を超え
るとバルクハウゼンノイズ除去を充分に行うことができ
ない恐れがあるからである。
In the tenth aspect of the invention, the angle θ formed by the magnetization fixed film and the magnetic field detection film when the signal magnetic field is zero is 30 to 60.
°, the Barkhausen noise can be removed while eliminating the need for an operating point bias due to the leakage magnetic field from the magnetization fixed film. The angle θ between the magnetization fixed film and the magnetic field detection film as described in the tenth invention is 30 ° or more.
The angle is set to 60 ° because if the angle θ is less than 30 °, the linear response magnetic field range with respect to the signal magnetic field is narrowed, and if it is more than 60 °, Barkhausen noise may not be sufficiently removed.

【0090】ここで、信号磁界と直交する方向にセンス
電流を流す場合には、2つの強磁性膜間の強磁性的結合
磁界の方向と電流磁界の方向が同じ軸上にある。その結
果、透磁率低下を引き起こす隣り合う強磁性膜間の強磁
性的結合方向とこの電流磁界方向が略同一方向となるよ
うにセンス電流を流すと、この場合には、磁化固着され
ていない強磁性膜の磁化方向が磁化固着されている強磁
性膜の磁化方向に回転するので、両強磁性膜の磁化のな
す角度が減少する。その結果、強磁性膜として異方性磁
気抵抗効果を示す材料を用いても異方性磁気抵抗効果と
スピン依存散乱による抵抗変化が重畳されて、感度の増
大が期待できる。逆に、強磁性的結合方向と電流磁界方
向が逆方向になるようにセンス電流を流すと、この場合
には、両強磁性膜のなす角度が増大するので、信号磁界
に対する線形応磁界範囲を拡大できる。したがって、強
磁性膜の材料等に応じて、センス電流の通電方向を適宜
選択することが好ましい。
Here, when the sense current is passed in the direction orthogonal to the signal magnetic field, the direction of the ferromagnetic coupling magnetic field between the two ferromagnetic films and the direction of the current magnetic field are on the same axis. As a result, when a sense current is supplied such that the direction of the current magnetic field is substantially the same as the direction of the ferromagnetic coupling between the adjacent ferromagnetic films that causes a decrease in the magnetic permeability, in this case, the strong magnetization not fixed Since the magnetization direction of the magnetic film rotates in the magnetization direction of the ferromagnetic film to which the magnetization is fixed, the angle formed by the magnetizations of the two ferromagnetic films decreases. As a result, even if a material exhibiting the anisotropic magnetoresistance effect is used as the ferromagnetic film, the anisotropy magnetoresistance effect and the resistance change due to spin-dependent scattering are superimposed, and an increase in sensitivity can be expected. Conversely, if a sense current is applied so that the direction of the ferromagnetic coupling and the direction of the current magnetic field are opposite, in this case, the angle formed by both ferromagnetic films increases. Can be expanded. Therefore, it is preferable to appropriately select the direction in which the sense current is applied according to the material of the ferromagnetic film.

【0091】なお、第10の発明の磁気抵抗効果素子
は、上記構成に加えて非磁性膜と強磁性膜を交互に複数
回積層したものであってもよい。
The magnetoresistive effect element according to the tenth aspect of the invention may be one in which a nonmagnetic film and a ferromagnetic film are alternately laminated a plurality of times in addition to the above structure.

【0092】第11の発明は、基板上に、少なくとも強
磁性膜、非磁性膜、および強磁性膜が順次積層されてな
る積層膜を具備した磁気抵抗効果素子であって、2つの
前記強磁性膜へのバイアス磁界印加手段として前記積層
膜に隣接または近接して積層形成された2層以上のバイ
アス膜を備えることを特徴とする磁気抵抗効果素子を提
供する。
An eleventh aspect of the present invention is a magnetoresistive effect element comprising a laminated film in which at least a ferromagnetic film, a nonmagnetic film and a ferromagnetic film are sequentially laminated on a substrate. There is provided a magnetoresistive effect element characterized by comprising, as a bias magnetic field applying means to the film, a bias film having two or more layers laminated adjacent to or close to the laminated film.

【0093】第11の発明において、バイアス膜は、積
層膜の最上層の強磁性膜上、および最下層の強磁性膜と
基板との間にそれぞれ形成してもよいし、積層膜の最上
層の強磁性膜上に2層以上形成してもよいし、最下層の
強磁性膜と基板との間に2層以上形成してもよい。
In the eleventh invention, the bias film may be formed on the uppermost ferromagnetic film of the laminated film or between the lowermost ferromagnetic film and the substrate, or may be formed on the uppermost layer of the laminated film. Two or more layers may be formed on the ferromagnetic film, or two or more layers may be formed between the lowermost ferromagnetic film and the substrate.

【0094】第11の発明において、前記バイアス膜と
しては反強磁性膜または強磁性膜を挙げることができ、
このような反強磁性膜からの交換結合磁界、強磁性膜か
らの交換結合磁界または静磁結合磁界、さらには、セン
ス電流からの電流磁界等がバイアス磁界として積層膜中
の強磁性膜に印加される。なお、ここで、バイアス膜と
しての強磁性膜から交換結合磁界を発生させる場合は、
積層膜の強磁性膜とバイアス膜としての強磁性膜との間
に交換バイアスを低減させる膜を配置しても、積層膜の
強磁性膜上にそのバイアス膜としての強磁性膜を直接形
成してもよい。ただし、前者の場合、バイアス膜の一軸
異方性磁界Hkが積層膜の強磁性膜の一軸異方性磁界H
kよりも大きいことが好ましく、バイアス膜の保磁力H
cが積層膜の強磁性膜の保磁力Hcよりも大きいことが
好ましい。
In the eleventh invention, the bias film may be an antiferromagnetic film or a ferromagnetic film,
The exchange coupling magnetic field from the antiferromagnetic film, the exchange coupling magnetic field or the magnetostatic coupling magnetic field from the ferromagnetic film, and the current magnetic field from the sense current are applied to the ferromagnetic film in the laminated film as a bias magnetic field. Is done. Here, when an exchange coupling magnetic field is generated from a ferromagnetic film as a bias film,
Even if a film for reducing the exchange bias is arranged between the ferromagnetic film of the laminated film and the ferromagnetic film as the bias film, the ferromagnetic film as the bias film is formed directly on the ferromagnetic film of the laminated film. You may. However, in the former case, the uniaxial anisotropic magnetic field Hk of the bias film is the uniaxial anisotropic magnetic field Hk of the laminated ferromagnetic film.
k, and the coercive force H of the bias film.
It is preferable that c is larger than the coercive force Hc of the ferromagnetic film of the laminated film.

【0095】第11の発明では、最上層または最下層の
強磁性膜のどちらか一方にはその磁化が実質的に信号磁
界では動かないようなバイアス磁界を加え磁化固着膜と
し、もう一方には信号磁界が検出できバルクハウゼンノ
イズが除去できるようなバイアス磁界を加え磁界検出膜
とすることが好ましい。このときの磁化固着膜へのバイ
アス磁界印加には反強磁性膜の積層が適する。また、磁
界検出膜へのバイアス磁界印加には強磁性膜または反強
磁性膜の積層が適する。ここで、バイアス膜としての強
磁性膜には、回転磁界中で熱処理を施したCo系非晶質
膜等何等かの方法で単磁区化され磁化方向が一方向に揃
った高抵抗の軟磁性膜や、静磁界中で熱処理を施したC
oあるいはCoFe系の非晶質膜等高い一軸磁気異方性
を有する膜、あるいは高保磁力膜等が適する。またバイ
アス膜となる強磁性膜を他の膜よりも幅広く形成して、
そのエッジ部に硬質磁性膜や反強磁性膜を積層しても単
磁区化された高抵抗な軟磁性膜が実現できる。
In the eleventh invention, a bias magnetic field whose magnetization does not substantially move in the signal magnetic field is added to either the uppermost layer or the lowermost ferromagnetic film to form a fixed magnetization film, and the other is formed into a fixed magnetization film. It is preferable to add a bias magnetic field that can detect a signal magnetic field and remove Barkhausen noise to form the magnetic field detection film. At this time, a stack of antiferromagnetic films is suitable for applying a bias magnetic field to the magnetization fixed film. Further, a ferromagnetic film or an antiferromagnetic film is suitably stacked for applying a bias magnetic field to the magnetic field detecting film. Here, the ferromagnetic film as the bias film is made of a single magnetic domain by any method such as a Co-based amorphous film that has been heat-treated in a rotating magnetic field, and has a high-resistance soft magnetic material having a uniform magnetization direction. Film or C heat-treated in static magnetic field
A film having high uniaxial magnetic anisotropy, such as an o- or CoFe-based amorphous film, or a film having a high coercive force is suitable. Also, a ferromagnetic film that becomes a bias film is formed wider than other films,
Even if a hard magnetic film or an antiferromagnetic film is laminated on the edge portion, a high-resistance soft magnetic film having a single magnetic domain can be realized.

【0096】第11の発明において、少なくとも2層の
バイアス膜を上述したような積層膜に隣接または近接し
てさらに積層形成することにより、特定の強磁性膜へは
磁化固着を可能にするような強いバイアス磁界を、他の
特定の強磁性膜へはバルクハウゼンノイズを除去するた
めに必要最小限のバイアス磁界を加えることが可能とな
る。このとき、2層以上のバイアス膜が積層形成される
第11の発明では、例えば磁界検出膜のみを他の磁化固
着膜等より幅広く形成してそのエッジ部にバイアス膜を
積層する場合に比べ、一括した連続成膜によりバイアス
膜を含めた多層膜が短時間で容易に作製できる利点があ
る。これは、厚さが1〜20nm程度の磁界検出膜のエッ
ジ部のみを残して他の磁化固着膜等のエッジ部を除去
し、磁界検出膜のみを幅広く形成することが非常に困難
であることに基づく。
In the eleventh aspect of the present invention, at least two layers of bias films are further stacked adjacent to or close to the above-described stacked film so that magnetization can be fixed to a specific ferromagnetic film. It is possible to apply a strong bias magnetic field to the other specific ferromagnetic film with the minimum required bias magnetic field for removing Barkhausen noise. At this time, in the eleventh invention in which two or more bias films are stacked and formed, for example, compared to a case where only the magnetic field detection film is formed wider than other magnetization fixed films and the like and the bias film is stacked at the edge thereof, There is an advantage that a multilayer film including a bias film can be easily manufactured in a short time by collective continuous film formation. This is because it is very difficult to form only the magnetic field detection film widely by removing the edge portions of other magnetization pinned films and the like while leaving only the edge portion of the magnetic field detection film having a thickness of about 1 to 20 nm. based on.

【0097】さらに、ここで2層のバイアス膜により強
磁性膜に印加されるバイアス磁界を直交させると、第9
の発明と同様に信号磁界零の場合における磁化固着膜と
磁界検出膜の磁化方向のなす角がほぼ90°になり、動
作点バイアスが不要になる。また、磁界検出膜に加わる
バイアス磁界によりバルクハウゼンノイズが除去でき、
かつ、バイアス磁界の大きさがバイアス膜の磁気異方性
や膜厚、あるいは積層膜とバイアス膜との界面の調整に
より容易に制御できる。しかも、バイアス磁界で強磁性
膜の磁化容易軸の方向と略直交方向に印加すれば、高い
Hkを示すCo系材料からなる強磁性膜についても膜の
透磁率を向上させることができる。
Furthermore, if the bias magnetic fields applied to the ferromagnetic film by the two-layer bias film are made orthogonal to each other,
Similarly to the invention, the angle between the magnetization direction of the magnetization fixed film and the magnetization direction of the magnetic field detection film when the signal magnetic field is zero becomes substantially 90 °, and the operating point bias becomes unnecessary. In addition, Barkhausen noise can be removed by the bias magnetic field applied to the magnetic field detection film,
In addition, the magnitude of the bias magnetic field can be easily controlled by adjusting the magnetic anisotropy and thickness of the bias film or the interface between the stacked film and the bias film. Moreover, when a bias magnetic field is applied in a direction substantially perpendicular to the direction of the easy axis of the ferromagnetic film, the magnetic permeability of the ferromagnetic film made of a Co-based material having a high Hk can be improved.

【0098】また、第11の発明は、3層の強磁性膜お
よび2層の非磁性膜が交互に形成されてなる積層膜を基
板上に具備し、最上層および最下層の強磁性膜が磁化固
着膜となり、透磁率が高い中央の強磁性膜が磁界検出膜
となる磁気抵抗効果素子にも好ましく適用できる。
The eleventh aspect of the present invention comprises, on a substrate, a laminated film in which three layers of ferromagnetic films and two layers of non-magnetic films are alternately formed, and the uppermost and lowermost ferromagnetic films are formed. It can be preferably applied also to a magnetoresistive effect element in which a central ferromagnetic film having a high magnetic permeability serves as a magnetically pinned film and serves as a magnetic field detecting film.

【0099】このような磁気抵抗効果素子では、最上層
の強磁性膜と最下層の強磁性膜は、低透磁率、すなわち
積層膜に隣接または近接してさらに積層形成された2層
以上のバイアス膜で磁化が固着されているので、信号磁
界に対する磁化方向の変化は僅かである。一方、中央の
強磁性膜は透磁率が高いために、僅かな磁界により大き
な磁化回転を生じる。その結果、最上層の強磁性膜と最
下層の強磁性膜の磁化と中央の強磁性膜の磁化のなす角
度が信号磁界により鋭敏に変化する。また、従来のスピ
ンバルブ構造の膜に比べてスピン依存散乱を生じる界面
数が少なくとも2倍に増える。このため、僅かな磁界で
大きな抵抗変化が得られる。
In such a magnetoresistive effect element, the uppermost ferromagnetic film and the lowermost ferromagnetic film have a low magnetic permeability, that is, two or more layers of biases formed adjacent to or close to the laminated film. Since the magnetization is fixed in the film, the change in the magnetization direction with respect to the signal magnetic field is slight. On the other hand, since the central ferromagnetic film has a high magnetic permeability, a slight magnetization causes a large magnetization rotation. As a result, the angle between the magnetization of the uppermost ferromagnetic film and the lowermost ferromagnetic film and the magnetization of the central ferromagnetic film changes sharply by the signal magnetic field. In addition, the number of interfaces that cause spin-dependent scattering is at least twice as large as that of a conventional film having a spin valve structure. Therefore, a large change in resistance can be obtained with a slight magnetic field.

【0100】なお、中央の強磁性膜の磁化を反強磁性膜
等のバイアス膜により固着して透磁率を低下させると、
反強磁性膜は抵抗率が高いのでΔR/Rは大幅に低下す
るが、最上層および最下層の強磁性膜の磁化を固着する
場合は、反強磁性膜をスピン依存散乱ユニットの外に配
置できるので、ΔR/Rを低下させることなく磁化固着
が可能になる。
If the magnetization of the central ferromagnetic film is fixed by a bias film such as an antiferromagnetic film to reduce the magnetic permeability,
Since the antiferromagnetic film has a high resistivity, ΔR / R is greatly reduced. However, when the magnetizations of the uppermost and lowermost ferromagnetic films are fixed, the antiferromagnetic film is arranged outside the spin-dependent scattering unit. As a result, the magnetization can be fixed without reducing ΔR / R.

【0101】さらに、高透磁率の強磁性膜は、スピンバ
ルブ構造の積層膜の中央近傍に存在するので、センス電
流からの電流磁界は弱くなり、その結果、電流磁界によ
り磁界検出膜となる強磁性膜の磁化配列が乱される問題
も回避できる。
Further, since the ferromagnetic film having a high magnetic permeability exists near the center of the laminated film having the spin valve structure, the current magnetic field from the sense current is weakened, and as a result, the magnetic field detecting film is strong due to the current magnetic field. It is possible to avoid the problem that the magnetization arrangement of the magnetic film is disturbed.

【0102】第12の発明は、基板上に、膜面内に六方
晶C軸が存在する高保磁力膜と、前記高保磁力膜よりも
低い保磁力を有する強磁性膜とを具備することを特徴と
する磁気抵抗効果素子を提供する。
A twelfth aspect of the invention is characterized in that a high coercive force film having a hexagonal C-axis in the film plane and a ferromagnetic film having a coercive force lower than that of the high coercive force film are provided on a substrate. To provide a magnetoresistive effect element.

【0103】第12の発明において、通常の高保磁力膜
が膜面垂直方向の結晶磁気異方性による強い静磁結合
で、低保磁力膜を高保磁力化してしまうことを抑制でき
る。これにより、この高保磁力膜をスピンバルブ構造の
膜における磁化固着膜とした場合に、信号磁界を検出す
る磁界検出膜の軟磁気特性を劣化させることはない。ま
た、磁化の平行状態、反平行状態を効率良く実現でき、
さらに積層膜中の非磁性膜厚を著しく薄くすることがで
きるため抵抗変化率を増大させることができる。なお、
ここで磁化固着膜としての高保磁力膜および非磁性膜は
交互に複数回積層されてもよい。
In the twelfth invention, it is possible to prevent the ordinary high coercive force film from having a high coercive force due to the strong magnetostatic coupling due to the crystal magnetic anisotropy in the direction perpendicular to the film surface. Thus, when the high coercive force film is used as the magnetization fixed film in the film having the spin valve structure, the soft magnetic characteristics of the magnetic field detecting film for detecting the signal magnetic field are not deteriorated. In addition, a parallel state and an anti-parallel state of magnetization can be realized efficiently,
Further, the non-magnetic film thickness in the laminated film can be significantly reduced, so that the resistance change rate can be increased. In addition,
Here, the high coercive force film and the non-magnetic film as the magnetization fixed film may be alternately stacked a plurality of times.

【0104】さらに、単結晶様の高保磁力膜は電気抵抗
が低いため、低保磁力膜との積層膜とした場合でもスピ
ン依存散乱には影響せず出力を増大させることができ
る。さらに、この単結晶様の高保磁力膜は高い結晶磁気
異方性を持つことから、高透磁率(磁化が動きにくい)
を有し、磁化固着の効果が大きい。
Furthermore, since the single crystal-like high coercive force film has a low electric resistance, even when it is formed as a laminated film with a low coercive force film, the output can be increased without affecting the spin-dependent scattering. Furthermore, since the single crystal-like high coercive force film has high crystal magnetic anisotropy, high magnetic permeability (the magnetization is hard to move)
And the effect of magnetization fixation is large.

【0105】また、第12発明において、高保磁力膜は
強磁性膜にバイアス磁界を印加するためのバイアス膜と
して用いてもよい。このとき例えば、高保磁力膜を磁化
固着膜の磁化を固着させるためのバイアス膜として用い
た場合にも、信号磁界を検出する磁界検出膜の軟磁気特
性を劣化させることはない。さらに、この高保磁力膜
は、バルクハウゼンノイズ対策用のバイアス膜や、信号
磁界がない場合に磁化の反結合状態を作るバイアス膜と
しても用いることができ、同時に両方の機能を持たせる
ことも可能である。さらに、第12の発明は、基板上に
強磁性膜および非磁性膜が交互に形成されてなる積層膜
を具備する磁気抵抗効果素子に限らず、NiFe合金等
の異方性磁気抵抗効果を利用する磁気抵抗効果素子にも
適用可能である。
Further, in the twelfth invention, the high coercive force film may be used as a bias film for applying a bias magnetic field to the ferromagnetic film. At this time, for example, even when the high coercive force film is used as a bias film for fixing the magnetization of the magnetization fixed film, the soft magnetic characteristic of the magnetic field detection film for detecting the signal magnetic field does not deteriorate. In addition, this high coercivity film can be used as a bias film for Barkhausen noise countermeasure and a bias film that creates an anti-coupling state of magnetization in the absence of a signal magnetic field, and can have both functions at the same time It is. Further, the twelfth invention is not limited to a magnetoresistive element having a laminated film in which a ferromagnetic film and a nonmagnetic film are alternately formed on a substrate, and utilizes an anisotropic magnetoresistance effect of a NiFe alloy or the like. The present invention can also be applied to a magnetoresistive effect element.

【0106】以下、本発明の実施例を具体的に説明す
る。
Examples of the present invention will be specifically described below.

【0107】(実施例1)基板として、0.2μmの触
針先端半径を有する触針式表面粗さ計で平均表面凹凸が
2nm程度になるまでサファイア基板C面(α−Al2
3 基板の(0001)面)をメカノケミカルポリッシン
グ法により研磨して鏡面状態としたものを用いた。
(Example 1) As a substrate, a sapphire substrate C surface (α-Al 2 O) was used with a stylus type surface roughness meter having a stylus tip radius of 0.2 μm until the average surface roughness was about 2 nm.
Three (0001) planes of the substrates were polished to a mirror surface state by the mechanochemical polishing method.

【0108】このサファイア基板を真空チャンバー内に
載置し、真空チャンバー内を5×10-7Torr以下にまで
排気した。その後、真空チャンバー内にArガスを導入
し、真空チャンバー内を約3 mTorrとして、約4000
A/mの静磁界中においてスパッタリングを行うことに
より、図1に示すように、サファイア基板10上に強磁
性膜であるCo90Fe10膜11、中間非磁性膜であるC
u膜12、強磁性膜であるCo90Fe10膜11、反強磁
性膜であるFeMn膜13、保護膜であるTi膜14を
順次成膜してTi5nm/FeMn8nm/Co90Fe10
nm/Cu2.2nm/Co90Fe108nmなるスピンバルブ
構造の積層膜を作製して磁気抵抗効果素子を得た。さら
に、この積層膜上にCuリード15を形成した。なお、
CoFe系合金膜の組成は、大きな抵抗変化率を示すこ
と[日本応用磁気学会誌、16,313(1992)] および軟磁気
特性の点からCo90Fe10とした。
This sapphire substrate was placed in a vacuum chamber and the inside of the vacuum chamber was evacuated to 5 × 10 −7 Torr or less. Thereafter, Ar gas is introduced into the vacuum chamber, and the inside of the vacuum chamber is set to about 3 mTorr, and
By performing sputtering in a static magnetic field of A / m, as shown in FIG. 1, a Co 90 Fe 10 film 11 which is a ferromagnetic film and a C which is an intermediate non-magnetic film are formed on a sapphire substrate 10.
The u film 12, the Co 90 Fe 10 film 11 as a ferromagnetic film, the FeMn film 13 as an antiferromagnetic film, and the Ti film 14 as a protective film are sequentially formed to form Ti 5 nm / FeMn 8 nm / Co 90 Fe 10 8
A laminated film having a spin valve structure of nm / Cu 2.2 nm / Co 90 Fe 10 8 nm was produced to obtain a magnetoresistive element. Further, Cu leads 15 were formed on the laminated film. In addition,
The composition of the CoFe-based alloy film was Co 90 Fe 10 from the viewpoint of exhibiting a large rate of change in resistance [Journal of the Japan Society of Applied Magnetics, 16 , 313 (1992)] and soft magnetic properties.

【0109】ここで、保護膜の材料としては、Ti以外
にCu、Cr、W、SiN、TiN等の非磁性体を用い
ることができる。なお、FeMnの酸化を防ぐため、酸
化物以外の材料を用いることが望ましい。また、Ti膜
14の膜厚は保護効果があれば5nmでなくてもよいが、
センス電流を流す際のTi膜14への分流による感度低
下を防ぐため、またCo90Fe10膜11に比べて高い電
気抵抗率を有することを考慮して膜厚は数十nm以下であ
ることが望ましい。
Here, as the material of the protective film, in addition to Ti, a non-magnetic material such as Cu, Cr, W, SiN, or TiN can be used. Note that a material other than an oxide is desirably used to prevent oxidation of FeMn. The thickness of the Ti film 14 may not be 5 nm as long as it has a protective effect.
The film thickness should be several tens nm or less in order to prevent a decrease in sensitivity due to a shunt to the Ti film 14 when a sense current flows, and in consideration of having a higher electrical resistivity than the Co 90 Fe 10 film 11. Is desirable.

【0110】FeMn膜13と接するCo90Fe10膜1
1は、FeMnにより磁化固着され、もう一方のCo90
Fe10膜11は、外部磁界に応じて磁化反転・回転す
る。強磁性膜であるCo90Fe10膜11の膜厚は2層と
も8nmとしたが、2層の強磁性膜の厚さは同じでも異な
っていてもよい。強磁性膜は、その膜厚が一原子層
(0.2nm)以上であれば原理的に使用可能であるが、
MRエレメントの実用上0.5〜20nmが妥当である。
Co 90 Fe 10 film 1 in contact with the FeMn film 13
No. 1 is magnetization-fixed by FeMn and the other Co 90
The Fe 10 film 11 undergoes magnetization reversal and rotation according to an external magnetic field. The thickness of the Co 90 Fe 10 film 11, which is a ferromagnetic film, is set to 8 nm for both layers, but the thicknesses of the two ferromagnetic films may be the same or different. A ferromagnetic film can be used in principle if its thickness is one atomic layer (0.2 nm) or more.
For practical use of the MR element, 0.5 to 20 nm is appropriate.

【0111】2つのCo90Fe10膜11の間に形成され
たCu膜12の膜厚は本実施例では2.2nmで形成した
が、この膜厚以外でもよく、実用上0.5〜20nmが望
ましい。また、Cu以外の材料としては、Au、Ag、
Ru、Cu合金等を用いることができる。
The film thickness of the Cu film 12 formed between the two Co 90 Fe 10 films 11 is 2.2 nm in this embodiment, but it may be other than this film thickness, and it is practically 0.5 to 20 nm. Is desirable. As materials other than Cu, Au, Ag,
Ru, Cu alloy, or the like can be used.

【0112】反強磁性膜であるFeMn膜13は、直接
接するCo90Fe10膜11の磁化固着に使用される。こ
の膜厚は、約1nm以上あれば使用可能であるが、信頼性
および実用性から2nm〜50nmであることが望ましい。
なお、FeMn以外に、反強磁性膜の材料としてNi酸
化物も使用できる。反強磁性膜の材料としてNi酸化物
を用いる場合、Arおよび酸素の混合ガス雰囲気中でス
パッタリングを行ったり、イオンビームスパッタ法、デ
ュアルイオンビームスパッタ法等を適用することで良好
なNi酸化物の反強磁性膜を形成することができる。ま
た、Ni酸化物膜は、サファイア基板C面上に良好に形
成することができるので、スピンバルブ構造をTi5nm
/Co90Fe108nm/Cu2.2nm/Co90Fe108nm
/Ni酸化物50nmとすることもできる。この場合、N
i酸化物膜の厚さは1nm以上であれば、安定したバイア
ス磁界をCo90Fe10膜に与えることができる。
The FeMn film 13, which is an antiferromagnetic film, is used for fixing the magnetization of the Co 90 Fe 10 film 11 in direct contact with it. This film thickness can be used as long as it is about 1 nm or more, but is preferably 2 nm to 50 nm from the viewpoint of reliability and practicality.
In addition, other than FeMn, Ni oxide can be used as a material of the antiferromagnetic film. When a Ni oxide is used as a material for the antiferromagnetic film, a good Ni oxide can be obtained by performing sputtering in a mixed gas atmosphere of Ar and oxygen, or by applying ion beam sputtering, dual ion beam sputtering, or the like. An antiferromagnetic film can be formed. Further, since the Ni oxide film can be favorably formed on the sapphire substrate C surface, the spin valve structure is
/ Co 90 Fe 10 8 nm / Cu 2.2 nm / Co 90 Fe 10 8 nm
/ Ni oxide can be 50 nm. In this case, N
If the thickness of the i-oxide film is 1 nm or more, a stable bias magnetic field can be applied to the Co 90 Fe 10 film.

【0113】磁気抵抗効果素子の磁気特性、抵抗変化
率、並びに結晶構造を調べた。なお、磁気特性は振動型
磁力計(VSM)にて最大印加磁界1.2MA/mで測
定し、抵抗変化率は静磁界中で4端子抵抗測定法により
測定した。結晶構造はθ−2θスキャンおよびロッキン
グカーブX線回折法で測定した。VSMおよびX線回折
では、メタルマスクで8mm角にパターニングされた膜に
ついて、抵抗変化率はメタルマスクにより1mm×8mmの
ストライプ状にパターニングされた膜について測定し
た。磁気抵抗効果素子の磁界中における抵抗変化は四端
子法で測定した。
The magnetic characteristics, the rate of resistance change, and the crystal structure of the magnetoresistive effect element were examined. The magnetic characteristics were measured with a vibration type magnetometer (VSM) at a maximum applied magnetic field of 1.2 MA / m, and the resistance change rate was measured in a static magnetic field by a four-terminal resistance measurement method. The crystal structure was measured by θ-2θ scan and rocking curve X-ray diffraction. In VSM and X-ray diffraction, the resistance change rate was measured for a film patterned into an 8 mm square with a metal mask and for a film patterned in a 1 mm × 8 mm stripe shape with a metal mask. The resistance change of the magnetoresistive element in a magnetic field was measured by a four-terminal method.

【0114】磁気抵抗効果素子の測定結果を図2に示
す。図2から分かるように、磁化容易軸方向に外部磁界
を印加すると、最大抵抗変化率は約10%であった。ま
た、この磁気抵抗効果素子の保磁力は160A/m以下
であった。このように、この磁気抵抗効果素子は、約1
60A/mの弱い磁界で、約10%の大きな抵抗変化が
得られており、良好な軟磁気特性と高い抵抗変化率が得
られたことが分かった。また、磁化困難軸方向に外部磁
界を印加すると、抵抗変化率は約4%であったが、保磁
力は80A/mと軟磁気特性は極めて良好であった。
The measurement results of the magnetoresistive effect element are shown in FIG. As can be seen from FIG. 2, when an external magnetic field was applied in the easy axis direction, the maximum resistance change rate was about 10%. The coercive force of this magnetoresistive element was 160 A / m or less. As described above, this magnetoresistive element has about 1
At a weak magnetic field of 60 A / m, a large resistance change of about 10% was obtained, and it was found that good soft magnetic characteristics and a high resistance change rate were obtained. When an external magnetic field was applied in the direction of the hard axis, the rate of change in resistance was about 4%, but the coercive force was 80 A / m, and the soft magnetic properties were extremely good.

【0115】また、この磁気抵抗効果素子の磁化曲線を
図3(A)および図3(B)に示す。図3(A)から分
かるように、磁化容易軸方向の保磁力は約160A/
m、磁化困難軸方向の保磁力は約80A/mであること
が分かる。また、図3(B)から分かるように、磁化容
易軸方向には、FeMnに接するCo90Fe10膜に約
5.3KA/mの交換バイアスが印加されていることが
分かる。
Magnetization curves of this magnetoresistive effect element are shown in FIGS. 3 (A) and 3 (B). As can be seen from FIG. 3A, the coercive force in the easy axis direction is about 160 A /
m, the coercive force in the hard axis direction is about 80 A / m. As can be seen from FIG. 3B, an exchange bias of about 5.3 KA / m is applied to the Co 90 Fe 10 film in contact with FeMn in the direction of the easy axis.

【0116】また、この磁気抵抗効果素子の結晶構造
は、強いfcc相(111)面配向(最密面配向)を示
していた。
Further, the crystal structure of this magnetoresistive effect element showed strong fcc phase (111) plane orientation (closest plane orientation).

【0117】熱酸化Si基板上に上記と同様にしてTi
/FeMn/CoFe/Cu/CoFe膜を形成した。
これについて上記と同様にして評価した結果、X線回折
の最密面ピークは上記の場合と比べて1/10以下に低
下し、Hcは容易軸方向で3000A/mであり、磁気
抵抗効果素子には応用困難な高い値であり、抵抗変化率
も上記の(111)配向膜よりも小さな8%以下の値を
示した。
Ti was formed on the thermally oxidized Si substrate in the same manner as above.
/ FeMn / CoFe / Cu / CoFe films were formed.
As a result of the evaluation in the same manner as described above, the closest-packed surface peak of X-ray diffraction was reduced to 1/10 or less as compared with the above case, Hc was 3000 A / m in the easy axis direction, and the magnetoresistance effect element was used. Is a high value that is difficult to apply, and the resistance change rate is 8% or less, which is smaller than that of the (111) orientation film.

【0118】次に、MgO(100)基板上に上記と同
様にしてTi/FeMn/CoFe/Cu/CoFe膜
を作製した。これについて上記と同様にして評価した結
果、X線回折ピークは高強度(100)ピークのみを、
すなわち良好な(100)配向を示した。このとき、H
cは容易軸方向で1200A/mであり、磁気抵抗効果
素子には応用困難な高い値を示し、抵抗変化率も上記の
(111)配向膜よりも小さな8%以下の値を示した。
Next, a Ti / FeMn / CoFe / Cu / CoFe film was formed on the MgO (100) substrate in the same manner as above. As a result of evaluating this in the same manner as described above, only the high intensity (100) peak
That is, good (100) orientation was shown. At this time, H
c is 1200 A / m in the easy axis direction, which is a high value that is difficult to apply to the magnetoresistance effect element, and the resistance change rate is 8% or less, which is smaller than that of the (111) orientation film.

【0119】以上のことから、(111)配向を実現す
ると、低Hcかつ高抵抗変化率が実現できることが分か
る。
From the above, it can be seen that when the (111) orientation is realized, low Hc and a high resistance change rate can be realized.

【0120】次に、強磁性膜としてCo膜を用いたTi
5nm/FeMn8nm/Co8nm/Cu2.2nm/Co8
nmなるスピンバルブ構造の磁気抵抗効果素子をサファイ
アC面基板上に作製し、上記と同様にして磁気特性およ
び抵抗変化率を測定したところ、同様な最密面配向、抵
抗変化率は8%程度の値を示し、保磁力は800A/m
程度あった。なお、熱酸化Si基板では、△R/R=7
%、Hc=2000A/mであった。
Next, Ti using a Co film as a ferromagnetic film was used.
5 nm / FeMn8 nm / Co8 nm / Cu2.2 nm / Co8
A spin-valve magnetoresistive element having a thickness of nm was fabricated on a sapphire C-plane substrate, and the magnetic properties and the rate of change of resistance were measured in the same manner as above. And the coercive force is 800 A / m
There was about. In the thermal oxidation Si substrate, ΔR / R = 7
%, Hc = 2000 A / m.

【0121】これらの結果から強磁性膜の材料としてC
oを用いても低Hc、高△R/Rが得られるが、強磁性
膜の材料としてCoにFeを添加した合金を用いること
で軟磁気特性が発生しやすくなっており、より望まし
い。
From these results, C was selected as the material for the ferromagnetic film.
Even if o is used, a low Hc and a high ΔR / R can be obtained, but the use of an alloy obtained by adding Fe to Co as the material of the ferromagnetic film is more preferable because soft magnetic characteristics are easily generated.

【0122】さらに、Ti5nm/FeMn8nm/Co
100-x Fex 8nm/Cu2.2nm/Co100-x Fex
nm/サファイアC面またはガラス基板からなるスピンバ
ルブ型の磁気抵抗効果素子をCo100-x Fex 強磁性膜
のFe濃度x(原子%)を変化させて作製した。その結
果得られた△R/RとHcの関係を下記表1に示す。表
1から分かるように、サファイアC面上では5≦x≦4
0の範囲で顕著なHc低減と△R/Rの増大が実現され
ることが明らかである。
Furthermore, Ti5nm / FeMn8nm / Co
100-x Fe x 8 nm / Cu 2.2 nm / Co 100-x Fe x 8
A spin-valve magnetoresistive element composed of a nm / sapphire C-plane or a glass substrate was manufactured by changing the Fe concentration x (atomic%) of the Co 100-x Fe x ferromagnetic film. The relationship between ΔR / R and Hc obtained as a result is shown in Table 1 below. As can be seen from Table 1, 5 ≦ x ≦ 4 on the sapphire C surface.
It is clear that a significant Hc reduction and an increase in ΔR / R are realized in the range of 0.

【0123】[0123]

【表1】 [Table 1]

【0124】(実施例2)サファイア基板のC面上、ガ
ラス基板(コーニング社製#0211)上、Si基板の
(111)面上に、厚さ10nmのCu下地膜を形成し、
さらにその上にそれぞれ実施例1と同様の成膜条件でC
90Fe10膜を形成した。なお、Cu下地膜は、バイア
ススパッタリング法やイオンアシストしたイオンビーム
スパッタリング法・蒸着法等で成膜できる。このCo90
Fe10膜の保磁力(Hc)を測定した。また、前記それ
ぞれの基板上にCu下地膜を介してCo90Fe10膜の膜
厚を種々変更して形成し、そのCo90Fe10膜の保磁力
(Hc)を測定した。その結果を図6に示す。さらに、
前記基板上にCu下地膜を形成せずに上記と同様にして
種々の膜厚のCo90Fe10膜を形成して、それぞれその
保磁力(Hc)を測定した。その結果を図7に示す。
(Example 2) A Cu base film having a thickness of 10 nm was formed on the C surface of a sapphire substrate, on a glass substrate (# 0211 manufactured by Corning Incorporated), and on the (111) surface of a Si substrate.
Further thereon, C was formed under the film forming conditions similar to those of Example 1.
An o 90 Fe 10 film was formed. The Cu underlayer can be formed by a bias sputtering method, an ion-assisted ion beam sputtering method, an evaporation method, or the like. This Co 90
The coercive force (Hc) of the Fe 10 film was measured. Further, a Co 90 Fe 10 film was formed on each of the above-mentioned substrates with a Cu base film interposed therebetween with various thicknesses, and the coercive force (Hc) of the Co 90 Fe 10 film was measured. FIG. 6 shows the result. further,
Co 90 Fe 10 films of various thicknesses were formed on the substrate in the same manner as above without forming a Cu underlayer, and the coercive force (Hc) thereof was measured. FIG. 7 shows the result.

【0125】図6および図7から分かるように、いずれ
の基板においても、Cu下地膜が形成されている場合
(図6)は、Cu下地膜が無い場合よりも低いHcを示
している。また、Cu下地膜の有無にかかわらず、サフ
ァイア基板のC面、Si基板の(111)面、ガラス基
板の順にHcが低く、良好であることが分かる。特に、
サファイア基板のC面にCu下地膜を介して厚さ8nmの
Co90Fe10膜を形成した場合に、80A/m以下の低
Hcを示した。なお、Cu下地膜を有するCo90Fe10
膜のHcは、Co90Fe10膜の膜厚増加にしたがって僅
かに増加する傾向を示した。一方、Cu下地膜なしのC
90Fe10膜のHcは、まず膜厚増加に伴い減少し、さ
らに膜厚が増加するにしたがって増加する傾向を示し
た。例えば、Co90Fe10膜の膜厚が約8nmである場
合、そのHcの極小値は160A/m以下であった。
As can be seen from FIGS. 6 and 7, in any of the substrates, the case where the Cu underlayer is formed (FIG. 6) shows a lower Hc than the case where there is no Cu underlayer. In addition, regardless of the presence or absence of the Cu underlayer, Hc is lower in the order of the C surface of the sapphire substrate, the (111) surface of the Si substrate, and the glass substrate, which indicates that the Hc is good. Especially,
When a Co 90 Fe 10 film having a thickness of 8 nm was formed on the C surface of the sapphire substrate via a Cu underlayer, a low Hc of 80 A / m or less was exhibited. Note that Co 90 Fe 10 having a Cu underlayer
The Hc of the film showed a tendency to increase slightly as the thickness of the Co 90 Fe 10 film increased. On the other hand, C without a Cu underlayer
The Hc of the o 90 Fe 10 film firstly decreased with an increase in the film thickness, and tended to increase as the film thickness increased. For example, when the thickness of the Co 90 Fe 10 film is about 8 nm, the minimum value of Hc was 160 A / m or less.

【0126】このように、基板上に強磁性膜を形成する
際に両者の間に下地膜を形成することにより、良好な軟
磁気特性を得ることができることが分かる。
As described above, it is understood that good soft magnetic characteristics can be obtained by forming the base film between the ferromagnetic films when they are formed on the substrate.

【0127】また、サファイア基板のC面上またはSi
基板上にCo90Fe10膜やCo膜を形成する場合の下地
膜としてCuNi合金膜を用いることにより、良好な軟
磁気特性が得られることが分かった。また、ガラス基板
上またはセラミック基板上にCo90Fe10膜やCo膜を
形成する場合の下地膜として数〜100nmのGe,S
i,またはTi膜を用いることにより、最密面配向が促
進され、その結果、良好な軟磁気特性を得られることが
分かった。
On the C plane of the sapphire substrate or Si
It has been found that good soft magnetic properties can be obtained by using a CuNi alloy film as a base film when a Co 90 Fe 10 film or a Co film is formed on a substrate. When a Co 90 Fe 10 film or a Co film is formed on a glass substrate or a ceramic substrate, Ge, S
It was found that the use of the i or Ti film promoted the close-packed plane orientation, and as a result, obtained a good soft magnetic property.

【0128】また、Co90Fe10膜やCo膜より高抵抗
である材料を下地膜に用いることにより、MRセンス電
流の分流を防ぐことができる。例えば、実施例1におい
て記述したNi酸化物膜は高抵抗であり、サファイア基
板のC面上にエピタキシャル成長させることが可能な反
強磁性膜であるので、下地膜と反強磁性バイアス膜を兼
ねることができる。図8にNi酸化物膜26を用いたス
ピンバルブ構造の磁気抵抗効果素子を示す。
Further, by using a material having a higher resistance than the Co 90 Fe 10 film or the Co film for the base film, the shunt of the MR sense current can be prevented. For example, the Ni oxide film described in the first embodiment has a high resistance and is an antiferromagnetic film that can be epitaxially grown on the C-plane of the sapphire substrate. Can be. FIG. 8 shows a magnetoresistive element having a spin valve structure using the Ni oxide film 26.

【0129】(実施例3)Co90Fe10膜が示す保磁力
に及ぼすサファイア基板の面方位の影響を調べた。本実
施例では、C面およびR面(α−Al2 3 基板の(1
012)面)で比較した。
Example 3 The influence of the plane orientation of the sapphire substrate on the coercive force of the Co 90 Fe 10 film was examined. In this embodiment, the C-plane and the R-plane ((1 of the α-Al 2 O 3 substrate are
012) surface).

【0130】膜厚10nmのCo90Fe10膜をサファイア
基板のC面とR面上にそれぞれ形成した。この面方位に
よる結晶配向の違いを図9(A)および図9(B)に示
す。図9(A)から分かるように、C面上では、良好な
fcc(111)配向が実現でき、その結果保磁力が1
60A/m以下と良好な軟磁気特性を有するCoFe合
金膜が形成できた。一方、図9(B)から分かるよう
に、R面上では、fcc(111)のピーク以外にもf
cc(200)のピークが検出され、fcc(111)
配向があまり良好でない。このため、保磁力が数百A/
m以上もあり、良好な軟磁気特性は得られなかった。
A Co 90 Fe 10 film having a film thickness of 10 nm was formed on each of the C surface and the R surface of the sapphire substrate. FIGS. 9A and 9B show differences in crystal orientation depending on the plane orientation. As can be seen from FIG. 9A, a good fcc (111) orientation can be realized on the C plane, and as a result, the coercive force becomes 1
A CoFe alloy film having a good soft magnetic property of 60 A / m or less was formed. On the other hand, as can be seen from FIG. 9 (B), on the R plane, in addition to the peak of fcc (111), f
The peak of cc (200) is detected, and fcc (111)
The orientation is not very good. Therefore, the coercive force is several hundred A /
m or more, and good soft magnetic properties could not be obtained.

【0131】図9(A)において、C面では基板である
サファイアのピーク以外に2θ=43.5°付近にfc
c相(111)面に対応するピークのみ(若干のhcp
相(001)面配向を含み得る)が強く現れている。ま
た、このピーク強度が強いほどCo90Fe10膜は低保磁
力を示した。一方、図9(B)において、R面ではサフ
ァイアのピークおよびfcc相(111)面ピーク以外
に、2θ=52.6°付近にfcc相(200)面に対
応するピークが現れている。このfcc相(100)面
配向の存在は、結晶磁気異方性容易軸が面内に現れてい
ることを意味し、これは保磁力を上昇させる原因とな
る。
In FIG. 9 (A), fc is present near 2θ = 43.5 ° in addition to the peak of sapphire which is the substrate on the C plane.
Only the peak corresponding to the c-phase (111) plane (some hcp
Phase (001) orientation). The higher the peak intensity, the lower the Co 90 Fe 10 film showed a lower coercive force. On the other hand, in FIG. 9B, a peak corresponding to the fcc phase (200) plane appears near 2θ = 52.6 ° in addition to the sapphire peak and the fcc phase (111) plane peak on the R plane. The presence of the (100) plane orientation of the fcc phase means that the easy axis of crystal magnetic anisotropy appears in the plane, which causes an increase in coercive force.

【0132】次に、このサファイア基板のC面上におけ
るCo90Fe10膜の(111)面(最密面)に対応する
ピークに関して、ロッキングカーブを測定した。そのロ
ッキングカーブを図10に示す。図10から分かるよう
に、θ=21.8°付近をピークとして半値幅が3°程
度と極めて強い配向が確認できる。このロッキングカー
ブには、サファイア基板のピークも重複されているが、
Co90Fe10膜の良好な結晶配向が確認できる。
Next, a rocking curve was measured for the peak corresponding to the (111) plane (closest plane) of the Co 90 Fe 10 film on the C plane of this sapphire substrate. FIG. 10 shows the rocking curve. As can be seen from FIG. 10, a very strong orientation having a half-width of about 3 ° with a peak near θ = 21.8 ° can be confirmed. The peak of the sapphire substrate overlaps with this rocking curve,
Good crystal orientation of the Co 90 Fe 10 film can be confirmed.

【0133】次に、図11に、Co90Fe10膜の保磁力
と、Co90Fe10膜の(111)面(最密面)に対応す
るピークのロッキングカーブにおける半値幅との相関を
示す。図11から分かるように、ガラス基板上にCo90
Fe10膜を形成すると、(111)ピークが微弱である
場合が多く、ロッキングカーブ半値幅は20°以上であ
り、Hcは3000A/m以上であった。また、Ar圧
力、基板温度を最適化してロッキングカーブの半値幅が
15°程度になると、Hcは1000A/m程度に減少
する。このCo90Fe10にAlを約1%を添加した材料
からなる膜をガラス基板上に形成すると、半値幅は8°
程度に減少し、Hcは350A/m程度となる。また、
サファイア基板のC面上にCo90Fe10膜を形成するこ
とにより、さらに半値幅は3°程度にまで減少し、Hc
は約160A/m程度となる。したがって、最密面(C
90Fe10膜の場合(111)面)に対応するピークの
ロッキングカーブの半値幅が20°未満に減少するに伴
い、急激に保磁力が減少する傾向にあることが確認でき
る。例えば、ロッキングカーブの半値幅が7°以下で、
保磁力が160A/mと良好な値に近付いてくることが
分かる。すなわち、Co90Fe10膜の最密面配向が強く
なっていくにしたがって、Co90Fe10膜の保磁力が低
下する。このように、良好な軟磁気特性は強磁性膜の配
向度と強く相関があることが分かる。
[0133] Next, FIG. 11 shows the coercive force of the Co 90 Fe 10 film, the correlation between the half width of the rocking curve of the peak corresponding to Co 90 Fe 10 film (111) plane (close-packed plane) . As can be seen from FIG. 11, Co 90 on the glass substrate.
When the Fe 10 film was formed, the (111) peak was often weak, the rocking curve half width was 20 ° or more, and Hc was 3000 A / m or more. When the Ar pressure and the substrate temperature are optimized and the half width of the rocking curve becomes about 15 °, Hc decreases to about 1000 A / m. When a film made of a material obtained by adding about 1% of Al to Co 90 Fe 10 is formed on a glass substrate, the half width is 8 °.
Hc becomes about 350 A / m. Also,
By forming a Co 90 Fe 10 film on the C-plane of the sapphire substrate, the half-value width is further reduced to about 3 ° and Hc
Is about 160 A / m. Therefore, the closest surface (C
It can be confirmed that as the half width of the rocking curve of the peak corresponding to the case of the o 90 Fe 10 film ((111) plane) decreases to less than 20 °, the coercive force tends to sharply decrease. For example, when the half width of the rocking curve is 7 ° or less,
It can be seen that the coercive force approaches a good value of 160 A / m. That is, according to the close-packed plane orientation of the Co 90 Fe 10 film is getting stronger, the coercive force of the Co 90 Fe 10 film is reduced. Thus, it can be seen that good soft magnetic properties have a strong correlation with the degree of orientation of the ferromagnetic film.

【0134】Co90Fe10膜の最密面配向を強くする方
法としては、上述したように、第1に後述する各種添加
元素を加える方法、第2に基板材料・方位を選択する方
法、第3に基板とCo90Fe10膜との間に下地膜を設け
る方法、第4にMBE等の超高真空成膜装置により成膜
する方法等いくつかの方法が挙げられる。なお、第2の
方法において、基板にサファイア基板のC面を用いた場
合、その面をメカノケミカルポリッシュ、フロートポリ
ッシュまたはイオンポリッシュ等で研磨して基板の平均
表面粗さ(Ra)を2nm以下にすることにより、その上
に形成したCo90Fe10膜がさらに良好な軟磁気特性を
示すことが分かった。しかし、平均表面粗さが5nm以上
では、Co90Fe10膜の保磁力は1000A/m以上で
あった。
As a method for strengthening the close-packed plane orientation of the Co 90 Fe 10 film, as described above, firstly, a method of adding various additive elements described later, secondly, a method of selecting a substrate material / orientation, There are several methods such as a method of forming an underlayer film between the substrate and the Co 90 Fe 10 film in 3 and a method of forming a film by an ultra high vacuum film forming apparatus such as MBE. In the second method, when the C surface of a sapphire substrate is used as the substrate, the surface is polished with mechanochemical polish, float polish, ion polish, or the like to reduce the average surface roughness (Ra) of the substrate to 2 nm or less. As a result, it was found that the Co 90 Fe 10 film formed thereon exhibited better soft magnetic characteristics. However, when the average surface roughness was 5 nm or more, the coercive force of the Co 90 Fe 10 film was 1000 A / m or more.

【0135】(実施例4)実施例3において、Co90
10膜の単層膜について、第1および第2の方法で最密
面配向を強くすることにより保磁力が低下することが分
かった。次に、Co90Fe10膜を含む積層膜についても
同様のことがいえるかを確認する。
Example 4 In Example 3, Co 90 F
It was found that the coercive force of the single-layer film of the e 10 film was decreased by increasing the close-packed plane orientation by the first and second methods. Next, it will be confirmed whether or not the same can be said for the stacked film including the Co 90 Fe 10 film.

【0136】ガラス基板上にAl含有Co90Fe1010
nm/Cu5nm/Al含有Co90Fe1010nmの積層膜を
実施例1と同様の成膜条件で形成した。この場合のCo
90Fe10膜中のAl元素添加量とCo90Fe10膜の保磁
力との関係を図12に示す。図12から分かるように、
積層膜においてもAl元素の添加により保磁力を低下さ
せることができることが分かる。また、実施例2に示し
た第2から第4の方法でも同様に積層膜におけるCo90
Fe10膜の最密面の配向を強くすることができた。
Al-containing Co 90 Fe 10 10 on a glass substrate
A laminated film of nm / Cu 5 nm / Al-containing Co 90 Fe 10 10 nm was formed under the same film forming conditions as in Example 1. Co in this case
The relationship between the 90 Fe 10 Al element addition amount in the film and the Co 90 Fe 10 film coercivity is shown in Figure 12. As can be seen from FIG.
It can be seen that the coercive force can be reduced also in the laminated film by adding the Al element. In the second to fourth methods described in the second embodiment, the Co 90
The orientation of the closest-packed surface of the Fe 10 film could be strengthened.

【0137】次に、積層膜におけるCo90Fe10膜の保
磁力の最密面ピーク強度依存性を図13に示す。図13
から分かるように、単層膜の場合同様に最密面ピーク強
度が大きくなるほど、保磁力が低下しているが確認でき
る。上記構造の場合、ピーク強度は102 (a.u.) と弱
く、保磁力は103 A/m程度である。この場合におい
て、Co90Fe10にAlを1原子%程度加えた材料から
なる膜を用いることにより、保磁力は数百A/m程度に
低下した。また、ガラス基板をサファイア基板のC面に
代えることにより、103 (a.u.) 以上のピーク強度と
100A/m以下の良好な保磁力が得られた。なお、こ
のときの半値幅は7°以下であった。
Next, FIG. 13 shows the close-packed surface peak intensity dependence of the coercive force of the Co 90 Fe 10 film in the laminated film. FIG.
As can be seen from the graph, as in the case of the single-layer film, the coercive force decreases as the peak density on the closest surface increases, but it can be confirmed. In the case of the above structure, the peak intensity is as low as 10 2 (au), and the coercive force is about 10 3 A / m. In this case, by using a film made of a material obtained by adding about 1 atomic% of Al to Co 90 Fe 10, the coercive force was reduced to about several hundreds A / m. Further, by replacing the glass substrate with the C-plane of the sapphire substrate, a peak intensity of 10 3 (au) or more and a good coercive force of 100 A / m or less were obtained. The half width at this time was 7 ° or less.

【0138】(実施例5)Co90Fe10にAl以外の添
加元素を加えて保磁力を調べた。この場合、添加元素と
して、Ta、Pd、Zr、Hf、Mo、Ti、Nb、C
u、Rh、Re、In、B、Ru、Ir、Wを用いたと
きにも保磁力の低下が認められた。また、それらの元素
の組み合わせ、例えばTaとPd、NbとPd、Zrと
Nbを添加しても保磁力の低下が確認できた。一例とし
て、Ta含有Co90Fe1010nm/Cu5nm/Ta含有
Co90Fe1010nmの積層膜の構造において、Taの添
加量と保磁力との関係を図14に示す。図14から分か
るように、この場合においてもTa元素の添加により保
磁力が低下したことが確認できる。
Example 5 The coercive force was examined by adding an additive element other than Al to Co 90 Fe 10 . In this case, as additive elements, Ta, Pd, Zr, Hf, Mo, Ti, Nb, C
A decrease in coercive force was also observed when u, Rh, Re, In, B, Ru, Ir, and W were used. In addition, a decrease in coercive force was confirmed even when a combination of these elements, for example, Ta and Pd, Nb and Pd, and Zr and Nb were added. As an example, FIG. 14 shows the relationship between the added amount of Ta and the coercive force in the structure of a laminated film of Ta-containing Co 90 Fe 10 10 nm / Cu 5 nm / Ta-containing Co 90 Fe 10 10 nm. As can be seen from FIG. 14, even in this case, it can be confirmed that the coercive force was lowered by the addition of the Ta element.

【0139】(実施例6)以上はCoFe膜に関して
(111)高配向を実現した実施例であるが、CoFe
膜に限られず、CoFeNi膜、CoNi膜等を用いて
も同様な効果が見られた。その実施例を下記表2に示
す。表2は、(1)強磁性膜の組成、(2)基板の種
類、(3)基板とスピンバルブ膜との間の下地膜をパラ
メータとして作製した図1と同様の構造(FeMn膜と
接する側はCoFe膜のままである)を有するスピンバ
ルブ膜における(111)ピークのロッキングカーブ半
値幅△θ50、容易軸方向のHc、△R/Rを示したもの
である。比較のため、表2と同じ組成の強磁性膜のスピ
ンバルブ膜を下地膜なしにガラス基板上に作製した場合
の結果を表2に併記する。
(Example 6) The above is an example in which the (111) high orientation is realized for the CoFe film.
Not only the film but also a CoFeNi film, a CoNi film, or the like has the same effect. The examples are shown in Table 2 below. Table 2 shows a structure similar to that shown in FIG. 1 (contact with FeMn film) prepared by using (1) composition of ferromagnetic film, (2) type of substrate, and (3) base film between substrate and spin valve film as parameters. The figure shows the rocking curve half-value width Δθ 50 of the (111) peak, Hc in the easy axis direction, and ΔR / R in the spin valve film having the CoFe film (the side remains the CoFe film). For comparison, Table 2 also shows the results when a spin valve film of a ferromagnetic film having the same composition as in Table 2 was formed on a glass substrate without a base film.

【0140】[0140]

【表2】 [Table 2]

【0141】表2から分かるように、CoFe膜に限ら
ずCoFeNi膜やCoNi膜でも、ガラス基板への直
接成膜に比べて、サファイアC面基板上あるいはTi,
Si,Ge等からなる下地膜を用いることにより、△θ
50<7°の良好な(111)配向膜を得ることができ、
その結果Hcが低下し、高い抵抗変化率が実現できる。
As can be seen from Table 2, not only the CoFe film but also the CoFeNi film and the CoNi film are formed on the sapphire C-plane substrate or Ti, compared to the direct film formation on the glass substrate.
By using a base film made of Si, Ge, etc., Δθ
It is possible to obtain a good (111) orientation film with 50 <7 °,
As a result, Hc decreases, and a high resistance change rate can be realized.

【0142】しかし、Ti等からなる下地膜やサファイ
アC面基板により(111)高配向の(M 1nm厚/Cu
1nm厚)16人工格子膜を作製したところ(M:Co20
80、Co20Fe15Ni65)、△R/Rは2%以下の著
しく小さな値を示しRKKY的反強磁性結合特有の高い飽和
磁界が消失した。(111)配向するとRKKY的反強磁性
結合が得られないので抵抗変化率が低下したことが分か
る。したがって、スピンバルブ膜に限らずRKKY的な反強
磁性結合を用いないタイプ(保磁力の差を用いたいわゆ
る非結合型人工格子膜(第14回日本応用磁気学会学術
講演概要集、1990年、177 頁)等)で(111)高配向
を実現すると高い抵抗変化率と良好な軟磁性が両立しや
すい。
However, the (111) highly-oriented (M 1 nm thickness / Cu
1nm thick) 16 were manufactured superlattice (M: Co 20 N
i 80 , Co 20 Fe 15 Ni 65 ) and ΔR / R showed extremely small values of 2% or less, and the high saturation magnetic field peculiar to RKKY antiferromagnetic coupling disappeared. It can be seen that the RKKY-like antiferromagnetic coupling cannot be obtained with the (111) orientation, so that the resistance change rate has decreased. Therefore, a type that does not use anti-ferromagnetic coupling like RKKY as well as a spin valve film (a so-called uncoupled artificial lattice film using the difference in coercive force (The 14th Annual Meeting of the Japan Society of Applied Magnetics, 1990, (P. 177)), it is easy to achieve both a high rate of change in resistance and good soft magnetism when (111) high orientation is realized.

【0143】また、これに加えてFeMnに接する強磁
性膜も下側磁性膜と同じ組成の膜に置き換えても同様の
効果が得られることが確認された。
In addition to this, it was confirmed that the same effect can be obtained by replacing the ferromagnetic film in contact with FeMn with a film having the same composition as the lower magnetic film.

【0144】(実施例7)ガラス基板上(下地膜なし)
にTi5nm/FeMn8nm/CoFe8nm/Cu2.2
nm/強磁性膜8nmのスピンバルブ膜を実施例1と同様の
条件で成膜した。このとき、下部強磁性膜に加える非磁
性添加元素と容易軸方向の抵抗変化率とHcの関係を下
記表3に示す。
Example 7 On glass substrate (without base film)
Ti5nm / FeMn8nm / CoFe8nm / Cu2.2
A spin valve film (nm / ferromagnetic film 8 nm) was formed under the same conditions as in Example 1. At this time, Table 3 below shows the relationship between the nonmagnetic addition element added to the lower ferromagnetic film, the resistance change rate in the easy axis direction, and Hc.

【0145】[0145]

【表3】 [Table 3]

【0146】表3から分かるように、ガラス基板に成膜
した非磁性元素を添加しない膜に比べてHcが低下し
た。Al,Ta等の添加ではHcの低下が顕著である
が、大量に添加すると抵抗変化率が大幅に低下した。A
lでは6.5原子%未満、Taでは10原子%未満で、
NiFeからなるスピンバルブ膜を上回る5%以上の抵
抗変化率と低Hcを両立できることが分かる。なお、C
oFeにAlまたはTaを添加すると、X線回折におい
て最密面ピーク強度が増加した。一方、Cu,Au,A
g,Pd等は、Hc低減効果がAlまたはTaほど顕著
ではないが、10原子%以下の大量の添加でも抵抗変化
率の低下が見られない。CoFeへのCu,Au,A
g,Pd等の添加でもX線回折における最密面ピーク強
度が増加した。これらHcの低下には、X線回折におけ
る最密面ピーク強度が添加元素により向上したことか
ら、前述した結晶配向性の向上が起因していると考えら
れる。これに加えて、添加元素による結晶磁気異方性の
低減もHcの低下に起因している可能性もある。
As can be seen from Table 3, Hc was lower than that of the film formed on the glass substrate and containing no nonmagnetic element. The addition of Al, Ta or the like markedly reduced the Hc, but the addition of a large amount significantly reduced the resistance change rate. A
1 is less than 6.5 atomic%, Ta is less than 10 atomic%,
It can be seen that both the resistance change rate of 5% or more, which is higher than that of the spin valve film made of NiFe, and the low Hc can be achieved at the same time. Note that C
When Al or Ta was added to oFe, the close-packed plane peak intensity increased in X-ray diffraction. On the other hand, Cu, Au, A
Although g, Pd and the like are not as remarkable in the Hc reducing effect as Al or Ta, no decrease in the resistance change rate is observed even when added in a large amount of 10 atomic% or less. Cu, Au, A to CoFe
The addition of g, Pd, etc. also increased the peak intensity of the close-packed plane in X-ray diffraction. It is considered that the decrease in Hc is due to the improvement in crystal orientation described above, since the peak intensity of the closest-packed surface in X-ray diffraction was improved by the added element. In addition to this, the decrease in crystal magnetic anisotropy due to the additional element may also be due to the decrease in Hc.

【0147】さらに、65℃95%RHの恒温恒湿槽に
100時間放置して単層の各強磁性膜(100nm厚)に
ついて耐食性を調べたところ、Pdを7原子%以上添加
した膜では変色はなかったが、非磁性元素を添加しない
CoFe膜、Co20Ni80膜、Co20Fe15Ni65膜や
Alを6.5原子%添加した膜、Taを6原子%添加し
た膜等は変色が見られた。すなわち、Pdの添加は、耐
食性を改善する効果を発揮する。Pdのみの添加ではH
cの低下があまり顕著ではないが、Pdを例えばCuと
共に添加すると、高い抵抗変化率と耐食性を保って軟磁
気特性のさらなる改善が可能になる。さらに、サファイ
アC面基板やアモルファス金属下地膜、fcc格子の下
地膜を用いると、Pdのみの添加でもHcが80A/m
未満にまで低下し、さらに、Pdの40at%までのPd
濃度範囲で〜10%の高い抵抗変化率を示した。しかし
ながら、同じ貴金属で耐食性改善に効果的であると予想
されるPtを添加すると、HcがPtを添加しない膜以
上に増加した。このため、軟磁気特性の観点からPtの
添加は好ましくない。
Furthermore, the corrosion resistance of each single-layer ferromagnetic film (thickness: 100 nm) was examined by leaving it in a constant temperature and humidity bath at 65 ° C. and 95% RH for 100 hours. However, the CoFe film containing no non-magnetic element, the Co 20 Ni 80 film, the Co 20 Fe 15 Ni 65 film, the film containing 6.5 atomic% of Al, and the film containing 6 atomic% of Ta are discolored. It was observed. That is, the addition of Pd exerts an effect of improving corrosion resistance. When only Pd is added, H
Although the decrease of c is not so remarkable, if Pd is added together with, for example, Cu, the soft magnetic property can be further improved while maintaining a high resistance change rate and corrosion resistance. Further, when a sapphire C-plane substrate, an amorphous metal base film, or a base film with an fcc lattice is used, Hc is 80 A / m even when only Pd is added.
To less than 40 at% of Pd
A high resistance change rate of 10% was exhibited in the concentration range. However, when the same noble metal was added with Pt, which is expected to be effective in improving corrosion resistance, Hc increased more than the film without Pt added. Therefore, addition of Pt is not preferable from the viewpoint of soft magnetic characteristics.

【0148】(実施例8)表面粗さがRa =2nm以下の
熱酸化Si基板表面をSH(硫酸と過酸化水素の混合
液)処理により清浄化した後、この基板を真空装置内に
載置して、1×10-9Torr以下まで排気した。真空装置
内の水および酸素は、質量分析器および露点計によって
管理した。以上の手順が終了した後、装置内に超高純度
Arガスを導入して、装置内の真空度を1×10-4Torr
とし、ECRイオン源内部において2.45GHz のマイ
クロ波放電を発生させて加速したイオンビームによりス
パッタリングを行い、図15に示すように、熱酸化Si
基板150上に第1の下地膜151として、非晶質Si
膜を膜厚5nmで成膜した。その後、真空を保ちながら連
続して、第1の下地膜151上に第2の下地膜152と
して、Cu−Ni合金を膜厚2nmで成膜した。
(Embodiment 8) After the surface of a thermally oxidized Si substrate having a surface roughness R a = 2 nm or less was cleaned by SH (mixed solution of sulfuric acid and hydrogen peroxide) treatment, this substrate was placed in a vacuum apparatus. It was then evacuated to below 1 × 10 −9 Torr. Water and oxygen in the vacuum equipment were controlled by mass spectrometer and dew point meter. After the above procedure is completed, ultra-high-purity Ar gas is introduced into the apparatus and the degree of vacuum in the apparatus is set to 1 × 10 −4 Torr.
Then, a microwave discharge of 2.45 GHz was generated inside the ECR ion source and sputtering was performed using an accelerated ion beam. As shown in FIG.
Amorphous Si is used as the first base film 151 on the substrate 150.
The film was formed with a film thickness of 5 nm. After that, a Cu—Ni alloy having a film thickness of 2 nm was continuously formed on the first base film 151 as the second base film 152 while maintaining the vacuum.

【0149】その表面に第1の強磁性膜153としてC
90Fe10合金膜を厚さ8nmで、非磁性膜154として
Cu−Ni合金膜を厚さ2.2nmで、第2の強磁性膜1
55としてCo90Fe10合金膜を厚さ8nmで、反強磁性
膜156としてFe−Mn合金膜を厚さ8nmで、保護膜
157としてTi膜を厚さ5nmで順次成膜し、スピンバ
ルブ構造の積層膜を作製した。以上の薄膜は、いずれも
イオンビームスパッタリングにて形成した。さらに、こ
の積層膜上にCu電極158a,158bを形成するこ
とによって、スピンバルブ型磁気抵抗効果素子159を
得た。
C is formed on the surface as the first ferromagnetic film 153.
The second ferromagnetic film 1 has an o 90 Fe 10 alloy film having a thickness of 8 nm, a nonmagnetic film 154 having a Cu—Ni alloy film having a thickness of 2.2 nm.
A spin valve structure is formed by sequentially forming a Co 90 Fe 10 alloy film with a thickness of 8 nm as 55, an Fe—Mn alloy film with a thickness of 8 nm as an antiferromagnetic film 156, and a Ti film with a thickness of 5 nm as a protective film 157. Was produced. All of the above thin films were formed by ion beam sputtering. Furthermore, a spin-valve magnetoresistive element 159 was obtained by forming Cu electrodes 158a and 158b on the laminated film.

【0150】なお、強磁性膜153,155におけるC
oFe系合金膜の組成物としては、大きな抵抗変化率
(日本応用磁気学会誌:16.313(1992))お
よび軟磁気特性の観点からCo90Fe10とした。
C in the ferromagnetic films 153 and 155
The composition of the oFe-based alloy film was Co 90 Fe 10 from the viewpoint of a large rate of change in resistance (Journal of the Japan Society of Applied Magnetics: 16.313 (1992)) and soft magnetic properties.

【0151】このようにして得たスピンバルブ型磁気抵
抗効果素子の結晶性、磁気特性および抵抗変化率を測定
したところ、CoFe合金膜のX線回折による半値幅は
1°であり、軟磁気特性を示す物性の一つである保磁力
は0.1Oeであった。また、この素子を用いて測定し
た磁気抵抗変化率は、約10%という高い値を示した。
The crystallinity, the magnetic characteristics and the resistance change rate of the spin valve type magnetoresistive effect element thus obtained were measured. The half-width by X-ray diffraction of the CoFe alloy film was 1 °, and the soft magnetic characteristics The coercive force, which is one of the physical properties indicating the above, was 0.1 Oe. The magnetoresistance ratio measured using this element showed a high value of about 10%.

【0152】また、比較のため、同じ処理を施した基板
を真空装置内に載置し、1×10-7Torr以下まで排気し
た後、通常のArガスを2×10-3Torrまで導入し、そ
の基板表面に非晶質Si膜を成膜することなく、Cu膜
を下地膜として直接成膜し、その表面に実施例8と同一
構成のスピンバルブ構造の積層膜を作製した。さらに、
この積層膜上にCu電極を形成して、磁気抵抗効果素子
とした。この積層膜は、通常の13.56MHz にて励起
された2極スパッタリング法によって形成した。
For comparison, a substrate subjected to the same treatment was placed in a vacuum apparatus, exhausted to 1 × 10 −7 Torr or less, and then ordinary Ar gas was introduced to 2 × 10 −3 Torr. A Cu film was directly formed as a base film without forming an amorphous Si film on the surface of the substrate, and a laminated film having the same spin valve structure as that of Example 8 was formed on the surface. further,
A Cu electrode was formed on this laminated film to obtain a magnetoresistive element. This laminated film was formed by a normal two-pole sputtering method excited at 13.56 MHz.

【0153】この磁気抵抗効果素子の結晶性、磁気特性
および抵抗変化率を測定したところ、CoFe合金膜の
X線回折による半値幅は7°であり、軟磁気特性を示す
物性の一つである保磁力は1.5Oeであった。また、
この素子を用いて測定した磁気抵抗変化率は約5%であ
った。
When the crystallinity, magnetic properties and resistance change rate of this magnetoresistive effect element were measured, the half-width of the CoFe alloy film by X-ray diffraction was 7 °, which is one of the physical properties exhibiting soft magnetic properties. The coercive force was 1.5 Oe. Also,
The magnetoresistance ratio measured using this device was about 5%.

【0154】(実施例9)表面粗さがRa =2nm以下の
サファイヤ基板を表面清浄化した後、この基板を真空装
置内に載置し、1×10-9Torr以下まで排気した。真空
装置内の水および酸素は、質量分析器および露点計によ
って管理した。以上の手順が終了した後、電子ビーム蒸
着源を用いた超高真空蒸着法によって、第1の下地膜と
して、非晶質CuTi膜を膜厚3nmで成膜した。その
後、真空を保ったまま連続して、励起周波数100MHz
の超高真空RFスパッタリングを用いて、第2の下地膜
としてFeMn合金膜を膜厚2nmで成膜した。
Example 9 After cleaning the surface of a sapphire substrate having a surface roughness R a = 2 nm or less, the substrate was placed in a vacuum apparatus and evacuated to 1 × 10 −9 Torr or less. Water and oxygen in the vacuum equipment were controlled by mass spectrometer and dew point meter. After the above procedure was completed, an amorphous CuTi film having a thickness of 3 nm was formed as a first base film by an ultra-high vacuum evaporation method using an electron beam evaporation source. After that, the pumping frequency is 100MHz continuously while maintaining the vacuum.
A FeMn alloy film having a film thickness of 2 nm was formed as a second base film by using the ultra-high vacuum RF sputtering.

【0155】次に、上記下地膜上に、Ti5nm/FeM
n8nm/(Co81Fe9 )Pd108nm/Cu2.2nm/
(Co81Fe9 )Pd108nmの構成を有するスピンバル
ブ構造の積層膜を全て励起周波数100MHz の超高真空
RFスパッタリングを用いて形成し、さらにこの積層膜
上にCu電極を形成して、スピンバルブ型磁気抵抗効果
素子を作製した。
Next, on the above-mentioned base film, Ti5 nm / FeM
n8 nm / (Co 81 Fe 9 ) Pd 10 8 nm / Cu 2.2 nm /
(Co 81 Fe 9 ) Pd 10 A layered film having a spin valve structure having a thickness of 8 nm is formed by using ultrahigh vacuum RF sputtering at an excitation frequency of 100 MHz. A valve-type magnetoresistive element was manufactured.

【0156】このようにして得たスピンバルブ型磁気抵
抗効果素子の結晶性、磁気特性および抵抗変化率を実施
例8と同様に測定したところ、CoFe膜のX線回折に
よる半値幅は1.5°であり、軟磁気特性を示す物性の
一つである保磁力は1Oeであった。また、同素子を用
いて測定した磁気抵抗変化率は、約12%という高い値
を示した。
The crystallinity, magnetic characteristics and resistance change rate of the spin valve type magnetoresistive element thus obtained were measured in the same manner as in Example 8. The half width of the CoFe film by X-ray diffraction was 1.5. The coercive force, which is one of the physical properties exhibiting soft magnetic characteristics, was 1 Oe. Further, the magnetoresistance ratio measured using the same element showed a high value of about 12%.

【0157】(実施例10)図16に示すように、支持
基板30上にCoZrNb等からなる高抵抗非晶質層3
1を形成し、その上にCoFe合金等からなる強磁性膜
32、Cu等よりなる非磁性膜33、強磁性膜32、お
よびFeMn等からなる交換バイアス層34を約4kA
/mの静磁界中で順次形成し、交換バイアス層34上に
リード35を形成して磁気抵抗効果素子を作製した。な
お、各層は4元スパッタ装置で下記表4に示す成膜条件
で成膜した。
(Embodiment 10) As shown in FIG. 16, a high resistance amorphous layer 3 made of CoZrNb or the like is formed on a supporting substrate 30.
1 is formed, and a ferromagnetic film 32 made of a CoFe alloy or the like, a non-magnetic film 33 made of Cu or the like, a ferromagnetic film 32, and an exchange bias layer 34 made of FeMn or the like are formed thereon at about 4 kA.
Sequentially formed in a static magnetic field of / m, and leads 35 were formed on the exchange bias layer 34 to manufacture a magnetoresistive effect element. Each layer was formed by a four-element sputtering apparatus under the film forming conditions shown in Table 4 below.

【0158】[0158]

【表4】 [Table 4]

【0159】この磁気抵抗効果素子の磁気特性を調べ、
図17および図18にそのM−Hカーブ(磁化−磁界カ
ーブ)を示す。なお、図17は容易軸方向のM−Hカー
ブ、図18は困難軸方向のM−Hカーブを示す。
The magnetic characteristics of this magnetoresistive element were investigated,
17 and 18 show the MH curve (magnetization-magnetic field curve). 17 shows the MH curve in the easy axis direction, and FIG. 18 shows the MH curve in the hard axis direction.

【0160】図17から分かるように、FeMnに固着
されていない側のCoFe膜の保磁力Hc(図中a)は
約500A/mとなり、通常のCoFe単層膜のHc約
1600A/mに比べ著しく低い値を示した。さらに信
号磁界入力側である困難軸方向についても、図18から
分かるように、FeMnに固着されていない側のCoF
e膜の保磁力Hc(図中b)が約600A/mとなり、
通常のCoFe単層膜のHc約1600A/mに比べ著
しく低い値を示した。
As can be seen from FIG. 17, the coercive force Hc (a in the figure) of the CoFe film on the side not fixed to FeMn is about 500 A / m, which is higher than that of a normal CoFe single layer film of about 1600 A / m. The value was extremely low. Further, in the hard axis direction which is the signal magnetic field input side, as can be seen from FIG.
The coercive force Hc (b in the figure) of the e film becomes about 600 A / m,
The value was significantly lower than the Hc of the ordinary CoFe single layer film of about 1600 A / m.

【0161】また、この磁気抵抗効果素子の抵抗変化特
性を調べ、図19にそのR−Hカーブ(抵抗−磁界カー
ブ)を示す。図19から分かるように、抵抗変化率△R
/Rは従来のCo系スピンバルブ膜と同程度の約9%の
高い抵抗変化率となった。また、FeMnに固着されて
いない側のCoFe膜の保磁力Hc(図中c)は図17
から予想されるように約500A/mの低い値となっ
た。
Further, the resistance change characteristic of this magnetoresistive effect element was investigated, and its RH curve (resistance-magnetic field curve) is shown in FIG. As can be seen from FIG. 19, the rate of change in resistance ΔR
/ R has a high resistance change rate of about 9%, which is almost the same as that of the conventional Co-based spin valve film. The coercive force Hc (c in the figure) of the CoFe film on the side not fixed to FeMn is shown in FIG.
As expected from the above, the value was as low as about 500 A / m.

【0162】本実施例では、交換バイアス層としてFe
Mn膜を用いているが、NiO等の反強磁性膜を用いて
もよいし、また(Co/Cu)n等の構造を有する人工
格子膜を用いても良好な特性が得られることが確認され
た。さらに、本実施例では、高抵抗アモルファス層とし
てCoZrNb膜を用いているが、その他に微小な結晶
のFeZr膜、FeZrN膜、CoZrN膜、FeTa
C膜、あるいはNiFeX膜(X:Rh,Nb,Zr,
Hf,Ta,Re,Ir,Pd,Pt,Cu,Mo,M
n,W,Ti,Cr,Au,またはAg)等を用いても
よい。特に、fcc相の微結晶膜(Co系窒化膜、Co
系炭化膜、NiFeX膜)では、fcc相(111)配
向を促進する効果も相乗し、さらにHcが容易軸方向で
〜250A/mに低下し、抵抗変化率が10%に向上し
た。
In this embodiment, Fe is used as the exchange bias layer.
Although a Mn film is used, it has been confirmed that good characteristics can be obtained by using an antiferromagnetic film such as NiO or an artificial lattice film having a structure such as (Co / Cu) n. Was done. Further, in this embodiment, the CoZrNb film is used as the high-resistance amorphous layer. However, a FeZr film, a FeZrN film, a CoZrN film, a FeTa
C film or NiFeX film (X: Rh, Nb, Zr,
Hf, Ta, Re, Ir, Pd, Pt, Cu, Mo, M
n, W, Ti, Cr, Au, or Ag) may be used. In particular, a microcrystalline film (Co-based nitride film, Co
In the case of the system-based carbonized film and the NiFeX film, the effect of promoting the fcc phase (111) orientation was also synergistic, and Hc was further reduced to 250 A / m in the easy axis direction, and the resistance change rate was improved to 10%.

【0163】比較のために、高抵抗アモルファス層を設
けないで支持基板上に後述する図23と同様な強磁性
膜、中間層、強磁性膜、交換バイアス層を順次積層して
なる磁気抵抗効果素子の磁気特性を調べ、そのM−Hカ
ーブを図20および図21に示す。なお、図20は容易
軸方向のM−Hカーブ、図21は困難軸方向のM−Hカ
ーブを示す。また、成膜条件は前記表3と同様とした。
For comparison, a magnetoresistive effect obtained by sequentially stacking a ferromagnetic film, an intermediate layer, a ferromagnetic film, and an exchange bias layer similar to FIG. 23 described later on a supporting substrate without providing a high resistance amorphous layer. The magnetic characteristics of the element were examined, and the MH curve thereof is shown in FIGS. 20 and 21. FIG. 20 shows an MH curve in the easy axis direction, and FIG. 21 shows an MH curve in the hard axis direction. The film forming conditions were the same as in Table 3 above.

【0164】図20から分かるように、FeMnに固着
されていない側のCoFe膜の保磁力Hc(図中d)は
約2000A/mとなり、通常のCoFe単層膜のHc
と同様に高い値を示した。さらに、困難軸方向について
も、図21に示すように、FeMnに固着されていない
側のCoFe膜の保磁力Hc(図中e)は約1400A
/mとなり、通常のCoFe単層膜のHcと同様に高い
値を示し、磁気抵抗効果素子としては不充分であった。
As can be seen from FIG. 20, the coercive force Hc (d in the figure) of the CoFe film on the side not fixed to FeMn is about 2000 A / m, which is the Hc of a normal CoFe single layer film.
It showed a high value as well. Further, also in the hard axis direction, as shown in FIG. 21, the coercive force Hc (e in the figure) of the CoFe film on the side not fixed to FeMn is about 1400 A.
/ M, which is as high as Hc of a normal CoFe single layer film, and was insufficient as a magnetoresistive element.

【0165】(実施例11)図22に示すように、支持
基板30上にCu等からなる厚さ約5nmの下地膜36を
形成し、さらにその上に交換バイアス層34、強磁性膜
32、非磁性膜33、強磁性膜32、および高抵抗アモ
ルファス層31を順次形成し、高抵抗アモルファス層3
1上にリード35を形成して磁気抵抗効果素子を作製し
た。なお、成膜条件は上記表3と同様にした。
(Embodiment 11) As shown in FIG. 22, a base film 36 of Cu or the like having a thickness of about 5 nm is formed on a support substrate 30, and an exchange bias layer 34, a ferromagnetic film 32, The non-magnetic film 33, the ferromagnetic film 32, and the high resistance amorphous layer 31 are sequentially formed, and the high resistance amorphous layer 3 is formed.
A lead 35 was formed on the first layer to prepare a magnetoresistive effect element. The film forming conditions were the same as in Table 3 above.

【0166】図22に示す構造、すなわち高抵抗アモル
ファス層を交換バイアス層よりも上層として形成する場
合においても、低いHcを得ることができた。また、ア
モルファス層が高抵抗であるため、この層が最上層とな
ってもシャント効果による磁気抵抗変化率の低下はなか
った。なお、この場合には、FeMnの結晶配向制御の
ために下地膜を設けることが望ましい。
Even in the structure shown in FIG. 22, that is, in the case where the high resistance amorphous layer is formed as a layer above the exchange bias layer, low Hc could be obtained. In addition, since the amorphous layer has high resistance, the shunt effect did not reduce the magnetoresistance ratio even when this layer was the uppermost layer. In this case, it is desirable to provide a base film for controlling the crystal orientation of FeMn.

【0167】(実施例12)支持基板41上にCoPt
Cr膜42を厚さ8nmで成膜し、その上にレジスト43
を塗布した後、所望のパターンにレジスト43をパター
ニングし、図23(A)に示すように、イオンミーリン
グ等によりエッチングした。この際、CoPtCrのテ
ーパ角Xは90°に近い方が望ましい。
(Embodiment 12) CoPt is formed on the support substrate 41.
A Cr film 42 having a thickness of 8 nm is formed, and a resist 43 is formed thereon.
After applying, the resist 43 was patterned into a desired pattern and, as shown in FIG. 23A, was etched by ion milling or the like. At this time, it is desirable that the taper angle X of CoPtCr be closer to 90 °.

【0168】次に、図25(B)に示すように、エッチ
ング後のレジスト43は除去せず、この状態でCoFe
合金からなる強磁性膜44、Cu等からなる非磁性膜4
5、強磁性膜44、および高抵抗アモルファス層46を
順次形成してスピンバルブ構造の磁気抵抗効果素子を作
製した。この際、レジスト43のテーパ角Yは90°に
近い方が望ましい。
Next, as shown in FIG. 25B, the resist 43 after etching is not removed, and CoFe is removed in this state.
Ferromagnetic film 44 made of alloy, non-magnetic film 4 made of Cu or the like
5, a ferromagnetic film 44 and a high-resistance amorphous layer 46 were sequentially formed to fabricate a magnetoresistive element having a spin-valve structure. At this time, it is desirable that the taper angle Y of the resist 43 is closer to 90 °.

【0169】次に、レジスト43を除去した後に高抵抗
アモルファス層46上にリード47を形成した。なお、
このリード47は、レジスト43を除去する前に形成し
てもよい。このように作製することにより、図25
(C)に示すように、界面状態に敏感なスピンバルブ構
造を特性劣化を伴わずに作製することできる。
Next, after removing the resist 43, a lead 47 was formed on the high resistance amorphous layer 46. In addition,
The leads 47 may be formed before the resist 43 is removed. By manufacturing as described above, FIG.
As shown in (C), a spin valve structure sensitive to the interface state can be manufactured without deterioration in characteristics.

【0170】上記構造のように、FeMn等からなる交
換バイアス層を磁化固着膜として用いることなく、高保
磁力膜を用いることができる。高保磁力膜の材料として
は、下地膜を用いなくても適当な面内磁気異方性を発揮
できる材料を用いることが望ましい。そこで、本実施例
では、この特性を満足するCoPtCr膜を高保磁力膜
として用いた。
As in the above structure, a high coercive force film can be used without using the exchange bias layer made of FeMn or the like as the magnetization fixed film. As a material of the high coercive force film, it is desirable to use a material that can exhibit appropriate in-plane magnetic anisotropy without using a base film. Therefore, in this embodiment, a CoPtCr film satisfying this characteristic was used as a high coercive force film.

【0171】(実施例13)図24に示すように、支持
基板30上に高抵抗アモルファス層31、強磁性膜3
2、非磁性膜33、強磁性膜32、および高抵抗アモル
ファス層31を順次積層し、最上層の高抵抗アモルファ
ス層31上にリード35を形成して磁気抵抗効果素子を
作製した。
(Embodiment 13) As shown in FIG. 24, a high resistance amorphous layer 31 and a ferromagnetic film 3 are formed on a supporting substrate 30.
2, the non-magnetic film 33, the ferromagnetic film 32, and the high-resistance amorphous layer 31 were sequentially stacked, and the lead 35 was formed on the uppermost high-resistance amorphous layer 31 to manufacture a magnetoresistive effect element.

【0172】図24に示す構造のように、磁化固着膜で
あるFeMnからなる交換バイアス層を用いず、センス
電流により発生する磁界または形状による反磁界の効果
による自己バイアス効果を利用して、強磁性膜32間で
の反強磁性的磁化配列を実現してもよい。
As shown in the structure of FIG. 24, the exchange bias layer made of FeMn, which is the magnetization fixed film, is not used, but the self-bias effect due to the effect of the demagnetizing field due to the magnetic field generated by the sense current or the shape is used. An antiferromagnetic magnetization arrangement between the magnetic films 32 may be realized.

【0173】この場合、センス電流により発生する磁界
が膜幅方向(図中g方向)において、強磁性膜32を挟
んで上下で反対方向となるように加わるようにし、さら
に、膜幅方向の反磁界を低減するために2つの強磁性膜
32は互いに反強磁性的に結合するようにする。その結
果、交換バイアス層がなくても2つの強磁性膜32同士
が反強磁性的に結合できる。したがって、信号磁界Hs
を膜長手方向(図中f方向)に加えると2つの強磁性膜
32の磁化は回転して膜長手方向に揃い強磁性的な結合
となる。その結果、スピン依存散乱に起因した大きな△
R/Rを得ることができる。
In this case, the magnetic field generated by the sense current is applied in the film width direction (g direction in the drawing) so as to be opposite in the vertical direction with the ferromagnetic film 32 interposed therebetween. In order to reduce the magnetic field, the two ferromagnetic films 32 are antiferromagnetically coupled to each other. As a result, the two ferromagnetic films 32 can be coupled antiferromagnetically without the exchange bias layer. Therefore, the signal magnetic field Hs
Is applied in the longitudinal direction of the film (the direction f in the figure), the magnetizations of the two ferromagnetic films 32 rotate and are aligned in the longitudinal direction of the film to form ferromagnetic coupling. As a result, large △ due to spin-dependent scattering
R / R can be obtained.

【0174】(実施例14)図25に示すように、熱酸
化Si基板160上に、高抵抗強磁性膜161としてC
oCr合金膜をイオンビームスパッタ法によって膜厚1
nmで成膜した。次に、高抵抗磁性膜161上に、第1の
強磁性膜162としてCoFe合金膜を厚さ3nmで、非
磁性膜163としてCu膜を厚さ2nmで、第2の強磁性
膜164としてCoFe合金膜を厚さ3nmで順次成膜
し、スピンバルブ型の積層膜を形成した。
(Embodiment 14) As shown in FIG. 25, C is formed as a high resistance ferromagnetic film 161 on a thermally oxidized Si substrate 160.
The film thickness of the oCr alloy film is 1 by the ion beam sputtering method.
The film was formed in nm. Next, on the high resistance magnetic film 161, a CoFe alloy film having a thickness of 3 nm as a first ferromagnetic film 162, a Cu film having a thickness of 2 nm as a non-magnetic film 163, and a CoFe alloy film having a thickness of 2 nm as a second ferromagnetic film 164. An alloy film was sequentially formed with a thickness of 3 nm to form a spin valve type laminated film.

【0175】この後、上記積層膜上に、反強磁性膜16
5としてFeMn膜を厚さ15nmで形成した。その上
に、必要に応じて保護膜166を形成し、さらに電極1
67a,167b(間隔:10μm)を形成することに
よって、スピンバルブ型磁気抵抗効果素子168を作製
した。
After that, the antiferromagnetic film 16 is formed on the laminated film.
As No. 5, an FeMn film was formed with a thickness of 15 nm. On top of this, a protective film 166 is formed as necessary,
By forming 67a and 167b (interval: 10 μm), a spin-valve magnetoresistive element 168 was manufactured.

【0176】このようにして得たスピンバルブ型磁気抵
抗効果素子の抵抗変化率を測定したところ、室温で14
%という高い値を示した。
The resistance change rate of the spin-valve magnetoresistive element thus obtained was measured and found to be 14 at room temperature.
%.

【0177】比較として、高抵抗強磁性膜161を形成
しない以外は実施例14と同様にして、スピンバルブ型
磁気抵抗効果素子を作製した。このスピンバルブ型磁気
抵抗効果素子の特性を実施例14と同様にして評価した
ところ、室温での抵抗変化率は12%であった。
For comparison, a spin valve magnetoresistive effect element was manufactured in the same manner as in Example 14 except that the high resistance ferromagnetic film 161 was not formed. When the characteristics of this spin-valve magnetoresistive element were evaluated in the same manner as in Example 14, the resistance change rate at room temperature was 12%.

【0178】(実施例16)サファイア基板上に、第1
の強磁性膜としてCo90Fe10合金膜、非磁性膜として
Cu膜、第2の強磁性膜としてCo90Fe10合金膜、反
強磁性膜としてFeMn膜を順に形成した。この際、第
1および第2の強磁性膜の厚さ(dFeCo)を変化させ
て、抵抗変化率(Δρ/ρ0 )を測定した。その結果を
図26に示す。なお、第1および第2の強磁性膜の厚さ
は同一とし、Cu膜の膜厚は2.2nm、FeMn膜の膜
厚は15nmとした。また、上記磁気抵抗効果素子におい
ては、反強磁性膜上に必要に応じて、耐食性等に優れた
Ta、Ni、NiCr等の保護膜を介して電極を形成す
る。図26から分かるように、dFeCoが5nm以下でMR
効果が増大していることが分かる。また、dFeCo=3nm
付近でピークをとり、2〜4nmが好ましい範囲となる。
(Embodiment 16) A first sapphire substrate was formed.
A Co 90 Fe 10 alloy film as a ferromagnetic film, a Cu film as a non-magnetic film, a Co 90 Fe 10 alloy film as a second ferromagnetic film, and an FeMn film as an antiferromagnetic film. At this time, the resistance change rate (Δρ / ρ 0 ) was measured by changing the thickness (d FeCo ) of the first and second ferromagnetic films. The result is shown in FIG. The thicknesses of the first and second ferromagnetic films were the same, the thickness of the Cu film was 2.2 nm, and the thickness of the FeMn film was 15 nm. In the magnetoresistive element, an electrode is formed on the antiferromagnetic film, if necessary, via a protective film made of Ta, Ni, NiCr or the like having excellent corrosion resistance and the like. As can be seen from FIG. 26, when d FeCo is 5 nm or less, MR
It can be seen that the effect is increasing. Also, d FeCo = 3 nm
A peak is taken in the vicinity, and a preferable range is 2 to 4 nm.

【0179】強磁性膜/非磁性膜(金属薄膜)/強磁性
膜のサンドイッチ構造の厚さが薄くなってくると、金属
薄膜と接していない面での電子散乱が大きくなり、抵抗
のサイズ効果が表れる。サンドイッチ構造の比抵抗の変
動分(Δρ)は、サンドイッチ構造のトータルの膜厚を
t、平均自由行程をl0 とすると、Δρはl0 /tに比
例する。諸条件で変化するが、図26からも明らかなよ
うに、Co系強磁性膜を用いた場合、強磁性膜厚は5nm
以下とすることが良好なMR効果が得る上で好ましい。
As the thickness of the sandwich structure of the ferromagnetic film / non-magnetic film (metal thin film) / ferromagnetic film becomes thin, the electron scattering at the surface not in contact with the metal thin film becomes large, and the resistance size effect Appears. The variation (Δρ) in the specific resistance of the sandwich structure is proportional to l 0 / t, where t is the total film thickness of the sandwich structure and l 0 is the mean free path. Although it changes depending on various conditions, as is clear from FIG. 26, when the Co-based ferromagnetic film is used, the ferromagnetic film thickness is 5 nm.
The following is preferable in order to obtain a good MR effect.

【0180】すなわち、強磁性膜の金属薄膜と接してい
ない方の面に、低抵抗例えば30μΩcm以下の比抵抗を
もった材料が接している場合、電子はその界面を通り抜
け、30μΩcm以下の比抵抗をもった材料の中に流れて
しまい、有効な表面散乱が起こりにくくなる。このた
め、有効な表面散乱を引き起こし、サイズ効果を利用す
るためには、30μΩcm以上の材料とするか、接してい
る材料の膜厚を5nm以下とすることが有効である。
That is, when a material having a low resistance, for example, 30 μΩcm or less is in contact with the surface of the ferromagnetic film which is not in contact with the metal thin film, electrons pass through the interface and the specific resistance of 30 μΩcm or less is obtained. It will flow into the material with the effect, and effective surface scattering will be less likely to occur. Therefore, in order to cause effective surface scattering and utilize the size effect, it is effective to use a material having a thickness of 30 μΩcm or more or a thickness of a material in contact with the material of 5 nm or less.

【0181】サイズ効果を利用し、大きなMR効果を得
るためには、Co系強磁性膜の膜厚は5nm以下にするこ
とが好ましい。このとき、中間金属薄膜としては、C
u、Ag、Au等の比抵抗の小さい金属を用いることが
望ましく、中間金属薄膜の膜厚はサイズ効果を利用する
ために、5nmより薄いことが好ましい。また、両強磁性
膜の膜厚が大きく異なっている場合には、両強磁性膜に
おける表面散乱の効果が異なってしまうため、磁気抵抗
変化率は小さくなってしまう。このため、両強磁性膜の
厚さの比は、1:1〜1:2の間にあることが望まし
い。
In order to obtain a large MR effect by utilizing the size effect, it is preferable that the thickness of the Co type ferromagnetic film is 5 nm or less. At this time, as the intermediate metal thin film, C
It is desirable to use a metal having a small specific resistance such as u, Ag, or Au, and the thickness of the intermediate metal thin film is preferably smaller than 5 nm in order to utilize the size effect. If the thicknesses of the two ferromagnetic films are significantly different, the effect of surface scattering on the two ferromagnetic films is different, and the rate of change in magnetoresistance is small. For this reason, it is desirable that the ratio of the thicknesses of both ferromagnetic films is between 1: 1 and 1: 2.

【0182】(実施例16)図27に示すように、サフ
ァイア基板160上に非磁性膜161としてCuPd合
金膜をRFスパッタ法によって厚さ2nmで成膜した。次
に、非磁性膜161上に、第1の強磁性膜162として
CoFe合金膜を厚さ1nmで、非磁性膜163としてC
u膜を厚さ2nmで、第2の強磁性膜164としてCoF
e合金膜を厚さ3nmで順次成膜し、スピンバルブ型の積
層膜を形成した。
(Example 16) As shown in FIG. 27, a CuPd alloy film was formed as a non-magnetic film 161 on a sapphire substrate 160 by RF sputtering to a thickness of 2 nm. Next, a CoFe alloy film having a thickness of 1 nm is formed as the first ferromagnetic film 162 on the non-magnetic film 161, and C is formed as the non-magnetic film 163.
The u film is 2 nm thick and CoF is used as the second ferromagnetic film 164.
An e-alloy film was sequentially formed with a thickness of 3 nm to form a spin valve type laminated film.

【0183】この後、上記積層膜上に、反強磁性膜16
5としてFeMn膜を厚さ15nmで形成した。その上
に、必要に応じて保護膜166を形成し、さらに電極1
67a,167bを形成することによって、スピンバル
ブ型磁気抵抗効果素子171を作製した。
After that, the antiferromagnetic film 16 is formed on the laminated film.
As No. 5, an FeMn film was formed with a thickness of 15 nm. On top of this, a protective film 166 is formed as necessary,
By forming 67a and 167b, a spin-valve magnetoresistive element 171 was manufactured.

【0184】この磁気抵抗効果素子では、反強磁性膜1
65により、第2の強磁性膜164には一方向異方性が
与えられているため、低磁場中では磁化は一方向に固定
されたまま動かない。これに対して、第1の強磁性膜1
62は、低磁場中でも磁場の方向に磁化を向ける。よっ
て、外部磁化を変化させることにより、2つの強磁性膜
の磁化の成す角度を自由に制御することができる。な
お、反強磁性膜165は、第2の強磁性膜164に有効
な一方向異方性を与える上で、1〜50nm程度の厚さと
することが好ましい。
In this magnetoresistive effect element, the antiferromagnetic film 1
Since the second ferromagnetic film 164 is given unidirectional anisotropy by 65, the magnetization does not move while being fixed in one direction in a low magnetic field. On the other hand, the first ferromagnetic film 1
62 directs the magnetization in the direction of the magnetic field even in a low magnetic field. Therefore, by changing the external magnetization, the angle formed by the magnetizations of the two ferromagnetic films can be freely controlled. Note that the antiferromagnetic film 165 preferably has a thickness of about 1 to 50 nm in order to impart effective unidirectional anisotropy to the second ferromagnetic film 164.

【0185】このようにして得たスピンバルブ型磁気抵
抗効果素子171の抵抗変化率を測定したところ、第1
の強磁性膜162の厚さを1nmと薄くしているにもかか
わらず、室温で8%という高い値を示した。また、上記
スピンバルブ型磁気抵抗効果素子171を、幅2μm×
長さ80μmの微細形状に加工してCuリード間を2μ
mに規定した狭トラック幅の高密度磁気記録の再生に用
いたところ、バルクハウゼンノイズを除去することがで
きた。
The rate of change in resistance of the spin valve magnetoresistive effect element 171 thus obtained was measured.
Although the thickness of the ferromagnetic film 162 was reduced to 1 nm, the value was as high as 8% at room temperature. Further, the spin-valve magnetoresistive element 171 was formed to have a width of 2 μm ×
Processed into a fine shape with a length of 80 μm and the gap between Cu leads was 2 μm.
When used for reproduction of high-density magnetic recording with a narrow track width defined as m, Barkhausen noise could be removed.

【0186】比較として、非磁性膜161を形成しない
以外は実施例17と同様にして、スピンバルブ型磁気抵
抗効果素子を作製した。このスピンバルブ型磁気抵抗効
果素子の特性を実施例17と同様にして評価したとこ
ろ、抵抗変化率は室温で3%と小さい値しか得られなか
った。
For comparison, a spin valve magnetoresistive effect element was manufactured in the same manner as in Example 17 except that the nonmagnetic film 161 was not formed. When the characteristics of this spin-valve magnetoresistive element were evaluated in the same manner as in Example 17, the rate of change in resistance was as small as 3% at room temperature.

【0187】また、第1の強磁性膜162の膜厚を6nm
とする以外は実施例16と同様にして、スピンバルブ型
磁気抵抗効果素子を作製した。このスピンバルブ型磁気
抵抗効果素子の特性を実施例16と同様にして評価した
ところ、抵抗変化率は室温で6%得ることができたが、
実施例16と同様な再生微細素子により高密度記録(狭
トラック幅)の再生を行ったところ、反磁界によるバル
クハウゼンノイズが観測された。
The thickness of the first ferromagnetic film 162 is set to 6 nm.
A spin-valve magnetoresistive element was manufactured in the same manner as in Example 16 except that the above conditions were satisfied. When the characteristics of this spin-valve magnetoresistive element were evaluated in the same manner as in Example 16, the resistance change rate was 6% at room temperature.
When high-density recording (narrow track width) reproduction was performed using the same reproduction fine element as in Example 16, Barkhausen noise due to a demagnetizing field was observed.

【0188】(実施例17)図28に示すように、熱酸
化Si基板160上に平均自由行程が長い薄膜172と
して、キャリア濃度が1020cm-3となるようにTeをド
ープしたGaAs膜をMBE法により厚さ10nmで成膜
した。次に、TeドープGaAs膜172上に第1の強
磁性膜162としてCoFe合金膜を厚さ1nmで、非磁
性膜163としてCu膜を厚さ2nmで、第2の強磁性膜
164としてCoFe合金膜を厚さ4nmで順次成膜し、
スピンバルブ型の積層膜を形成した。
(Embodiment 17) As shown in FIG. 28, as a thin film 172 having a long mean free path, a GaAs film doped with Te so that the carrier concentration becomes 10 20 cm −3 is formed on a thermally oxidized Si substrate 160. A film having a thickness of 10 nm was formed by the MBE method. Next, on the Te-doped GaAs film 172, a CoFe alloy film having a thickness of 1 nm as a first ferromagnetic film 162, a Cu film having a thickness of 2 nm as a non-magnetic film 163, and a CoFe alloy film as a second ferromagnetic film 164. Films are sequentially formed with a thickness of 4 nm,
A spin valve type laminated film was formed.

【0189】この後、上記積層膜上に、反強磁性膜16
5としてFeMn膜を厚さ15nmで形成した。その上
に、必要に応じて保護膜166を形成し、さらに電極1
67a,167bを形成することによって、スピンバル
ブ型磁気抵抗効果素子173を作製した。
After that, the antiferromagnetic film 16 is formed on the laminated film.
As No. 5, an FeMn film was formed with a thickness of 15 nm. On top of this, a protective film 166 is formed as necessary,
By forming 67a and 167b, a spin-valve magnetoresistive element 173 was manufactured.

【0190】このようにして得たスピンバルブ型磁気抵
抗効果素子の抵抗変化率を測定したところ、室温で18
%という高い値を示した。また、上記スピンバルブ型磁
気抵抗効果素子を高密度磁気記録の再生に用いて、10
5 A/cm2 という電流密度のセンス電流における出力信
号電圧を測定したところ、1mVp-p という良好な値が
得られた。
The resistance change rate of the spin valve magnetoresistive effect element thus obtained was measured and found to be 18 at room temperature.
%. The spin valve type magnetoresistive element is used for reproducing high density magnetic recording,
When the output signal voltage at a sense current of 5 A / cm 2 was measured, a good value of 1 mV pp was obtained.

【0191】比較として、TeドープGaAs膜172
を形成しない以外は、実施例17と同様にして、スピン
バルブ型磁気抵抗効果素子を作製した。このスピンバル
ブ型磁気抵抗効果素子の特性を実施例17と同様にして
評価したところ、抵抗変化率は室温で2%と小さい値し
か得られなかった。
For comparison, Te-doped GaAs film 172
A spin-valve magnetoresistive element was fabricated in the same manner as in Example 17, except that no was formed. When the characteristics of the spin-valve magnetoresistive element were evaluated in the same manner as in Example 17, the rate of change in resistance was as small as 2% at room temperature.

【0192】(実施例18)ガラス基板上に厚さ10nm
のCu膜を下地膜として形成し、その上にCo90Fe10
膜を形成した。Cu膜およびCo90Fe10膜は、RF2
極スパッタリング法により成膜した。なお、スパッタリ
ングは、成膜中に永久磁石により約4000A/mの一
方向磁界を基板近傍に加え、以下に示すスパッタリング
条件により行った。
(Example 18) 10 nm thick on a glass substrate
Cu film is formed as a base film, and Co 90 Fe 10 is formed thereon.
A film was formed. The Cu film and the Co 90 Fe 10 film are RF2
The film was formed by the polar sputtering method. Note that the sputtering was performed under the following sputtering conditions by applying a unidirectional magnetic field of about 4000 A / m to the vicinity of the substrate during film formation using a permanent magnet.

【0193】 予備排気 1×10-4Pa以下 Arスパッタガス圧 0.4Pa 高周波投入電力 CoFe:300−500W Cu :160W スパッタリング速度 CoFe:0.5−1nm/s Cu :1nm/s このようにして作製したCo90Fe10膜のHc(困難軸
方向)とCo90Fe10膜の膜厚の関係を図29に示す。
また、図29には、比較のためガラス基板上にCu下地
膜を設けないで直接Co90Fe10膜を形成したものも示
した。なお、保磁力Hcは振動型磁力計により測定し
た。
Preliminary exhaust 1 × 10 −4 Pa or less Ar sputter gas pressure 0.4 Pa High-frequency input power CoFe: 300-500 W Cu: 160 W Sputtering speed CoFe: 0.5-1 nm / s Cu: 1 nm / s In this way fabricated Co 90 Fe 10 film of Hc is shown in Figure 29 the thickness of the relationship (hard axis) and Co 90 Fe 10 film.
FIG. 29 also shows a case where a Co 90 Fe 10 film was directly formed on a glass substrate without providing a Cu base film for comparison. The coercive force Hc was measured by a vibrating magnetometer.

【0194】図29から分かるように、Cu下地膜を設
けない通常のCo90Fe10膜では、膜厚20nm以下では
2000A/m以上の高いHcを示した。一方、Cu下
地膜を設けると、膜厚20nmのCo90Fe10膜ではHc
の低下は僅かであったが、膜厚10nm以下では400〜
900A/mにHcが大幅に低下した。このように、ガ
ラス基板とCo90Fe10膜との間にCu下地膜を設ける
ことにより、Co90Fe10膜のHcを低減できることが
分かった。特に、Cu下地膜の膜厚は、1原子層以上で
あれば上記のHc低減の効果が認められた。なお、Cu
下地膜上にまったく同様にCo膜を形成した場合はCo
Fe膜の場合ほどHcの低下は認められなかった。
As can be seen from FIG. 29, the normal Co 90 Fe 10 film having no Cu underlayer has a high Hc of 2000 A / m or more at a film thickness of 20 nm or less. On the other hand, when a Cu base film is provided, Hc is used for a 20 nm-thick Co 90 Fe 10 film.
Was slightly reduced, but when the film thickness was 10 nm or less, it was 400 to 400 nm.
Hc was significantly reduced to 900 A / m. Thus, it was found that by providing a Cu underlayer between the glass substrate and the Co 90 Fe 10 film, the Hc of the Co 90 Fe 10 film could be reduced. In particular, when the thickness of the Cu underlayer was at least one atomic layer, the above-described effect of reducing Hc was recognized. Note that Cu
When a Co film is formed on the base film in the same manner, Co
Hc did not decrease as much as the Fe film.

【0195】(実施例19)ガラス基板上に厚さ5〜6
nmのCu下地膜を形成し、さらにCu下地膜上にCo90
Fe10膜、厚さ2nmのCu中間層、およびCo90Fe10
膜を順次形成した。なお、これらの膜の成膜条件は実施
例18と同様とした。
(Example 19) Thickness 5-6 on a glass substrate
nm Cu underlayer film is formed, and Co 90 is formed on the Cu underlayer film.
Fe 10 film, 2 nm thick Cu intermediate layer, and Co 90 Fe 10
The film was formed sequentially. The conditions for forming these films were the same as in Example 18.

【0196】この積層膜(Cu/CoFe/Cu/Co
Fe)におけるHc(困難軸方向)とCo90Fe10膜の
膜厚の関係を図30を示す。また、図30には、図29
と同様にガラス基板上にCu下地膜を設けないで直接C
90Fe10膜を形成したものも示した。
This laminated film (Cu / CoFe / Cu / Co
FIG. 30 shows the relationship between Hc (in the hard axis direction) and the film thickness of the Co 90 Fe 10 film in Fe). FIG. 30 shows FIG.
In the same way as above, the C
o showed 90 Fe 10 as a film was formed.

【0197】図30から分かるように、Cu下地膜を設
けない積層膜では、単位Co90Fe10膜の膜厚が5nm以
上でHcは急激に増加するが膜厚3nm以下でHcが80
0A/mである。このように、単にCu中間層を設ける
だけでもHcを低減できる。さらに、この積層膜にCu
下地膜を設けることによりHcはさらに低下でき、単位
Co90Fe10膜の膜厚が7nm以下で220〜400A/
mの低いHcが得られることが分かる。したがって、C
u下地膜とCu中間層を用いたCo90Fe10積層膜で
は、実施例18の場合よりもHcを大幅に低減できる。
As can be seen from FIG. 30, in the laminated film in which the Cu underlayer is not provided, Hc rapidly increases when the film thickness of the unit Co 90 Fe 10 film is 5 nm or more, but Hc is 80 when the film thickness is 3 nm or less.
0 A / m. Thus, Hc can be reduced by simply providing the Cu intermediate layer. Further, Cu
By providing a base film, Hc can be further reduced, and when the thickness of the unit Co 90 Fe 10 film is 7 nm or less, 220 to 400 A /
It turns out that Hc of low m is obtained. Therefore, C
In the case of the Co 90 Fe 10 laminated film using the u underlayer film and the Cu intermediate layer, Hc can be significantly reduced as compared with the case of the eighteenth embodiment.

【0198】また、Cu5nm/Co90Fe102.2nm/
Cu2nm/Co90Fe102.2nmの積層膜の磁化曲線
(容易軸方向)を図31に示す。図31から分かるよう
に、磁界が0でも残留磁化が90%以上であり、この2
つのCo90Fe10強磁性膜の磁化は反強磁性的ではなく
強磁性的な磁化挙動を示すことが分かる。
Cu5 nm / Co 90 Fe 10 2.2 nm /
Cu2nm / Co 90 Fe 10 magnetization curves of 2.2nm laminated film of the (easy axis) shown in FIG. 31. As can be seen from FIG. 31, even when the magnetic field is 0, the residual magnetization is 90% or more.
It can be seen that the magnetizations of the two Co 90 Fe 10 ferromagnetic films exhibit a ferromagnetic magnetization behavior instead of antiferromagnetic.

【0199】(実施例20)Co90Fe10膜の単位膜厚
を1.5nmとし、Cu膜の単位膜厚を1.5nmとして、
(CoFe/Cu)n膜を実施例18に示す成膜条件で
作製し、そのHcと積層回数nとの関係を調べた。その
結果を図32に示す。この場合、ガラス基板上にCo90
Fe10膜、Cu膜の順に積層したものと、Cu膜、Co
90Fe10膜の順に積層したもの(第1層のCuは下地膜
に相当すると見なされる)について調べた。
(Example 20) The unit film thickness of the Co 90 Fe 10 film was 1.5 nm, and the unit film thickness of the Cu film was 1.5 nm.
A (CoFe / Cu) n film was formed under the film forming conditions shown in Example 18, and the relationship between Hc and the number of laminations n was examined. The result is shown in FIG. In this case, Co 90 on the glass substrate
Fe 10 film and Cu film stacked in this order, Cu film and Co film
A 90 Fe 10 film stacked in this order (Cu in the first layer is considered to correspond to the base film) was examined.

【0200】図32から分かるように、積層回数が2の
場合において、Co90Fe10膜を先に形成したときは、
Hcは650A/mと若干高いが、積層回数が4〜8の
場合においては、Co90Fe10膜が先でもCu膜が先で
もHcは100〜300A/mと低い。これは、積層回
数が増えるにしたがってCu下地膜の効果が薄らぎ、C
u下地膜(第1層のCu膜)の有無に拘らずHcが低く
なるからであると考えられる。なお、この場合の磁化曲
線も、図31と同様に強磁性的な結合を示す形状であっ
た。
As can be seen from FIG. 32, in the case where the number of laminations is 2, when the Co 90 Fe 10 film is formed first,
Hc is slightly higher at 650 A / m, but when the number of laminations is 4 to 8, Hc is as low as 100 to 300 A / m regardless of whether the Co 90 Fe 10 film or the Cu film is first. This is because the effect of the Cu underlayer weakens as the number of laminations increases, and C
It is considered that Hc is lowered regardless of the presence or absence of the u underlayer (the first layer Cu film). The magnetization curve in this case also had a shape showing ferromagnetic coupling as in FIG.

【0201】なお、この積層膜は、断面透過電子顕微鏡
観察やX線回折曲線の回折ピーク半値幅の測定から、結
晶粒径が大きい、すなわちCu膜とCo90Fe10膜との
界面で連続したエピタキシ的に結晶が成長していること
が分かった。したがって、この積層膜は、非磁性膜と強
磁性膜との界面での結晶成長遮断効果を利用した微結晶
効果により軟磁性を発揮せしめている従来のFe/C等
の多層膜とは異なり、余分な抵抗増大がないので、スピ
ン依存散乱を利用した磁気抵抗効果膜への応用が可能で
ある。
From the observation of a cross-section transmission electron microscope and the measurement of the diffraction peak half width of the X-ray diffraction curve, this laminated film has a large crystal grain size, that is, it is continuous at the interface between the Cu film and the Co 90 Fe 10 film. It was found that the crystal grew epitaxially. Therefore, this laminated film is different from a conventional multilayer film of Fe / C or the like which exerts soft magnetism by a microcrystal effect utilizing a crystal growth blocking effect at an interface between a nonmagnetic film and a ferromagnetic film. Since there is no extra increase in resistance, application to a magnetoresistive film utilizing spin-dependent scattering is possible.

【0202】(実施例21)(Co90Fe10/Cu)n
膜では、Cu膜厚に応じてCu膜に隣接する強磁性膜の
磁化が反強磁性的に結合したり、強磁性的に結合したり
することが知られている。図33に(Co90Fe10(1
nm)/Cu)16における困難軸方向のHs(飽和磁界)
と単位Cu膜の膜厚との関係を示す。Cu膜の膜厚を1
nm、2nm近傍に設定すると、隣接する強磁性膜間の反強
磁性結合に起因する大きなHs(12〜240kA/
m)を示す。また、容易軸方向でも図34に示すような
残留磁化が大幅に低下した反強磁性的結合を表わす磁化
曲線を示す。一方、それ以外の膜厚では、図31に示し
た磁化曲線と同様にCo90Fe10の誘導磁気異方性に相
当する程度のHs(1000〜2000A/m)を示
し、また、容易軸方向の磁化曲線も残留磁化が90%以
上であり、反強磁性結合がない特性を示した。
(Example 21) (Co 90 Fe 10 / Cu) n
In the film, it is known that the magnetization of the ferromagnetic film adjacent to the Cu film is antiferromagnetically coupled or ferromagnetically coupled depending on the Cu film thickness. FIG. 33 shows (Co 90 Fe 10 (1
nm) / Cu) 16 Hs (saturation magnetic field) in the hard axis direction
And the film thickness of the unit Cu film are shown. Cu film thickness is 1
When set to around 2 nm, a large Hs (12 to 240 kA /
m). In addition, a magnetization curve showing antiferromagnetic coupling in which the residual magnetization is greatly reduced as shown in FIG. 34 also in the easy axis direction. On the other hand, at other film thicknesses, Hs (1000 to 2000 A / m) corresponding to the induced magnetic anisotropy of Co 90 Fe 10 is exhibited as in the magnetization curve shown in FIG. As for the magnetization curve of No. 1, the residual magnetization was 90% or more, and the anti-ferromagnetic coupling was not exhibited.

【0203】また、図33から分かるように、膜厚を例
えば1.5nm程度の中間値に設定することにより強磁性
的結合が得られることが分かる。強磁性的結合であれ
ば、Hsが低いために磁気ヘッド等の磁気センサ応用上
重要である困難軸方向の透磁率を高くできる。このよう
に、本実施例においてCu膜の膜厚は、従来の巨大磁気
抵抗効果を示す人工格子膜とは異なり、反強磁性結合し
ない中間値であることが望ましい。
As can be seen from FIG. 33, ferromagnetic coupling can be obtained by setting the film thickness to an intermediate value of, for example, about 1.5 nm. In the case of ferromagnetic coupling, the permeability in the hard axis direction, which is important for application of a magnetic sensor such as a magnetic head, can be increased because Hs is low. As described above, in the present embodiment, the thickness of the Cu film is desirably an intermediate value that does not cause antiferromagnetic coupling, unlike a conventional artificial lattice film exhibiting a giant magnetoresistance effect.

【0204】(実施例22)基板50上に実施例18と
同様の成膜条件で強磁性積層単位51を形成した。ここ
で、強磁性積層単位51は、実施例20および実施例2
1において示した非磁性膜であるCu膜と強磁性膜であ
るCo90Fe10膜との積層膜をいう。次いで、強磁性積
層単位51上に、強磁性積層単位中の非磁性膜と異なる
厚みを有する非磁性膜52を形成し、さらにその上に強
磁性積層単位51を形成した。次いで、その上にFeM
n、NiO、NiCoO等からなる反強磁性膜53を形
成し、さらにその上に保護膜54を形成した。この保護
膜54は必要に応じて形成する。最後に、エッジ部に電
流を供給するために保護膜54上に電極端子55を形成
して図35に示す磁気抵抗効果素子を作製した。
(Embodiment 22) The ferromagnetic laminated unit 51 was formed on the substrate 50 under the same film forming conditions as in Embodiment 18. Here, the ferromagnetic laminated unit 51 is the same as that of Example 20 and Example 2.
It refers to a laminated film of a Cu film which is a non-magnetic film shown in 1 and a Co 90 Fe 10 film which is a ferromagnetic film. Next, a nonmagnetic film 52 having a thickness different from that of the nonmagnetic film in the ferromagnetic laminated unit was formed on the ferromagnetic laminated unit 51, and the ferromagnetic laminated unit 51 was formed thereon. Then on top of it FeM
An antiferromagnetic film 53 made of n, NiO, NiCoO or the like was formed, and a protective film 54 was further formed thereon. This protective film 54 is formed as needed. Finally, an electrode terminal 55 was formed on the protective film 54 in order to supply a current to the edge portion, thereby producing a magnetoresistive element shown in FIG.

【0205】ここで、強磁性積層単位51および反強磁
性膜53の成膜を一方向磁界中で行うことにより、反強
磁性膜53と直接接する強磁性積層単位51に交換バイ
アスを付与することができる。なお、反強磁性膜53と
交換結合する強磁性積層単位51中の強磁性膜の磁化は
固着されるので、強磁性積層単位51の代わりに軟磁性
が若干低いCoFe単層膜を用いてもよい。また、フェ
ロ結合したCoFe/Cu界面は必ずしも平坦である必
要はなく、図36に示すように、Cu膜内に層状のCo
Feが混在した状態でも同様な効果を発揮する。
Here, by forming the ferromagnetic laminated unit 51 and the antiferromagnetic film 53 in a unidirectional magnetic field, an exchange bias is applied to the ferromagnetic laminated unit 51 which is in direct contact with the antiferromagnetic film 53. You can Since the magnetization of the ferromagnetic film in the ferromagnetic multilayer unit 51 exchange-coupled to the antiferromagnetic film 53 is fixed, a CoFe single-layer film having a slightly lower soft magnetism may be used instead of the ferromagnetic multilayer unit 51. Good. Further, the CoFe / Cu interface with ferro-coupling does not necessarily have to be flat, and as shown in FIG.
The same effect is exhibited even when Fe is mixed.

【0206】強磁性積層単位51を(Co90Fe101nm
/Cu1.2nm)4 膜とし、非磁性膜52を厚さ2.5
nmのCu膜とし、反強磁性膜53を厚さ10nmのFeM
n膜とし、保護膜54を厚さ6nmのCu膜とした磁気抵
抗効果素子の磁化曲線および抵抗変化特性(磁界方向は
容易軸方向)をそれぞれ図37および図38に示す。な
お、抵抗は4端子法により測定した。
The ferromagnetic laminated unit 51 is (Co 90 Fe 10 1nm
/ Cu 1.2 nm) 4 films, and the non-magnetic film 52 has a thickness of 2.5
nm Cu film and the antiferromagnetic film 53 is 10 nm thick FeM
FIGS. 37 and 38 show the magnetization curve and the resistance change characteristic (the magnetic field direction is the easy axis direction) of the magnetoresistive element in which the protective film 54 is a Cu film having a thickness of 6 nm as the n film. The resistance was measured by a four-terminal method.

【0207】図37および図38から分かるように、H
>800A/mで2つの強磁性積層単位51の間におい
て磁化が反強磁性的に結合しており、H<500A/m
で2つの強磁性積層単位51の間において磁化が強磁性
的に結合している。すなわち、H=500〜800A/
mの間で磁化が強磁性的結合から反強磁性的結合に変化
していることが分かる。このH=500〜800A/m
の僅かな磁界領域、すなわち僅かなヒステリシスで抵抗
が大きく変化しており、このときの抵抗変化率ΔR/R
は8%である。
As can be seen from FIGS. 37 and 38, H
> 800 A / m, the magnetization is antiferromagnetically coupled between the two ferromagnetic laminate units 51 and H <500 A / m
Thus, the magnetization is ferromagnetically coupled between the two ferromagnetic laminated units 51. That is, H = 500 to 800 A /
It can be seen that the magnetization changes from ferromagnetic coupling to antiferromagnetic coupling during m. H = 500 to 800 A / m
The resistance changes greatly due to a small magnetic field region, that is, a small hysteresis. At this time, the resistance change rate ΔR / R
Is 8%.

【0208】比較のために、Co90Fe10単層膜からな
る図35に示すスピンバルブ構造の磁気抵抗効果素子
(強磁性積層単位51をCo90Fe10単層膜に置き換え
たもの)の磁化曲線および抵抗変化特性をそれぞれ図3
9および図40に示す。
For comparison, the magnetization of the magnetoresistive effect element of the spin valve structure shown in FIG. 35, which is composed of a Co 90 Fe 10 single layer film (the ferromagnetic lamination unit 51 is replaced with a Co 90 Fe 10 single layer film). The curves and resistance change characteristics are shown in Fig. 3, respectively.
9 and FIG.

【0209】図39および図40から分かるように、図
38の抵抗変化と比べて磁化曲線にヒステリシスが大き
く、その結果、抵抗変化特性にも大きなヒステリシスが
存在する。また、ΔR/Rは約6.5%であり、図37
の抵抗変化よりも小さい値である。
As can be seen from FIGS. 39 and 40, the magnetization curve has a larger hysteresis than the resistance change of FIG. 38, and as a result, the resistance change characteristic also has a large hysteresis. Further, ΔR / R is about 6.5%, which is shown in FIG.
It is a value smaller than the resistance change of.

【0210】以上の説明から、本発明の強磁性積層膜を
用いたスピンバルブ構造の磁気抵抗効果素子は、軟磁性
が良好であり、僅かな磁界で大きな抵抗変化を得られ、
さらに強磁性積層単位内部にCo90Fe10/Cu界面が
存在するので抵抗変化率が大きいことが分かる。
From the above description, the magnetoresistive effect element of the spin valve structure using the ferromagnetic laminated film of the present invention has good soft magnetism and can obtain a large resistance change with a slight magnetic field.
Further, it can be seen that since the Co 90 Fe 10 / Cu interface exists inside the ferromagnetic laminated unit, the rate of change in resistance is large.

【0211】以上までは(CoFe/Cu)n積層膜の
実施例について詳しく述べたが、このスピンバルブ構造
は他の強磁性膜(例えば、NiFe,NiFeCo,C
o等)と他の非磁性膜(Cu基合金等)との積層におい
ても同様な効果が期待できる。次に、図35におけるス
ピンバルブ構造において、強磁性積層単位51を種々の
強磁性結合多層膜に変えた場合の容易軸方向の抵抗変化
率とHcを下記表5に示す。
Although the embodiments of the (CoFe / Cu) n laminated film have been described in detail above, this spin valve structure has another ferromagnetic film (eg, NiFe, NiFeCo, C).
o) and another non-magnetic film (Cu-based alloy or the like) can be expected to have the same effect. Next, in the spin valve structure in FIG. 35, the resistance change rate in the easy axis direction and Hc when the ferromagnetic laminated unit 51 is changed to various ferromagnetic coupling multilayer films are shown in Table 5 below.

【0212】[0212]

【表5】 [Table 5]

【0213】表5から分かるように、CoFe/Cu以
外の組み合わせの強磁性多層膜を用いても単層磁性膜を
用いたスピンバルブ膜(表2参照)に比べてHcが低減
でき、かつ同等以上の抵抗変化率が実現できることが分
かる。
As can be seen from Table 5, even when the ferromagnetic multilayer film of a combination other than CoFe / Cu is used, the Hc can be reduced as compared with the spin valve film using the single-layer magnetic film (see Table 2), and it is equivalent. It is understood that the above resistance change rate can be realized.

【0214】(実施例23)図35における基板側の強
磁性積層単位51として厚さ4nmのCu下地膜と厚さ5
nmのCo90Fe10を用い、反強磁性膜53側の強磁性積
層単位51に厚さ8nmのCo90Fe10単層膜を用いた場
合の磁化曲線および抵抗変化特性をそれぞれ図41
(A),図41(B)および図42に示す。
(Embodiment 23) As a ferromagnetic lamination unit 51 on the substrate side in FIG.
Using Co 90 Fe 10 of nm, the anti-ferromagnetic film 53 side of the case of using the thickness 8nm of Co 90 Fe 10 single layer in the ferromagnetic stack unit 51 the magnetization curve and the resistance change characteristics, respectively Figure 41
(A), FIG. 41 (B) and FIG.

【0215】図41(A)から分かるように、容易軸方
向ではHcが800A/m以下と比較的大きい値を示す
が、図41(B)から分かるように、困難軸方向では1
00A/m以下の低い値を示す。また、図42から分か
るように、抵抗変化率ΔR/Rは容易軸方向で7.2
%、困難軸方向で2.8%である。このように困難軸方
向で抵抗変化率が低いことは、両強磁性層間でのフェロ
結合のために反平行磁化配列が不充分であると考えら
れ、硬質磁性膜等により反平行磁化配列を促進するバイ
アス磁界を加えることにより容易軸方向と同程度のΔR
/Rを得ることができる。すなわち、Cu下地膜とCo
90Fe10膜の積層膜を用いても良好な軟磁性と高いΔR
/Rの両方が得られる。
As can be seen from FIG. 41 (A), Hc shows a relatively large value of 800 A / m or less in the easy axis direction, but as shown in FIG. 41 (B), it is 1 in the hard axis direction.
It shows a low value of 00 A / m or less. As can be seen from FIG. 42, the resistance change rate ΔR / R is 7.2 in the easy axis direction.
% In the hard axis direction. The low resistance change rate in the hard axis direction is considered to be due to the insufficient antiparallel magnetization alignment due to ferrocoupling between the two ferromagnetic layers, and the hard magnetic film promotes the antiparallel magnetization alignment. ΔR of the same degree as the easy axis direction by applying a bias magnetic field
/ R. That is, a Cu underlayer and Co
Good soft magnetism and high ΔR even when a laminated film of 90 Fe 10 film is used
/ R are obtained.

【0216】(実施例24)基板50上に実施例22に
おいて使用した強磁性膜積層単位51と、強磁性膜積層
単位51の中の非磁性層と異なる厚みを有する非磁性膜
52とを交互に少なくとも2回以上積層した。さらに、
最上層の非磁性膜52上に保護膜54を形成した。この
保護膜54は必要に応じて形成する。最後に、エッジ部
に電流を供給するための電極端子55を形成して図43
に示す磁気抵抗効果素子を作製した。
(Example 24) On the substrate 50, the ferromagnetic film laminated unit 51 used in Example 22 and the nonmagnetic film 52 having a different thickness from the nonmagnetic layer in the ferromagnetic film laminated unit 51 are alternately arranged. Was laminated at least twice more. further,
A protective film 54 was formed on the uppermost non-magnetic film 52. This protective film 54 is formed as needed. Finally, the electrode terminal 55 for supplying a current to the edge portion is formed, and the electrode terminal 55 is
The magnetoresistive effect element shown in was produced.

【0217】強磁性積層単位51を(Co90Fe101nm
/Cu0.6nm)4 膜とし、非磁性層52を厚さ2.2
nmのCu膜とし、積層回数nを8としたものの困難軸方
向の磁化曲線と抵抗変化特性を図44および図45に示
す。
The ferromagnetic laminated unit 51 is (Co 90 Fe 10 1nm
/ Cu 0.6 nm) 4 film and the non-magnetic layer 52 has a thickness of 2.2.
FIG. 44 and FIG. 45 show the magnetization curve in the hard axis direction and the resistance change characteristics when a Cu film having a thickness of nm and a stacking number n of 8 were used.

【0218】図44および図45から分かるように、飽
和磁界Hsは6000A/mと比較的小さな値を示し、
Hcは240A/mと小さな値を示す。このとき、抵抗
変化率は12%以下であり、抵抗変化が飽和する磁界は
磁化曲線における飽和磁界Hsとほぼ一致し、また、ヒ
ステリシスは磁化曲線のHcとほぼ一致する。これによ
り、僅かな磁界で大きな抵抗変化率を示すことが分か
る。
As can be seen from FIGS. 44 and 45, the saturation magnetic field Hs shows a relatively small value of 6000 A / m,
Hc shows a small value of 240 A / m. At this time, the resistance change rate is 12% or less, the magnetic field at which the resistance change is saturated almost matches the saturation magnetic field Hs in the magnetization curve, and the hysteresis almost matches Hc of the magnetization curve. This shows that a small change in the magnetic field shows a large rate of change in resistance.

【0219】(実施例25)鏡面状態に加工したMgO
基板60の(110)面上に(Co90Fe101nm/Cu
1.1nm)16積層膜61を形成した。この積層膜61を
メタルマスクを用いて1×8mm2 のストライプ状にパタ
ーニングした。次いで、積層膜61上にエッジ部に電流
を供給するための電極端子62を形成して磁気抵抗効果
素子を作製した。なお、積層膜61上に保護膜として厚
さ5.5nmのCu膜を形成してもよい。また、CoFe
系合金膜の組成は、大きな抵抗変化率を示すこと[日本
応用磁気学会誌、16,313(1992)] および軟磁気特性の点
からCo90Fe10とした。
Example 25 MgO processed into a mirror state
On the (110) plane of the substrate 60 (Co 90 Fe 10 1nm / Cu
1.1 nm) 16 laminated film 61 was formed. This laminated film 61 was patterned into a 1 × 8 mm 2 stripe shape using a metal mask. Next, an electrode terminal 62 for supplying a current to the edge portion was formed on the laminated film 61 to produce a magnetoresistive element. A Cu film having a thickness of 5.5 nm may be formed on the laminated film 61 as a protective film. Also, CoFe
The composition of the system-based alloy film was set to Co 90 Fe 10 from the viewpoint of showing a large rate of resistance change [Journal of Applied Magnetics, 16 , 313 (1992)] and soft magnetic properties.

【0220】この場合、MgO基板60の(110)面
上にはCo90Fe10膜から形成した。Cu膜から形成す
ると、10%以上の大きな抵抗変化を得ることができな
いからである。図46において、積層膜61に示されて
いる波形線は主成長面の断面を示している。この主成長
面が揺らいでいる方向に、MRセンス電流(Is)を流
す。
In this case, a Co 90 Fe 10 film was formed on the (110) surface of the MgO substrate 60. This is because when formed from a Cu film, a large resistance change of 10% or more cannot be obtained. In FIG. 46, a waveform line shown in the laminated film 61 indicates a cross section of the main growth surface. An MR sense current (Is) flows in a direction in which the main growth surface fluctuates.

【0221】ここで、積層膜61を成膜する成膜装置と
しては、多元同時スパッタリング装置を用いた。このス
パッタリング装置は、Co90Fe10ターゲットをRFス
パッタ、CuターゲットをDCスパッタできるような構
成になっており、それぞれのターゲット上に交互に直流
バイアスを印加した基板を通過させて成膜するものであ
る。なお、主排気ポンプにはクライオポンプを使用し
た。この成膜装置を用いて、真空チャンバー内を5×1
-7Torr以下にまで排気した後、真空チャンバー内にA
rガスを導入し、約3 mTorrとしてスパッタリングを行
った。
Here, a multi-source simultaneous sputtering device was used as a film forming device for forming the laminated film 61. This sputtering apparatus is configured so that a Co 90 Fe 10 target can be RF-sputtered and a Cu target can be DC-sputtered, and a film is formed by passing a substrate to which a DC bias has been applied alternately on each target. is there. In addition, a cryopump was used as the main exhaust pump. Using this film forming apparatus, the inside of a vacuum chamber is 5 × 1
After evacuating to 0 -7 Torr or less, A
An r gas was introduced, and sputtering was performed at about 3 mTorr.

【0222】得られた磁気抵抗効果素子の抵抗変化率お
よび結晶構造を調べた。なお、抵抗変化率は、静磁界方
向の抵抗変化を四端子法で測定した。このときの電流密
度は2.0〜2.5KA/cm2 とした。また、結晶構造
は、以下の測定条件でX線回折法によりθ−2θスキャ
ンおよび主回折面に関するロッキングカーブを測定する
ことにより評価した。
The rate of change in resistance and the crystal structure of the obtained magnetoresistive effect element were examined. The resistance change rate was obtained by measuring the resistance change in the static magnetic field direction by a four-terminal method. The current density at this time was 2.0 to 2.5 KA / cm 2 . The crystal structure was evaluated by measuring a θ-2θ scan and a rocking curve relating to the main diffraction plane by an X-ray diffraction method under the following measurement conditions.

【0223】X線回折測定条件 (1)θ−2θスキャン Cu−Kα、40kV、200mA スキャン幅:2θ=2〜100° ステップ幅:0.03° 係数時間 :0.5秒 (2)ロッキングカーブ Cu−Kα、40kV、200mA スキャン幅:2θ=20〜60° ステップ幅:0.04° 係数時間 :0.5秒 図47(A)および図47(B)に磁気抵抗効果素子の
積層膜のθ−2θスキャンによるX線回折曲線を示す。
図47(B)に示すように、2θ=75°付近に、fc
c相(220)面反射に相当する強い回折ピークが確認
できる。これにより、X線回折曲線から積層膜の主成長
面は一方向に歪みのあるfcc相(220)面であるこ
とが分かる。なお、図47(A)における2θ=4°付
近のピークは、積層周期(〜2.1nm)による回折であ
る。
X-ray diffraction measurement conditions (1) θ-2θ scan Cu-Kα, 40 kV, 200 mA Scan width: 2θ = 2 to 100 ° Step width: 0.03 ° Coefficient time: 0.5 seconds (2) Rocking curve Cu-Kα, 40 kV, 200 mA Scan width: 2θ = 20 to 60 ° Step width: 0.04 ° Coefficient time: 0.5 seconds FIGS. 47A and 47B show the laminated film of the magnetoresistive element. The X-ray diffraction curve by a (theta) -2 (theta) scan is shown.
As shown in FIG. 47B, fc is around 2θ = 75 °.
A strong diffraction peak corresponding to the c-phase (220) plane reflection can be confirmed. From this, it can be seen from the X-ray diffraction curve that the main growth plane of the laminated film is the fcc phase (220) plane which is distorted in one direction. Note that the peak near 2θ = 4 ° in FIG. 47A is diffraction due to the lamination period (up to 2.1 nm).

【0224】次に、この主成長面に関して、[100]
軸方向および[110]軸方向からロッキングカーブを
測定した。その結果を図48(A)および図48(B)
に示す。図48(A)には、[110]軸方向から測定
したロッキングカーブを示す。これよりθ=38°近傍
に一つのピークが確認できる。一方、図48(B)には
[100]軸方向からのロッキングカーブを示す。これ
よりθ=33°と41°付近の2つのピークの存在が確
認できる。
Next, regarding this main growth surface, [100]
Rocking curves were measured from the axial direction and the [110] axis direction. The results are shown in FIGS. 48 (A) and 48 (B).
Shown in FIG. 48A shows a rocking curve measured from the [110] axis direction. From this, one peak can be confirmed near θ = 38 °. On the other hand, FIG. 48B shows a rocking curve from the [100] axis direction. This confirms the presence of two peaks around θ = 33 ° and 41 °.

【0225】図49(A)および図49(B)に図48
のロッキングカーブから判断される膜構造の概念図を示
す。図49(A)においてうねった層は、主成長面のf
cc相(110)面を示す。θ−2θスキャンX線回折
法で測定される平均的な結晶成長面は(110)である
が、この(110)面は[100]軸方向に揺らいでい
る。一方、[110]軸方向の揺らぎは極めて小さい。
これは、図48(B)に示すロッキングカーブの2つの
ピーク([100]軸方向測定)と、図48(A)に示
す1つのピーク([110]軸方向測定)に対応する。
FIG. 48 is shown in FIGS. 49 (A) and 49 (B).
3 is a conceptual diagram of a film structure determined from a rocking curve of FIG. In FIG. 49 (A), the undulating layer is f of the main growth surface.
The cc phase (110) plane is shown. The average crystal growth plane measured by the θ-2θ scan X-ray diffraction method is (110), but this (110) plane fluctuates in the [100] axis direction. On the other hand, the fluctuation in the [110] axis direction is extremely small.
This corresponds to two peaks ([100] axis direction measurement) of the rocking curve shown in FIG. 48 (B) and one peak ([110] axis direction measurement) shown in FIG. 48 (A).

【0226】図49(B)にこの成長面の法線の膜面内
成分分布を示した。この膜面内異方性は、[100]軸
方向の大きな揺らぎにより、[100]軸方向に大き
く、[110]軸方向に小さい面内分布となっている。
後述するように、[110]軸方向にMRセンス電流を
流した場合の抵抗変化率(△R/R)は、約30%であ
るのに対して、[100]軸方向に流した場合は、約3
5%を示す。
FIG. 49B shows the in-plane component distribution of the normal to the growth surface. This in-plane anisotropy of the film has a large distribution in the [100] axis direction and a small in-plane distribution in the [110] axis direction due to a large fluctuation in the [100] axis direction.
As will be described later, the resistance change rate (/ R / R) when the MR sense current flows in the [110] axis direction is about 30%, whereas when the MR sense current flows in the [100] axis direction, , About 3
Indicates 5%.

【0227】次に、この積層膜の磁気特性を測定した。
その結果に基づく磁気曲線を図50(A)および図50
(B)に示す。図50(A)は外部磁界Hを[100]
軸に平行に印加した場合の磁化曲線を示し、図50
(B)は外部磁界Hを[110]軸に平行に印加した場
合の磁化曲線を示す。なお、磁気抵抗効果素子の磁気特
性は、振動型磁力計(VSM)で最大印加磁界1.2M
A/mで測定した。また、磁化曲線の磁化量Mは飽和磁
化Msを規格化して示した。
Next, the magnetic characteristics of this laminated film were measured.
The magnetic curves based on the results are shown in FIGS.
It shows in (B). FIG. 50A shows that the external magnetic field H is [100].
FIG. 50 shows a magnetization curve when applied in parallel to the axis, and FIG.
(B) shows a magnetization curve when an external magnetic field H is applied in parallel to the [110] axis. The magnetic characteristics of the magnetoresistive effect element were determined by a vibration type magnetometer (VSM) with a maximum applied magnetic field of 1.2
It was measured in A / m. Further, the magnetization amount M of the magnetization curve is shown by normalizing the saturation magnetization Ms.

【0228】図50(A)および図50(B)から分か
るように、[100]軸が磁化容易軸、[110]軸が
磁化困難軸である。このとき磁化容易軸の飽和磁界は約
240kA/mであり、磁化困難軸の飽和磁界は約96
0kA/mである。
As can be seen from FIGS. 50 (A) and 50 (B), the [100] axis is the easy magnetization axis and the [110] axis is the hard magnetization axis. At this time, the saturation magnetic field of the easy axis is about 240 kA / m, and the saturation magnetic field of the hard axis is about 96 kA / m.
It is 0 kA / m.

【0229】このように、本実施例では、基板上に強磁
性膜と非磁性膜とを順次少なくとも1回ずつ積層した積
層膜を具備し、センス電流の方向が前記積層膜の結晶配
向面の揺らぎ方向に沿う方向に設定されていることを特
徴とする磁気抵抗効果素子を提供する。
As described above, in this embodiment, the laminated film in which the ferromagnetic film and the non-magnetic film are sequentially laminated at least once on the substrate is provided, and the direction of the sense current is the crystal orientation plane of the laminated film. Provided is a magnetoresistive effect element characterized by being set in a direction along a fluctuation direction.

【0230】本実施例において、積層膜の主結晶配向面
の法線は、結晶配向面の揺らぎにより膜面内で成分を持
ち、その膜面内成分は異方性を有する。あるいは、結晶
性の積層膜に発生する面欠陥の法線は、膜面内への揺ら
ぎを持ち、この揺らぎは膜面内で異方性を有する。その
異方性が強い方向は、膜成長する原子面において強磁性
原子と非磁性原子が混在しやすい方向である。
In this example, the normal line of the main crystal orientation plane of the laminated film has a component in the film plane due to the fluctuation of the crystal orientation plane, and the in-plane component has anisotropy. Alternatively, a normal line of a plane defect generated in the crystalline laminated film has fluctuation in the film plane, and the fluctuation has anisotropy in the film plane. The direction in which the anisotropy is strong is a direction in which ferromagnetic atoms and non-magnetic atoms are likely to be mixed on the atomic plane on which the film is grown.

【0231】その方向に、すなわち膜面内成分による異
方性が最も大きくなる方向にセンス電流を流すことによ
り、電子がスピン依存散乱する確率が高くなる。その結
果、磁気抵抗効果素子は、より高い抵抗変化率を示す。
By passing the sense current in that direction, that is, in the direction in which the anisotropy due to the in-plane component of the film is maximized, the probability that electrons will be spin-dependent scattered increases. As a result, the magnetoresistive element exhibits a higher resistance change rate.

【0232】(実施例26)基板に印加するバイアスを
変化させて、実施例25と同じ積層膜構造を有する種々
の磁気抵抗効果素子を作製した。図51に抵抗変化率の
バイアス電圧依存性を示す。なお、MgO基板の(11
0)面においてそれぞれ直交する[100]軸と[11
0]軸に平行に電流を流して測定した。図51から分か
るように、それぞれの軸とも、抵抗変化率のバイアス依
存性が弱く、[100]軸で約35%、[110]軸で
約30%の値を示す。すなわち、[100]軸のほうが
[110]軸よりも抵抗変化率が大きいことが分かる。
Example 26 Various magnetoresistive effect elements having the same laminated film structure as in Example 25 were prepared by changing the bias applied to the substrate. FIG. 51 shows the bias voltage dependence of the resistance change rate. In addition, (11 of the MgO substrate
The [100] axis and the [11] which are respectively orthogonal to the
The measurement was performed by passing a current parallel to the [0] axis. As can be seen from FIG. 51, the bias dependency of the resistance change rate is weak on each of the axes, and the values are about 35% on the [100] axis and about 30% on the [110] axis. That is, it can be seen that the [100] axis has a larger resistance change rate than the [110] axis.

【0233】(実施例27)積層膜を(Cu2nm/Co
90Fe101nm)16膜とすること以外は実施例25と同様
にして磁気抵抗効果素子を作製した。
(Example 27) A laminated film was formed into (Cu2nm / Co).
A magnetoresistive effect element was produced in the same manner as in Example 25 except that the 90 Fe 10 1 nm) 16 film was used.

【0234】このようにCu膜の膜厚を2nmに増加させ
た場合、[100]軸方向に電流を流した時の抵抗変化
率は約25%であり、[110]軸方向では約19%で
あった。したがって、Cu膜の膜厚を増加させても、こ
の抵抗変化率の方向依存性は保たれていることが分か
る。この場合も、主成長面(fcc相(220)面)の
ロッキングカーブには、図48(B)に示すように[1
00]軸で2つのピーク、図48(A)に示すように
[110]軸で1つのピークが確認された。
When the thickness of the Cu film is increased to 2 nm as described above, the rate of change in resistance when a current is passed in the [100] axis direction is about 25%, and about 19% in the [110] axis direction. Met. Therefore, it can be seen that even if the thickness of the Cu film is increased, the direction dependency of the resistance change rate is maintained. Also in this case, the rocking curve of the main growth plane (fcc phase (220) plane) has [1] as shown in FIG.
Two peaks were confirmed on the [00] axis, and one peak was confirmed on the [110] axis as shown in FIG.

【0235】なお、同様の構成でCu膜の膜厚およびC
90Fe10膜の膜厚をそれぞれ0.3nmから10nmまで
変化させても、ロッキングカーブの傾向は上記と変わら
ず、[100]軸の方が揺らぎが大きい。また、抵抗変
化率も[100]軸のほうが大きい傾向を示した。
With the same structure, the film thickness of the Cu film and C
Even if the thickness of the o 90 Fe 10 film is changed from 0.3 nm to 10 nm, the tendency of the rocking curve does not change from the above, and the fluctuation in the [100] axis is larger. The resistance change rate also tended to be higher on the [100] axis.

【0236】また、同様の構成で積層回数を2から70
まで変化させても、ロッキングカーブおよび抵抗変化率
の傾向は変わらず、[100]軸方向にセンス電流を流
すほうが大きな抵抗変化が得られた。
In addition, the number of laminations is set to 2 to 70 with the same structure.
Even if it was changed, the tendency of the rocking curve and the resistance change rate did not change, and a larger resistance change was obtained by flowing the sense current in the [100] axis direction.

【0237】(実施例28)積層膜を(Ru1nm/Co
90Fe101nm)16膜とすること以外は実施例26と同様
にして磁気抵抗効果素子を作製した。
(Example 28) A laminated film was formed into (Ru1nm / Co).
A magnetoresistive effect element was produced in the same manner as in Example 26 except that the 90 Fe 10 1 nm) 16 film was used.

【0238】この磁気抵抗効果素子の△R/Rは、[1
00]軸方向にセンス電流を流す場合の方が[110]
軸方向にセンス電流を流す場合より大きかった。また、
Ru膜の膜厚を変化させても前記の傾向が認められた。
The ΔR / R of this magnetoresistive element is [1
[00] [110] when the sense current flows in the axial direction
It was larger than when a sense current was passed in the axial direction. Also,
The above tendency was observed even when the thickness of the Ru film was changed.

【0239】この現象は、Co90Fe10膜の代わりにC
o膜を用いた場合でも確認できた。また、Ru以外にA
g、Au、Pd、Pt、Irを積層膜の材料に使用して
もMgO基板の(110)面上における軸方向による△
R/Rの差が確認できた。
This phenomenon is caused by C 90 instead of Co 90 Fe 10 film.
This was confirmed even when the o film was used. In addition to Ru, A
Even when g, Au, Pd, Pt, and Ir are used for the material of the laminated film, the ratio depends on the axial direction on the (110) plane of the MgO substrate.
The difference of R / R was confirmed.

【0240】(実施例29)積層膜を(Cu1.1nm/
Ni80Fe201.5nm)16膜とすること以外は実施例2
5と同様にして磁気抵抗効果素子を作製した。
(Example 29) A laminated film (Cu1.1 nm /
Example 2 except that a Ni 80 Fe 20 1.5 nm) 16 film is used.
A magnetoresistive effect element was produced in the same manner as in 5.

【0241】この磁気抵抗効果素子の積層膜の[10
0]軸方向にセンス電流を流した場合、その抵抗変化率
は21%であった。一方、[110]軸方向にセンス電
流を流した場合の抵抗変化率は17%であった。また、
この積層膜もCo90Fe10/Cu積層膜の場合同様に、
結晶成長面はfcc相(110)面であり、ロッキング
カーブ測定から成長面は[100]軸方向に揺らいでい
ることが分かった。なお、Ni80Fe20膜の膜厚および
Cu膜の膜厚を0.5nm〜50nmと変化させても同様の
傾向を示した。
[10] of the laminated film of this magnetoresistive effect element
0] When a sense current was passed in the axial direction, the resistance change rate was 21%. On the other hand, when a sense current was passed in the [110] axis direction, the resistance change rate was 17%. Also,
This laminated film is also the same as the case of the Co 90 Fe 10 / Cu laminated film,
The crystal growth plane was the fcc phase (110) plane, and the rocking curve measurement showed that the growth plane fluctuated in the [100] axis direction. Incidentally, it showed the same tendency even when the thickness of the film thickness and the Cu film of Ni 80 Fe 20 film is changed from 0.5 nm to 50 nm.

【0242】また、強磁性膜の材料としてCo、CoF
e合金、NiFe合金、Fe、FeCr合金等を用いて
も、非磁性膜の材料としてCu、Au、Ag、Cr、R
u、CiNi合金等を用いても、積層膜の主成長面が揺
らいでいる結晶軸方向とセンス電流方向が平行であれば
大きな抵抗変化率を示すことが分かった。
Further, Co and CoF are used as materials for the ferromagnetic film.
Even if e alloy, NiFe alloy, Fe, FeCr alloy or the like is used, Cu, Au, Ag, Cr, R
Even when u, CiNi alloy or the like was used, it was found that a large resistance change rate was exhibited if the crystal axis direction in which the main growth surface of the laminated film fluctuated was parallel to the sense current direction.

【0243】(実施例30)GaAs基板の(110)
面上に厚さ1.5nmのCo膜、厚さ50nmのGe膜、お
よび厚さ1.5nmのAu膜を形成した。さらに、その上
にMBE法を用いて図53に示す(Cu0.9nm/Co
90Fe101nm)20積層膜を形成した。図中69はCu膜
を示し、71はCo90Fe10膜を示す。さらに、積層膜
上に保護膜として厚さ5nmのGe膜を形成して磁気抵抗
効果素子を作製した。この積層膜はfcc相(111)
面成長を示していた。このとき、センス電流の方向に関
係なく、抵抗変化率は約15%を示した。
(Example 30) (110) of GaAs substrate
A 1.5 nm thick Co film, a 50 nm thick Ge film, and a 1.5 nm thick Au film were formed on the surface. Furthermore, it is shown in FIG. 53 using the MBE method (Cu0.9 nm / Co
90 Fe 10 1 nm) 20 laminated film was formed. In the figure, 69 indicates a Cu film and 71 indicates a Co 90 Fe 10 film. Further, a Ge film having a thickness of 5 nm was formed as a protective film on the laminated film to manufacture a magnetoresistive element. This laminated film has fcc phase (111)
It showed surface growth. At this time, the resistance change rate was about 15% regardless of the direction of the sense current.

【0244】次に、Au下地膜の厚さ0.8nmとし、そ
れ以外の構造を上記と同様にして磁気抵抗効果素子を作
製した。
Next, a magnetoresistive effect element was produced with the Au underlayer having a thickness of 0.8 nm and the other structures being the same as above.

【0245】得られた2つの磁気抵抗効果素子を透過電
子顕微鏡で観察したところ、Au下地膜の厚さが1.5
nmのものは、ほぼ格子欠陥がなく、極めて良好な結晶性
を有するものであった。一方、Au下地膜の厚さが0.
8nmのものは、{111}面配向を示していたが、{1
00}面が<110>軸方向に滑ったことにより積層欠
陥が観察された。また、この磁気抵抗効果素子における
<211>軸および<110>軸方向の抵抗変化率を測
定したところ、<110>軸方向では約15%であり、
<211>方向では17%と増加していた。この結果、
方向性を持った欠陥が入ることにより、抵抗変化率のセ
ンス電流の方向依存性が発生することが分かる。
Observation of the two obtained magnetoresistive elements with a transmission electron microscope revealed that the thickness of the Au underlayer was 1.5.
Those having nm had almost no lattice defects and very good crystallinity. On the other hand, if the thickness of the Au underlayer is 0.
The 8 nm one showed {111} plane orientation, but the {1}
Stacking faults were observed as the 00 ° plane slipped in the <110> axis direction. Also, when the resistance change rate in the <211> axis and the <110> axis direction of this magnetoresistance effect element was measured, it was about 15% in the <110> axis direction.
It increased to 17% in the <211> direction. As a result,
It can be seen that the presence of a directional defect causes the sense current to have a directional dependence of the resistance change rate.

【0246】図53に図52における積層膜の原子配列
図を示す。{100}原子面が<110>方向にずれる
ことによって、電流が<211>方向に流れる場合と、
<110>方向に流れる場合で、単位長当り遭遇する界
面の数が異なり、<211>方向で多いことが分かる。
このような方向性を持つ格子欠陥による生じる伝導電子
のスピン依存界面散乱サイト数の結晶軸方向依存性は、
上述した積層欠陥の他に双晶欠陥でも発生したことが分
かった。以下に、その例について説明する。
FIG. 53 shows an atomic arrangement diagram of the laminated film in FIG. The case where a current flows in the <211> direction due to the {100} atom plane shifting in the <110>direction;
It can be seen that the number of interfaces encountered per unit length is different when flowing in the <110> direction, and is greater in the <211> direction.
The crystal axis direction dependence of the number of spin-dependent interface scattering sites of conduction electrons generated by lattice defects having such a direction is as follows.
It was found that twin defects also occurred in addition to the stacking faults described above. An example will be described below.

【0247】GaAs基板の(100)面上に厚さ3nm
のAu下地膜を形成し、さらにその上に(Co90Fe10
1nm/Cu1.1nm)16積層膜を形成した。この積層膜
はfcc相(100)面配向を示した。このとき、<1
11>軸を中心軸として双晶が発生した。積層膜断面を
<110>方向から観察した場合の原子配列を図55に
示す。図54から分かるように、<111>軸まわりに
双晶が発生することにより、<110>方向にCuと、
CoもしくはFe原子との界面が現れることが分かる。
Thickness of 3 nm on (100) surface of GaAs substrate
An Au underlayer is formed, and (Co 90 Fe 10
(1 nm / Cu 1.1 nm) 16 laminated films were formed. This laminated film exhibited fcc phase (100) plane orientation. At this time, <1
Twin> occurred with the 11> axis as the central axis. FIG. 55 shows the atomic arrangement when the cross section of the laminated film is observed from the <110> direction. As can be seen from FIG. 54, generation of twins around the <111> axis causes Cu in the <110> direction,
It can be seen that an interface with Co or Fe atoms appears.

【0248】この積層膜の抵抗変化率のセンス電流方向
依存性を<110>軸および<100>軸方向において
測定した。図55に{100}面成長した積層膜の双晶
面および電流方向と抵抗変化率との相関を示す。図55
から分かるように、抵抗変化率はセンス電流を<110
>軸方向に流したときは18%を示し、<100>軸方
向にセンス電流を流したときは16%の値を示す。この
ように{111}面と大きな角度で交わる<110>軸
の抵抗変化率が高く現れた。一方、双晶が発生しなかっ
たときは、抵抗変化率のセンス電流方向依存性は確認で
きなかった。
The dependence of the resistance change rate of this laminated film on the sense current direction was measured in the <110> axis direction and the <100> axis direction. FIG. 55 shows the correlation between the twin plane and the current direction of the laminated film grown on the {100} plane and the resistance change rate. FIG.
As can be seen from FIG.
When the sense current is applied in the <100> axis direction, the value is 16% when the sense current is applied in the <100> axis direction. Thus, the resistance change rate of the <110> axis that intersects the {111} plane at a large angle appeared high. On the other hand, when twins did not occur, the sense current direction dependency of the rate of change in resistance could not be confirmed.

【0249】(実施例31)ガラス基板上に(Cu1.
1nm/Co81Fe9 Pd101nm)16人工格子膜を形成し
た。人工格子膜の成膜は、基板に直流バイアスを印加し
ながら行った。印加する直流バイアスの大きさを変えて
抵抗変化率を測定し、基板に印加する直流バイアスの依
存性(バイアス依存性)を図56に示す。
(Example 31) On a glass substrate (Cu1.
1 nm / Co 81 Fe 9 Pd 10 1 nm) 16 artificial lattice film was formed. The formation of the artificial lattice film was performed while applying a DC bias to the substrate. The resistance change rate was measured by changing the magnitude of the applied DC bias, and the dependence (bias dependence) of the DC bias applied to the substrate is shown in FIG.

【0250】図56から分かるように、直流バイアスを
増加させるにしたがって抵抗変化率は増加し、バイアス
−50Vでは約28%の極大値を示す。さらに、直流バ
イアスを大きくした場合には抵抗変化率は減少する。
As can be seen from FIG. 56, the resistance change rate increases as the DC bias increases, and shows a maximum value of about 28% at bias -50V. Further, when the DC bias is increased, the resistance change rate decreases.

【0251】直流バイアスを変化させて作製した種々の
人工格子膜の結晶性を評価したところ、全ての人工格子
膜の主成長面はfcc相(111)面成長であった。こ
こで、積層周期(2.1nm)から反射された2θ=4
°付近に現れる長周期構造反射強度および2θ=44°
付近に現れるfcc相(111)面から反射される主成
長面のピーク強度について、それぞれのバイアス依存性
を図57および図58に示す。
When the crystallinity of various artificial lattice films produced by changing the DC bias was evaluated, the main growth planes of all the artificial lattice films were fcc phase (111) plane growth. Here, 2θ = 4 reflected from the lamination period (2.1 nm)
Long-period structure reflection intensity appearing in the vicinity of ° and 2θ = 44 °
FIGS. 57 and 58 show the bias dependence of the peak intensity of the main growth surface reflected from the fcc phase (111) surface appearing in the vicinity.

【0252】図57から分かるように、長周期構造反射
強度のバイアス依存性については、バイアス−20V程
度に若干の極大を示すが、特にバイアスと強い相関があ
るとは言えない。また、図58から分かるように、fc
c相(111)面反射強度のバイアス依存性について
も、バイアス−10V付近に若干の極大を示すが、バイ
アスと強い相関があるとは言えない。
As can be seen from FIG. 57, the bias dependence of the long period structure reflection intensity shows a slight maximum at a bias of about −20 V, but it cannot be said that there is a strong correlation with the bias. Also, as can be seen from FIG.
The bias dependency of the c-phase (111) surface reflection intensity also shows a slight maximum around a bias of -10 V, but cannot be said to have a strong correlation with the bias.

【0253】また、強磁性膜としてCoFe合金系を用
いていることにより、スピン依存散乱のバルク散乱が大
きくなり、強磁性膜としてCo系膜を用いる場合に比べ
て界面の構造は敏感でなくなる。なお、強磁性膜として
Co系膜を用いる場合、抵抗変化率は膜構造に大きく依
存することが報告されている。
Further, by using the CoFe alloy system as the ferromagnetic film, bulk scattering of spin-dependent scattering becomes large, and the structure of the interface becomes less sensitive than in the case of using the Co system film as the ferromagnetic film. It is reported that when a Co-based film is used as the ferromagnetic film, the rate of change in resistance greatly depends on the film structure.

【0254】次に、保磁力(Hc)のバイアス依存性を
図59に示す。図59から分かるように、バイアス−5
0V程度までは200A/m以下の良好な軟磁気特性を
示すが、−60V程度から保磁力が増加し始める。した
がって、印加する直流バイアスの大きさを選択すること
により、抵抗変化率および保磁力の最適条件を選ぶこと
ができる。なお、ガラス基板の代わりにSi基板、セラ
ミック基板、GaAs基板、Ge基板を用いた場合で
も、同様にして抵抗変化率と保磁力の最適点を選び出す
ことができた。
Next, FIG. 59 shows the bias dependence of the coercive force (Hc). As can be seen from FIG. 59, bias -5
Good soft magnetic properties of 200 A / m or less are exhibited up to about 0 V, but the coercive force starts to increase from about -60 V. Therefore, by selecting the magnitude of the DC bias to be applied, it is possible to select the optimum conditions for the rate of resistance change and the coercive force. Even when a Si substrate, a ceramic substrate, a GaAs substrate, and a Ge substrate were used instead of the glass substrate, the optimum points of the resistance change rate and the coercive force could be selected in the same manner.

【0255】(実施例32)ここでは、スピン依存散乱
能力を有する2つの強磁性膜両者の磁化回転により信号
磁界を検出する本発明の実施例について説明する。
(Embodiment 32) Here, an embodiment of the present invention in which the signal magnetic field is detected by the magnetization rotation of both of the two ferromagnetic films having the spin-dependent scattering ability will be described.

【0256】図60に示すように、基板80上に反強磁
性膜の配向制御用の下地膜81、反強磁性膜82、スピ
ン依存散乱能力を有する強磁性膜83、非磁性膜84、
強磁性膜85、および反強磁性膜82を順次形成した。
さらに、最上層の反強磁性膜82上に電極端子86を形
成した。この反強磁性膜82上に必要に応じて保護膜を
形成してもよい。なお、下地膜81の材料は、反強磁性
膜82がFeMnからなる場合にはCu、CuV、Cu
Cr等のCu合金や、Pd等の非磁性fcc相またはN
iFeやCoFeTa等の磁性fcc相を有する金属が
望ましい。このとき磁性材料のほうが膜厚が薄くても
(すなわちシャント分流が少ない)、良好な交換バイア
スが付与できる。反強磁性膜82はFeMn、NiO、
PtMn等からなり、その膜厚は5〜50nmである。強
磁性膜83,85はNiFe、Co、CoFe、NiF
eCo等からなり、その膜厚は0.5〜20nmである。
非磁性膜84はCu、Au、Ag等からなり、その膜厚
は0.5〜10nmである。また、反強磁性膜82は、強
磁性膜85の全面に形成する必要はなく、強磁性膜83
の両サイドのエッジ部(電極端子86近傍)にのみ形成
してもよい。
As shown in FIG. 60, a base film 81 for controlling the orientation of an antiferromagnetic film, an antiferromagnetic film 82, a ferromagnetic film 83 having a spin-dependent scattering ability, a nonmagnetic film 84, are formed on a substrate 80.
A ferromagnetic film 85 and an antiferromagnetic film 82 were sequentially formed.
Further, an electrode terminal 86 was formed on the uppermost antiferromagnetic film 82. A protective film may be formed on the antiferromagnetic film 82 as needed. When the antiferromagnetic film 82 is made of FeMn, the material of the base film 81 is Cu, CuV, Cu.
Cu alloy such as Cr, non-magnetic fcc phase such as Pd or N
A metal having a magnetic fcc phase, such as iFe or CoFeTa, is desirable. At this time, even if the magnetic material is thinner (that is, there is less shunt flow), a good exchange bias can be applied. The antiferromagnetic film 82 is made of FeMn, NiO,
It is made of PtMn or the like and has a thickness of 5 to 50 nm. The ferromagnetic films 83 and 85 are made of NiFe, Co, CoFe, NiF
It is made of eCo or the like, and has a thickness of 0.5 to 20 nm.
The nonmagnetic film 84 is made of Cu, Au, Ag, or the like, and has a thickness of 0.5 to 10 nm. Further, the antiferromagnetic film 82 does not need to be formed on the entire surface of the ferromagnetic film 85,
May be formed only on both side edges (near the electrode terminals 86).

【0257】ここで、少なくとも強磁性膜83の成膜中
には一方向の静磁界を図60中のx方向(センス電流方
向)に加える。その結果、強磁性膜83に交換結合バイ
アス磁界がその静磁界方向に加わる。一方、少なくとも
反強磁性膜82の成膜中には強磁性膜83の成膜中に加
えた磁界方向とは180°異なる方向(マイナスx方
向)に静磁界を加える。その結果、強磁性膜83とは1
80°異なる方向に強磁性膜85に交換結合バイアス磁
界が加わる。その結果、2つの強磁性膜83,85の磁
化のなす角度は信号磁界0の状態では反平行になる。な
お、信号磁界Hsは図中のy方向に加わる。
Here, at least during the formation of the ferromagnetic film 83, a static magnetic field in one direction is applied in the x direction (sense current direction) in FIG. As a result, an exchange coupling bias magnetic field is applied to the ferromagnetic film 83 in the direction of the static magnetic field. On the other hand, at least during the formation of the antiferromagnetic film 82, a static magnetic field is applied in a direction (minus x direction) different from the direction of the magnetic field applied during the formation of the ferromagnetic film 83 by 180 °. As a result, the ferromagnetic film 83 is 1
An exchange coupling bias magnetic field is applied to the ferromagnetic film 85 in directions different by 80 °. As a result, the angle between the magnetizations of the two ferromagnetic films 83 and 85 becomes antiparallel when the signal magnetic field is zero. Note that the signal magnetic field Hs is applied in the y direction in the figure.

【0258】反強磁性膜82により強磁性膜83および
85に反対方向のバイアス磁界を印加する方法には、次
に示す方法もある。2つの反強磁性膜82としてそれぞ
れ異なるネール温度を有する膜を用い、これらのネール
温度以上で静磁界熱処理を行い、降温中に両反強磁性膜
82のネール温度の中間の温度で静磁界の方向を180
°反転させる。その結果、強磁性膜83,85には反対
方向へのバイアス磁界が付与できる。
As a method of applying a bias magnetic field in the opposite direction to the ferromagnetic films 83 and 85 by the antiferromagnetic film 82, there is the following method. Films having different Neel temperatures are used as the two antiferromagnetic films 82, respectively, and a static magnetic field heat treatment is performed at a temperature higher than these Neel temperatures. 180 direction
° Invert. As a result, a bias magnetic field in the opposite direction can be applied to the ferromagnetic films 83 and 85.

【0259】本実施例では、従来のスピンバルブ構造の
膜とは異なり、反強磁性膜からの交換バイアスが加わっ
た強磁性膜の磁化回転を利用しているので、その交換バ
イアス磁界はバルクハウゼンノイズを抑制する程度のあ
まり強くない磁界であることが望ましい。例えば、適用
ヘッドのトラック幅等に応じて異なるが最大でも5kA
/mである。しかしながら、現状のスピンバルブ構造の
膜では、FeMnからなる反強磁性膜による交換バイア
ス磁界を用いるのが一般的であるが、この場合、FeM
n膜とNiFe膜等の強磁性膜とを直接積層すると10
kA/m以上の交換バイアスが生じてしまう。その交換
バイアスを低減させるためには、反強磁性膜と強磁性膜
の中間に交換バイアス調整用の膜、例えば飽和磁化の低
い強磁性膜や非磁性膜を挿入する方法や、図61に示す
ように、強磁性膜83と85のそれぞれの膜中に非磁性
膜87,88を介在させる、すなわち強磁性膜83,8
5をそれぞれ83aおよび83b,85aおよび85b
に分離する方法がある。
Unlike the conventional spin-valve structure film, the present embodiment utilizes the magnetization rotation of the ferromagnetic film to which the exchange bias from the antiferromagnetic film is applied, so that the exchange bias magnetic field is Barkhausen. It is desirable that the magnetic field is not so strong as to suppress noise. For example, it varies depending on the track width of the applicable head, but is at most 5 kA.
/ M. However, the current spin-valve structure film generally uses an exchange bias magnetic field by an antiferromagnetic film made of FeMn.
When an n film and a ferromagnetic film such as a NiFe film are directly laminated,
An exchange bias of kA / m or more occurs. In order to reduce the exchange bias, a method for inserting an exchange bias adjusting film, for example, a ferromagnetic film or a non-magnetic film having a low saturation magnetization, between the antiferromagnetic film and the ferromagnetic film, or a method shown in FIG. As described above, the nonmagnetic films 87 and 88 are interposed between the ferromagnetic films 83 and 85, that is, the ferromagnetic films 83 and 8 are interposed.
5 to 83a and 83b, 85a and 85b respectively
There is a method of separating.

【0260】強磁性膜中に非磁性膜を介在させる方法で
は、反強磁性膜82と接する側の強磁性膜83a,85
aには強い交換バイアスが加わるが、反強磁性膜82と
接しない側の強磁性膜83b,85bには弱い交換バイ
アスが加わる。非磁性膜87,88の材料の種類やその
膜厚により、反強磁性膜82と接しない側の強磁性膜8
3b,85bへの交換バイアスの大きさを低減できる。
In the method of interposing the nonmagnetic film in the ferromagnetic film, the ferromagnetic films 83a and 85 on the side in contact with the antiferromagnetic film 82 are used.
While a strong exchange bias is applied to a, a weak exchange bias is applied to the ferromagnetic films 83b and 85b that are not in contact with the antiferromagnetic film 82. The ferromagnetic film 8 not in contact with the antiferromagnetic film 82 depends on the type of the material of the nonmagnetic films 87 and 88 and the thickness thereof.
The magnitude of the exchange bias to 3b and 85b can be reduced.

【0261】ここで、強磁性膜83aおよび83bの磁
化のなす角度と、強磁性膜85aおよび85bの磁化の
なす角度は、信号磁界による磁化回転で強磁性的な配列
から反強磁性的な配列に変化するが、膜中央部における
強磁性膜83bおよび85bの磁化のなす角度は、逆に
反強磁性的な配列から強磁性的な配列に変化する。した
がって、前者と後者のスピン依存散乱は相殺される。そ
こで、強磁性膜83a,85aおよび非磁性膜87,8
8の材料としては、スピン依存散乱能力がなく高抵抗の
ものであることが望ましい。さらに、反強磁性膜82と
接する側の強磁性膜83a,85aの厚みは、反強磁性
膜82と接しない側の強磁性膜83b,85bの厚みに
比べて小さくすることが望ましい。
Here, the angle formed by the magnetizations of the ferromagnetic films 83a and 83b and the angle formed by the magnetizations of the ferromagnetic films 85a and 85b are changed from the ferromagnetic arrangement to the antiferromagnetic arrangement by the magnetization rotation by the signal magnetic field. However, the angle formed by the magnetizations of the ferromagnetic films 83b and 85b in the central portion of the film is changed from the antiferromagnetic arrangement to the ferromagnetic arrangement. Therefore, the former and latter spin-dependent scattering cancel each other out. Therefore, the ferromagnetic films 83a, 85a and the nonmagnetic films 87, 8
It is desirable that the material of No. 8 has a high resistance without spin-dependent scattering ability. Further, it is desirable that the thickness of the ferromagnetic films 83a and 85a on the side in contact with the antiferromagnetic film 82 be smaller than the thickness of the ferromagnetic films 83b and 85b on the side not in contact with the antiferromagnetic film 82.

【0262】上記のようにすることにより、磁界0で強
磁性膜83および85の磁化方向を反平行に揃えること
ができる。その結果、第1に、磁気ヘッドに適する困難
軸方向(図中y方向)に信号磁界を加えた場合でも、両
強磁性膜の磁化回転により両強磁性膜間の磁化のなす角
度が0〜180°まで変化する状態が実現でき、容易軸
方向と同程度の高い抵抗変化率を実現できる。第2に、
2つの強磁性膜にバイアス磁界が加わるので、両強磁性
膜から磁壁を無くすことができ、バルクハウゼンノイズ
を抑制できる。第3に、センス電流と信号磁界が直交す
る方式では、従来スピンバルブ構造では相殺されていた
NiFe膜等を用いた場合に顕著である通常の磁気抵抗
効果とスピン依存散乱による抵抗変化とを兼ねることが
でき、△R/Rの増大が期待できる。
With the above arrangement, the magnetization directions of the ferromagnetic films 83 and 85 can be aligned antiparallel to each other when the magnetic field is 0. As a result, first, even when a signal magnetic field is applied in the hard axis direction (the y direction in the figure) suitable for the magnetic head, the angle between the magnetizations of the two ferromagnetic films becomes 0 due to the rotation of the magnetizations of the two ferromagnetic films. A state changing up to 180 ° can be realized, and a high resistance change rate comparable to the easy axis direction can be realized. Second,
Since a bias magnetic field is applied to the two ferromagnetic films, domain walls can be eliminated from both ferromagnetic films, and Barkhausen noise can be suppressed. Third, the method in which the sense current and the signal magnetic field are orthogonal to each other has both a normal magnetoresistance effect and a resistance change due to spin-dependent scattering, which are remarkable when using a NiFe film or the like which has been canceled in the conventional spin valve structure. And an increase in ΔR / R can be expected.

【0263】(実施例33)実施例32では、2つの反
強磁性膜を用いて両強磁性膜の磁化を反平行にする方法
を示した。しかし、必ずしも反強磁性膜のみでバイアス
磁界を加える必要はなく、硬質磁性膜からの漏れ磁界や
微細形状に加工した場合に生じる反磁界を利用しもよ
い。次に、その一例について説明する。
(Example 33) In Example 32, a method of making the magnetizations of both antiferromagnetic films antiparallel by using two antiferromagnetic films was shown. However, it is not always necessary to apply a bias magnetic field only with the antiferromagnetic film, and it is also possible to use a leakage magnetic field from the hard magnetic film or a demagnetizing field generated when processing into a fine shape. Next, an example will be described.

【0264】図62から分かるように、基板90上にス
ピン依存散乱能力を有する強磁性膜91、非磁性膜9
2、および強磁性膜93を形成した。強磁性膜91,9
3および非磁性膜92の膜厚は実施例32と同様とし
た。その上に厚さ2〜50nmの反強磁性膜94を形成
し、強磁性膜93に交換バイアスを印加した。さらに、
その上に厚さ10〜50nmのCoPt、CoNiからな
る硬質磁性膜95を形成した。硬質磁性膜95の上に電
極端子96を形成した。成膜はすべて静磁界(図中x方
向)中で行った。
As can be seen from FIG. 62, the ferromagnetic film 91 and the nonmagnetic film 9 having the spin-dependent scattering ability on the substrate 90.
2 and a ferromagnetic film 93 were formed. Ferromagnetic films 91, 9
The thickness of the non-magnetic film 3 and the non-magnetic film 92 was the same as in Example 32. An antiferromagnetic film 94 having a thickness of 2 to 50 nm was formed thereon, and an exchange bias was applied to the ferromagnetic film 93. further,
A hard magnetic film 95 made of CoPt and CoNi having a thickness of 10 to 50 nm was formed thereon. An electrode terminal 96 was formed on the hard magnetic film 95. All film formation was performed in a static magnetic field (x direction in the figure).

【0265】次いで、反強磁性膜94による交換バイア
ス磁界方向と同じ方向に400〜800kA/mの磁界
を加えて硬質磁性膜95をx方向に着磁した。その結
果、硬質磁性膜95のエッジ部からの洩れ磁界により強
磁性膜91にはマイナスx方向にバイアス磁界が加わ
り、強磁性膜91と93の磁化は反平行状態になった。
なお、強磁性膜93にも硬質磁性膜95からのバイアス
磁界が加わるが、反強磁性膜94からの交換バイアス磁
界の方が強くなるように交換バイアス力を設定すること
により、前述した反平行磁化状態を実現できる。なお、
硬質磁性膜95と反強磁性膜94を強磁性膜93の全面
に形成する必要はなく、強磁性膜93のエッジ部(電極
端子96近傍)のみに形成してもよい。
Then, a magnetic field of 400 to 800 kA / m was applied in the same direction as the exchange bias magnetic field direction by the antiferromagnetic film 94 to magnetize the hard magnetic film 95 in the x direction. As a result, a bias magnetic field was applied to the ferromagnetic film 91 in the minus x direction due to the leakage magnetic field from the edge of the hard magnetic film 95, and the magnetizations of the ferromagnetic films 91 and 93 were in an antiparallel state.
The bias magnetic field from the hard magnetic film 95 is also applied to the ferromagnetic film 93, but by setting the exchange bias force so that the exchange bias magnetic field from the antiferromagnetic film 94 becomes stronger, A magnetized state can be realized. In addition,
The hard magnetic film 95 and the antiferromagnetic film 94 need not be formed on the entire surface of the ferromagnetic film 93, but may be formed only on the edge portion (near the electrode terminal 96) of the ferromagnetic film 93.

【0266】なお、図62の95には硬質磁性膜の代わ
りに軟磁性に近い強磁性膜を用いることもできる。この
場合、軟磁性に近い強磁性膜は、反強磁性膜94から交
換バイアスが加わるように積層する必要がある。強磁性
膜95に交換バイアスが加わると、強磁性膜95の磁化
を一方向に固着できるので、信号磁界等の外部磁界が加
わっても安定した静磁結合バイアス磁界を強磁性膜91
に、磁気抵抗効果に不可欠な微細パターン形状に加工す
ることにより強磁性膜93に加わる反強磁性膜94から
の交換バイアス磁界と180°異なる方向に付与でき
る。このとき、強磁性膜95の膜厚や飽和磁化を調整す
ることにより、所望の強度のバイアス磁界を強磁性膜9
1に付与できる。
It is to be noted that, in 95 of FIG. 62, a ferromagnetic film close to soft magnetism can be used instead of the hard magnetic film. In this case, the ferromagnetic films close to soft magnetism need to be laminated so that an exchange bias is applied from the antiferromagnetic film 94. When an exchange bias is applied to the ferromagnetic film 95, the magnetization of the ferromagnetic film 95 can be fixed in one direction.
In addition, by processing into a fine pattern shape indispensable for the magnetoresistive effect, it is possible to apply the exchange bias magnetic field applied to the ferromagnetic film 93 from the anti-ferromagnetic film 94 in a direction different by 180 °. At this time, by adjusting the thickness and saturation magnetization of the ferromagnetic film 95, a bias magnetic field having a desired strength is applied to the ferromagnetic film 9.
1 can be given.

【0267】また、強磁性膜95の抵抗率や膜厚を調整
することにより、所望のシャント分流動作点バイアスが
付与できる。ここで、強磁性膜95では、反強磁性膜9
4と交換結合するのに要求される特性(反強磁性膜94
とエピタキシャル成長するために反強磁性膜94と結晶
構造や格子定数が同様である結晶性の強磁性膜、例えば
NiFe膜、CoFe膜、CoFeTa膜、CoFeP
d膜が望ましい)と、静磁結合バイアスや動作点バイア
スに要求される特性とを両立することが困難である(上
記結晶性の膜では抵抗率が低すぎる)。そこで、強磁性
膜95は、反強磁性膜94と接する交換結合用磁性膜
(NiFeやCoFe系強磁性膜等)とバイアス用の強
磁性膜(Co系非晶質膜、FeTaN等の窒化微結晶
膜、あるいはFeZrC等の炭化微結晶膜等)が界面で
強磁性交換結合する2層構造であることが望ましい。
By adjusting the resistivity and film thickness of the ferromagnetic film 95, a desired shunt shunt operating point bias can be applied. Here, in the ferromagnetic film 95, the antiferromagnetic film 9
Required for exchange coupling with anti-ferromagnetic film 94
A crystalline ferromagnetic film having the same crystal structure and lattice constant as the antiferromagnetic film 94 for epitaxial growth, such as a NiFe film, a CoFe film, a CoFeTa film, and a CoFeP film.
It is difficult to satisfy both the characteristics required for the magnetostatic coupling bias and the operating point bias (the resistivity is too low with the above crystalline film). Therefore, the ferromagnetic film 95 is composed of a magnetic film for exchange coupling (NiFe or CoFe-based ferromagnetic film or the like) in contact with the antiferromagnetic film 94 and a ferromagnetic film for bias (Co-based amorphous film, FeTaN, etc.). It is desirable that a crystal film or a carbonized microcrystalline film such as FeZrC) has a two-layer structure in which ferromagnetic exchange coupling is performed at the interface.

【0268】図62に示す構造の場合、硬質磁性膜95
に電極端子96からのセンス電流が分流するのでΔR/
Rがある程度減少することが避けられない。この問題は
図63〜図65に示す構造により解消できる。
In the case of the structure shown in FIG. 62, the hard magnetic film 95
, The sense current from the electrode terminal 96 shunts so that ΔR /
It is inevitable that R decreases to some extent. This problem can be solved by the structure shown in FIGS.

【0269】すなわち、図63に示すように、基板90
上に図62と同様に反強磁性膜94まで成膜し、その
後、反強磁性膜94の両サイド近傍に硬質磁性膜95を
形成する。その内側にトラック幅に相当する間隔で電極
端子96を形成する。その結果、硬質磁性膜95にセン
ス電流が流れることを防止でき、ΔR/Rの低下を抑制
できる。
That is, as shown in FIG. 63, the substrate 90
62, the hard magnetic film 95 is formed near both sides of the antiferromagnetic film 94. Electrode terminals 96 are formed on the inside at intervals corresponding to the track width. As a result, it is possible to prevent a sense current from flowing through the hard magnetic film 95, and to suppress a decrease in ΔR / R.

【0270】一方、図64に示すように、基板90上の
最初に硬質磁性膜95を形成し、その上に絶縁膜97を
介して強磁性膜91、非磁性膜92、強磁性膜93、お
よび反強磁性膜94を順次形成し、さらに電極端子96
を形成する。このとき、成膜中に静磁界を加えて、反強
磁性膜94から強磁性膜93に所定の交換バイアス磁界
を加える。成膜後にこの交換バイアス方向と同じ方向に
硬質磁性膜95を着磁する。この方法でも、強磁性膜9
1と93に反対方向のバイアス磁界を印加することがで
き、しかも硬質磁性膜95に電流が流れることを防止で
きる。なお、絶縁膜97は硬質磁性膜95と強磁性膜9
1との交換結合により過大なバイアス磁界が加わること
を防ぐ効果もある。
On the other hand, as shown in FIG. 64, a hard magnetic film 95 is first formed on a substrate 90, and a ferromagnetic film 91, a non-magnetic film 92, a ferromagnetic film 93, and an insulating film 97 are formed on the hard magnetic film 95. And an antiferromagnetic film 94 are sequentially formed, and electrode terminals 96 are further formed.
To form At this time, a predetermined exchange bias magnetic field is applied from the antiferromagnetic film 94 to the ferromagnetic film 93 by applying a static magnetic field during the film formation. After the film formation, the hard magnetic film 95 is magnetized in the same direction as the exchange bias direction. Also in this method, the ferromagnetic film 9
Bias magnetic fields in opposite directions can be applied to 1 and 93, and current can be prevented from flowing through the hard magnetic film 95. The insulating film 97 is composed of the hard magnetic film 95 and the ferromagnetic film 9.
There is also an effect of preventing an excessive bias magnetic field from being applied due to exchange coupling with 1.

【0271】また、図65に示すように、基板90上に
強磁性膜91、非磁性膜92、強磁性膜93、および反
強磁性膜94を順次成膜する。次に、この積層膜を所定
の形状に微細加工する。この微細加工はレジスト等を用
いてマスクを形成し、イオンミリング等により行う。こ
の後、この残りのマスクを使用してリフトオフ法により
強磁性膜91のサイドに硬質磁性膜95を形成する。最
後に、強磁性膜93に加わる交換バイアスとは逆方向に
硬質磁性膜95を着磁する。この方法でも、強磁性膜9
1と93に反対方向のバイアス磁界を印加することがで
き、しかも硬質磁性膜95に電流が流れることを防止で
きる。
Further, as shown in FIG. 65, a ferromagnetic film 91, a nonmagnetic film 92, a ferromagnetic film 93, and an antiferromagnetic film 94 are sequentially formed on the substrate 90. Next, the laminated film is finely processed into a predetermined shape. This fine processing is performed by forming a mask using a resist or the like and performing ion milling or the like. Thereafter, a hard magnetic film 95 is formed on the side of the ferromagnetic film 91 by a lift-off method using the remaining mask. Finally, the hard magnetic film 95 is magnetized in a direction opposite to the exchange bias applied to the ferromagnetic film 93. Also in this method, the ferromagnetic film 9
Bias magnetic fields in opposite directions can be applied to 1 and 93, and current can be prevented from flowing through the hard magnetic film 95.

【0272】(実施例34)図61に示すスピンバルブ
構造において、ガラス基板80上に1at% のCrを含む
厚さ5nmのCu下地膜、反強磁性膜82として厚さ15
nmのFeMn膜、強磁性膜83aとして厚さ1nmのNi
80Fe20膜、非磁性膜87として1at% のCrを含む厚
さ1.5nmのCu膜、強磁性膜83bとして厚さ6nmの
Ni80Fe20膜、非磁性膜84として厚さ2.5nmのC
u膜、強磁性膜85bとして厚さ6nmのNi80Fe
20膜、非磁性膜87として1at% のCrを含む厚さ1.
5nmのCu膜、強磁性膜85aとして厚さ1nmのNi80
Fe20膜、並びに反強磁性膜82として厚さ15nmのF
eMn膜を順次形成した。
(Embodiment 34) In the spin valve structure shown in FIG. 61, a 5 nm thick Cu underlayer containing 1 at% Cr and a 15 nm thick antiferromagnetic film 82 on a glass substrate 80.
FeMn film with a thickness of 1 nm and a ferromagnetic film 83a with a thickness of Ni of 1 nm
80 Fe 20 film, nonmagnetic film 87 having a thickness of 1.5 nm Cu film containing 1 at% Cr, ferromagnetic film 83b having a thickness of 6 nm Ni 80 Fe 20 film, and nonmagnetic film 84 having a thickness of 2.5 nm C
6 nm thick Ni 80 Fe film as u film and ferromagnetic film 85b
20 film, non-magnetic film 87 containing 1 at% Cr
5 nm Cu film, 1 nm thick Ni 80 as ferromagnetic film 85a
The Fe 20 film and the antiferromagnetic film 82 are made of F having a thickness of 15 nm.
The eMn film was sequentially formed.

【0273】これらの膜の成膜は、永久磁石による静磁
界中で2極スパッタリング法により真空を破ることなく
一括に行った。なお、この永久磁石は基板ホルダーには
一体的に取り付けられていない。また、このとき、予備
排気圧1×10-4Pa以下、Arガス圧0.4Paの条
件で行い、強磁性膜83の成膜が終了した後で基板ホル
ダーを180°回転させて永久磁石によるバイアス磁界
(約4000A/m)の方向を180°反転した。この
ようにして、信号磁界0で両強磁性膜磁化の反平行状態
を実現できるスピンバルブ構造の積層膜を作製した。
These films were formed at once by a two-pole sputtering method in a static magnetic field using a permanent magnet without breaking the vacuum. The permanent magnet is not integrally attached to the substrate holder. At this time, the preliminary evacuation pressure is set to 1 × 10 −4 Pa or less and the Ar gas pressure is set to 0.4 Pa. After the formation of the ferromagnetic film 83 is completed, the substrate holder is rotated by 180 ° and a permanent magnet is used. The direction of the bias magnetic field (about 4000 A / m) was inverted by 180 °. Thus, a laminated film having a spin-valve structure capable of realizing an antiparallel state of magnetization of both ferromagnetic films with no signal magnetic field was produced.

【0274】得られた積層膜の抵抗を4端子法により測
定した。具体的には、強磁性膜83および85の容易軸
方向に1mAの定電流を加え、困難軸方向の膜の幅を1
mmとして4mm間の電圧を測定した。磁界はヘルムホルツ
コイルにより強磁性膜83および85の困難軸方向に加
えた。その結果、得られた抵抗−磁界特性を図67に示
す。
The resistance of the obtained laminated film was measured by the 4-terminal method. Specifically, a constant current of 1 mA is applied to the ferromagnetic films 83 and 85 in the easy axis direction, and the film width in the hard axis direction is set to 1
The voltage between 4 mm was measured as mm. A magnetic field was applied in the hard axis direction of the ferromagnetic films 83 and 85 by a Helmholtz coil. FIG. 67 shows the obtained resistance-magnetic field characteristics.

【0275】図66において、抵抗は最大磁界(16k
A/m)での値を1に規格化して示す。磁界0では強磁
性膜83と85の磁化が反平行状態にあるので、抵抗が
最大値を示す。磁界が加わると、急激に抵抗は低下す
る。特に、2000A/m以上の磁界では抵抗はおよそ
一定値を示す。約3.8%以下の抵抗変化率が2000
A/m以下の僅かの磁界範囲で生じることが分かる。ま
た、この抵抗−磁界特性にはヒステリシスやノイズが殆
ど認められない。すなわち、このスピンバルブ構造の積
層膜を用いると、著しく高感度でノイズの少ない磁気ヘ
ッドを得ることができる。
In FIG. 66, the resistance is the maximum magnetic field (16 k
A / m) is normalized to 1. When the magnetic field is zero, the magnetizations of the ferromagnetic films 83 and 85 are in an anti-parallel state, so that the resistance shows the maximum value. When a magnetic field is applied, the resistance drops sharply. In particular, the resistance shows a substantially constant value in a magnetic field of 2000 A / m or more. Resistance change rate of about 3.8% or less is 2000
It can be seen that it occurs in a small magnetic field range of A / m or less. Also, almost no hysteresis or noise is recognized in this resistance-magnetic field characteristic. That is, by using the laminated film having the spin valve structure, a magnetic head having extremely high sensitivity and low noise can be obtained.

【0276】さらに、図60に示すスピンバルブ型磁気
抵抗効果素子を作製して、非磁性層84(Cu)の厚み
と抵抗変化率との関係を調べた。その結果を下記表6に
示す。下地膜には厚さ5nmのNiFe膜を用い、強磁性
膜83,85には厚さ8nmのNiFe膜を用い、反強磁
性膜82には厚さ10nmのFeMn膜を用いた。
Further, a spin valve type magnetoresistive effect element shown in FIG. 60 was produced, and the relationship between the thickness of the nonmagnetic layer 84 (Cu) and the resistance change rate was investigated. The results are shown in Table 6 below. An NiFe film having a thickness of 5 nm was used for the base film, an NiFe film having a thickness of 8 nm was used for the ferromagnetic films 83 and 85, and a FeMn film having a thickness of 10 nm was used for the antiferromagnetic film.

【0277】[0277]

【表6】 [Table 6]

【0278】表6から分かるように、Cu厚が薄くなる
と急激に抵抗変化率が増加して、Cu厚が1.2nmでは
9%の高い抵抗変化率が得られた。これは、強磁性膜8
3と強磁性膜85には50kA/mの比較的大きな反平
行バイアス磁界がそれぞれに加わっているので、非磁性
膜84の厚みを薄くしても安定した反強磁性磁化配列が
実現できるためである。非磁性層(Cu)厚を2nm未満
に薄くする場合、反平行磁化配列が崩れて抵抗変化率が
激減する従来のスピンバルブ型磁気抵抗効果素子と異な
り、両方の強磁性膜83,84に反対方向のバイアス磁
界を加え、非磁性膜84の厚みを薄くすることにより大
幅に抵抗変化率を増大できる。
As can be seen from Table 6, the resistance change rate rapidly increased as the Cu thickness decreased, and a high resistance change rate of 9% was obtained when the Cu thickness was 1.2 nm. This is the ferromagnetic film 8
Since a relatively large antiparallel bias magnetic field of 50 kA / m is applied to each of the ferromagnetic film 3 and the ferromagnetic film 85, a stable antiferromagnetic magnetization arrangement can be realized even if the thickness of the nonmagnetic film 84 is reduced. is there. When the thickness of the nonmagnetic layer (Cu) is reduced to less than 2 nm, unlike the conventional spin-valve magnetoresistive element in which the antiparallel magnetization arrangement collapses and the resistance change rate sharply decreases, both the ferromagnetic films 83 and 84 are opposed to each other. By applying a bias magnetic field in the direction and reducing the thickness of the nonmagnetic film 84, the rate of resistance change can be greatly increased.

【0279】(実施例35)次に、スピン依存散乱能力
を有する強磁性膜の数を3層以上に増やした場合につい
て説明する。
(Embodiment 35) Next, the case where the number of ferromagnetic films having the spin-dependent scattering ability is increased to three or more will be described.

【0280】図67に示すように、基板100上に反強
磁性膜102の配向を制御するための下地膜101、F
eMn、NiO、PtMn等からなる厚さ5〜50nmの
反強磁性膜102、CoFe、Co、NiFe等からな
る厚さ1〜20nmの強磁性膜103、Cu、Au等から
なる厚さ1〜10nmの非磁性膜104、厚さ1〜20nm
の強磁性膜105、厚さ1〜10nmの非磁性膜106、
厚さ1〜20nmの強磁性膜107、および厚さ5〜50
nmの反強磁性膜108を形成した。ここで、強磁性膜1
03,105,107の膜厚は、すべて等しくても異な
っていてもよい。さらに、その上に必要に応じて保護膜
を形成して電極端子109を形成した。なお、成膜は静
磁界中で行った。
As shown in FIG. 67, the base films 101 and F for controlling the orientation of the antiferromagnetic film 102 on the substrate 100.
An antiferromagnetic film 102 of e.g. eMn, NiO, PtMn having a thickness of 5 to 50 nm, a ferromagnetic film 103 of e.g. CoFe, Co, NiFe having a thickness of 1 to 20 nm, and a thickness of 1 to 10 nm composed of Cu, Au, etc. Non-magnetic film 104, thickness 1 to 20 nm
Ferromagnetic film 105, non-magnetic film 106 having a thickness of 1 to 10 nm,
A ferromagnetic film 107 having a thickness of 1 to 20 nm, and a thickness of 5 to 50 nm
A nm antiferromagnetic film 108 was formed. Here, the ferromagnetic film 1
The film thicknesses of 03, 105 and 107 may all be equal or different. Further, a protective film was formed thereon as necessary to form an electrode terminal 109. Note that the film was formed in a static magnetic field.

【0281】反強磁性膜102と108からそれぞれ強
磁性膜103と107に交換バイアスを一方向(図中x
方向)に加えた。その結果、中間の強磁性膜105のみ
が透磁率が高く、強磁性膜103と107は低い透磁
率、すなわち磁化の固着が実現できた。この磁化の固着
には、反強磁性膜ではなく図63で示したような硬質磁
性膜95を用いてもよい。なお、反強磁性膜102およ
び108と接する強磁性膜103および107の材料と
して軟磁性があまり良好でないが抵抗変化率の高いCo
やCoFeを用い、中間の強磁性膜105の材料として
抵抗変化率はあまり高くないが軟磁性が良好であるNi
Feを用いることにより低磁界で高い抵抗変化率を実現
できる。
An exchange bias is applied from the antiferromagnetic films 102 and 108 to the ferromagnetic films 103 and 107 in one direction (x in the figure).
Direction). As a result, only the intermediate ferromagnetic film 105 has a high magnetic permeability, and the ferromagnetic films 103 and 107 have a low magnetic permeability, that is, a pinned magnetization. For fixing this magnetization, a hard magnetic film 95 as shown in FIG. 63 may be used instead of the antiferromagnetic film. The material of the ferromagnetic films 103 and 107 which are in contact with the antiferromagnetic films 102 and 108 has a low soft magnetism but a high resistance change rate.
Or CoFe, the material of the intermediate ferromagnetic film 105 has a low rate of change in resistance but has a good soft magnetism.
By using Fe, a high resistance change rate can be realized in a low magnetic field.

【0282】このような構成により、中間の強磁性膜1
05の磁化回転が低磁界で容易に起こり、また、非磁性
層を介した界面数が従来のスピンバルブ構造の膜に比べ
て2倍に増えるので、低磁界で従来のスピンバルブ構造
の膜を上回る抵抗変化率を実現できる。また、この積層
膜の中央に信号磁界で磁化回転する強磁性膜が位置する
ことになるので、センス電流磁界による強磁性膜の磁化
の乱れは僅かであり、安定した信号検出が可能になる。
なお、実施例33で説明したような硬質磁性膜や反磁界
によるバイアス法を併用すれば、強磁性膜103および
107と、中間の強磁性膜105の磁化のなす角度を信
号磁界0で反平行にすることができる。その結果、実施
例32で述べた種々の効果により、さらに高感度で低ノ
イズの磁気抵抗効果素子を得ることができる。
With such a structure, the intermediate ferromagnetic film 1
05 easily occurs in a low magnetic field, and the number of interfaces via the non-magnetic layer is twice as large as that of a conventional spin-valve structure film. A higher resistance change rate can be realized. In addition, since the ferromagnetic film that rotates by the signal magnetic field is located at the center of the laminated film, the disturbance of the magnetization of the ferromagnetic film due to the sense current magnetic field is slight, and stable signal detection becomes possible.
If the bias method using a hard magnetic film or a demagnetizing field as described in Embodiment 33 is used together, the angle between the magnetizations of the ferromagnetic films 103 and 107 and the intermediate ferromagnetic film 105 is made antiparallel with a signal magnetic field of 0. Can be As a result, with the various effects described in the thirty-second embodiment, it is possible to obtain a magnetoresistive element with higher sensitivity and lower noise.

【0283】(実施例36)図68は、スピン依存散乱
能力を有する強磁性膜の数を4層に増やした積層膜を示
す。
(Example 36) FIG. 68 shows a laminated film in which the number of ferromagnetic films having the spin-dependent scattering ability is increased to four.

【0284】基板100上に、反強磁性膜111、非磁
性層113,115,117を介して積層した4層の強
磁性膜112,114,116,118、反強磁性膜1
19を順次形成して、センス電流が信号磁界と同方向に
流れるように電極端子109をその上に形成した。必要
に応じて反強磁性膜111の下には配向制御用の下地膜
を、反強磁性膜119の上には保護膜を形成する。各膜
の材料、膜厚は図67に示したものと同様とした。
The four layers of ferromagnetic films 112, 114, 116 and 118 and the antiferromagnetic film 1 which are laminated on the substrate 100 with the antiferromagnetic film 111 and the nonmagnetic layers 113, 115 and 117 interposed therebetween.
19 were sequentially formed, and the electrode terminals 109 were formed thereon so that the sense current flowed in the same direction as the signal magnetic field. As necessary, a base film for controlling the orientation is formed below the antiferromagnetic film 111, and a protective film is formed above the antiferromagnetic film 119. The material and thickness of each film were the same as those shown in FIG.

【0285】少なくとも強磁性膜112の成膜中には静
磁界を図中x方向(トラック幅方向)に付与して、一
方、その後の成膜途中で静磁界方向180°反転して少
なくとも反強磁性膜119の成膜中には静磁界を図中マ
イナスx方向に付与した。この成膜中の静磁界により、
強磁性膜112にはx方向に、強磁性膜118にはマイ
ナスx方向に交換バイアス磁界による磁化固着を生じ
る。また、この構成では、トラック幅が狭いと強磁性膜
112,114,116,118の幅も同様に狭くなる
ので、その方向に強い反磁界が発生する。この反磁界に
より、反強磁性膜と接していない中間の強磁性膜114
と116の磁化はそれぞれ強磁性膜112と118の磁
化と反平行になる。すなわち信号磁界0では4層の強磁
性膜の隣接する磁化は互いに反平行に向くことになる。
At least during the film formation of the ferromagnetic film 112, a static magnetic field is applied in the x direction (track width direction) in the figure, while the static magnetic field direction is reversed by 180 ° during the subsequent film formation, and at least a repulsive force is applied. During the formation of the magnetic film 119, a static magnetic field was applied in the negative x direction in the figure. Due to the static magnetic field during the film formation,
The magnetization is fixed by the exchange bias magnetic field in the x direction in the ferromagnetic film 112 and in the minus x direction in the ferromagnetic film 118. Further, in this configuration, if the track width is narrow, the widths of the ferromagnetic films 112, 114, 116, and 118 are also narrowed, so that a strong demagnetizing field is generated in that direction. Due to this demagnetizing field, the intermediate ferromagnetic film 114 not in contact with the antiferromagnetic film
And 116 are antiparallel to the magnetizations of ferromagnetic films 112 and 118, respectively. That is, when the signal magnetic field is 0, the adjacent magnetizations of the four ferromagnetic films are oriented antiparallel to each other.

【0286】なお、中間の強磁性膜114と116への
反磁界が不充分の場合には、センス電流により発生する
磁界が強磁性膜112と114ではマイナスx方向に、
強磁性膜116と118ではx方向に加わるようにセン
ス電流を図中y方向に加えることが望ましい。ここで、
反強磁性膜からの交換バイアス磁界をセンス電流磁界よ
りも大きくなるように設定すれば、強磁性膜112と1
18の磁化を電流磁界により乱されることなく反強磁性
膜からの交換バイアス方向に固着できる。
When the demagnetizing field to the intermediate ferromagnetic films 114 and 116 is insufficient, the magnetic field generated by the sense current is in the negative x direction in the ferromagnetic films 112 and 114.
In the ferromagnetic films 116 and 118, it is desirable to apply a sense current in the y direction in the figure so as to apply in the x direction. here,
If the exchange bias magnetic field from the antiferromagnetic film is set to be larger than the sense current magnetic field, the ferromagnetic films 112 and 1
18 can be fixed in the exchange bias direction from the antiferromagnetic film without being disturbed by the current magnetic field.

【0287】このような構成にすることにより、4層の
強磁性膜の各磁化方向は、信号磁界0で反強磁性的に配
列できる。したがって、界面数の増加に対応してΔR/
Rが増加する。また、信号磁界が僅かに加わることによ
り各層の磁化が回転できるので、高感度なスピン依存散
乱を用いた磁気抵抗効果素子を実現できる。
With such a structure, the magnetization directions of the four layers of ferromagnetic films can be antiferromagnetically aligned at the signal magnetic field of zero. Therefore, ΔR /
R increases. In addition, since the magnetization of each layer can be rotated by slightly applying a signal magnetic field, a highly sensitive magnetoresistive element using spin-dependent scattering can be realized.

【0288】(実施例37)次に、スピン依存散乱能力
を有する一部の強磁性膜の磁化を固着して、残りの強磁
性膜の磁化を信号磁界0で信号磁界方向と異なる方向に
配列する場合について説明する。
(Example 37) Next, the magnetization of a part of the ferromagnetic film having the spin-dependent scattering ability is fixed, and the magnetizations of the remaining ferromagnetic films are arranged in the signal magnetic field 0 in a direction different from the signal magnetic field direction. The case will be described.

【0289】図69は、センス電流と信号磁界の方向が
直交する積層膜を示す。基板120上に、非磁性膜12
2を介在させたスピン依存散乱能力を有する強磁性膜1
21および123の積層膜、反強磁性膜124を順次形
成した。各膜の材料、厚みは図60に示したものと同様
とした。必要に応じて、反強磁性膜124上に保護膜を
形成した後に電極端子125を形成した。
FIG. 69 shows a laminated film in which the directions of the sense current and the signal magnetic field are orthogonal to each other. The nonmagnetic film 12 is formed on the substrate 120.
Ferromagnetic film 1 having spin-dependent scattering ability with intervening 2
A laminated film 21 and 123 and an antiferromagnetic film 124 were sequentially formed. The material and thickness of each film were the same as those shown in FIG. If necessary, an electrode terminal 125 was formed after a protective film was formed on the antiferromagnetic film 124.

【0290】ここで、少なくとも強磁性膜121の成膜
中には、図中x軸およびy軸の2等分線の方向に静磁界
を付与し、一方、少なくとも反強磁性膜124の成膜中
には、その静磁界の方向を前者の方向と45°回転させ
て付与した(図中y方向)。その結果、強磁性膜121
の磁化は前記静磁界のx方向に付与され、強磁性膜12
3の磁化は反強磁性膜124からのバイアス磁界により
信号磁界方向に固着された。このような構成によれば、
信号磁界0では両強磁性膜の磁化のなす角度は45°に
なり、信号磁界が強磁性膜123の磁化固着方向に加わ
ると、両強磁性膜の磁化方向が強磁性的な配列になるた
め抵抗が減少し、逆に磁化固着方向と180°異なる方
向に信号磁界が加わると、両強磁性膜の磁化方向が反強
磁性的な配列になるため抵抗が増大する。したがって、
線型応答を実現するために従来の磁気抵抗効果素子に必
要であった動作点バイアスが不要になる。なお、この方
法では、強磁性膜121と123との強磁性的な結合に
より強磁性膜121の磁化が信号磁界0でy方向に向け
て傾き易く、大きな信号磁界が加わると再生信号が歪み
易い傾向がある。これは、センス電流により発生する電
流磁界が、強磁性膜121ではこの強磁性的な結合方向
と180°異なる方向に加わるように、すなわちこの強
磁性的な結合による磁界と電流磁界が相殺されるように
センス電流の流れる向きを決めることにより回避でき
る。
Here, at least during the formation of the ferromagnetic film 121, a static magnetic field is applied in the direction of the bisector of the x axis and the y axis in the figure, while at least the antiferromagnetic film 124 is formed. In some cases, the direction of the static magnetic field was rotated by 45 ° with respect to the former direction (y direction in the drawing). As a result, the ferromagnetic film 121
Is applied in the x direction of the static magnetic field, and the ferromagnetic film 12
The magnetization of No. 3 was fixed in the signal magnetic field direction by the bias magnetic field from the antiferromagnetic film 124. According to such a configuration,
When the signal magnetic field is 0, the angle between the magnetizations of the two ferromagnetic films becomes 45 °. When the signal magnetic field is applied to the magnetization fixed direction of the ferromagnetic film 123, the magnetization directions of the two ferromagnetic films become ferromagnetic. When the resistance decreases and a signal magnetic field is applied in a direction different from the magnetization fixed direction by 180 °, the resistance increases because the magnetization directions of the two ferromagnetic films have an antiferromagnetic arrangement. Therefore,
The operating point bias, which is required for the conventional magnetoresistive element to realize the linear response, is not required. In this method, the magnetization of the ferromagnetic film 121 is easily inclined in the y direction at the signal magnetic field of 0 due to the ferromagnetic coupling between the ferromagnetic films 121 and 123, and the reproduction signal is easily distorted when a large signal magnetic field is applied. Tend. This is so that the current magnetic field generated by the sense current is applied in the ferromagnetic film 121 in a direction different from the ferromagnetic coupling direction by 180 °, that is, the magnetic field due to the ferromagnetic coupling and the current magnetic field are cancelled. This can be avoided by determining the direction in which the sense current flows.

【0291】しかしながら、強磁性膜121や123に
異方性磁気抵抗効果を有する膜を用いる場合には、逆に
この強磁性的な結合による磁界により強磁性膜121の
磁化Mが強磁性膜123の磁化M方向に傾くと、磁気異
方性とスピン異存散乱による抵抗変化が重畳するので
(電流方向がx方向であるため)感度向上が期待できる
利点がある。実際に、磁気抵抗効果素子が用いられる状
況に応じて、強磁性膜121の磁化方向を電流方向等の
手段により調整する必要がある。
However, when films having an anisotropic magnetoresistive effect are used as the ferromagnetic films 121 and 123, conversely, the magnetization M of the ferromagnetic film 121 is changed by the magnetic field due to this ferromagnetic coupling. If the magnetization is tilted in the M direction, the resistance change due to the magnetic anisotropy and the spin scattering will be superimposed (because the current direction is the x direction), so that the sensitivity can be expected to be improved. Actually, it is necessary to adjust the magnetization direction of the ferromagnetic film 121 by means such as the current direction according to the situation where the magnetoresistance effect element is used.

【0292】ところで、実施例37では、バルクハウゼ
ンノイズ抑制に必要な縦バイアス磁界(図中x軸および
y軸の2等分線方向のバイアス磁界)を加える必要があ
る。このためには、実施例32に示したような反強磁性
膜を強磁性膜121の基板側に配置して交換結合させ
る。あるいは、図70(A)に示すように、反強磁性膜
124上に、ある程度軟磁性が良い(Hcが交換バイア
ス磁界HUAより小さい)強磁性膜126を積層して、少
なくともこの強磁性膜126の積層中には、成膜中のバ
イアス磁界方向を概ね135°反転して強磁性膜126
からの交換バイアス磁界を強磁性膜121に加える方法
がある。この場合には、スピン依存散乱ユニットである
膜が下地膜の役目も果たすので、反強磁性膜124上に
成膜した強磁性膜126に容易に交換バイアスを付与で
きる。その結果、実際に再生ヘッドに適した微細パター
ンに加工したときに発生する静磁結合磁界(反磁界)に
より、縦バイアス磁界を強磁性膜121に加えることが
できるので、バルクハウゼンノイズが抑制できる。
By the way, in the thirty-seventh embodiment, it is necessary to apply the longitudinal bias magnetic field (bias magnetic field in the direction of the bisector of the x-axis and the y-axis in the figure) necessary for suppressing Barkhausen noise. For this purpose, an antiferromagnetic film as shown in Example 32 is disposed on the substrate side of the ferromagnetic film 121 and exchange-coupled. Alternatively, as shown in FIG. 70A, a ferromagnetic film 126 having good soft magnetism (Hc is smaller than the exchange bias magnetic field HUA ) is laminated on the antiferromagnetic film 124 to a certain extent. During the lamination of the ferromagnetic film 126, the direction of the bias magnetic field during the film formation is reversed by approximately 135 °.
There is a method of applying an exchange bias magnetic field from the ferromagnetic film 121 to the ferromagnetic film 121. In this case, since the film serving as the spin-dependent scattering unit also serves as a base film, an exchange bias can be easily applied to the ferromagnetic film 126 formed on the antiferromagnetic film 124. As a result, a longitudinal bias magnetic field can be applied to the ferromagnetic film 121 by a magnetostatic coupling magnetic field (a demagnetizing field) generated when actually processing into a fine pattern suitable for a reproducing head, so that Barkhausen noise can be suppressed. .

【0293】図70(A)の実施例では、反強磁性膜1
24の膜面両サイドで交換バイアス方向が異なるので、
バイアス磁界方向が不安になる場合もある。これは、図
70(B)に示すように、反強磁性膜124を中間に磁
気結合を弱めるが結晶成長を阻害しない極薄い中間膜1
24b(Cu等のfcc相膜)を介して反強磁性膜12
4aと124cに分離することで回避できる。このと
き、実施例32で述べたように、熱処理で交換バイアス
磁界方向を制御可能とするため、反強磁性膜124aと
124cはネール点またはブロッキング温度が異なる材
料で構成されることが好ましい。さらに、強磁性膜12
6が厚く、Bsが高くないと所望の縦バイアス磁界が強
磁性膜121に付与できないが、このとき強磁性膜12
6にセンス電流が分流するので、強磁性膜の抵抗率は高
いことが望ましい。具体的には、Co系やFe系のアモ
ルファス膜や窒化または炭化微結晶膜を用いることが望
ましい。しかしながら、このような膜は、FeMn等の
反強磁性膜と交換結合し難いので、反強磁性膜124a
と接する部分には極薄いNiFeやCoFeTa等の交
換結合しやすい強磁性膜124bを積層して、その上に
高抵抗のアモルファス的な高Bs強磁性膜126aを強
磁性交換結合するように積層することが望ましい。
In the embodiment shown in FIG. 70A, the antiferromagnetic film 1 is used.
Since the exchange bias direction differs on both sides of the film surface of No. 24,
The direction of the bias magnetic field may be unstable. This is because, as shown in FIG. 70 (B), the extremely thin intermediate film 1 which weakens magnetic coupling with the antiferromagnetic film 124 in between but does not inhibit crystal growth.
24b (fcc phase film such as Cu) through the antiferromagnetic film 12
4a and 124c can be avoided. At this time, as described in the thirty-second embodiment, the antiferromagnetic films 124a and 124c are preferably made of materials having different Neel points or blocking temperatures in order to control the direction of the exchange bias magnetic field by the heat treatment. Further, the ferromagnetic film 12
6 is thick and Bs is not high, a desired longitudinal bias magnetic field cannot be applied to the ferromagnetic film 121.
6, the resistivity of the ferromagnetic film is desirably high. Specifically, it is desirable to use a Co-based or Fe-based amorphous film or a nitrided or carbonized microcrystalline film. However, since such a film is hardly exchange-coupled with an antiferromagnetic film such as FeMn, the antiferromagnetic film 124a
A ferromagnetic film 124b, such as NiFe or CoFeTa, which is easily exchange-coupled, is laminated on a portion in contact with, and a high-resistance amorphous high-Bs ferromagnetic film 126a is laminated thereon so as to perform ferromagnetic exchange coupling. It is desirable.

【0294】(実施例38)図70(C)は、センス電
流と信号磁界の方向が平行である積層膜を示す。センス
電流の流れる方向が異なり、強磁性膜121の磁化が図
中x方向に付与され、かつ膜の長手方向が90°回転し
ていること以外は図69の構成と同様である。この構成
においては信号磁界0では両強磁性膜の磁化のなす角度
は90°になり、信号磁界が強磁性膜123の磁化固着
方向に加わると、両強磁性膜の磁化が強磁性的な配列に
なるため抵抗が減少し、逆に磁化固着方向と180°異
なる方向に信号磁界が加わると両強磁性膜の磁化が反強
磁性的な配列になるため抵抗が増大する。したがって、
やなり、動作点バイアスが不要になる。この構成では、
センス電流による電流磁界が強磁性膜121の容易軸方
向であり、この磁界がバルクハウゼンノイズを抑制する
効果がある。
(Example 38) FIG. 70C shows a laminated film in which the directions of the sense current and the signal magnetic field are parallel to each other. The configuration is the same as that of FIG. 69 except that the direction in which the sense current flows is different, the magnetization of the ferromagnetic film 121 is applied in the x direction in the figure, and the longitudinal direction of the film is rotated by 90 °. In this configuration, when the signal magnetic field is 0, the angle between the magnetizations of the two ferromagnetic films becomes 90 °, and when the signal magnetic field is applied to the magnetization fixed direction of the ferromagnetic film 123, the magnetizations of the two ferromagnetic films become ferromagnetically aligned. , The resistance decreases. Conversely, when a signal magnetic field is applied in a direction different from the magnetization fixed direction by 180 °, the resistance increases because the magnetizations of both ferromagnetic films are arranged in an antiferromagnetic arrangement. Therefore,
No more operating point bias is required. In this configuration,
The current magnetic field due to the sense current is in the easy axis direction of the ferromagnetic film 121, and this magnetic field has the effect of suppressing Barkhausen noise.

【0295】さらに、実施例38では、強磁性膜123
から発生しやすいフェロ結合磁界のために強磁性膜12
1の磁化がy方向に傾きやすいことを付け加えておく。
実施例37で詳しく説明したように、この強磁性的結合
磁界は、信号磁界ダイナミックレンジが縮まるが、異方
性磁気抵抗効果を重畳する利点を有する。なお、電流磁
界が強磁性膜121に加わるので、必ずしも強磁性膜1
21の容易軸がx方向にある必要はない。
Furthermore, in Example 38, the ferromagnetic film 123 was used.
Ferromagnetic film 12
It should be added that the magnetization of No. 1 is easily inclined in the y direction.
As described in detail in the thirty-seventh embodiment, the ferromagnetic coupling magnetic field reduces the signal magnetic field dynamic range, but has the advantage of superimposing the anisotropic magnetoresistance effect. Since the current magnetic field is applied to the ferromagnetic film 121, the ferromagnetic film 1
It is not necessary that the 21 easy axes be in the x-direction.

【0296】バルクハウゼンノイズ抑制効果が不十分の
ときは、強磁性膜123の磁化固着方向を信号磁界方向
から外すことにより、図中x方向に静磁結合磁界が発生
してより強いバルクハウゼンノイズ抑制磁界を付与でき
る。
When the Barkhausen noise suppressing effect is insufficient, the magnetization fixed direction of the ferromagnetic film 123 is deviated from the signal magnetic field direction, so that a magnetostatic coupling magnetic field is generated in the x direction in the figure to generate stronger Barkhausen noise. A suppressing magnetic field can be applied.

【0297】(実施例39)図71は、スピン依存散乱
能力を有する強磁性膜を3層とした場合の積層膜を示
す。図71では、センス電流と信号磁界が直交する場合
について示す。基板130上に、静磁界中で反強磁性膜
131、非磁性膜133および135を介在させたスピ
ン依存散乱能力を有する強磁性膜132,134,13
6の積層膜、反強磁性膜137を順次形成した。その上
に電極端子138を形成した。
(Example 39) FIG. 71 shows a laminated film in which three ferromagnetic films having spin-dependent scattering ability are formed. FIG. 71 shows a case where the sense current and the signal magnetic field are orthogonal. Ferromagnetic films 132, 134, 13 having a spin-dependent scattering ability with an antiferromagnetic film 131 and nonmagnetic films 133 and 135 interposed on a substrate 130 in a static magnetic field.
The laminated film of No. 6 and the antiferromagnetic film 137 were sequentially formed. An electrode terminal 138 was formed thereon.

【0298】ここで、静磁界の方向は、少なくとも強磁
性膜132と反強磁性膜137の成膜中は同じ方向とし
て(図中y方向)、強磁性膜134の成膜中はそれと4
5°の角をなす方向(図中x軸とy軸の2等分線方向)
とした。その結果、強磁性膜132と136の磁化は図
中y方向に固着され、強磁性膜134の磁化は高透磁率
を保ち、磁界0では図中x軸とy軸の2等分線方向近傍
に向く。したがって、この構成でも、磁界0では両強磁
性膜の磁化のなす角度はほぼ45°になり、信号磁界が
強磁性膜136の磁化固着方向に加わると、両強磁性膜
の磁化方向が強磁性的な配列になるため抵抗が減少し、
逆に磁化固着方向と180°異なる方向に信号磁界が加
わると、両強磁性膜の磁化方向が反強磁性的な配列にな
るため抵抗が増大する。すなわち、動作点バイアスが不
要になる。この構成では界面数が2倍に増えるので感度
も向上する。
Here, the direction of the static magnetic field is at least the same direction during the formation of the ferromagnetic film 132 and the antiferromagnetic film 137 (the y direction in the figure), and is 4 when the ferromagnetic film 134 is formed.
5 ° angle direction (direction of bisector of x axis and y axis in the figure)
And As a result, the magnetizations of the ferromagnetic films 132 and 136 are fixed in the y direction in the drawing, the magnetization of the ferromagnetic film 134 maintains a high magnetic permeability, and at a magnetic field of 0, the vicinity of the bisector of the x axis and the y axis in the drawing is shown. Turn to. Therefore, even in this configuration, when the magnetic field is 0, the angle between the magnetizations of the two ferromagnetic films is approximately 45 °, and when the signal magnetic field is applied to the magnetization fixed direction of the ferromagnetic film 136, the magnetization directions of the two ferromagnetic films become ferromagnetic. The resistance is reduced due to the natural arrangement,
Conversely, when a signal magnetic field is applied in a direction 180 ° different from the magnetization fixed direction, the resistance increases because the magnetization directions of both ferromagnetic films become antiferromagnetic. That is, the operating point bias becomes unnecessary. In this configuration, the number of interfaces is doubled, so that the sensitivity is also improved.

【0299】(実施例40)実施例38で示した方法の
磁気抵抗効果素子の積層膜の抵抗−磁界特性を説明す
る。
(Embodiment 40) The resistance-magnetic field characteristic of the laminated film of the magnetoresistive effect element of the method shown in Embodiment 38 will be described.

【0300】図70(C)において、基板120として
サファイアC面基板を用い、強磁性膜121として厚さ
5nmのPd下地膜を有する厚さ6nmのCo90Fe10膜を
用い、非磁性膜122として厚さ3nmのCu膜を用い、
強磁性膜123としては厚さ4nmのCo90Fe10膜を用
い、反強磁性膜124としては厚さ15nmのFeMn膜
を用い、さらに、その上に保護膜として厚さを5nmのP
d膜を形成した。
In FIG. 70C, a sapphire C-plane substrate is used as the substrate 120, a Co 90 Fe 10 film having a thickness of 6 nm and a Pd base film having a thickness of 5 nm is used as the ferromagnetic film 121, and the nonmagnetic film 122 is used. A 3 nm thick Cu film is used as
A 4 nm-thick Co 90 Fe 10 film is used as the ferromagnetic film 123, a 15 nm-thick FeMn film is used as the antiferromagnetic film 124, and a 5 nm-thick Pn film is formed thereon as a protective film.
A d film was formed.

【0301】この積層膜は2極スパッタリング法により
真空を保ったまま一括に成膜した。なお、成膜中には永
久磁石により静磁界を付与し、強磁性膜121の成膜を
終えた後に静磁界の方向を90°反転させて、強磁性膜
121と123の容易軸のなす角度を90°とした。ま
た、スパッタリングの予備排気は1×10-4Pa以下、
スパッタガス圧は0.4Paとした。
This laminated film was collectively formed by a two-pole sputtering method while maintaining a vacuum. During the film formation, a static magnetic field is applied by a permanent magnet, and after the film formation of the ferromagnetic film 121 is completed, the direction of the static magnetic field is reversed by 90 ° to form an angle between the easy axes of the ferromagnetic films 121 and 123. Was set to 90 °. In addition, the preliminary exhaust of sputtering is 1 × 10 −4 Pa or less,
The sputtering gas pressure was 0.4 Pa.

【0302】この積層膜の抵抗−磁界特性を実施例33
と同様に測定した。図72に困難軸方向の抵抗−磁界特
性を示す。図72において、強磁性的な磁化配列での抵
抗を1として規格化する。図72から分かるように、信
号磁界0で線形性のよい抵抗の磁界変化が得られる。こ
れにより、動作点バイアスが不必要であることが分か
る。
The resistance-magnetic field characteristics of this laminated film are shown in Example 33.
It measured similarly to. FIG. 72 shows the resistance-magnetic field characteristics in the hard axis direction. In FIG. 72, the resistance in the ferromagnetic magnetization arrangement is normalized as one. As can be seen from FIG. 72, a change in the resistance magnetic field with good linearity is obtained at a signal magnetic field of zero. This shows that the operating point bias is unnecessary.

【0303】(実施例41)ここでは、強磁性膜/非磁
性膜/強磁性膜からなるスピン依存散乱ユニットの両強
磁性膜に別の強磁性膜または反強磁性膜を2層以上積層
して、そのとき発生する両バイアス磁界を概ね直交させ
た磁気抵抗効果素子の実施例を示す。
(Example 41) In this example, two or more layers of another ferromagnetic film or antiferromagnetic film are laminated on both ferromagnetic films of the spin-dependent scattering unit composed of ferromagnetic film / nonmagnetic film / ferromagnetic film. Then, an embodiment of a magnetoresistive effect element in which both bias magnetic fields generated at that time are substantially orthogonal to each other will be described.

【0304】図73は、基板120上に、CoPt等の
ハード強磁性膜、一軸磁気異方性磁界Hkがスピン依存
散乱ユニットの強磁性膜よりも大きな高Hk強磁性膜
(例えば、Hk〜5kA/mのCoFeRe膜等)やN
iO等の反強磁性膜からなるバイアス磁界を印加するた
めの第1のバイアス膜121a、スピン依存散乱ユニッ
ト(強磁性膜121、非磁性膜122、強磁性膜12
3)、FeMn等の反強磁性膜からなるバイアス磁界を
印加するための第2のバイアス膜124を順次積層した
多層膜を示す。この多層膜の第1のバイアス膜121a
から発生するバイアス磁界は、積層界面を通した交換結
合により主に強磁性膜121にバイアス磁界が加わる。
一方、第2のバイアス膜124から発生するバイアス磁
界は、積層界面を通した交換結合により主に強磁性膜1
23に加わる。この第1と第2のバイアス磁界は概ね直
交するような方向関係を満足するように加える。さら
に、第2のバイアス磁界は強磁性膜123の磁化が信号
磁界で実質的に動けない程度の強い値とする(10kA
/m以上が望ましい)。
FIG. 73 shows a high-Hk ferromagnetic film (for example, Hk to 5 kA) having a hard ferromagnetic film such as CoPt and a uniaxial magnetic anisotropic magnetic field Hk larger than those of the spin-dependent scattering unit on the substrate 120. / M CoFeRe film, etc.) or N
a first bias film 121a for applying a bias magnetic field made of an antiferromagnetic film such as iO, a spin-dependent scattering unit (a ferromagnetic film 121, a nonmagnetic film 122, a ferromagnetic film 12
3) shows a multilayer film in which a second bias film 124 for applying a bias magnetic field made of an antiferromagnetic film such as FeMn is sequentially stacked. The first bias film 121a of this multilayer film
, A bias magnetic field is mainly applied to the ferromagnetic film 121 by exchange coupling through the lamination interface.
On the other hand, the bias magnetic field generated from the second bias film 124 is mainly due to exchange coupling through the lamination interface.
Join 23. The first and second bias magnetic fields are applied so as to satisfy a directional relationship that is substantially orthogonal. Further, the second bias magnetic field has a strong value such that the magnetization of the ferromagnetic film 123 cannot be substantially moved by the signal magnetic field (10 kA).
/ M or more is desirable).

【0305】一方、第1のバイアス磁界強度は、信号磁
界により強磁性膜121の磁化が回転でき、バルクハウ
ゼンノイズが抑制できる程度の磁界とする。具体的に
は、第1のバイアス膜に反強磁性膜を用いる場合には、
バイアス膜121aと強磁性膜121のバイアス磁界を
5kA/m以下にすることが望ましい。第1のバイアス
膜に強磁性膜を用いる場合には、何等かの手段によりバ
イアス膜121aの磁化方向を一定方向に保持して単磁
区化してバイアス膜121aと強磁性膜121を強い交
換結合で一体化すると、信号磁界によりバイアス膜12
1aおよび強磁性膜121が概ね同様に回転でき、強磁
性膜121aが単磁区であるので、強磁性膜121も単
磁区になりバルクハウゼンノイズが除去できる。あるい
は、例えば界面に別の層を挿入してバイアス膜121a
と強磁性膜121の交換結合〜5kA/m以下に弱める
方法もある。この場合、強磁性膜121のみが信号磁界
により磁化回転するため、バイアス膜121aの透磁率
を抑制して磁化を動き難くすることが好ましい。この透
磁率抑制手段としては、Hkの向上、保磁力の向上、あ
るいは何等かの手段で一方向性バイアス磁界をバイアス
膜121aに加える等がある。
On the other hand, the first bias magnetic field strength is set to such a level that the magnetization of the ferromagnetic film 121 can be rotated by the signal magnetic field and Barkhausen noise can be suppressed. Specifically, when an antiferromagnetic film is used for the first bias film,
It is desirable that the bias magnetic field between the bias film 121a and the ferromagnetic film 121 be 5 kA / m or less. When a ferromagnetic film is used for the first bias film, the magnetization direction of the bias film 121a is maintained in a fixed direction by a certain means to form a single magnetic domain, and the bias film 121a and the ferromagnetic film 121 are strongly exchange-coupled. When integrated, the bias film 12 is generated by the signal magnetic field.
Since the ferromagnetic film 1a and the ferromagnetic film 121 can be rotated in substantially the same manner and the ferromagnetic film 121a has a single magnetic domain, the ferromagnetic film 121 also has a single magnetic domain, so that Barkhausen noise can be removed. Alternatively, for example, another layer is inserted into the interface to form the bias film 121a.
Exchange coupling between the ferromagnetic film 121 and the ferromagnetic film 121 to 5 kA / m or less. In this case, since only the ferromagnetic film 121 is rotated by the signal magnetic field, it is preferable to suppress the magnetic permeability of the bias film 121a to make the magnetization hard to move. As a means for suppressing the magnetic permeability, there is an improvement in Hk, an improvement in coercive force, or application of a unidirectional bias magnetic field to the bias film 121a by some means.

【0306】ここで、強磁性膜121aを単磁区化する
手段としては、図74に示すように、バイアス膜121
aをスピンバルブユニットよりも長くしてバイアス膜1
21aのエッジ部に新たな反強磁性膜やハード膜121
bを積層することが等が可能である。
Here, as a means for making the ferromagnetic film 121a into a single magnetic domain, as shown in FIG.
a is longer than the spin valve unit and the bias film 1
A new antiferromagnetic film or hard film 121 is provided at the edge of 21a.
It is possible to stack b.

【0307】以上の構成の磁気抵抗効果素子を作製する
と、強磁性膜123の磁化方向は固定され強磁性膜12
1の磁化が信号磁界に応じて変化するので、図69に示
した実施例と同様に信号磁界〜0で線形性の良好な高感
度な磁気抵抗効果素子が得られ、なおかつ信号磁界を検
出する強磁性膜121の磁壁も除去できるので、動作点
バイアスが不要で高感度・ノイズなしの信号磁界再生が
可能になる。
When the magnetoresistive effect element having the above structure is manufactured, the magnetization direction of the ferromagnetic film 123 is fixed and the ferromagnetic film 12 is fixed.
Since the magnetization of No. 1 changes in accordance with the signal magnetic field, a high-sensitivity magnetoresistive element having good linearity with a signal magnetic field of 0 to 0 can be obtained as in the embodiment shown in FIG. 69, and the signal magnetic field is detected. Since the domain wall of the ferromagnetic film 121 can also be removed, a high-sensitivity, noise-free signal magnetic field reproduction can be performed without an operating point bias.

【0308】ここで、強磁性膜121の磁化容易軸方向
をバイアス磁界方向と直交する方向に付与することが、
特に磁気異方性の大きなCo系の強磁性膜を121に用
いた場合には望ましい。そうすると、異方性磁界に相当
する飽和磁界とバイアス磁界が相殺できるので、Hsが
大幅に低減できるので、図69に示した飽和磁界−抵抗
特性の傾きが急峻になり、通常のバイアス磁界方向と強
磁性膜121の磁化容易軸が同方向である場合に比べ
て、より高感度な信号磁界検出が可能になる。バイアス
磁界と強磁性膜の容易軸の方向を変えるには、バイアス
膜121aの成膜中における磁界印加方向と強磁性膜1
21の成膜中における磁界付与方向を変える方法等があ
る。
Here, the direction of the easy axis of magnetization of the ferromagnetic film 121 may be applied in the direction orthogonal to the bias magnetic field direction.
It is particularly desirable when a Co-based ferromagnetic film having a large magnetic anisotropy is used for 121. Then, since the saturation magnetic field corresponding to the anisotropic magnetic field and the bias magnetic field can be canceled out, Hs can be greatly reduced. Therefore, the slope of the saturation magnetic field-resistance characteristic shown in FIG. Compared to the case where the axes of easy magnetization of the ferromagnetic films 121 are in the same direction, it is possible to detect the signal magnetic field with higher sensitivity. To change the direction of the bias magnetic field and the direction of the easy axis of the ferromagnetic film, the direction of the magnetic field application during the formation of the bias film 121a and the direction of the ferromagnetic film 1
For example, there is a method of changing the direction in which the magnetic field is applied during the film formation of No.

【0309】(実施例42)図75に示すように、支持
基板140上に、高保磁力膜の配向を制御するための厚
さ20nmのCr下地膜141、Co等からなる厚さ8nm
の高保磁力膜142、Cu等からなる厚さ3nmの非磁性
膜143、および厚さ4.6nmのNiFe等からなる強
磁性膜144を順次形成し、さらに、その上に電極端子
145を形成してスピンバルブ構造の磁気抵抗効果素子
を作製した。なお、積層膜の成膜は超高真空Eガン蒸着
により行った。このときの基板温度は約100℃とし、
真空チャンバー内は1×10-8Pa以下に排気した。
(Example 42) As shown in FIG. 75, a Cr base film 141 having a thickness of 20 nm for controlling the orientation of a high coercive force film on a supporting substrate 140, and a thickness of 8 nm made of Co or the like.
A high coercive force film 142, a non-magnetic film 143 having a thickness of 3 nm made of Cu, and a ferromagnetic film 144 made of NiFe having a thickness of 4.6 nm are sequentially formed, and an electrode terminal 145 is further formed thereon. A magnetoresistive effect element having a spin valve structure was produced. The deposition of the laminated film was performed by ultrahigh vacuum E gun vapor deposition. The substrate temperature at this time is about 100 ° C.,
The inside of the vacuum chamber was evacuated to 1 × 10 −8 Pa or less.

【0310】基板温度約100℃とした場合のCo/C
r膜についてX線回折パターンを調べた。その結果を図
76に示す。図76に示すように、この膜はCr(20
0)が高配向であり、このCr膜を下地膜としたCo膜
も(110)が高配向であった。なお、Co(110)
ピークのロッキングカーブ半値幅は約3°であった。
Co / C when the substrate temperature is about 100 ° C.
The X-ray diffraction pattern of the r film was examined. The result is shown in FIG. As shown in FIG. 76, this film is made of Cr (20
0) is highly oriented, and (110) is also highly oriented in the Co film using this Cr film as a base film. In addition, Co (110)
The full width at half maximum of the rocking curve of the peak was about 3 °.

【0311】次に、基板温度約100℃で成膜した図7
5に示すNiFe/Cu/Co/Cr/基板の構造の積
層膜の困難軸方向のR−Hカーブを図77に示す。R−
Hカーブは通常のレジストプロセス、イオンミーリング
を用いて積層膜を2mm×6μmのパターンに加工し、4
端子法により測定した値に基づいて作成した。このと
き、容易軸はパターン長手方向とし、磁界はパターン幅
方向に加えた。
Next, a film is formed at a substrate temperature of about 100.degree.
77 shows the RH curve in the hard axis direction of the laminated film having the structure of NiFe / Cu / Co / Cr / substrate shown in FIG. R-
The H-curve is processed into a 2mm x 6μm pattern using a normal resist process and ion milling.
It was created based on the values measured by the terminal method. At this time, the easy axis was set in the pattern longitudinal direction, and the magnetic field was applied in the pattern width direction.

【0312】図77に示すように印加磁界±80Oeの
場合、抵抗変化率約6.5%となり、飽和磁界は約3.
6kA/mとなった。
As shown in FIG. 77, when the applied magnetic field is ± 80 Oe, the resistance change rate is about 6.5%, and the saturation magnetic field is about 3.
It became 6 kA / m.

【0313】この構造は、高保磁力膜のHcが約8kA
/mであるため、媒体からの磁界が8kA/m未満の場
合は問題がないが、ヘッドと媒体との間が近い構造、す
なわち媒体からの磁界が8kA/m以上となるような構
造には適さない。そこで、図75と同様の構造、膜厚
で、基板温度を約200℃とし、さらに約8kA/mの
磁界中で積層膜を成膜した。
In this structure, Hc of the high coercive force film is about 8 kA.
/ M, there is no problem when the magnetic field from the medium is less than 8 kA / m. However, in a structure in which the head is close to the medium, that is, a structure in which the magnetic field from the medium is 8 kA / m or more. Not suitable. Therefore, the laminated film was formed in the same structure and thickness as in FIG. 75, at a substrate temperature of about 200 ° C., and in a magnetic field of about 8 kA / m.

【0314】基板温度約200℃とした場合のCo/C
rのX線回折パターンは図76とほぼ同じであった。ま
た、この積層膜もCo(110)ピークのロッキングカ
ーブ半値幅は約3°であった。さらに、ポールフィギュ
アで測定したところ磁界方向に六方晶C軸の偏りが見ら
れた。したがって、基板温度100℃、無磁界中におい
て成膜した積層膜に比べ、単結晶様のCoが得られた。
Co / C when the substrate temperature is about 200 ° C.
The X-ray diffraction pattern of r was almost the same as FIG. In addition, this laminated film also had a rocking curve half width of the Co (110) peak of about 3 °. Furthermore, when measured with a pole figure, a deviation of the hexagonal C axis was observed in the direction of the magnetic field. Therefore, single-crystal-like Co was obtained as compared with a laminated film formed at a substrate temperature of 100 ° C. in a non-magnetic field.

【0315】次に、基板温度約200℃、磁界中におい
て成膜した図75と同じ構造の積層膜の困難軸方向のR
−Hカーブを図78に示す。R−Hカーブは前記と同様
に積層膜を2mm×6μmのパターンに加工し、4端子法
で測定した値に基づいて作成した。このとき容易軸(C
軸の方向)はパターン長手方向とし、磁界はパターン幅
方向に加えた。
Next, R in the direction of the hard axis of the laminated film having the same structure as that shown in FIG. 75 formed in a magnetic field at a substrate temperature of about 200 ° C.
FIG. 78 shows the −H curve. The RH curve was prepared based on values measured by a four-terminal method by processing the laminated film into a pattern of 2 mm × 6 μm in the same manner as described above. At this time, the easy axis (C
The direction of the axis was the longitudinal direction of the pattern, and the magnetic field was applied in the pattern width direction.

【0316】図78に示すように、外部磁界±1.6k
A/mの場合でも高保磁力膜の磁化は印加磁界によって
ほとんど動くことはなく、しかもNiFe膜の飽和磁界
も約2.8kA/mと低く保つことができた。また、抵
抗変化率も約7.5%となった。
As shown in FIG. 78, the external magnetic field ± 1.6 k
Even in the case of A / m, the magnetization of the high coercive force film hardly moved by the applied magnetic field, and the saturation magnetic field of the NiFe film could be kept low at about 2.8 kA / m. Further, the resistance change rate was also about 7.5%.

【0317】上記構成の積層膜は、外部磁界1.6kA
/mでも高保磁力膜の磁化が安定しているため、NiF
e膜の容易軸を幅方向として、CoのC軸を概ね長手方
向とするパターンを作製した。この構成により動作点バ
イアスが不要となる。このとき、磁界をパターン長手方
向に加え、そのときのR−Hカーブを測定した。なお、
パターン形状は前記と同様に2mm×6μmとした。その
結果を図79に示す。図79から分かるように、ヒステ
リシスのない良好なR−Hカーブが得られ、Hkも約
1.6kA/mと低い値を示した。
The laminated film having the above structure has an external magnetic field of 1.6 kA.
/ M, since the magnetization of the high coercivity film is stable, NiF
A pattern was prepared in which the easy axis of the e film was the width direction and the C axis of Co was substantially the longitudinal direction. This configuration eliminates the need for operating point bias. At this time, a magnetic field was applied in the longitudinal direction of the pattern, and the RH curve at that time was measured. In addition,
The pattern shape was 2 mm × 6 μm as described above. FIG. 79 shows the result. As can be seen from FIG. 79, a good RH curve without hysteresis was obtained, and Hk also showed a low value of about 1.6 kA / m.

【0318】また、ここでは高保磁力膜としてCo膜を
用いたが、CoNi膜、CoCr膜を用いてもよい。さ
らに、下地膜としてはCr膜の他にW膜等を用いてもよ
く、これらのCr,Wをベースとして、それに添加元素
を加えてもよい。なお、この下地膜は、本発明全体にわ
たっていわゆるハード膜の下地膜に適用することができ
る。これにより、C軸を硬磁性膜の膜面内に存在させる
(特定方向にC軸が揃う)ことができる。したがって、
硬磁性膜を固着した場合に、その上に形成した強磁性膜
まで固着されることを防止できる。
Although the Co film is used as the high coercive force film here, a CoNi film or a CoCr film may be used. Further, a W film or the like may be used as the underlayer film in addition to the Cr film, and an additive element may be added to these Cr and W bases. This underlayer can be applied to a so-called hard film underlayer throughout the present invention. Thereby, the C axis can be present in the film surface of the hard magnetic film (the C axis is aligned in a specific direction). Therefore,
When the hard magnetic film is fixed, it is possible to prevent the ferromagnetic film formed thereon from being fixed.

【0319】ここで、参考のために下地膜のない積層膜
のM−Hカーブを図80に示す。Coの磁化の垂直成分
から漏れ磁界が発生し、NiFe膜の軟磁気特性を劣化
させていることが分かる。これは、一部のNiFeとC
oの磁化が一体化していると考えられる。
For reference, the MH curve of the laminated film having no underlying film is shown in FIG. It can be seen that a leakage magnetic field is generated from the perpendicular component of the magnetization of Co, deteriorating the soft magnetic characteristics of the NiFe film. This is because some NiFe and C
It is considered that the magnetization of o is integrated.

【0320】(実施例43)実施例42で示すように、
基板温度約200℃で成膜した高保磁力膜は、単結晶様
の膜で低抵抗であるため、電子の平均自由行程を高保磁
力膜の厚みよりも充分に長くできる。したがって、図8
1のように高保磁力膜142と強磁性膜144とをCu
非磁性膜143を介して積層した。この積層膜の抵抗変
化率は約15%と高い値を示した。なお、このような構
造の積層膜を作製するためには、第1層の高保磁力膜1
42の配向を制御するために下地膜を設けることが望ま
しい。また、本実施例では下地膜として厚さ20nmのC
r膜141を用いた。
(Example 43) As shown in Example 42,
Since the high coercive force film formed at a substrate temperature of about 200 ° C. is a single crystal-like film and has low resistance, the mean free path of electrons can be made sufficiently longer than the thickness of the high coercive force film. Therefore, FIG.
1, the high coercive force film 142 and the ferromagnetic film 144 are made of Cu.
The layers were stacked with the nonmagnetic film 143 interposed therebetween. The resistance change rate of this laminated film showed a high value of about 15%. In order to manufacture a laminated film having such a structure, the high coercive force film 1 of the first layer is used.
It is desirable to provide a base film to control the orientation of 42. Further, in this embodiment, as a base film, C having a thickness of 20 nm is used.
The r film 141 was used.

【0321】(実施例44)次に、配向制御用高保磁力
膜を例えば実施例34でのバイアス膜として用いた場合
について説明する。
(Example 44) Next, the case where the high coercive force control film for orientation control is used as the bias film in Example 34 will be described.

【0322】本実施例では、図82に示すように、配向
制御用高保磁力膜142上に磁気的絶縁層146を介し
てスピンバルブ構造の磁気抵抗効果素子を形成した。こ
のように、配向制御高保磁力膜142を用いることによ
って、膜端部において高保磁力膜142とNiFe膜1
44が静磁結合し、バルクハウゼンノイズの原因となっ
ているNiFe膜端部の磁壁を固着させることができ
る。さらに、配向制御高保磁力膜を用いているため、高
保磁力膜のNiFe膜に対する影響、例えば膜内部の漏
れ磁界等を回避でき、NiFe膜の軟磁気特性を劣化さ
せることなく、良好な素子を作製できる。また、ここで
はスピンバルブ構造の交換バイアス膜として反強磁性膜
等を用いてもよい。
In this example, as shown in FIG. 82, a magnetoresistive effect element having a spin valve structure was formed on a high coercive force controlling film 142 with a magnetic insulating layer 146 interposed therebetween. As described above, by using the orientation control high coercive force film 142, the high coercive force film 142 and the NiFe film 1 are formed at the film end portions.
44 is magnetostatically coupled, and the domain wall at the end of the NiFe film, which causes Barkhausen noise, can be fixed. Furthermore, since the orientation control high coercive force film is used, the influence of the high coercive force film on the NiFe film, for example, the leakage magnetic field inside the film can be avoided, and a good device can be manufactured without deteriorating the soft magnetic characteristics of the NiFe film. it can. Here, an antiferromagnetic film or the like may be used as the exchange bias film having the spin valve structure.

【0323】[0323]

【発明の効果】以上説明した如く本発明の磁気抵抗効果
素子は、高い抵抗変化率および優れた軟磁気特性を同時
に発揮できるものであり、その工業的価値は大なるもの
がある。
As described above, the magnetoresistance effect element of the present invention can simultaneously exhibit a high rate of change in resistance and excellent soft magnetic properties, and its industrial value is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の発明の磁気抵抗効果素子(スピ
ンバルブ構造)を示す断面図。
FIG. 1 is a sectional view showing a magnetoresistive element (spin valve structure) according to a first embodiment of the present invention.

【図2】図1に示す磁気抵抗効果素子の抵抗変化率の外
部磁界依存性を示すグラフ。
FIG. 2 is a graph showing an external magnetic field dependency of a resistance change rate of the magnetoresistive element shown in FIG.

【図3】(A),(B)は図1に示す磁気抵抗効果素子
の磁化曲線を示すグラフ。
3A and 3B are graphs showing magnetization curves of the magnetoresistive effect element shown in FIG. 1.

【図4】本発明の第1の発明の磁気抵抗効果素子(人工
格子膜)の一例を示す断面図。
FIG. 4 is a sectional view showing an example of the magnetoresistance effect element (artificial lattice film) according to the first invention of the present invention.

【図5】図4に示す磁気抵抗効果素子の抵抗変化率の外
部磁界依存性を示すグラフ。
5 is a graph showing the external magnetic field dependence of the rate of change in resistance of the magnetoresistive element shown in FIG.

【図6】Co90Fe10膜のCu下地膜がある場合の保磁
力の膜厚依存性を示すグラフ。
FIG. 6 is a graph showing the film thickness dependence of coercive force when a Cu 90 Fe 10 film has a Cu underlayer.

【図7】Co90Fe10膜のCu下地膜がない場合の保磁
力の膜厚依存性を示すグラフ。
FIG. 7 is a graph showing the dependence of the coercive force on the film thickness when there is no Cu underlayer of the Co 90 Fe 10 film.

【図8】本発明の第1の発明の磁気抵抗効果素子(スピ
ンバルブ構造)を示す断面図。
FIG. 8 is a sectional view showing a magnetoresistive element (spin valve structure) according to the first invention of the present invention.

【図9】(A)はサファイア基板C面におけるθ−2θ
スキャンX線回折曲線、(B)はサファイア基板R面に
おけるθ−2θスキャンX線回折曲線。
FIG. 9A is a diagram showing θ-2θ on the sapphire substrate C surface.
Scan X-ray diffraction curve, (B) shows θ-2θ scan X-ray diffraction curve on R surface of sapphire substrate.

【図10】Co90Fe10膜/Cu膜/サファイア基板C
面における最密面ピークに関するロッキングカーブ。
FIG. 10: Co 90 Fe 10 film / Cu film / sapphire substrate C
Rocking curve for the densest surface peak in the surface.

【図11】Co90Fe10膜における保磁力の最密面反射
でのロッキングカーブ半値幅依存性を示すグラフ。
FIG. 11 is a graph showing the dependence of the coercive force of the Co 90 Fe 10 film on the half width of the rocking curve in the close-packed surface reflection.

【図12】(Co90Fe101-x Alx 膜/Cu膜にお
ける保磁力のAl濃度x依存性を示すグラフ。
FIG. 12 is a graph showing the dependence of the coercive force on the Al concentration x in the (Co 90 Fe 10 ) 1-x Al x film / Cu film.

【図13】Co90Fe10膜/Cu膜における保磁力の最
密面反射強度依存性を示すグラフ。
FIG. 13 is a graph showing the dependence of the coercive force of the Co 90 Fe 10 film / Cu film on the close-packed surface reflection intensity.

【図14】(Co90Fe101-x Tax 膜/Cu膜にお
ける保磁力のTa濃度x依存性を示すグラフ。
[14] (Co 90 Fe 10) 1- x Ta x film / Cu film graph showing the Ta concentration x dependency of the coercive force in the.

【図15】本発明の第1の発明の磁気抵抗効果素子(ス
ピンバルブ構造)を示す断面図。
FIG. 15 is a sectional view showing a magnetoresistive element (spin valve structure) according to the first invention of the present invention.

【図16】本発明の第3の発明の磁気抵抗効果素子を示
す断面図。
FIG. 16 is a sectional view showing a magnetoresistive element according to a third invention of the present invention.

【図17】図16に示す磁気抵抗効果素子の容易軸方向
のM−Hカーブ。
17 is an MH curve in the easy axis direction of the magnetoresistive element shown in FIG.

【図18】図16に示す磁気抵抗効果素子の困難軸方向
のM−Hカーブ。
18 is an MH curve of the magnetoresistive element shown in FIG. 16 in the hard axis direction.

【図19】図16に示す磁気抵抗効果素子のR−Hカー
ブ。
19 is an RH curve of the magnetoresistive element shown in FIG.

【図20】高抵抗アモルファス層を設けない磁気抵抗効
果素子の容易軸方向のM−Hカーブ。
FIG. 20 is an MH curve in the easy axis direction of a magnetoresistive element without a high-resistance amorphous layer.

【図21】高抵抗アモルファス層を設けない磁気抵抗効
果素子の困難軸方向のM−Hカーブ。
FIG. 21 is an MH curve in a hard axis direction of a magnetoresistive element without a high-resistance amorphous layer.

【図22】本発明の第3の発明の磁気抵抗効果素子を示
す断面図。
FIG. 22 is a sectional view showing a magnetoresistance effect element according to a third invention of the present invention.

【図23】(A)〜(C)は本発明の第3の発明の磁気
抵抗効果素子の他の例の製造過程を示す断面図。
FIGS. 23A to 23C are cross-sectional views showing a manufacturing process of another example of the magnetoresistance effect element according to the third invention of the present invention.

【図24】本発明の第3の発明の磁気抵抗効果素子の他
の例を示す斜視図。
FIG. 24 is a perspective view showing another example of the magnetoresistance effect element according to the third invention of the present invention.

【図25】本発明の第4の発明の磁気抵抗効果素子の例
を示す断面図。
FIG. 25 is a sectional view showing an example of a magnetoresistive element according to a fourth aspect of the present invention.

【図26】図25に示す磁気抵抗効果素子において△ρ
/ρ0 とdCoFeとの関係を示すグラフ。
26 shows △ ρ in the magnetoresistance effect element shown in FIG.
5 is a graph showing the relationship between / ρ 0 and d CoFe .

【図27】本発明の第5の発明の磁気抵抗効果素子を示
す断面図。
FIG. 27 is a sectional view showing a magnetoresistance effect element according to a fifth aspect of the present invention.

【図28】本発明の第5の発明の磁気抵抗効果素子を示
す断面図。
FIG. 28 is a sectional view showing a magnetoresistance effect element according to a fifth invention of the present invention.

【図29】本発明の第6の発明の磁気抵抗効果素子にお
ける保磁力の強磁性膜の膜厚依存性を示すグラフ。
FIG. 29 is a graph showing the dependence of the coercive force on the thickness of the ferromagnetic film in the magnetoresistance effect element according to the sixth aspect of the present invention.

【図30】本発明の第6の発明の磁気抵抗効果素子にお
ける保磁力の強磁性膜の膜厚依存性を示すグラフ。
FIG. 30 is a graph showing the dependence of the coercive force on the thickness of the ferromagnetic film in the magnetoresistance effect element according to the sixth aspect of the present invention.

【図31】本発明の第6の発明の磁気抵抗効果素子の強
磁性膜の磁化曲線。
FIG. 31 is a magnetization curve of a ferromagnetic film of a magnetoresistive element according to a sixth aspect of the present invention.

【図32】本発明の第7の発明の磁気抵抗効果素子にお
ける積層周期依存性を示すグラフ。
FIG. 32 is a graph showing the stacking cycle dependence of the magnetoresistance effect element according to the seventh aspect of the present invention.

【図33】本発明の第6の発明の磁気抵抗効果素子の強
磁性膜における飽和磁界HsとCu膜厚との関係を示す
グラフ。
FIG. 33 is a graph showing a relationship between a saturation magnetic field Hs and a Cu film thickness in a ferromagnetic film of a magnetoresistive element according to a sixth invention of the present invention.

【図34】本発明の第7の発明の磁気抵抗効果素子の強
磁性膜の磁化曲線。
FIG. 34 is a magnetization curve of a ferromagnetic film of a magnetoresistive element according to a seventh aspect of the present invention.

【図35】本発明の第7の発明の磁気抵抗効果素子を示
す断面図。
FIG. 35 is a sectional view showing a magnetoresistive element according to a seventh invention of the present invention.

【図36】第7の発明において、CuとCoFeとの界
面状態を示す断面図。
FIG. 36 is a sectional view showing an interface state between Cu and CoFe in the seventh invention.

【図37】図35に示す磁気抵抗効果素子の磁化曲線。FIG. 37 is a magnetization curve of the magnetoresistance effect element shown in FIG.

【図38】図35に示す磁気抵抗効果素子の抵抗変化特
性を示すグラフ。
FIG. 38 is a graph showing the resistance change characteristics of the magnetoresistance effect element shown in FIG.

【図39】従来の磁気抵抗効果素子の磁化曲線。FIG. 39 is a magnetization curve of a conventional magnetoresistance effect element.

【図40】従来の磁気抵抗効果素子の抵抗変化特性を示
すグラフ。
FIG. 40 is a graph showing resistance change characteristics of a conventional magnetoresistance effect element.

【図41】(A),(B)は本発明の第7の発明の磁気
抵抗効果素子のCu下地膜を有する強磁性膜についての
磁化曲線。
41 (A) and (B) are magnetization curves of a ferromagnetic film having a Cu underlayer of the magnetoresistive element of the seventh invention of the present invention.

【図42】本発明の第7の発明の磁気抵抗効果素子のC
u下地膜を有する強磁性膜についての抵抗変化特性を示
すグラフ。
FIG. 42 shows C of the magnetoresistance effect element of the seventh invention of the present invention.
9 is a graph showing resistance change characteristics of a ferromagnetic film having a u underlayer.

【図43】本発明の第4の発明の磁気抵抗効果素子を示
す断面図。
FIG. 43 is a sectional view showing a magnetoresistance effect element according to a fourth invention of the present invention.

【図44】図43に示す磁気抵抗効果素子の磁化曲線。FIG. 44 is a magnetization curve of the magnetoresistance effect element shown in FIG. 43.

【図45】図43に示す磁気抵抗効果素子の抵抗変化特
性を示すグラフ。
FIG. 45 is a graph showing the resistance change characteristics of the magnetoresistance effect element shown in FIG. 43.

【図46】膜内の揺らぎを説明するための概略図。FIG. 46 is a schematic view for explaining fluctuation in a film.

【図47】(A)はMgO(110)面基板上Co90
10/Cu人工格子膜の小角反射のX線回折曲線、
(B)はMgO(110)面基板上Co90Fe10/Cu
人工格子膜の中角反射のX線回折曲線。
FIG. 47A shows Co 90 F on a MgO (110) surface substrate
X-ray diffraction curve of small angle reflection of e 10 / Cu artificial lattice film,
(B) shows Co 90 Fe 10 / Cu on MgO (110) plane substrate
X-ray diffraction curve of medium angle reflection of the artificial lattice film.

【図48】(A)は図47におけるfcc(220)反
射に関する[110]軸方向から測定したロッキングカ
ーブ、(B)は図47におけるfcc(220)反射に
関する[100]軸方向から測定したロッキングカー
ブ。
48A shows a rocking curve measured from the [110] axis direction regarding the fcc (220) reflection in FIG. 47, and FIG. 48B shows a rocking curve measured from the [100] axis direction regarding the fcc (220) reflection in FIG. 47. curve.

【図49】(A)は結晶配向面の揺らぎによる結晶配向
面の法線の面内分布を示す概略図、(B)は抵抗変化率
のセンス電流方向依存性を示す概略図。
FIG. 49A is a schematic diagram showing an in-plane distribution of a normal line of a crystal orientation surface due to fluctuation of the crystal orientation surface, and FIG. 49B is a schematic diagram showing a sense current direction dependency of a resistance change rate.

【図50】(A)はCu5.5nm/(Cu1.1nm/C
oFe1nm)16人工格子膜の外部磁界[100]軸方向
の磁化曲線、(B)はCu5.5nm/(Cu1.1nm/
CoFe1nm)16人工格子膜の外部磁界[110]軸方
向の磁化曲線。
FIG. 50 (A) shows Cu 5.5 nm / (Cu 1.1 nm / C)
oFe 1 nm) 16 The magnetization curve in the direction of the external magnetic field [100] of the artificial lattice film, (B) is Cu 5.5 nm / (Cu 1.1 nm /
(CoFe 1 nm) A magnetization curve in the direction of the external magnetic field [110] axis of the 16 artificial lattice film.

【図51】MgO(110)面基板上におけるCo90
10/Cu積層膜の抵抗変化率のバイアス電圧依存性を
示すグラフ。
FIG. 51 shows Co 90 F on a MgO (110) plane substrate
6 is a graph showing the bias voltage dependence of the rate of change of resistance of the e 10 / Cu laminated film.

【図52】fcc相(111)面配向したCo90Fe10
/Cu積層膜に積層欠陥が導入された場合の概念図。
FIG. 52: Co 90 Fe 10 oriented in the fcc phase (111) plane
FIG. 3 is a conceptual diagram in a case where stacking faults are introduced into a / Cu stacked film.

【図53】fcc相(111)面配向したCo90Fe10
/Cu積層膜に積層欠陥が導入された場合の原子配列を
示す概念図。
FIG. 53: Co 90 Fe 10 oriented in the fcc phase (111) plane
FIG. 3 is a conceptual diagram showing an atomic arrangement when a stacking fault is introduced into a / Cu stacked film.

【図54】fcc相(111)面配向したCo90Fe10
/Cu積層膜に双晶欠陥が導入された場合の原子配列を
示す概念図。
FIG. 54: Co 90 Fe 10 oriented in the fcc phase (111) plane
FIG. 3 is a conceptual diagram showing an atomic arrangement in the case where twin defects are introduced into a / Cu laminated film.

【図55】図54に示す状態における抵抗変化率のセン
ス電流方向依存性を示す概略図。
55 is a schematic diagram showing the sense current direction dependence of the resistance change rate in the state shown in FIG. 54.

【図56】ガラス基板上におけるCo90Fe10/Cu人
工格子膜の抵抗変化率の基板バイアス依存性を示すグラ
フ。
FIG. 56 is a graph showing the substrate bias dependence of the rate of change in resistance of a Co 90 Fe 10 / Cu artificial lattice film on a glass substrate.

【図57】ガラス基板上におけるCo90Fe10/Cu人
工格子膜の長周期構造反射強度のバイアス依存性を示す
グラフ。
FIG. 57 is a graph showing the bias dependency of the long-period structure reflection intensity of the Co 90 Fe 10 / Cu artificial lattice film on a glass substrate.

【図58】ガラス基板上におけるCo90Fe10/Cu人
工格子膜のfcc相(111)面反射強度のバイアス依
存性を示すグラフ。
FIG. 58 is a graph showing bias dependence of the reflection intensity of the fcc phase (111) surface of a Co 90 Fe 10 / Cu artificial lattice film on a glass substrate.

【図59】ガラス基板上におけるCo90Fe10/Cu人
工格子膜の保磁力のバイアス依存性を示すグラフ。
FIG. 59 is a graph showing the bias dependence of the coercive force of a Co 90 Fe 10 / Cu artificial lattice film on a glass substrate.

【図60】本発明の第8の発明の磁気抵抗効果素子を示
す斜視図。
FIG. 60 is a perspective view showing a magnetoresistance effect element according to an eighth aspect of the present invention.

【図61】本発明の第8の発明の磁気抵抗効果素子を示
す斜視図。
FIG. 61 is a perspective view showing a magnetoresistance effect element according to an eighth aspect of the present invention.

【図62】本発明の第8の発明の磁気抵抗効果素子を示
す斜視図。
FIG. 62 is a perspective view showing a magnetoresistance effect element according to an eighth aspect of the present invention.

【図63】本発明の第8の発明の磁気抵抗効果素子を示
す斜視図。
FIG. 63 is a perspective view showing a magnetoresistive element according to an eighth aspect of the present invention.

【図64】本発明の第8の発明の磁気抵抗効果素子を示
す斜視図。
FIG. 64 is a perspective view showing a magnetoresistance effect element according to an eighth aspect of the present invention.

【図65】本発明の第8の発明の磁気抵抗効果素子を示
す斜視図。
FIG. 65 is a perspective view showing a magnetoresistance effect element according to an eighth aspect of the present invention.

【図66】本発明の第8の発明の磁気抵抗効果素子の抵
抗変化特性を示すグラフ。
FIG. 66 is a graph showing the resistance change characteristics of the magnetoresistive element according to the eighth aspect of the present invention.

【図67】本発明の第12の発明の磁気抵抗効果素子を
示す斜視図。
FIG. 67 is a perspective view showing a magnetoresistive element according to a twelfth aspect of the present invention.

【図68】本発明の第12の発明の磁気抵抗効果素子を
示す斜視図。
FIG. 68 is a perspective view showing a magnetoresistive element according to a twelfth aspect of the present invention.

【図69】本発明の第10の発明の磁気抵抗効果素子を
示す斜視図。
FIG. 69 is a perspective view showing a magnetoresistive element according to a tenth aspect of the present invention.

【図70】(A)〜(C)は本発明の第10の発明の磁
気抵抗効果素子を示す斜視図。
70 (A) to 70 (C) are perspective views showing a magnetoresistive element according to a tenth aspect of the present invention.

【図71】本発明の第10の発明の磁気抵抗効果素子を
示す斜視図。
FIG. 71 is a perspective view showing a magnetoresistance effect element according to a tenth aspect of the present invention.

【図72】本発明の第10の発明の磁気抵抗効果素子の
積層膜の抵抗変化特性を示すグラフ。
FIG. 72 is a graph showing the resistance change characteristics of the laminated film of the magnetoresistive element according to the tenth aspect of the present invention.

【図73】本発明の第12の発明の磁気抵抗効果素子を
示す斜視図。
FIG. 73 is a perspective view showing a magnetoresistive element according to a twelfth aspect of the present invention;

【図74】本発明の第12の発明の磁気抵抗効果素子を
示す断面図。
FIG. 74 is a sectional view showing a magnetoresistive element according to a twelfth aspect of the present invention;

【図75】本発明の第13の発明の磁気抵抗効果素子を
示す断面図。
FIG. 75 is a sectional view showing a magnetoresistive element according to a thirteenth aspect of the present invention;

【図76】Co/Cr積層膜のX線回折パターン。FIG. 76 is an X-ray diffraction pattern of a Co / Cr laminated film.

【図77】基板温度約100℃で成膜した本発明の第1
3の発明の積層膜のR−Hカーブ。
FIG. 77 shows a first example of the present invention formed at a substrate temperature of about 100 ° C.
The RH curve of the laminated film of the invention of FIG.

【図78】基板温度約200℃で成膜した本発明の第1
3の発明の積層膜のR−Hカーブ。
FIG. 78 shows a first example of the present invention formed at a substrate temperature of about 200 ° C.
The RH curve of the laminated film of the invention of FIG.

【図79】パターン幅方向を容易軸とした場合の本発明
の第13の発明の積層膜のR−Hカーブ。
FIG. 79 is an RH curve of the laminated film of the thirteenth invention of the present invention when the pattern width direction is set as an easy axis.

【図80】下地膜を設けない場合の本発明の第13の発
明の積層膜のR−Hカーブ。
FIG. 80 shows an RH curve of a laminated film of the thirteenth invention of the present invention when no base film is provided.

【図81】本発明の第13の発明の磁気抵抗効果素子を
示す断面図。
FIG. 81 is a sectional view showing a magnetoresistive element according to a thirteenth aspect of the present invention;

【図82】本発明の第13の発明の磁気抵抗効果素子を
示す断面図。
FIG. 82 is a sectional view showing a magnetoresistive element according to a thirteenth aspect of the present invention;

【図83】従来の磁気抵抗効果素子を示す斜視図。FIG. 83 is a perspective view showing a conventional magnetoresistance effect element.

【図84】従来の磁気抵抗効果素子のR−Hカーブ。FIG. 84 is an RH curve of a conventional magnetoresistance effect element.

【符号の説明】[Explanation of symbols]

10,20…サファイア基板、11,21,71…Co
90Fe10膜、12,22,23,70…Cu膜、13…
FeMn膜、14…Ti膜、15,24…Cuリード、
26…Ni酸化物膜、30,41,140…支持基板、
31,46…高抵抗アモルファス層、32,44,8
3,85,91,93,103,105,107,11
2,114,116,118,121,123,13
2,134,136,144…強磁性膜、33,45,
143…中間層、34…交換バイアス層、35,47…
リード、42…CoPtCr膜、43…レジスト、5
0,80,90,100,120,130…基板、51
…強磁性積層単位、52,84,87,88,92,1
04,106,113,115,117,122,13
3,135,163…非磁性膜、53,82,94,1
02,108,111,119,124,131,13
7,165…反強磁性膜、54,166…保護膜、5
5,62,86,96,109,125,145…電極
端子、60…MgO基板、61…積層膜、81,10
1,141…下地膜、95…硬質磁性膜、97…絶縁
膜、142…高保磁力膜、146…磁気的絶縁層、16
0…熱酸化Si基板、161…高抵抗強磁性膜、162
…第1の強磁性膜、164…第2の強磁性膜、167
a,167b…電極、169…高抵抗反強磁性膜。
10, 20: sapphire substrate, 11, 21, 71: Co
90 Fe 10 film, 12, 22, 23, 70 ... Cu film, 13 ...
FeMn film, 14 ... Ti film, 15, 24 ... Cu lead,
26 ... Ni oxide film, 30, 41, 140 ... Support substrate,
31, 46 ... High-resistance amorphous layer, 32, 44, 8
3,85,91,93,103,105,107,11
2,114,116,118,121,123,13
2,134,136,144 ... ferromagnetic film, 33,45,
143 intermediate layer, 34 exchange bias layer, 35, 47
Lead, 42: CoPtCr film, 43: Resist, 5
0, 80, 90, 100, 120, 130... Substrate, 51
... Ferromagnetic laminated unit, 52, 84, 87, 88, 92, 1
04, 106, 113, 115, 117, 122, 13
3,135,163 ... nonmagnetic film, 53,82,94,1
02, 108, 111, 119, 124, 131, 13
7, 165: antiferromagnetic film, 54, 166: protective film, 5
5, 62, 86, 96, 109, 125, 145: electrode terminal, 60: MgO substrate, 61: laminated film, 81, 10
1, 141: base film, 95: hard magnetic film, 97: insulating film, 142: high coercive force film, 146: magnetic insulating layer, 16
0: thermally oxidized Si substrate, 161: high-resistance ferromagnetic film, 162
... first ferromagnetic film, 164 ... second ferromagnetic film, 167
a, 167b: electrodes, 169: high-resistance antiferromagnetic film.

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平5−53612 (32)優先日 平5(1993)3月15日 (33)優先権主張国 日本(JP) (72)発明者 橋本 進 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 澤邊 厚仁 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 上口 裕三 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 佐橋 政司 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (31) Priority claim number Japanese Patent Application No. 5-53612 (32) Priority date Hei 5 (1993) March 15 (33) Priority claim country Japan (JP) (72) Inventor Susumu Hashimoto 1 Komukai Toshiba-cho, Kawasaki-shi, Kanagawa Prefectural R & D Center, Toshiba Corporation (72) Inventor Atsushi Sawana 1 Komukai-shiba Cho, Saiwai-ku, Kawasaki, Kanagawa Shiba Research & Development Center ( 72) Inventor Yuzo Kamiguchi 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Within the Toshiba Research and Development Center (72) Inventor Masaji Sahashi 1 Komukai-Toshiba, Ko-ku, Kawasaki-shi, Kanagawa Toshiba Corporation R & D Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、少なくとも強磁性膜、非磁性
膜、および強磁性膜が順次積層されてなる積層膜を具備
した磁気抵抗効果素子であって、2つの前記強磁性膜は
それぞれ信号磁界が印加されてもその磁化方向が実質的
に保持される磁化固着膜、および信号磁界により磁化が
変化して信号磁界を検出する磁界検出膜となり、信号磁
界零の場合における2つの前記強磁性膜の磁化方向が互
いに略直交しており、かつ、信号磁界方向にセンス電流
を通電することを特徴とする磁気抵抗効果素子。
1. A magnetoresistive effect element comprising a laminated film in which at least a ferromagnetic film, a non-magnetic film, and a ferromagnetic film are sequentially laminated on a substrate, each of the two ferromagnetic films being a signal. When the magnetic field is zero, the magnetization pinned film maintains its magnetization direction substantially, and the magnetic field detection film detects the signal magnetic field by changing the magnetization due to the signal magnetic field. A magnetoresistive effect element, wherein the magnetization directions of the films are substantially orthogonal to each other, and a sense current is passed in a signal magnetic field direction.
JP33192296A 1992-10-30 1996-12-12 Magnetoresistive element and magnetic reproducing system Expired - Fee Related JP3691920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33192296A JP3691920B2 (en) 1992-10-30 1996-12-12 Magnetoresistive element and magnetic reproducing system

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP4-315648 1992-10-30
JP31564892 1992-10-30
JP7891993 1993-03-12
JP5360593 1993-03-15
JP5-78919 1993-03-15
JP5361293 1993-03-15
JP5-53605 1993-03-15
JP5-53612 1993-03-15
JP33192296A JP3691920B2 (en) 1992-10-30 1996-12-12 Magnetoresistive element and magnetic reproducing system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5296063A Division JP2637360B2 (en) 1992-10-30 1993-11-01 Magnetoresistance effect element

Publications (2)

Publication Number Publication Date
JPH09186374A true JPH09186374A (en) 1997-07-15
JP3691920B2 JP3691920B2 (en) 2005-09-07

Family

ID=27523095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33192296A Expired - Fee Related JP3691920B2 (en) 1992-10-30 1996-12-12 Magnetoresistive element and magnetic reproducing system

Country Status (1)

Country Link
JP (1) JP3691920B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090480A (en) * 1997-04-30 2000-07-18 Nec Corporation Magnetoresistive device
KR20010033533A (en) * 1998-10-26 2001-04-25 다니구찌 이찌로오, 기타오카 다카시 Magnetoresistant device and a magnetic sensor comprising the same
US6341053B1 (en) 1997-10-30 2002-01-22 Nec Corporation Magnetic tunnel junction elements and their fabrication method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090480A (en) * 1997-04-30 2000-07-18 Nec Corporation Magnetoresistive device
US6341053B1 (en) 1997-10-30 2002-01-22 Nec Corporation Magnetic tunnel junction elements and their fabrication method
KR100347084B1 (en) * 1997-10-30 2002-10-25 닛본 덴기 가부시끼가이샤 Magnetic tunnel junction element that can be used as an external magnetic field sensor
KR20010033533A (en) * 1998-10-26 2001-04-25 다니구찌 이찌로오, 기타오카 다카시 Magnetoresistant device and a magnetic sensor comprising the same

Also Published As

Publication number Publication date
JP3691920B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
US5780176A (en) Magnetoresistance effect element
US5688605A (en) Magnetoresistance effect element
US6395388B1 (en) Magnetoresistance effect element
US6313973B1 (en) Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
US20080088987A1 (en) Exchange-coupled film, method for making exchange-coupled film, and magnetic sensing element including exchange-coupled film
JP2637360B2 (en) Magnetoresistance effect element
US6090498A (en) Magnetoresistance effect element and magnetoresistance device
JP2004524708A (en) Magnetoresistive element, magnetoresistive magnetic head using the same, magnetic recording device, and magnetoresistive memory device
JP2000156530A (en) Laminated thin-film function device and magnetic resistance effect element
US7760473B2 (en) Magnetoresistance element employing Heusler alloy as magnetic layer
GB2398920A (en) Spin valve magnetoresistive element
JP3774388B2 (en) Magnetic detection element
US7800866B2 (en) Magnetic sensing element containing quaternary Heusler alloy Co2Mn (Ge1-xSnx) which constitutes a free magnetic layer or pinned magnetic layer
JP2007142257A (en) Magnetic detection element
JP2000022239A (en) Magnetoresistive film and head
US7362546B2 (en) Spin-valve magnetoresistive element having fixed magnetic layer of epitaxal laminate including magnetic layer and nonmagnetic layer
JP3655031B2 (en) Magnetoresistive element and magnetic reproducing system
JPH09205234A (en) Magnetoresistance effect element and magnetoresistance effect sensor
JP3691920B2 (en) Magnetoresistive element and magnetic reproducing system
JP2006351919A (en) Magnetic detecting element
US7558029B2 (en) Magnetic detectible head comprising free layer
JP3488545B2 (en) Magnetoresistive element, magnetoresistive head and magnetic reproducing device
JP3153739B2 (en) Magnetoresistive element and magnetic transducer
KR0136073B1 (en) Magnetoresistance effect element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees